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Abstract

In prediction tasks, there exist features that are related to the label in the same way across
di�erent settings for that task; these are semantic features or semantics. Features with vary-
ing relationships to the label are nuisances. For example, in detecting cows from natural
images, the shape of the head is semantic but because images of cows often have grass back-
grounds but not always, the background is a nuisance. Models that exploit nuisance-label
relationships face performance degradation when these relationships change. Building mod-
els robust to such changes requires additional knowledge beyond samples of the features and
labels. For example, existing work uses annotations of nuisances or assumes erm-trained
models depend on nuisances. Approaches to integrate new kinds of additional knowledge
enlarge the settings where robust models can be built. We develop an approach to use knowl-
edge about the semantics by corrupting them in data, and then using the corrupted data
to produce models which identify correlations between nuisances and the label. Once these
correlations are identified, they can be used to adjust for where nuisances drive predictions.
We study semantic corruptions in powering di�erent spurious-correlation avoiding meth-
ods on multiple out-of-distribution (ood) tasks like classifying waterbirds, natural language
inference (nli), and detecting cardiomegaly in chest X-rays.

1 Introduction

Relationships between the label and the covariates can change across data collected at di�erent places and
times. For example, in classifying animals, data collected in natural habitats have cows appear more often on
grasslands, while penguins appear more often on backgrounds of snow; these animal-background relationships
do not hold outside natural habitats (Beery et al., 2018; Arjovsky et al., 2019). Some features, like an animal’s
shape, are predictive of the label across all settings for a task; these are semantic features, or semantics in
short. Other features with varying relationships with the label, like the background, are nuisances. Even
with semantics present, models trained via empirical risk minimization (erm) can predict using nuisances
and thus fail to generalize (Geirhos et al., 2020). Models that rely only on the semantic features perform
well even when the nuisance-label relationship changes, unlike models that rely on nuisances.
Building models that generalize under changing nuisance-label relationships requires additional knowledge,
beyond a dataset of features and labels sampled from the training distribution. For example, many works
assume knowledge of the nuisance. In the animal-background example, this would correspond to a feature
that specifies the image background, which we may use when specifying our learning algorithm. (Mahabadi
et al., 2019; Makar et al., 2022; Veitch et al., 2021; Puli et al., 2022); another common type of assumption
is access to multiple datasets over which the nuisance-label correlation varies (Peters et al., 2016; Arjovsky
et al., 2019; Wald et al., 2021), and some other forms of knowledge have been explored (Mahajan et al.,
2021; Gao et al., 2023; Feder et al., 2023).
Semantic Corruptions. In this paper, we explore the use of a di�erent type of knowledge: corruptions
of semantic features. Intuitively, imagine trying to predict the label from a corrupted input T (x), where all
semantic information has been removed. Any better-than-chance prediction provides us a window into the
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nuisances, as it must rely on them. We will then use these obtained biased models to guide methods that
we identify here as biased-model-based spurious-correlation avoiding methods (b-scams).
B-scams. There is a class of methods in the literature that use predictions of a biased model to adjust
for nuisances, and learn predictors that are free of spurious correlations. Among others, these include Just
Train Twice (jtt) (Liu et al., 2021), EILL (Creager et al., 2021), Nuisance-Randomized Distillation (nurd)
(Puli et al., 2022), and debiased focus loss (dfl), product of experts (poe) (Mahabadi et al., 2019). The
key question arising from these works is how can we obtain biased models? In empirical studies, prior works
on b-scams either use annotations of the nuisance or an ERM-trained model over the training data as a
placeholder for the biased model. The latter approach, based on an ERM-trained model, is successful if that
model completely ignores semantic information. In practice, these heuristics are rather fragile. Annotations
for nuisances are seldom available, and we lack a principled method to ascertain whether a model trained
with erm relies only on semantic features. Therefore, employing semantic corruptions could serve as a
valuable alternative to these heuristics. We claim that semantic corruptions o�er a principled and useful
approach to obtaining biased models.
Semantic corruptions T (x) must strike a delicate balance between removing semantic information and pre-
serving nuisances. For example, if T (x) replaces all pixels in an image with random noise, it corrupts
semantics while simultaneously erasing all information about the nuisances. An ideal T (x) would isolate
nuisances by targeting only the semantic information in the input, e.g., by in-painting the animal for the
task of classifying cows and penguins. Implementing such ideal corruptions is unrealistic, as they are task-
specific and may require human annotations of the semantic features; e.g., one can segment the objects in
every image. Doing so for all classification problems is extremely laborious. In tasks like nli, it is unclear
even how to annotate semantics, as they do not correspond to simple features like subsets of words. In
summary, after outlining the desired characteristics of semantic corruptions, we define corruptions that are
beneficial across multiple tasks and do not require human annotation. Our contributions are as follows:
1. Show that acquiring additional knowledge beyond a labeled dataset is necessary for e�ectively learning

robust models (theorem 1). Then, in proposition 1, we formalize su�cient conditions under which
additional knowledge in the form of a semantic corruption enables b-scams to learn robust models.

2. Develop multiple semantic corruptions for object recognition and natural language inference. These
include patch randomization, n-gram randomization, frequency filtering, and intensity filtering. Then, we
situate existing procedures, such as region-of-interest masking and premise masking, under the umbrella
of semantic corruptions.

3. Empirically, we demonstrate that any semantic corruption can power any b-scam. The corruption-
powered versions of these methods outperform erm on out-of-distribution (ood) generalization tasks like
Waterbirds, cardiomegaly detection from chest X-rays, and NLI. Corruption-powered nurd, dfl, and
poe achieve performance similar to said methods run with extra observed nuisance variables. Corruption-
powered jtt outperforms vanilla jtt.

2 Biased-model-based spurious-correlation avoiding methods

A spurious correlation is a relationship between the covariates x and the label y that changes across settings
like time and location (Geirhos et al., 2020). The features whose relationship with the label changes are called
nuisances. With a vector of nuisances z, let ptr(y, z, x), pte(y, z, x) be the training and test distributions.

Achieving robustness to spurious correlations requires additional knowledge. In the presence of
spurious correlations, the training distribution ptr may not equal the test distribution pte. Without further
assumptions, no algorithm that only sees data from ptr(y, x) can produce a predictor that works well on pte.
To achieve generalization when pte ”= ptr, work in the ood generalization literature assumes a relationship
between the training and test distributions. We follow the work of Makar et al. (2022); Puli et al. (2022) and
assume that only nuisance-label relationships — i.e. the conditional z | y — changes between training and
test. Formally, we let ptr, pte come from a family of distributions whose members have di�erent nuisance-label
relationships but share the same relationship between the label and the semantics xú:
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Definition 1. (Nuisance-varying family with semantic features xú
(Makar et al., 2022; Puli et al., 2022))

F = {pD : pD(y, z, xú, x) = p(y, xú) pD(z | y) p(x | z, xú)} . (1)

Many common tasks in ood generalization, including some from section 4, fit this definition. For example,
in classifying natural images, the background type is the nuisance z and its relationship to the label can
change across places, each corresponding to a di�erent member of F . The animal shape however is made of
semantic features xú that are related to the label in the same way across places. Like in this example, we
assume that the semantic features xú equal a function of the covariates xú = e(x) almost surely under every
pD œ F , but neither xú nor e(·) are known. Finally, the semantics and nuisances together account for all the
information that x has about y, meaning x |= pD

y | xú, z.
Building models that are robust to a shifting nuisance-label relationship relies on additional knowledge,
such as nuisance annotations, in the training data (Sagawa et al., 2019; Veitch et al., 2021; Makar et al.,
2022; Puli et al., 2022; Yao et al., 2022). Given knowledge of z, work like (Makar et al., 2022; Puli et al.,
2022) estimate a distribution, denoted p |= , under which the label and nuisance are independent (y |= p |=

z):
p |= (y, x) =

s
z,xú p(y, xú = xú)ptr(z = z)p(x | z = z, xú = xú)dzdxú. Following Puli et al. (2022), we call p |=

the nuisance-randomized distribution. The model p |= (y = 1 | x) achieves the lowest risk on any member of
the family F amongst the set of risk-invariant models; see Proposition 1 (Makar et al., 2022)). However,
even when ptr, pte œ F and optimal risk-invariant predictors can be built with nuisances, it is impossible to

always beat random chance when given data {y, x} ≥ ptr:

Theorem 1. For any learning algorithm, there exists a nuisance-varying family F where predicting with

p |= (y = 1 | x) achieves 90% accuracy on all members such that given training data y, x from one member

ptr œ F , the algorithm cannot achieve better accuracy than 50% (random chance) on some pte œ F .

The proof is in appendix A and proceeds in two steps. With ACCh(p) as the expected accuracy of a model
h on distribution p, the first step of the proof defines two nuisance-varying families F1, F2 such that no
single model can perform well on both families simultaneously; any h(x) for which ACCp1(h) > 50% for
all p1 œ F will have that ACCp2(h) < 50% for some p2 œ F2 and vice-versa. The second step shows that
the two families F1, F2 have a member that has the same distribution over y, x; letting the training data
come from this distribution means that any learning algorithm that returns a performant model — one that
beats 50% accuracy – on one family must fail to return a performant model on the other. Next, we discuss
di�erent methods that use additional knowledge beyond y, x to build robust predictors.

2.1 Biased-model-based spurious-correlation avoiding methods.

We focus on methods that correct models using knowledge of nuisances or where they might appear in the
covariates (Mahabadi et al., 2019; Liu et al., 2021; Puli et al., 2022). We first establish that the common
central part in these methods is a model that predicts the label using nuisances, which we call the biased

model; due to this commonality, we call these biased-model-based spurious-correlation avoiding methods
(b-scams). At a high level, a b-scam has two components. The first is a biased model that is built to
predict the label by exploiting the nuisance-label relationship via extra knowledge or assumptions. The
biased model is then used to guide a second model to predict the label without relying on nuisances.
We briefly summarize the di�erent b-scams here, di�erentiated by the additional knowledge they use to
build biased models. The di�erences between the methods are summarized in table 1. We give details for
nurd here and defer algorithmic details about the rest to appendix B.

Biased models from knowledge of the nuisances. The first category of b-scams from Mahabadi et al.
(2019); Puli et al. (2022) assumes additional knowledge in the form of nuisance annotations z. For example,
in nli — where the goal is determining if a premise sentence entails a hypothesis — (Mahabadi et al., 2019)
compute the fraction of words shared between the hypothesis and the premise for each sample in the training
data and use this as one of the nuisance features in building the biased model. The biased model in nurd,
poe, dfl is learned by predicting the label from the nuisance annotations in the training data to estimate
ptr(y | z). Using nuisance annotations, Puli et al. (2022); Makar et al. (2022) use the model ptr(y | z) as
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Table 1: Summary of nurd, jtt, poe, and dfl. Each method approximates the biased model: ptr(y | z).
This table describes the di�erent biased models, their names, how they are built.

Method Name What the biased model is Assumptions/Knowledge

jtt Identification model ptr(y | x) learned via erm erm learns biased models.
poe/dfl Biased model ptr(y | z) learned via erm z from domain-knowledge.
nurd Weight model ptr(y | z) learned via erm z from domain-knowledge.

the biased model to define importance weights and minimize risk w.r.t a distribution p |= obtained as

p |= (y, z, x) = ptr(y)ptr(z)p(x | y, z) = p(y)
ptr(y | z)ptr(z)ptr(y | z)p(x | y, z) = p(y)

ptr(y | z)ptr(y, z, x).

The second step in nurd (Puli et al., 2022) trains a model to predict y from a representation r(x) on data
from p |= such that z |= p |=

y | r(x); this step is called distillation. Due to y |= p |=

z, learning in p |= avoids features
that depend only on the nuisance and due to z |= p |=

y | r(x), distillation avoids features that are mixed
functions of the label and the nuisance (e.g. x1 = y + z). With these insights, nurd builds models of the
form p |= (y | r(x)) that are most informative of the label. Mechanically, nurd’s distillation solves this:

max
◊,“

Ep |=

log p◊(y | r“(x)) ≠ ⁄Ip |=

(y; z | r“(x)).

Puli et al. (2022) show that such models are best in a class of predictors with lower bounds on performance.
The mutual information above is zero when y |= p |=

z | x; this condition holds for semantic corruptions as we
discuss in appendix B. Thus, we run the distillation step as importance-weighted erm on the training data.
Mahabadi et al. (2019) consider two methods to train a biased model and a base predictive model jointly to
make the base model predict without relying on the biases. They propose 1) poe, where the loss is the sum
of the log loss of the two models and 2) dfl, where the biased model is used to weight the cross-entropy loss
for the base model. For both methods, Mahabadi et al. (2019) build a biased model as ptr(y | z). Intuitively,
the base model focuses on classifying samples that the biased model misclassifies. The methods fine-tune a
BERT model (Devlin et al., 2019) and do not propagate the gradients of the biased model to update the
common parameters (token embeddings).

Biased models from assumptions on erm-trained models. The second category of b-scams like
LFF (Nam et al., 2020), UMIX (Han et al., 2022), and jtt (Liu et al., 2021) require additional knowledge

that vanilla erm builds a biased model that exploits the nuisance-label relationship. Given such a model,
these works use it to reduce a second model’s dependence on the nuisance. We focus on jtt (Liu et al.,
2021) which aims to build models robust to group shift, where the relative mass of a fixed set of disjoint
groups of the data changes between training and test times. The groups here are subsets of the data defined
by a pair of values of discrete label and nuisance values. While jtt works without relying on training group
annotations, i.e. without nuisances, it assumes erm’s missclassifications are because of a reliance on the
nuisance. jtt first builds an “identification” model via erm to isolate samples that are misclassified. Then,
jtt trains a model via erm on data with the loss for the misclassified samples upweighted (by constant ⁄).
The epochs to train the identification model and the upweighting constant are hyperparameters that require
tuning using group annotations (Liu et al., 2021).

The commonality of a biased model. The central part in nurd, dfl, poe, and jtt is a model that
predicts the label using nuisances, like ptr(y | z), which we call the biased model as in He et al. (2019). The
predictive models in each b-scam are guided to not depend on nuisances used by the biased model. While
b-scams reduce dependence on nuisances, they build biased models using additional nuisance annotations
or require assumptions that erm-trained models predict using the nuisance. In the next section, we describe
an alternative: corrupt semantic information with data augmentations to construct biased models.

3 Out-of-distribution generalization via Semantic Corruptions

The previous section summarized how biased models can be built in b-scams using either direct knowledge
of nuisances or knowledge that erm-trained models rely on the nuisances. We now introduce semantic
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corruptions and show how they enable building biased models. Semantic corruptions are transformations of
the covariates that do not retain any knowledge of the semantics, except what may be in the nuisance z:
Definition 2 (Semantic Corruption). A semantic corruption is a transformation of the covariates T (x, ”),
where ” is a random variable such that ” |= (y, z, x, xú), if

’ pD œ F T (x, ”) |= pD
xú | z.

Here, we characterize conditions under which biased models built from semantic corruptions could be used
to estimate robust models. As discussed in section 2, p |= (y | x) is the optimal risk-invariant predictor, and
is the target of erm when predicting the label y from x under the nuisance-randomized distribution p |= .
Nurd estimates this distribution as part of the algorithm, and methods like jtt aim to approximate p |= ,
for example, upweighting samples mis-classified by a model that relies on z to predict y. We compare p |=

which is obtained by breaking the nuisance-label relationship against the distribution obtained by breaking
the relationship between the label and the data augmentation :

p |= (y, x) =
⁄

z

ptr(y)
ptr(y | z = z)ptr(y, z = z, x), pT (y, x) =

⁄

”
p(” = ”) ptr(y)

ptr(y | T (x, ”))ptr(y, x)d”.

We show here that the L1 distance between p |= (y, x) and pT (y, x) is controlled by an L2-distance between
the biased models built from the nuisance and the data augmentations respectively:
Proposition 1. Let T : X ◊ Rd æ X be a function. Assume the r.v. ptr(y | T (x, ”))≠1

has a bounded

second moment under the distribution p |= (y, z, x)p(”), and that ptr(y | T (x, ”)) and ptr(y | z) satisfy

Ep |= (y,z,x)p(”)ptr(y | T (x, ”))≠2 Æ m2, Ep |= (y,z,x)p(”) |ptr(y | T (x, ”)) ≠ ptr(y | z)|2 = ‘2.

Then, the L1 distance between p |= (y, x) and pT (y, x) is bounded: Îp |= (y, x)≠pT (y, x)Î1 Æ m‘. For a semantic

corruption that also satisfies y |= ptr
z | T (x, ”) the inequalities hold with ‘ = 0.

If ‘ = 0, pT (y, x) = p |= (y, x) which means that almost surely the conditionals match p |= (y | x) = pT (y | x).
Then, as p |= (y | x) is the optimal risk-invariant predictor, so is pT (y | x). More generally, standard domain
adaptation risk bounds that are controlled by the total variation distance between source and target (Ben-
David et al., 2010, Theorem 1) bound the risk of a model under p |= using the L1 bound m‘ — which upper
bounds the total variation — and the risk under pT .
Without nuisance annotations, one cannot test whether estimate the L2-distance between the two biased
models ptr(y | z) and ptr(y | T (x, ”)) in proposition 1. This distance can be large when a transformation
T (x, ”) retains semantic information. To avoid, we turn to a complementary source of knowledge: semantic
features. Using this knowledge, we design families of data augmentations that corrupt the semantic infor-
mation in x to construct semantic corruptions. Focusing on two popular ood tasks, object recognition and
nli, we use only semantic knowledge to build corruptions that retain some aspects of the covariates.
Biased models built on such corruptions will depend on any retained nuisances; more retained nuisances
mean better biased models.

3.1 Semantic corruptions via permutations

We first build corruptions when semantics appear as global structure. We give an intuitive example for
such global semantics. Consider the waterbirds dataset from Sagawa et al. (2019) with waterbirds and
landbirds appearing predominantly on backgrounds with water and land respectively. Semantic features
like the wing shape and the presence of webbed feet are corrupted by randomly permuting small patches.
See fig. 1a. Formally, given subsets of the covariates x1, · · · xk extracted in an order, global seman-
tics e(x1, · · · , xk) change with the order of extraction. Formally, with a random permutation fi ≥ q(fi)
and recalling that semantics are xú = e(x), the information about semantics is lost after permutation:
’pD, IpD,q(fi)(xú; e(xfi(1), · · · xfi(k)))) = 0.
We give an example of a semantic corruption with global semantics. Consider distributions {pD}DœR with
di�erent nuisance-label relationships. With U as the uniform distribution over {1, 2, 3}, and N as the normal
distribution, pD(y, z, x) corresponds to y ≥ U , z ≥ N (Dy, 1), and y selecting a configuration of x

y = 1 =∆ x = [≠z, z, z], y = 2 =∆ x = [z, ≠z, z], y = 3 =∆ x = [z, z, ≠z]

5



Published in Transactions on Machine Learning Research (06/2024)

(a) patch-rnd to corrupt global semantics in Waterbirds.
The original is the left most, followed by patch-rnds with
sizes 112, 28, 14. At sizes > 28, shape is hard to make out.

(b) Masking to corrupt semantics in chest X-rays. The
original is the left most, followed by roi-mask of size
112, 154, 196. At sizes > 154, the heart is blocked out.

Figure 1: Semantic corruptions of Waterbirds via patch-rnd and chest X-rays via roi-mask.

The index of the negated coordinate is the semantic feature xú that equals y and computing it requires
comparing coordinates: y = 1 if x2x3 > 0, y = 2 if x1x3 > 0, and y = 3 otherwise. In words, the
semantic feature is global. However, z = x1 + x2 + x3 is determined regardless of where the negative
sign is, i.e. it is not global. A random permutation T (x, ”) of the coordinates in x is thus a semantic
corruption: as T (x, ”) permutes the location of the negation, T (x, ”) | y, z is distributed identically to
T (x, ”) | z. In turn, T (x, ”) |= y | z. Further, the product of the three coordinates of T (x, ”) determines
z: (�iœ{1,2,3}T (x, ”)i)1/3 = ≠z. Thus, T (x, ”) determines z and y |= z | T (x, ”). These two independencies
imply that ‘ = 0 in proposition 1. Then, biased models from T (x) are as good as ones from z. Next, we give
corruptions for global semantics in vision and language tasks, that retain non-global features.

Patch randomization. Object recognition tasks where the object is a shape that can satisfy the global
property. For illustration, consider di�erentiating cows and penguins in natural images; here, shape is a global
semantic feature that structures multiple patches. Permuting patches via patch randomization (patch-rnd),
like in fig. 1a, corrupts global semantics.

N-gram randomization. Tasks like natural language inference (nli) — where the goal is determining
if a premise sentence entails a hypothesis — satisfy the global-semantics property. Consider this example:
the sentence "Bob speaks but Jon does not" contradicts "Jon speaks but Bob does not" but entails "Bob
speaks". The meaning is inferred from a global structure on the words and the order they appear in. Here,
randomizing the order of the words corrupts the semantics: For example, one randomized order of the
sentence "Jon speaks but Bob does not" is "Bob speaks but Jon does not"; the former entails "Jon speaks"
but the latter contradicts it. We randomize the order by permuting di�erent n-grams in each sentence; we
call this n-gram randomization (ngram-rnd).

3.2 Semantic corruptions via masking

The second corruption we build focuses on cases where certain subsets of the covariates are necessary part
of semantics. Masking, by removing that subset or setting it to a constant, corrupts semantics. Formally,
we corrupt the semantics by replacing subsets xS with a value that is out of support: for example, in images
where pixels lie in (0, 1), we corrupt x = [xS , x≠S ] as xcorrupted = [0 ú xS , x≠S ]. As an illustrative example,
consider a family F = {pD}DœR with varying nuisance-label relationships. With a, b being uniform binary
random variables, e(fl) as the exponential distribution with parameter fl, and s+(u) = log(1 + exp(u)) as
softplus, sample from pD(y, z, x) as: y = a ü b, z ≥ e(s+(D ú (2y ≠ 1))), x = [(2a ≠ 1)z, (2b ≠ 1)z].
For such a family, we show that masking out coordinate x1 is a semantic corruption: T (x) = [0, x2] satisfies
T (x) |= y | z and T (x) ”|= z. First, due to y being computed as an XOR function of a, b, it holds that
b |= y. Then, due to z only relying on y and exogenous noise, b |= (y, z) which implies b |= y | z. Given
z, b determines x2, so b |= y | z =∆ x2 |= y | z =∆ T (x) |= y | z. Further, ÎT (x)2Î = z which means
y |= z | T (x). These two independencies imply that ‘ = 0 in proposition 1. Then, using T (x) to build biased
models is equivalent to building them with z.

ROI-masking for object recognition. Semantics in images can often be localized to a region-of-interest
(roi). For example, in detecting cardiomegaly, the roi is the chest where the heart resides. Masking
out the roi removes centrally located semantic information from the chest X-ray (fig. 1b). We call this
region-of-interest masking (roi-mask).

Premise-masking for NLI. Semantic features in nli rely on the meanings of the premise and the hy-
pothesis sentences: for example, the premise states the occurrence of an event (“Alice sat while Bob stood.”)
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(a) Corruption via freq-filt. Original image to the
left followed zeroing out 14, 56, 112 of the lowest fre-
quencies. The heart features are corrupted at 56.

(b) Corruption via int-filt. Original image to the left
followed by zeroing out pixels with intensities above the
80%, 60%,40%. Heart features look corrupted at 40%.

Figure 2: Semantic corruptions of chest X-rays via freq-filt and int-filt respectively.

which can entail (“Alice sat.”) or contradict (“Bob sat.”) the hypothesis. The information about the setup in
the premise is therefore crucial to detect entailment or contradiction. If the context given by the premise is
blocked out, the hypothesis sentence can predict the label only due to nuisances. Thus, masking the premise
is a semantic corruption for nli that retains hypothesis features; we call this premise masking (prem-mask).

3.3 Semantic corruptions via frequency and intensity filters

Patch-rnd relies on di�erences in relative size and roi-mask relies on di�erences in spatial position. We
consider two aspects of the image that are not spatial, frequency and pixel-intensity, and give corruptions
for features that depend on these aspects. Semantics can appear as signals in a particular region of the
frequency spectrum, or appear at a particular luminosity in the image. For example, consider detecting
cardiomegaly from chest X-rays, where the heart appears as an object formed of bright pixels with little
variation in intensity across the pixels; the latter suggests that the heart features are low-frequency signals.
This observation motivates corruptions along the axes of frequency and pixel-intensity: frequency filtering

(freq-filt) and intensity filtering (int-filt). Freq-filt zeroes-out frequencies in the discrete fourier
domain, while int-filt zero-out pixels based on their intensities. See fig. 2 for how freq-filt and int-filt

corrupt the heart region. freq-filt and int-filt require characterizing semantic features in frequency and
intensity spaces; this is in contrast to roi-mask that is based on characterizing the position in pixel space
that the semantics occur in.

3.4 Using semantic corruptions in practice

For each method in table 1, we use a semantic corruption T (x) in building a model ptr(y | T (x)). For
reweighting-nurd, we replace ptr(y | z) with ptr(y | T (x)), for dfl and poe, we replace the model ptr(y | z)
with ptr(y | T (x)), and for jtt, we use ptr(y | T (x)) as the identification model.
Choosing the corruption parameter. To corrupt with patch-rnd, ngram-rnd, and roi-mask, freq-

filt, one must select a size parameter and to corrupt with int-filt, one must specify an intensity threshold.
For nurd, jtt, poe and dfl, we select corruption parameters with the same validation schemes used to select
other hyperparameters in each respective paper. In practice, including the b-scams run without semantic
corruptions in the b-scam’s validation scheme ensures a lower bound on performance. For example, for jtt,
this inclusion yields a lower bound that corresponds to vanilla jtt’s performance. We also report results for
all corruption parameters in appendix C.3, showing that all semantic corruptions except int-filt are not
sensitive to the parameters, and lead to models that outperform erm.

4 Experiments

We study semantic corruptions in powering nurd (Puli et al., 2022), jtt (Liu et al., 2021), and poe and
dfl (Mahabadi et al., 2019). To be faithful to the original evaluations of each method, we run them on
tasks from their respective papers: nurd on waterbirds, jtt on waterbirds and nli where the nuisance is the
presence of a negation word, and poe and dfl on nli evaluated on a challenging test dataset, HANS (McCoy
et al., 2019). We run nurd on chest X-rays but focus on detecting cardiomegaly rather than the original
pneumonia (Puli et al., 2022) because pneumonia detection even with known-nuisances is not performant.
See appendix C for details and appendix C.3 for additional experiments investigating semantic corruptions.

Methods, metrics and model selection. For images, we corrupt semantics with patch-rnd, a central
roi-mask, freq-filt, and int-filt. To show the value of semantic corruptions relative to existing data
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augmentations, we also consider two baseline transformations of images. The first is random cropping (rand-

crop) like in self-supervised learning (Bardes et al., 2021; Chen et al., 2020) where patches of random sizes
are sampled, covering Ø 0.08 fraction of the image. The second is adding gaussian noise (gauss-noise).
For text, we corrupt semantics with ngram-rnd and prem-mask. We report the average test accuracy for
every method. To be able to compare to what jtt is trained for in Liu et al. (2021), we report worst-group
test accuracy for jtt. For each method, we compare the performance of the original method to that of
the methods run with semantic corruption (including the baselines). For the corruption-powered versions,
group annotations and nuisances are unavailable in the training data. Known-nuisance versions of poe,
dfl, and nurd use direct knowledge of one or more nuisances during training. In choosing parameters
and early stopping, like Liu et al. (2021) do with vanilla jtt, corruption-powered jtt uses validation group
annotations. For the other methods, we follow validation schemes from the respective papers: for nurd we
follow Puli et al. (2022) and use a validation set weighted to have independent nuisance and label, and for
poe/dfl, we follow Mahabadi et al. (2019) and use a set of 1000 samples from the HANS training dataset.

4.1 Object recognition tasks

Table 2: Mean and standard error of
test accuracy across 10 seeds of nurd

with semantic corruptions on water-
birds. Known-z nurd uses a label
for the type of background as the nui-
sance. Consider the gap between erm

and known-nuisance nurd. Nurd

with semantic corruptions patch-

rnd, roi-mask, freq-filt, and int-

filt close 99%, 99%, 82%, 99% of the
gap respectively. Nurd with seman-
tic corruptions outperforms erm and
nurd with rand-crop, gauss-noise.

Method test acc.
Known-z nurd 87.2 ± 1.0%
patch-rnd 86.9 ± 1.2%
roi-mask 86.9 ± 1.7%
freq-filt 83.5 ± 1.1%
int-filt 86.9 ± 1.1%
rand-crop 73.7 ± 2.0%
gauss-noise 82.0 ± 2.6%
erm 68.0 ± 1.9%

To be faithful to the original evaluations of each method, we eval-
uate jtt on waterbirds, and nurd on both waterbirds and detect-
ing cardiomegaly; both tasks have images of size 224 ◊ 224 ◊ 3.
Both Puli et al. (2022) and Liu et al. (2021) use the raw wa-
terbirds data from Sagawa et al. (2019), where the task is de-
tecting the type of bird (water or land) from images where the
background is a nuisance. Unlike Liu et al. (2021), Puli et al.
(2022) process the waterbirds to get a di�erent setup from Sagawa
et al. (2019). To stay true to the original evaluations of the meth-
ods, we recreate the setups as described in their respective papers.
For both tasks, we use patch-rnd (of patch sizes 7, 14, 28, 56),
roi-mask (of mask sizes 112, 140, 168, 196), freq-filt (of high-
pass filter sizes 196, 168, 140, 112), and int-filt (of thresholds
0.1, 0.2, 0.3, 0.4) as semantic corruptions. For gauss-noise, we use
variances 0.01, 0.25, 1, 4.

Nurd on waterbirds. For nurd, we recreate the waterbirds ex-
periment from Puli et al. (2022) where the full waterbirds data from
Sagawa et al. (2019) was subsampled into training, validation, and
test datasets each with label balance. However, unlike Sagawa et al.
(2019), the validation data comes from the same distribution as the
training data. The training and validation datasets have 90% water-
birds on backgrounds with water and 90% landbirds on backgrounds
with land. The test data has a flipped relationship. Known-nuisance
nurd uses an additional label denoting the background-type as the
nuisance.
Table 2 gives results. Selecting hyperparameters using nurd’s validation approach gives sizes 14 for patch-

rnd (86.9%), 196 for roi-mask (86.9%), 168 for freq-filt (83.5%), and threshold 0.2 for int-filt (86.9%).
Consider the gap between erm and known-nuisance nurd. nurd with patch-rnd, roi-mask, freq-filt,
and int-filt close 99%, 99%, 82%, 99% of the gap respectively. nurd with these semantic corruptions
outperforms erm (68.0%) and nurd with rand-crop (73.7%) and gauss-noise (82.0%). Additionally, in
table 11 in appendix C, we give the results for all corruption parameters, showing that nurd with semantic
corruptions is insensitive to hyperparameters of the corruption and outperforms erm. In appendix C.1, we
discuss how the baseline gauss-noise could close 80% of the gap between erm and known-z nurd.

JTT on waterbirds. For jtt, we repeat the waterbirds experiment from Liu et al. (2021) which uses
the original data from Sagawa et al. (2019). The training data has 95% waterbirds on backgrounds with
water and 95% landbirds on backgrounds with land. Both the validation and test datasets have bird label
independent of the background. The groups here are subsets of the data that correspond to a pair of values
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of bird-type and background-type. Like vanilla jtt, we use group annotations in the validation data to
compute worst-group error and early stop training when using patch-rnd and roi-mask. The results for
vanilla jtt are from our run using the optimal hyperparameters from Liu et al. (2021).

Table 3: Test worst-group (WG)
accuracies of jtt on waterbirds.
jtt with semantic corruptions out-
performs erm, vanilla jtt, and jtt

with baseline corruptions (rand-

crop, gauss-noise).

Method test WG acc.
Vanilla jtt 86.5%
patch-rnd 89.0%
roi-mask 88.2%
freq-filt 87.2%
int-filt 87.0%
rand-crop 75.0%
gauss-noise 71.0%
erm 72.0%

Table 3 shows the results. Selecting the corruption hyperparameters
on the validation worst-group accuracy gives size 14 for patch-rnd

(89%), size 196 for roi-mask (88.2%), size 112 for freq-filt (87.2%),
and threshold 0.4 for int-filt (87.0%). Jtt with these semantic
corruptions outperforms erm (72.0%), vanilla jtt (86.5%), and jtt

with the baseline corruptions rand-crop (75%) and gauss-noise

(71%). Additionally, table 13 shows that jtt with patch-rnd and
roi-mask outperforms jtt with the baseline corruptions and erm at
every patch/border-size.

Nurd on detecting cardiomegaly In chest X-ray classification,
di�erences between hospitals, like the scanners used to produce the X-
rays, are known to correlate thoracic conditions with non-physiological
aspects in the image; for example, only some scanners render the air
in the lungs in white (Zech et al., 2018). We consider the shape-based
object recognition task of cardiomegaly (an irregularly sized heart)
detection and, following Puli et al. (2022), construct a dataset from
two chest X-ray datasets: chexpert (Irvin et al., 2019) and MIMIC
(Johnson et al., 2019). The training and validation datasets have 90%
cardiomegaly images from MIMIC and 90% healthy images from chex-
pert, while the test data has a flipped relationship. Known-nuisance
nurd uses hospital identity as the nuisance.

Table 4: Mean and standard
error of test accuracy over 10
seeds of nurd on chest X-rays.
Known-z nurd uses the hospital
as the nuisance. Consider the
gap between erm and known-z
nurd. nurd with patch-rnd, roi-

mask, freq-filt, and int-filt

close 72%, 82%, 65%, 35% of the gap
respectively. Except with int-

filt, nurd with semantic corrup-
tions outperforms erm and nurd

with baseline corruptions (rand-

crop, gauss-noise ).

Method test acc.
Known-z nurd 81.7 ± 0.3%
patch-rnd 77.0 ± 1.2%
roi-mask 78.7 ± 0.3%
freq-filt 76.0 ± 0.6%
int-filt 71.0 ± 1.0%
rand-crop 59.9 ± 2.1%
gauss-noise 69.0 ± 1.9%
erm 65.3 ± 1.1%

See table 4 for results. Selecting the corruption parameters using
nurd’s validation approach gives size 14 for patch-rnd (77%), size
196 for roi-mask (78.7%), size 168 for freq-filt (76.0%), and thresh-
old 0.1 for the int-filt (71.0%). Consider the gap between erm and
known-nuisance nurd. nurd with patch-rnd, roi-mask, freq-filt,
and int-filt close 72%, 82%, 65%, 35% of the gap respectively. nurd

with all semantic corruptions, outperforms erm (65.3%) and nurd

with the baselines gauss-noise (69%) and rand-crop (59.9%). Ad-
ditionally, we report results for all corruptions in table 11 in appendix C
showing that nurd with patch-rnd and roi-mask are insensitive to

hyperparameters and outperform erm.

4.2 Natural language inference (nli)

For methods poe, dfl, and jtt, we use the MNLI dataset (Williams
et al., 2018) to fine-tune a BERT model. The evaluations of these
methods in their respective papers have di�erent nuisances and, con-
sequently, di�erent test sets. In accordance, we describe the setup and
the results separately. We use ngram-rnd (sizes 1, 2, 3, 4) to produce
nuisances for both setups.

PoE and DFL For poe and dfl, we report test accuracies on the
HANS dataset McCoy et al. (2019) as in Mahabadi et al. (2019). HANS
was created to test the reliance of models on three known nuisances:
1) lexical overlap, 2) subsequence match, and 3) constituent matching
subtrees in the parse trees. Known-nuisance poe and dfl use exact knowledge of these nuisances. Table 5
gives the mean test accuracies over 4 seeds. For both dfl and poe, selecting the size hyperparameter based
on the average accuracy on a small subset of the HANS training data (1000 samples) gives n = 3. With this
size, poe achieves 66.7%, improving over poe with known nuisances (66.3%). dfl with ngram-rnd of size
3, achieves 68.4%, closing 84% of the gap between erm and known-nuisance dfl (69.3%).
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Table 5: Mean and standard devi-
ation of accuracies (over 4 seeds) on
the HANS dataset. The results for
poe and dfl that use known nuisances
are given under known. poe with
ngram-rnd (nr) performs better than
known-nuisance poe. dfl with (nr)
closes 84% of the gap between erm and
known-nuisance dfl. Poe and dfl

with prem-mask (pm) close 33% and
28% of the gap between erm and the
respective method with known z.

Method HANS test acc.

poe, known-z 66.3 ± 0.6%
poe, nr 66.7 ± 1.5%
poe, pm 64.5 ± 1.9%

dfl, known-z 69.3 ± 0.2%
dfl, nr 68.4 ± 1.5%
dfl, pm 65.2 ± 0.7%

erm 63.6 ± 1.1%

Poe and dfl with prem-mask (pm) close 33% and 28% of the
gap between erm and when the methods have knowledge of z. We
expect the methods with ngram-rnd do better than with prem-

mask because the latter corrupts nuisances like lexical overlap be-
tween premise and hypothesis that HANS focuses on. Additionally,
we give results for all n-gram sizes in table 10 in appendix C, show-
ing that poe and dfl beat erm for all n-gram sizes. Further, in
appendix C.3.1, we evaluate poe and dfl models on the ANLI (Nie
et al., 2019) dataset and counterfactually-augmented data (Kaushik
et al., 2019) in tables 15 and 16.

JTT For jtt, we repeat the nli experiment from Liu et al. (2021),
where the presence of a negation word in the hypothesis sentence
is the nuisance. The groups here are subsets of the data that corre-
spond to a value of the label and whether or not there is a negation
word in the hypothesis. Vanilla jtt uses group annotations in the
validation data to tune the hyperparameters and early stop train-
ing. For each n-gram size, we run jtt with ngram-rnd for two val-
ues of the number of epochs of training for the identification model:
2, 3. Following the hyperparameter selection procedure from Liu
et al. (2021), for each n-gram size, we give the results for the run
with the higher validation worst-group accuracy. Vanilla jtt is run
with the optimization hyperparameters from (Liu et al., 2021).

Table 6: Worst-group and avg. test
accuracies of jtt on nli. jtt with
prem-mask (pm) and ngram-rnd

(nr) outperforms vanilla jtt and erm.

Worst-group Avg.

Vanilla jtt 71.3% 79.1%
jtt + pm 72.1% 79.9%
jtt + nr 74.3% 79.7%

erm 67.9% 82.4%

Table 6 gives the results. Selecting the size hyperparameter for
ngram-rnd using validation worst-group accuracy, like Liu et al.
(2021) do for jtt, gives n = 1 with test worst-group accuracy
of 74.3%, better than vanilla jtt’s 71.3%. Additionally, table 14
shows that jtt using ngram-rnd at every size or prem-mask

performs better than both vanilla jtt (71.3%) and erm (67.9%).

5 Related work

Biased-model-based spurious-correlation avoiding methods (b-

scams) like (Veitch et al., 2021; Clark et al., 2019; Puli et al.,
2022; He et al., 2019; Makar et al., 2022) assume the nuisance is available as additional knowledge during
training. Semantic corruptions o�er a complementary approach to hand-crafting nuisances or obtaining
auxiliary labels, by capturing nuisances that remain after corruption (e.g. non-global nuisances remain after
patch-rnd). B-scams like LFF (Nam et al., 2020), UMIX (Han et al., 2022), and jtt (Liu et al., 2021)
all rely on one crucial assumption: that erm-training builds a biased model that exploits the nuisance and
use it to reduce a second model’s dependence on the nuisance. Each method trains the second model with
weighted cross-entropy with higher weights for samples misclassified by the biased model; the methods di�er
in how they build the biased model and how they compute the weighted loss. The biased models learn to
predict the label from the covariates. Such a model can also rely on the semantic features and upweighting its
misclassified samples produces data with a di�erent label-semantic relationship from the one in the training
data. Models trained on such data are suboptimal on test data which has the same semantic relationship
as the training data. Using semantic corruptions in these b-scams reduces the biased model’s reliance on
the semantics and makes the second model rely more on the semantics; thus, b-scams that rely on assump-
tions on erm-trained models being biased achieve better performance when using semantic corruptions. The
experiments in section 4 confirm this empirically: jtt with semantic corruptions improves over vanilla jtt.
Two instances of semantic corruptions, prem-mask and roi-mask, appear in earlier work (Mahabadi et al.,
2019; He et al., 2019; Puli et al., 2022) but were designed using knowledge of where nuisances appear in
the covariates. (Puli et al., 2022) used the borders of X-ray images as features that are related only to the
scanner type (the nuisance), and not human physiology, to avoid spurious correlations in the detection of
cardiomegaly. For nli, Mahabadi et al. (2019) use knowledge that the test set was constructed from samples
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misclassified by a model that relies on the hypothesis alone to build a biased model using the hypothesis
sentence. These are special cases of roi-mask and prem-mask from section 3.2 repsectively. Our work
widely generalizes the observations from the papers above by formally defining and further realizing the
abstraction of semantic corruptions in several instances and across applications.
Bahng et al. (2020) uses cnns with small receptive fields (RFs), to capture non-global nuisances. However,
their method is typically limited to very small filters because at size 3x3, deep neural networks like vgg

detect global semantics like shapes. In contrast, the size choice in patch-rnd has no bearing on the choice
of the model; we used default vision models. Bras et al. (2020) automatically identify and remove examples
with nuisances using adversarial filtering, but risk removing genuinely easy examples. Qin et al. (2021) work
solely with vision transformers and point out that nuisances are the only reason labels can be predicted
from transformations akin to patch-randomized images. They propose to encourage transformers to have
predictions and representations of the original images be dissimilar from those of patch-randomized ones.
In contrast, our work applies to general flexible models and shows that semantic corruptions can be used to
break the label’s relationship with nuisances in the original images.
Yao et al. (2022); Gao et al. (2023) use additional knowledge about nuisances or environments to corrupt
nuisances in the covariates, Yao et al. (2022) corrupt nuisances in the covariates via the Mixup (Zhang et al.,
2017) of samples from di�erent domains that share a label. Gao et al. (2023) directly randomize nuisances;
for example, in detecting animals in their natural habitats, they place segmented animal foregrounds onto
random habitat backgrounds. Unlike these methods, we design semantic corruptions using the complemen-
tary knowledge about semantics, which can be available even without knowledge about nuisances. Clark
et al. (2019); Li and Vasconcelos (2019) construct nuisances in the training stage using prior knowledge: for
example, (Clark et al., 2019) uses the first token of the hypothesis as a nuisance for a synthetic nli task
which was created to have the first token be spuriously correlated with the label. Another example is the
VQA task where the question-type is used as the nuisance. The constructed nuisances are then used to
build biased (or bias-only) models, or construct per-sample weights to de-bias the loss. In contrast, we use
knowledge about semantics to corrupt them; for example, the order of the words is a semantic feature that
is corrupted by randomizing the order. This construction does not use knowledge of the nuisance.
Sinha et al. (2021) use techniques like patch-rnd to restrict supports in self-supervised learning and gen-
erative modeling. Carlucci et al. (2019) use patch-rnd images to encourage a model to recover semantic
structure. In contrast, we use patch-rnd to corrupt semantics and build biased models that rely on the
nuisances, which help build predictive models that avoid reliance on nuisances. We focus on corrupting
semantic features using simple procedures (like permuting, masking, filtering) while papers (Kaushik et al.,
2019; Teney et al., 2020; Feder et al., 2022; Kaushik et al., 2020; Eisenstein, 2022; Wang and Culotta, 2021;
2020) focus on perturbing semantic features while keeping other features the same. These transformations
produce examples of di�erent labels, and are called counterfactuals. These examples are used to counterfac-
tually augment the training data (Kaushik et al., 2019). Constructing counterfactuals can be hard. Works
like (Kaushik et al., 2019; Teney et al., 2020; Feder et al., 2022; Kaushik et al., 2020) rely on humans to
create counterfactuals because it is di�cult to automate semantic perturbation without changing nuisances.
For example, consider classifying dogs versus cats. Creating a dog that looks like a specific cat is much
harder than removing the cat from the image by masking out those pixels.
Methods like (Wang and Culotta, 2021; 2020) construct counterfactuals automatically, but require additional
knowledge of how nuisances appear in the text. For example, Wang and Culotta (2021) matches sentences
that have opposite labels while sharing most words. The non-shared words would then be considered se-
mantic. Techniques like the matching one above from Wang and Culotta (2020) are unrealistic beyond the
task of sentiment classification. For example, consider the label of entailment or contradiction in NLI. Data
samples with entailment as the label that contain negation words are rare. This makes it hard to find a good
counterfactual for data samples labeled with contradiction. Further, matching is di�cult in other modalities,
like images, where covariates are continuous or high-dimensional and live in spaces where metrics are unclear.

6 Discussion

We study the use of semantic knowledge in models robust to spurious correlations. In theorem 1, we
show that additional knowledge is necessary to achieve ood generalization even when the training and test
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distributions are coupled in a nuisance-varying family. Then, proposition 1 shows that a biased model built
from a transformation of the covariates T (x, ”) — that is ptr(y | T (x, ”) — can power b-scams to avoid
nuisances if the biased model ptr(y | T (x, ”)) is close to ptr(y | z) in L2 distance. There are two scenarios
where this distance is large: the transformation does not corrupt semantics and it corrupts nuisances. We
use knowledge of the semantics to design semantic corruptions to avoid the first scenario. Since we work

without nuisances, to avoid the second scenario — that is to choose T (x, ”) that retain nuisances — we use
standard validation schemes in b-scams. Using semantic corruptions, practitioners can run di�erent kinds
of b-scams (nurd, jtt, dfl, poe). Corruption-powered methods like nurd and dfl perform close to how
they would with known nuisances. For methods like jtt, the corruption-powered versions perform better
than their vanilla versions that rely on erm on the raw covariates to yield nuisances.

Limitations. The quality of any semantic corruption, and thus the quality of the results, depends on the
extent to which semantics are destroyed and nuisances are retained. Patch-rnd and ngram-rnd are built
to corrupt global semantics, and therefore are most suitable for when the nuisances are local. Roi-mask

corrupts semantics in the roi and prem-mask corrupts the semantic context in the premise; these are most
suitable for when nuisances lie outside the region-of-interest (roi) or in the hypothesis respectively. Finally,
freq-filt and int-filt corrupt semantics in particular parts of the frequency and intensity spectrum, and
are most suitable for when the nuisances and semantics lie in separate parts of the spectra. Knowledge about
the kind of nuisances present in a dataset can lead to better choices of semantic corruptions. Alternatively,
one could use standard validation schemes to select a corruption, like we do in section 4.
When applied blindly, the procedures we describe may retain semantics or corrupt nuisances. Patch-rnd

and ngram-rnd may corrupt global nuisances and retain local semantics, roi-mask and prem-mask may
corrupt nuisances that occur in the same region as the semantics, and freq-filt and int-filt may corrupt
both semantics and nuisances if they appear at similar frequencies or intensity. For example, when patch-

rnd is used blindly on covariates with non-global semantics, the biased model may rely on said semantics;
this in turn guides the predictive model to ignore these semantics and, thus, lose predictive performance.
Alternatively, when nuisances are global, patch-rnd may corrupt them. For example in detecting cows and
penguins, other nuisance animals (like dogs) may co-occur with cows more often; patch-rnd would corrupt
this nuisance animal. Using patch-rnd in a b-scam for such tasks could lead to non-robust predictive
models that rely on corrupted nuisances.
Our experiments suggest that it might be possible to guard against performance degradation due to blind
usage of semantic corruptions if the corruption parameter is made a hyperparameter and selected using
standard validation schemes. In both classifying waterbirds and nli, there exist non-global semantics, like
small beaks and individual words, that are not corrupted by patch-rnd and ngram-rnd respectively.
However, in our Waterbirds and nli experiments, we show models built using semantic corruptions, with
validated size choices, close more than 80% of the gap in test performance between erm and the methods
that use known nuisances. Now, imagine the extreme case of running nurd, poe, dfl with a semantic
corruption that destroys all information in the covariates. Biased models would predict like random chance,
and the resulting predictive models would be no less robust than erm. On the other hand, methods like jtt

perform at least as well as their vanilla versions as long as the validation strategy used in vanilla jtt covers
the identity function as a corruption. Future work could consider combining semantic corruptions as a way
to better retain of nuisances. Given the validation strategies for b-scams, a practitioner can easily validate
over both single and hybrid corruptions.

Summary. Semantic corruptions power b-scams to build models robust to spurious correlations using
knowledge about the semantic features. Additional knowledge is always required to achieve such robustness,
and existing work assumes access to nuisance annotations or that erm-trained models rely on nuisances. By
developing semantic corruptions, we give an approach to use a new kind of additional knowledge, thereby
enlarging the set of tasks where one can build robust models. As discussed above, our experiments show
that using semantic corruptions in b-scams leads to models more robust than erm and jtt even when the
corruptions may have corrupted some nuisances. These two properties demonstrate the value of semantic
corruptions as a way to build robust models.
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A Proofs and Discussion on Semantic Corruptions

In this section we give the proofs of Theorem 1 and Proposition 1. The first result shows that even if we
know our training and test data are sampled from distributions in a nuisance varying family F , additional
assumptions are required in order to learn a predictor that is robust across the entire family.
Theorem 1. For any learning algorithm, there exists a nuisance-varying family F where predicting with

p |= (y = 1 | x) achieves 90% accuracy on all members such that given training data y, x from one member

ptr œ F , the algorithm cannot achieve better accuracy than predicting at random on some pte œ F .

Proof. At a high-level, we setup two nuisance-varying families F1 = {p1,fl}, F2 = {p2,fl} where

1. There are members of each family that have the same distribution over (y, x). We let this distribution
over y, x be the training data.

2. Thus looking at this training data alone, no algorithm can tell which family the test distribution
will come from.

3. Then, the proof concludes by showing any predictor that performs better than the chance on all
members of F1, will perform worse than chance on a member of F2.

Defining the two families. We now define two nuisance-varying families F1 = {p1,fl} and F2 = {p2,fl}.
For a œ {≠1, 1}, and – œ [0, 1] let R–(a) be a probability distribution obtained by randomly flipping the
sign of a with probability 1 ≠ –:

r ≥ R–(a) =∆
I

p(r = a) = –

p(r = ≠a) = 1 ≠ –
(2)

Then, define the family {p1,fl} as the distributions resulting from the following sampling process:

y ≥ R0.5(1)
z ≥ Rfl(y)

xú ≥ R0.9(y)
x = [xú, z]

The second family p2,fl follows the same process except that the positions of the semantic feature and nuisance
are flipped x = [z, xú]. Notice that predicting y from x1 in F1 and from x2 in F2, achieves 90%
accuracy. In both families, by construction, the following properties hold

p1,fl(y) = p2,fl(y) p1,fl(z, y) = p2,fl(z, y), p1,fl(xú, y) = p2,fl(xú, y), x1 |= p·,fl
x2 | y.

If fl ”= 0.9, due to the flipping of the positions of xú, z between p1,fl and p2,fl,

p1,fl(x1 | y) ”= p2,fl(x1 | y) p1,fl(x2 | y) ”= p2,fl(x2 | y).

But when fl = 0.9, the distributions are the same: p·,fl(x1 | y) d= p·,fl(x2 | y) =∆ p1,0.9(y, x) = p2,0.9(y, x).
With this we let the training data come from ptr = p1,0.9.

Reducing accuracy computation to summing conditional probabilities. Now, we express the ac-
curacy of any predictor f(x1, x2) œ {≠1, 1} of p1,fl:

ACCf (p1,fl) = Ep1,fl(y,x1,x)1[y = f(x1, x2)]

=
ÿ

x1,x2

p1,fl(y = f(x1, x2), x1 = x1, x2 = x2)

=
ÿ

x1,x2

p1,fl(x1 = x1, x2 = x2 | y = f(x1, x2))p1,fl(y = f(x1, x2))

= 0.5
ÿ

x1,x2

p1,fl(x1 = x1, x2 = x2 | y = f(x1, x2)) (3)
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With this expression, we have reduced computing the accuracy of a model f(x1, x2) to taking one from a
pair of numbers — either p1,fl(x1 = x1, x2 = x2 | y = 1) or p1,fl(x1 = x1, x2 = x2 | y = ≠1) based on what
f(x1, x2) predicts — for each possible value of x1, x1 œ {≠1, 1}2, summing them and multiplying by 0.5.

(x1, x2) (≠1, ≠1) (≠1, 1) (1, ≠1) (1, 1) ACCf (p1,0) acc ACCf (p1,1) min
0 1 1 1 1 0.50 0.50 0.50
1 1 1 1 -1 0.55 0.05 0.05
2 1 1 -1 1 0.05 0.55 0.05
3 1 1 -1 -1 0.10 0.10 0.10
4 1 -1 1 1 0.95 0.45 0.45
5 1 -1 1 -1 1.00 0.00 0.00
6 1 -1 -1 1 0.50 0.50 0.50
7 1 -1 -1 -1 0.55 0.05 0.05
8 -1 1 1 1 0.45 0.95 0.45
9 -1 1 1 -1 0.50 0.50 0.50
10 -1 1 -1 1 0.00 1.00 0.00
11 -1 1 -1 -1 0.05 0.55 0.05

=∆ 12 -1 -1 1 1 0.90 0.90 0.90
13 -1 -1 1 -1 0.95 0.45 0.45
14 -1 -1 -1 1 0.45 0.95 0.45
15 -1 -1 -1 -1 0.50 0.50 0.50

Table 7: The 16 di�erent functions that are possible when predicting a label in {≠1, 1} from x œ {≠1, 1}2.
We compute the accuracies on p1,0, p1,1 and report the minimum of the two. The only predictor that achieves
better than random chance accuracy (denoted by =∆) is f(x1, x2) = x1.

Showing only a semantic predictor can achieve better accuracy than random chance on F1.
Next, we will show that the only way to achieve better accuracy than random chance on every member
of F1 is to predict with f(x1, x2) = x1. To show this, we will express the accuracy computation for
two distributions p1,0 and p1,1 by constructing a table of values of p1,fl(x1 = x1, x2 = x2 | y = 1) and
p1,fl(x1 = x1, x2 = x2 | y = ≠1) for fl = 0 and fl = 1 separately.

p1,1
x1

≠1 +1

x2
≠1 0, 0.9 0, 0.1

+1 0.1, 0 0.9, 0

p1,0
x1

≠1 +1

x2
≠1 0.1, 0 0.9, 0

+1 0, 0.9 0, 0.1

By definition of accuracy from eq. (3), the accuracy of any predictor f(x1, x2) comes down to picking one
from the pair of numbers — left one if prediction if 1 and right otherwise — from each element in the table,
summing them and multiplying by 0.5. There are 16 possible functions (2 possible predictions each for 4
combinations of x1, x2) and we enumerate them in table 7, showing that only fú(x1, x2) = x1 will perform
better than chance on both distributions p1,0 and p1,1.

No predictor can achieve better accuracy than random on both F1 and F2. The earlier parts
showed that the only predictor that achieves better accuracy than random chance on all of F1 is one that
only relies on x1, which equals the semantic feature xú under p1,fl. However, under p2,fl, x1 is the nuisance
z. Then, the predictor fú(x1, x2) = x1 has zero accuracy under p2,0 because under p2,0, we have z ≥ R0(y)
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which means z ”= y with probability one:

ACCfú(p2,0) =
ÿ

x1,x2

p2,0(y = f(x1, x2), x1 = x1, x2 = x2) =
ÿ

x1,x2

p2,0(y = x1, z = x1, x2 = x2) = 0 (4)

A.1 Semantic corruptions, biased models, and proof of proposition 1

We give the definition of a semantic corruption here and discuss how it implies alternative intuitive definitions
before presenting the proof of proposition 1 on using corruptions to build biased models.

Definition 3 (Semantic Corruption). A semantic corruption is a transformation of the covariates T (x, ”),
where ” is a random variable such that ” |= (y, z, x, xú), if

’ pD œ F T (x, ”) |= pD
xú | z.

Two other plausible definitions that come to mind are T (x, ”) |= p |=

xú and that y |= pD
T (x, ”) | z. These

are both intuitive properties that can be asked of a semantic corruption that is supposed to discards all
information about semantics, provided that the z which we wish to retain holds no information on it (which
is the case under p |= ). We now show that definition 3 implies these two.
From the definition that if T (x, ”) is a semantic corruption, then it also holds that T (x, ”) |= p |=

xú: since
xú |= p |=

z

p |= (T (x, ”), xú) = Ep |= (z)p |= (T (x, ”), xú | z) = Ep |= (z)p |= (T (x, ”) | z)p |= (xú | z) (5)
= p |= (xú)Ep |= (z)p |= (T (x, ”) | z) = p |= (xú)p |= (T (x, ”)). (6)

A semantic corruption satisfies the second definition also because

pD(y|T (x), z) =
⁄

pD(y|xú, T (x), z)pD(xú|z, T (x))dxú =
⁄

pD(y|xú, z)pD(xú|z, T (x))dxú

=
⁄

pD(y|xú, z)pD(xú|z)dxú = pD(y|z)
(7)

First transition adds in integration over the values of xú, second one uses the property of the nuisance
varying family that x‹‹pD y|z, xú and therefore it is also conditionally independent for any T (x, ”). Then
the third transition is due to T (x, ”) being a semantic corruption. The next result shows that the more our
semantic corruption captures information about the nuisance that is relevant to predicting y, the better we
can approximate learning under p |= , which would yield the optimal risk-invariant predictor over F (Makar
et al., 2022).

A.1.1 Proof of proposition 1.

Now, using the property in eq. (7) that holds for semantic corruptions, we prove proposition 1.

Proposition 1. Let T : X ◊ Rd æ X be a function. Assume the r.v. ptr(y | T (x, ”))≠1
has a bounded

second moment under the distribution p |= (y, z, x)p(”), and that ptr(y | T (x, ”)) and ptr(y | z) satisfy

Ep |= (y,z,x)p(”)ptr(y | T (x, ”))≠2 Æ m2, Ep |= (y,z,x)p(”) |ptr(y | T (x, ”)) ≠ ptr(y | z)|2 = ‘2.

Then, the L1 distance between p |= (y, x) and pT (y, x) is bounded: Îp |= (y, x)≠pT (y, x)Î1 Æ m‘. For a semantic

corruption that also satisfies y |= ptr
z | T (x, ”) the inequalities hold with ‘ = 0.
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Proof. The L1 distance between the distributions is bounded from above by a p |= -weighted L1 distance
between ptr(y | z) and ptr(y | T (x)), upto a constant:

⁄

y,x
|p |= (y, x) ≠ pT (y, x))| dydx (8)

=
⁄

y,x

----
⁄

z
ptr(y)ptr(y, z, x)p(”)

5
1

ptr(y | z) ≠ 1
ptr(y | T (x, ”))

6
dz

---- dydx (9)

=
⁄

y,x

----
⁄

z
ptr(y)ptr(y, z, x)p(”)

5
ptr(y | T (x)) ≠ ptr(y | z)
ptr(y | z)ptr(y | T (x, ”)) ≠

6
dz

---- dydx (10)

=
⁄

y,x

----Eptr(z)p(”)
ptr(y)

ptr(y | T (x, ”))p(x | y, z) [ptr(y | T (x, ”)) ≠ ptr(y | z)]
---- dydx (11)

Æ
⁄

y,x
Eptr(z)p(”)

----
ptr(y)

ptr(y | T (x, ”))p(x | y, z) [ptr(y | T (x, ”)) ≠ ptr(y | z)]
---- dydx (12)

=
⁄

y,x,z
ptr(z)ptr(y)p(”)p(x | y, z) 1

ptr(y | T (x, ”)) |ptr(y | T (x, ”)) ≠ ptr(y | z)| dydxdz (13)

= Ep |= (y,z,x)p(”)
1

ptr(y | T (x, ”)) |ptr(y | T (x, ”)) ≠ ptr(y | z)| (14)

Æ
AÛ

Ep |= (y,x)p(”)
1

ptr(y | T (x, ”))2

B Ò
Ep |= (y,z,x)p(”) |ptr(y | T (x, ”)) ≠ ptr(y | z)|2 (15)

Substituting the bounds from the theorem statement completes the proof of the bound.
Finally, if T is a semantic corruption, by eq. (7), it holds that

ptr(y | T (x, ”), z) = ptr(y | z).
Then, if it also holds that y |= ptr

z | T (x, ”), it holds that
ptr(y | T (x, ”), z) = ptr(y | T (x, ”)).

Together this implies that almost everywhere in ptr(y, z, x)p(”)

ptr(y | T (x, ”)) = ptr(y | z) =∆ Ep |= (y,z,x)p(”) |ptr(y | T (x, ”)) ≠ ptr(y | z)|2 = 0.

This shows that for a semantic corruption such that y |= ptr
z | T (x, ”), it holds that ‘ = 0.

B Further details about biased-model-based spurious-correlation avoiding methods

and related work

Nurd. Focusing on mitigating spurious correlations, Puli et al. (2022) identify a conditional that has
performance guarantees on every test distribution within a family of distributions with varying nuisance-
label relationships: pte œ F . They develop nurd to learn the conditional using data only from ptr ”= pte.
nurd uses 1) the nuisance-randomized distribution, p |= (y, z, x) = p(y)p |= (z)p(x | y, z), where z |= p |=

y, and 2)
an uncorrelating representation r(x) for which z |= p |=

y | r(x). nurd builds models of the form p |= (y | r(x))
using r(x) that are most informative of the label.
We run reweighting-nurd, which uses a biased model ptr(y | z) as an importance weight to compute loss
under the nuisance-randomized distribution: p |= (y, z, x) = ptr(y)

ptr(y | z) ptr(y, z, x).

To run reweighting-nurd with semantic corruptions, we replace ptr(y | z) with ptr(y | T (x)) for a semantic
corruption T (x). Semantic corruptions are noisy functions of x: with noise ‘ such that (y, z, x) |= pD

‘,
T (x) = U(x, ‘). This implies

y |= p |=

‘ | x =∆ y |= p |=

x, ‘ | x =∆ y |= p |=

T (x) | x

Thus, r(x) = x is uncorrelating and p |= (y | x) achieves the optimality guarantees in Puli et al. (2022). These
optimality guarantees imply that regardless of the test nuisance-label relationship, p |= (y | x) will achieve
optimal performance within the class of models like p |= (y | r(x)).
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End-to-end bias mitigation. Mahabadi et al. (2019) consider two methods to train a biased model
ptr(y | z) and a base predictive model jointly to make the base model predict without relying on the biases.
The methods use and fine-tune a BERT model (Devlin et al., 2019) and do not propagate the gradients
of the biased model to update the common parameters (token embeddings in this case). They propose 1)
poe, where the log of the product of the predictions (the output probabilities) of the two models is used to
compute the classification loss and 2) dfl, where the biased model is used to weight the cross-entropy loss
for the base model.
The intuition for poe is that the samples for which the biased model classifies correctly will not contribute
to the gradients of the base model; thus the base model focuses more on classifying samples that the biased
model misclassifies. The dfl algorithm weights each sample as the biased model’s predicted probability of all
but the label, exponentiated with “ > 0. This downweights samples that the biased model classifies correctly
which in turn mitigates the base model’s reliance on a nuisance which only helps predict the downweighted
samples correctly.
Formally, with a biased model f◊(z) and a predictive model f“(x) that output a vector of logits over classes,
‡ denoting the soft-max function that maps logits to class-probabilities, and ‡(·)y denoting the softmax-
probability of label y

poe max
◊,“

ÿ

iœtraining data
log ‡(f◊(zi))yi + log ‡(f“(xi))yi (16)

dfl max
◊,“

ÿ

iœtraining data
(1 ≠ ‡(f◊(zi))yi)

“ log ‡(f“(xi))yi (17)

Mahabadi et al. (2019) build the biased model f◊ using known nuisances z. We build this model from a
semantic corruption T (x).

Just Train Twice (JTT). jtt works in two stages: 1) build an "identification" model via erm on the
training data to isolate samples that are misclassified due to reliance on the nuisances and 2) train a model via
erm on data with the loss for the misclassified samples upweighted (by constant ⁄). The identification model
in jtt is built to be a biased model. When the identification model equals ptr(y | z), it exactly misclassifies
the samples in the groups in the minority group1. Upweighting these samples produces a dataset with lesser
dependence between the nuisance and the label. Models learned on the upweighted data depend more on
the semantics. See algorithm 1 for pseudocode.

Algorithm 1 Jtt.
Input: Training set D and hyperparameters T and ⁄up. Stage one: identification
1. Train identification model f◊ on D via ERM for T steps.
2. Construct the errors set of training examples misclassified by f◊.
Stage two: upweighting identified points
3. Construct upsampled dataset Dup containing examples in the error set repeated ⁄up times and all
other examples once.
4. Train final model f“ on Dup via ERM.

In this work, we build the identification model on semantic corruptions i.e. we learn f◊ to predict y from T (x).
The training samples to be upweighted are the ones misclassified when predicting with the identification
model on semantic-corrupted versions of the sample, i.e. T (x). The second stage is run as in (Liu et al.,
2021) with training data.

Optimization-generalization Dilemma Like many other algorithms in the ood generalization litera-
ture, training b-scamss based on semantic corruptions may also su�er from obstacles due to optimization
and generalization: employing statistical constraints to handle distribution shift may not build models that
perform well OOD due to overfitting (Wald et al., 2022), training di�culties (Chen et al., 2022; Zhang et al.,

1The minority group is the set of samples that the nuisance misclassifies. For example, when ptr(y = z) > ptr(y ”= z), then
the minority group is the set of samples with y ”= z because using only the nuisance results in predicting y = b where z = b.
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Figure 3: Example of patch-rnd of a chest X-ray image. The image is followed by patch-rnds of size
112, 56, 28, 14, 7, 2.

2022; Chen et al., 2024), or reliance on inappropriate inductive biases (Nagarajan et al., 2020; Puli et al.,
2023). Some approaches in the literature can alleviate these di�culties: two-stage methods incorporate the
ood objective only when training smaller models on top of large ones (Chen et al., 2022; Zhang et al., 2022;
Chen et al., 2024; Yong et al., 2023; Kirichenko et al., 2022), subsampling instead of weighting (Sagawa
et al., 2020; Idrissi et al., 2022), or large ¸2 regularization (Sagawa et al., 2019).
In our implementations we use validation data and regularization to tune parameters for the weighted-erm

algorithm as proposed in the original papers of the b-scams we experiment with. As erm is standard
practice, there are no new optimization di�culties but generalization di�culties can occur due to overfitting
(Wald et al., 2022; Puli et al., 2023). Any improvements in generalization in weighted-erm will lead to
improvements in models built by b-scams with biased models from semantic corruptions.

C Further experimental details

C.1 Remark on baseline corruptions

Nurd with the baseline corruption gauss-noise outperforms erm and closes 80% of the gap between erm

and known-z nurd in table 2. We explain such an improvement as a consequence of gauss-noise corrupting
semantics more than it corrupts nuisances; we explain below. In tasks like waterbirds, nuisances are present
in most if not all patches of the image regardless of where the patches appear. On the other hand, semantic
features are localized to a few adjacent patches (like the birds parts appearing next to each other). When
nuisances are present is many more patches than the semantics, adding gaussian noise to all pixels corrupts
semantics more than nuisances. To see why, consider meausurements of a quantity as a gaussian random
variable with the quantity as its mean. More measurements lead to better estimates of the mean.

C.2 Implementation details

Each experiment in the paper was run on up to 2 RTX8000 GPUs. The hyperparameters for methods that
use known nuisances in the training data, like nurd, poe, dfl are tuned on validation data from the training
distribution. For nurd, we select corruption hyperparameters using the mean of the balanced validation
accuracy across 10 seeds. We do the same when using semantic corruptions.

Experimental details for Waterbirds For the nurd setup, the training, validation, and test datasets
have 3020, 756, 800 samples respectively. We use a single architecture to parameterize the predictive model
and the weight model in this experiment: two fully connected layers on top of a ResNet18 initialized at
weights pretrained on Imagenet. We use the same training procedure for nurd with known nuisances or
with semantic corruptions. Both models are trained with cross-entropy. The weight model is optimized with
the default Adam optimizer for 20 epochs with a batch size of 64. The predictive model is optimized with
the Adam optimizer for 20 epochs with a learning rate of 0.0002, a weight decay of 0.01, and a batch size of
250.
For the jtt setup, the training, validation, and test datasets have 4795, 1199, 5794 samples respectively.
For jtt, we use the same model and model parameters as Liu et al. (2021) using their released code. We
repeat the details here for completeness. The model for both stages of jtt is a ResNet-50. Both models are
optimized by stochastic gradient descent (SGD) with momentum 0.9, weight decay 1.0, and learning rate
1 ◊ 10≠5. Both models are trained for 300 epochs with batch size 64, using batch normalization and no data
augmentation. The identification model used to select samples to upweight corresponds to epoch 60 and the
upweighting constant is ⁄ = 100.
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Experimental details for cardiomegaly detection. The training, validation, and test datasets are
fixed across seeds and have 18000, 2000, 1000 samples respectively. To run reweighting-nurd, we use a
single architecture to parameterize the predictive model and the weight model in this experiment: two fully
connected layers on top of a ResNet18 initialized at weights pretrained on Imagenet. In known-nuisance
nurd with the hospital as the nuisance, the biased model is an estimate of ptr(y | hospital), which is
obtained by binning the samples based on the hospital and averaging the labels. We use the same training
procedure for nurd with known nuisances or with semantic corruptions. Both weight and predictive models
are trained with cross-entropy. The weight model and the predictive model are optimized with the Adam
optimizer over 25 epochs with a batch size of 256, and learning rate 0.001.

Implementation details for nli For poe and dfl, we build classifiers by fine-tuning a pretrained BERT
model (Devlin et al., 2019) on the data. We follow the same training procedure and hyperparameter details
as used in Mahabadi et al. (2019) — models were trained on the MNLI training dataset which consists of
392k examples, with a learning rate of 2◊10≠5 with a batch size of 8 using the Adam Optimizer. All models
are trained for 3 epochs. The development set contains 9815 examples and the HANS test contains 30000
examples. Since the HANS dataset has only two labels — ‘entailment’ and ‘non-entailment’ — we combine
the neutral and contradiction classes during inference on HANS.
For the jtt setup, Liu et al. (2021) mix the training and development sets from MNLI and create their own
training, validation, and test sets of sizes 206175, 82462, 123712 respectively. For jtt, we use the same model
and model parameters as Liu et al. (2021) using their released code. We use the optimal hyperparameters
reported in Liu et al. (2021) for the learning rate, weight decay, and the upweighting constant. We repeat the
details here for completeness. The model for both stages of jtt is a pretrained BERT model that is finetuned
during training. Both models are optimized by the AdamW optimizer with clipping for the predictive model,
no weight decay, and an initial learning rate of 2 ◊ 10≠5. Both models are trained for 5 epochs with batch
size 32 and dropout. The identification model used to select samples to upweight corresponds to epoch
2 for vanilla jtt (reported optimal in Liu et al. (2021)); for jtt with semantic corruption, we select one
from 2, 3 using validation group annotations. For both, the upweighting constant is ⁄ = 6. Our runs with
these parameters did not yield the test worst-group accuracy reported in (Liu et al., 2021) (72.6%); our
experiments yielded a test worst-group accuracy 71.3%. We expect this may be due to the di�erences in the
random seed; jtt is sensitive to hyperparameters and di�erences in order of batches may result in drops in
performance.
In ngram-rnd, when the number of words in the sentence is not a multiple of n, there will be one k-gram
(k < n). In implementing ngram-rnd, we ensure that the position of this k-gram is randomized i.e. we
make sure that it does not always occur at the end of the sentence, for example. ngram-rnd is implemented
before word-piece tokenization (which BERT uses), to ensure that we randomize words instead of subwords.
We also create a small HANS-like development set, which is used to tune the size parameter. This set is
constructed by randomly sampling 1000 examples from the HANS training set, which has zero overlap with
the HANS test set.

C.3 Full results tables and additional experiments

We give the results for all size parameters; see table 10, table 11, table 12, table 13, and table 14. To report
the same metrics as in Mahabadi et al. (2019) for poe and dfl and Puli et al. (2022) for nurd, we report
standard error for nurd and standard deviation for poe and dfl .

C.3.1 Results on Adversarial NLI (Nie et al., 2019) and CAD (Kaushik et al., 2019)

In table 15 and table 16, we report evaluations of poe and dfl models on the adversarial ANLI (Nie et al.,
2019) and the counterfactually augmented dataset (Kaushik et al., 2019).

C.3.2 Additional experiments

Experiments with weaker spurious correlations. To verify the e�ectiveness of the semantic corrup-
tions for powering b-scams like jtt that rely on assumptions on erm-trained models, we experiment with a
modified version of the Waterbirds dataset. In the modified dataset, the spurious feature predicts the label
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only 75% of the time; this is weaker than the 93% in the original dataset and the invariant relationship
which achieves > 85% accuracy across all groups. We ran erm, jtt, and corruption-powered jtt. For both
versions of jtt, we tune over the same hyperparameters as in Liu et al. (2021).

Table 8: Test worst-group (WG) ac-
curacies of jtt on modified water-
birds where the spurious correlation
is weaker than the invariant relation-
ship. Corruption-powered jtt out-
performs erm, vanilla jtt, and jtt

with baseline corruptions (rand-

crop, gauss-noise) by Ø 4.4%.

Method test WG acc.
Vanilla jtt 78.6%
patch-rnd 84.6%
roi-mask 85.2%
freq-filt 83.2%
int-filt 83.0%
rand-crop 76.2%
gauss-noise 75.9%
erm 76.1%

The results in table 8 show that corruption-powered jtt is better
than vanilla jtt and erm. The improvement of corruption-powered
jtt over vanilla jtt increases from 0.5% in table 3 to 4.4% in table 8;
this indicates that vanilla jtt is more sensitive to the strength of the
spurious correlation than corruption-powered jtt.

Experiments with multiple spurious features. We run roi-

mask-powered nurd with a modified version of the ColorFulMNIST
dataset (Yong et al., 2023). The images consist of 42 ◊ 42 ◊ 3 pixels,
with the middle 14 ◊ 14 forming the MNIST image showing a 0 or
a 1 and the rest being background patches. The digit in the mid-
dle predicts the binary label 1 or 0 with 75% accuracy. Given some
p œ [0, 1], this dataset sets each of the background patch colors de-
terministically based on the image in the middle with probability p;
with probability 1 ≠ p, each background is a random color (see figure
5 in (Yong et al., 2023).) We generate the training data with p = 0.9,
and the validation and test data with p = 0.
Roi-mask-powered nurd with central-roi sizes 14 and 28 achieves
test accuracies 71.1% and 70.3% respectively, beating erm which
achieves 51.7% because it relies more on the background colors.
patch-rnd is not suited for this experiment because the di�erent
nuisance colors are chosen based on the patch position, and patch-rnd randomizes patch positions which
corrupt these nuisances.

Experiments showing that corrupting the semantics is the reason behind the improved ood
performance in corruption-powered b-scams. First, we show that corruptions actually do corrupt
semantics, taking patch-rnd as the example. We focus on the Waterbirds dataset to show how patch size
a�ects semantics. For this investigation, we construct training and test datasets where the label and nuisance
are independent and build models for predicting the label.

Table 9: Accuracy of pre-
dicting the label from the im-
age corrupted by patch-rnd as
patch-size decreases. As the la-
bel is independent of the nui-
sance, a lower accuracy means
that more semantic information
is corrupted.

patch-rnd size Accuracy
Full image 86%
112 76%
56 73%
28 64%
14 58%
7 57%

The results are in table 9 and show that as patch-size decreases, more se-
mantic information is lost. These results mean that for patch sizes < 28,
a biased model built from the corrupted image cannot predict the label
well using semantics alone; the accuracy of random chance is 50%. As the
label is independent of the nuisance, a lower accuracy means more seman-
tic information is corrupted. However, on the original dataset, our biased
models at these patch sizes achieve at least 85% accuracy in predicting
the label from the corrupted images, meaning that they rely mostly on
the nuisance.
Second, to show that corruptions actually do help, we ran the full nurd

algorithm on the Waterbirds dataset from (Puli et al., 2022) with a biased
model built directly on the uncorrupted covariates; that is we train a
model with erm to predict y from x and use it as the biased model
in nurd. The resulting test accuracy is < 70%. When using patch-
sizes under 28, the patch-rnd-powered nurd algorithm achieves a test
accuracy of nearly 87%. This shows that the corruption of semantics is
directly responsible for improving model robustness.
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Table 10: Average accuracies and standard deviation over 4 seeds of poe and dfl with semantic corruptions
on the HANS dataset. The results for known poe and dfl from Mahabadi et al. (2019), where both methods
use known nuisances. For both methods, selecting the size hyperparameter based on the average accuracy on
a small dataset (1000 samples) from the test distribution gives n = 3. With this size, poe with ngram-rnd

performs better than known-nuisance poe while dfl with ngram-rnd closes 84% of the gap between erm

and known-nuisance dfl .

z poe dfl

Known 66.3 ± 0.6% 69.3 ± 0.2%
1-gram 65.7 ± 2.0% 66.5 ± 1.5%
2-gram 66.0 ± 0.9% 68.5 ± 0.7%
3-gram 66.7 ± 1.5% 68.4 ± 1.5%
4-gram 66.2 ± 2.9% 65.0 ± 2.0%

erm ≠ 63.6%.

Table 11: Mean and standard error of test accuracy across 10 seeds of nurd on classifying waterbirds.
Known-nuisance nurd uses a label for the type of background as the nuisance. Selecting the size hyper-
parameter based on the average accuracy over 10 seeds on the validation dataset gives 14 for patch-rnd,
196 for roi-mask, 168 for freq-filt, and 0.2 for int-filt. Consider the gap between erm and known-
nuisance nurd. nurd with patch-rnd, roi-mask, freq-filt, and int-filt close 99%, 99%, 82%, 99% of
the gap respectively. nurd with these semantic corruptions outperforms erm and nurd with rand-crop

and gauss-noise. nurd with all semantic corruptions outperforms erm (69.2%).

known rm rm rm rm pr pr pr pr

z 196 168 140 112 7 14 28 56 erm

Mean 87.2% 86.9% 86.6% 86.2% 86.3% 85.6% 86.9% 82.5% 84.9% 68.0%
Std. err. 1.0% 1.1% 1.2% 1.8% 1.6% 1.4% 1.2% 2.0% 1.4% 1.9%

ff ff ff ff if if if if

196 168 140 112 0.1 0.2 0.3 0.4

Mean 83.8% 83.5% 81.0% 80.3% 81.2% 86.9% 85.0% 81.9%
Std. err. 1.2% 1.1% 1.4% 1.7% 1.7% 1.1% 1.5% 1.7%

rand-crop gauss gauss gauss gauss

0.01 0.25 1 4

Mean 73.7% 75.8% 74.1% 78.0% 83.9%
Std. err. 2.0% 3.2% 3.1% 3.4% 1.4%
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Table 12: Mean and standard error of test accuracy across 10 seeds of nurd on detecting cardiomegaly from
chest X-rays. Known-nuisance nurd uses the hospital as the nuisance. Selecting the corruption parameters
based on the mean accuracy over 10 seeds on the validation dataset gives 14 for patch-rnd, 196 for roi-

mask, 168 for freq-filt, and 0.1 for the int-filt. Consider the gap between erm and known-nuisance
nurd. nurd with patch-rnd, roi-mask, freq-filt, and int-filt close 72%, 82%, 65%, 35% of the gap
respectively. nurd with semantic corruptions outperforms nurd with baseline augmentations rand-crop

and gauss-noise. nurd with patch-rnd and roi-mask outperforms erm for all size parameters.

known rm rm rm rm pr pr pr pr

z 196 168 140 112 7 14 28 56 erm

Mean 81.7% 78.7% 78.3% 77.2% 73.6% 76.2% 77.0% 74.9% 74.3% 65.3%
Std. err. 0.3% 0.3% 0.8% 0.8% 0.7% 1.2% 1.2% 1.0% 1.4% 1.1%

ff ff ff ff if if if if

196 168 140 112 0.1 0.2 0.3 0.4

Mean 74.4% 76.0% 75.3% 71.3% 71.0% 68.0% 62.0% 57.1%
Std. err. 1.5% 0.6% 0.9% 1.6% 1.0% 1.6% 1.8% 3.2%

rand-crop gauss gauss gauss gauss

0.01 0.25 1 4

Mean 59.9% 62.3% 63.5% 68.0% 69.0%
Std. err. 2.1% 3.7% 3.4% 1.1% 1.9%

Table 13: Test worst-group accuracies of jtt with semantic corruptions on waterbirds. Selecting the
corruption hyperparameters on the validation worst-group accuracy gives size 14 for patch-rnd, size 196
for roi-mask, size 112 for freq-filt, and threshold 0.4 for int-filt. jtt with these semantic corruptions
outperforms erm, vanilla jtt, and jtt with the baseline corruptions rand-crop and gauss-noise. jtt

with patch-rnd and roi-mask outperforms jtt with the baseline corruptions and erm for all sizes.

Vanilla rm rm rm rm pr pr pr pr

jtt 196 168 140 112 7 14 28 56 erm

86.5% 88.2% 88.0% 86.9% 86.2% 89.3% 89.0% 88.9% 89.1% 72%

ff ff ff ff if if if if

196 168 140 112 0.1 0.2 0.3 0.4
82.5% 84.5% 85.2% 87.2% 69.1% 80.0% 81.7% 87.0%

rand-crop gauss gauss gauss gauss

0.01 0.25 1 4
75% 0.0% 0.0% 71.0% 0.0%
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Table 14: Worst-group and average test accuracies of jtt with semantic corruptions on nli. jtt with
prem-mask and ngram-rnd of every size outperforms vanilla jtt. Selecting the size hyperparameter for
ngram-rnd using validation worst-group accuracy, like Liu et al. (2021) do for vanilla jtt, gives n = 1. At
this size, jtt with ngram-rnd outperforms vanilla jtt by 3% accuracy.

Worst-group Average

Vanilla jtt 71.3% 79.1%
prem-mask 72.1% 79.9%

1-gram 74.3% 79.7%
2-gram 71.9% 80.0%
3-gram 72.0% 80.1%
4-gram 73.4% 80.4%

erm 67.9% ≠

Table 15: ANLI (Nie et al., 2019) evaluations of models trained on MultiNLI. With a t-test to measure
statistical significance, at the standard significance level of 0.05, we found that poe with ngram-rnd

gave a statistically significant improvement over the baseline on ANLI-R1 and ANLI-R2, while dfl gave a
statistically significant improvement on ANLI-R1.

Model ANLI - R1 ANLI - R2 ANLI - R3
erm 23.1 ± 0.9 28.2 ± 0.8 29.8 ± 0.4

poe-known 23.5 ± 0.6 27.8 ± 0.8 29.8 ± 0.8
dfl-known 23.7 ± 1.3 27.8 ± 1.1 30.4 ± 0.9
poe - n3 24.8 ± 1.1 29.2 ± 0.4 30.4 ± 1.2
dfl - n3 24.9 ± 0.6 29.0 ± 1.2 29.9 ± 0.3

poe - prem-mask 23.6 ± 1.2 27.3 ± 0.8 29.8 ± 0.8
dfl - prem-mask 22.3 ± 0.7 27.7 ± 0.6 29.3 ± 1.1

Table 16: Mean and standard deviation of CAD (Kaushik et al., 2019) test accuracy over 4 seeds. At the
end, we also report the results of finetuning BERT on CAD training data from (Kaushik et al., 2019). When
trained on MNLI, on average over the CAD subsets RH and RH, dfl and poe with semantic corruptions,
dfl and poe with known-nuisances, and erm perform on par (within one std.) or better than finetuning
directly on the training CAD dataset. The improvement over finetuning directly on CAD may be due to the
fact that the CAD dataset is much smaller than MNLI ( 7k vs. 400k).

Method RP RH Avg. on RP and RH

erm on MNLI 61.1 ± 0.3 76.5 ± 0.4 68.8 ± 0.2
poe-known 60.6 ± 0.5 77.0 ± 1.1 68.8 ± 0.3
poe 3-gram 60.8 ± 0.5 76.1 ± 0.7 68.4 ± 0.2
poe prem-mask 61.7 ± 0.6 75.6 ± 1.0 68.6 ± 0.5
dfl-known 60.6 ± 0.8 76.2 ± 0.7 68.4 ± 0.4
dfl 3-gram 58.4 ± 1.8 72.7 ± 1.0 65.5 ± 1.4
dfl prem-mask 62.4 ± 0.7 76.1 ± 0.8 69.3 ± 0.6
erm on CAD (from (Kaushik et al., 2019)) 64.6 67.8 66.2
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