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Abstract

Generative models of language exhibit impressive capabilities but still place non-negligible
probability mass over undesirable outputs. In this work, we address the task of updating a
model to avoid unwanted outputs while minimally changing model behavior otherwise, a
challenge we refer to as a minimal targeted update. We first formalize the notion of a minimal
targeted update and propose a method to achieve such updates using negative examples
from a model’s generations. Our proposed Targeted Negative Training (TNT) results in
updates that keep the new distribution close to the original, unlike existing losses for negative
signal which push down probability but do not control what the updated distribution will
be. In experiments, we demonstrate that TNT yields a better trade-off between reducing
unwanted behavior and maintaining model generation behavior than baselines, paving the
way towards a modeling paradigm based on iterative training updates that constrain models
from generating undesirable outputs while preserving their impressive capabilities.

1 Introduction

Despite their impressive achievements, language models still output undesirable text. Examples include
hallucinations (Maynez et al., 2020; [Martindale et al., 2019; |Raunak et al., [2021} |Ji et al.| [2022; Huang et al.,
2021)), toxic language (Gehman et al., 2020)), and context-specific forms of unwanted outputs, from improper
style (e.g. informal language in contexts where formality is expected) to inappropriate content (e.g. advanced
topics in applications for children).

In recent years, various strategies have been proposed to control the generations of an existing language
model by changing the sampling process during inference time, e.g. via a guided decoding strategy based on
rules (Paulus et al.| [2018; [Hokamp & Liul 2017)), auxiliary models (Dathathri et al.l [2019; |Krause et al., |2021;
Yang & Klein, |2021; [Liu et al., 2021)), or prompt design (Brown et al.| 2020) Such techniques, however, add
latency or complexity to the prediction, as they push all desired model changes to inference time; moreover,
the costs to the prediction pipeline only increase as the list of changes grows, whether that is maintaining
a codebase of decoding rules and specialized prompts, or running multiple auxiliary models to guide the
original model’s decoding. As language models become more ubiquitous across product stacks, their ease of
use and speed during prediction will be increasingly important, and the strategy of pushing all model changes
to inference time will become increasingly impractical.

In this work, we instead consider training-time strategies for improving a model’s generations. The most
naive way to address problems with an existing model is to train a new one on modified data or with an

1For a given starting input ¢, prompt design strategies sample from p(x|c’),c’ # c instead of p(x | c).
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alternative training strategy. However, retraining to address one problem can result in a model that exhibits
new problems. As an example, |Welbl et al.| (2021]) show that training on data filtered to be less toxic hurts
model perplexity, disproportionately so for text associated with minority groups. The same can be said about
finetuning, which does not start the modeling process from scratch but can still result in models that are
substantially different from their base versions, e.g., due to catastrophic forgetting (McCloskey & Cohen,
1989; |[Kirkpatrick et al., |2016; [Luo et al., [2023). Thus, finetuning can also suffer from the same problems
as retraining from scratch, namely that new problems emerge in the endeavor to address existing ones; for
instance, |[Xu et al.| (2021) find that finetuning an existing language model on detoxified data also hurts model
perplexity disproportionately on text with minority group mentions, and the degradation increases the longer
the finetuning. Is there a way to adapt finetuning to make more targeted changes to a model?

In this work, we propose a finetuning strategy for minimal targeted updates to an existing autoregressive
generative model. Minimal targeted updates constrain an existing model to avoid certain behavior while
keeping the resulting model close to the original. The proposed approach in this work, called Targeted
Negative Training (TNT), uses only the original model and annotations of its generations to target a new model
that is a minimal targeted update of the original. TNT does not affect inference time, unlike decoding-time
procedures for controllable generation, and its focus on negative examples allows it to target changes (i.e.,
avoiding outputs) that would be much more difficult for methods which focus on other data types, from
“positive” demonstrations to preference data.

We first discuss the challenge of constraining model generations and why existing common finetuning strategies
fall short (Section . Then we propose TNT, a finetuning solution for avoiding undesirable outputs via a
minimal targeted change (Section . We next compare TNT to other related work in the literature (Section
and show in experiments that TNT enables more precise control than baselines over the trade-off between
reducing unwanted behavior and maintaining existing model behavior (Section . Code for TNT can be
found at https://github.com/google/tbpatches.

2 The Challenge of Constraining Model Generations

In this section, we motivate and define a minimal targeted update. First, we discuss the limitations of coarse
data filtering, motivating the use of token-level annotations (Section . Then, we explain how existing
losses for negative signal fail to govern where probability mass should be redispersed, motivating the need for
objectives that not only push down probability mass but also control what the resulting distribution should
look like (Section . Then, we define the solution to a minimal targeted update (Section .

2.1 Data Filtering is a Coarse Solution

In general, a text sequence is undesirable not because every single token in the text is bad, but rather because
some subset of the text conveys unwanted content. Data filtering however removes not only bad content
but all of the text that co-occurs with bad content. As a result, language and concepts that happen to be
correlated with bad behavior become under-represented in the finetuning distribution. The toxicity examples
in the introduction provide one such example, and our own experiments on reducing hallucination (details in
Section , we also find that retraining or finetuning on filtered data can significantly change the generation
behavior of a model beyond the change of interest (results in Appendix . Methods which build on finetuning
with filtered data (e.g., Ilharco et al.| (2023)) are also susceptible to this same issue.

Finetuning on token-level annotations can ameliorate the above issue by enabling a training loss that treats
unwanted tokens differently from others. Such an approach allows all acceptable text to contribute to model
training, even text that is correlated with unwanted text. The effort required to collect such token-level
annotations can be expensive but in some cases may be comparable to that of collecting sequence-level
annotations—for instance, labeling an overall sequence with “has hallucination” or “has offensive language”
generally requires identifying the hallucination or offensive language itself. In fact, [Wu et al.| (2023)) find that
annotation time is similar for fine-grained and sequence-level labels in a long-form QA task, but finetuning a
model on the former yields substantial performance benefits over finetuning on the latter.

Next, we consider existing losses that operate on token-level negative signal.
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2.2 Existing Negative Losses do not Control the Resulting Distribution

Here we show that existing objectives that take into account negative signal are insufficient to enforce
targeted updates. Given a distribution of negative (i.e. unwanted) examples p"°8, negative likelihood (NL)
(He & Glass| [2020) negates the log-likelihood objective for this distribution: Lnr,(0) = —Epnee[-log pg(z)].
Unlikelihood (uL) (Welleck et al., 2020) instead maximizes log(1 — p(z)) over the distribution of negatives:
Lyr,(8) = —~Epnes[log(1 — po(z))]. These token-level losses for negative signal are typically combined with
log-likelihood (log likelihood (LL)) on acceptable tokens as positive signal: for instance, for UL, we have
£6) = -, (13x € supp(piE.. )| log[1 — po(xle x<0)] + Lixs & supp(pE..,)] log pa(xelc, x1)). We first
consider the negative token-level losses by themselves and then objectives that combine these negative losses
with log-likelihood on positive tokens (i.e., NL 4+ LL and UL + LL).

First, both NL and UL alone are optimized when all negative examples have zero probability under the model
distribution. However, because both losses are defined as expectations with respect to the distribution of
negatives p"°8, neither NL or UL account for how mass is dispersed outside of the negative tokens. In other
words, both NL and UL reduce the probability of the target negative tokens but do not control what the
new probability distribution will look like at that token index, since tokens x & p"°¢ do not factor into the
expectation for either loss. For instance, under these objectives, a distribution that places all of its mass
on one particular element outside the support of negative examples is indistinguishable from a distribution
that spreads its probability mass arbitrarily across all non-negative examples. In other words, these negative
losses push down probability mass but do not specify how probability mass should be redistributed.

Even when we combine these negative losses with log-likelihood over positive tokens, the overall objectives
still do not specify the solution an update should target in the context of finite data. For NL + LL, the
negative likelihood is unbounded (lowest value is —0o) and thus can outweigh the log likelihood components
of the loss (lowest value is 0) that encourage pushing up probability over acceptable tokens. Unlike NL, UL is
bounded (lowest value is 0), but without specifying what the token distributions should be for indices with
negative examples, the resulting UL + LL loss does not sufficiently control the target of the update. In fact,
we find that utilizing these objectives increases the prevalence of disfluencies in generated sequences relative
to the original model; for instance, using NL on negative tokens and LL on positive tokens increases the
frequency of word repeats by 17x and 38x on the datasets we test, while using UL introduces a 7?7 disfluency
to 1.1% and 5.4% of the generations respectively (see Table[L for details). These occurrences highlight the
need to define the solution to a minimal targeted update for negative examples, which we do nextﬂ

2.3 Defining the Solution to a Minimal Targeted Update

While losses such as negative likelihood and unlikelihood do not define where probability mass should be
dispersed in a negative update, here we define the solution to a minimal targeted update: Given an original
distribution p°(x), a minimal targeted update results in a new distribution p"®¥(x) that is closest to p°(x) in
reverse KL-divergence while meeting a desired criterion, namely to avoid certain unwanted outputs. The
choice of reverse KL-divergence is a natural one in this setting since the goal is to constrain the support of
the original distribution, and the forward KL-divergence is infinite when the support of the new distribution
is a strict subset of the original.

Let the distribution of unwanted elements be p"°8. The model should not output negative examples, i.e., x €
supp(p"°®). Let Py denote the set of distributions py which satisfy the criterion Vx € supp(p™°®), p¥(x) = 0.
Then, we define result under a minimal targeted change as

p™ = min KL(p"||p%). (1)
PR EPy

The distribution p"®¥ is also known as the information projection of the original distribution p° onto Py and
is guaranteed to be unique given P* is a closed, convex set (Csiszar & Shields, 2004). Its solution is

P M (x) o< p?(X)1[x & supp(p"*®)]. (2)

2For clarification, we note that the original implementations of these losses paired them with positive signal not just on other
token indices, but also on the same index as the negative signal. This is not available in the context of an update with negative
examples, as it would require providing corrections for the unwanted tokens.
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See Appendixfor details. Equation ([2)) is a special case of the information projection for pointwise constraints
(i.e., constraints that are applied to every element in the distribution) and offers a simple mathematical form
for a minimal targeted change. Namely, p"°V is the distribution that would be obtained by pushing the
probability of the negative examples down to zero under the original distribution and renormalizing. This
solution encompasses a wide range of applications, as the set of negative examples supp(p"®®) can generalize
to any set one wishes to avoid, from factual inaccuracies to offensive language to text in a certain style.

Relationship to Conditioning. The distribution in Equation is equivalently the distribution of the
original model conditioned on the criterion x ¢ supp(p"°8):

p°(x|x & supp(p"*®)) o p°(x)p°(x & supp(p"*®) [x) = p°(x)1[x & supp(p")]. (3)

This correspondence implies that methods which use Bayes’ Rule to condition on a constraint (Krause et al.,
2021; [Yang & Klein, [2021)) are performing a minimal targeted update during inferenceﬁ Conversely, any
minimal targeted update can also be viewed via the lens of conditioning. We now define TNT to target this
solution directly.

3 Targeted Negative Training

TNT seeks to approximate the desired generator p"*V (Equation ) directly via a model py, rather than
change the sampling procedure for the original model p°® during inference.

To encourage targeted probability removal, TNT uses the following insight: a single forward pass through
a language model provides a single sample from a high-dimensional distribution over sequences, but the
same forward pass provides a fully specified distribution over tokens for every prefix that makes up the
sequence. In other words, while one can only estimate Ex.pnew[log pg(x)] via a Monte Carlo approximation of
the high-dimensional distribution p®°%, it is possible to analytically compute the analogous expression for
the constituent token distributions pz%’ , defined by input ¢ and output prefix x<¢. pg%., is obtained by

taking original token distribution pg , _,, removing probability mass from all elements in the negative token

distribution pex.,, and renormalizing.

new

TNT simply minimizes a divergence between the model distribution pg,c,x_, and desired distribution pgf’
for every token distribution pe x_, encountered in the training set, given examples from pcx_,. In this work
negative examples come from annotations of the original model’s generations, e.g. spans that are labeled bad,
but they can also be specified up front without referencing model generations, as has been done previously
to reduce repetition and contradictions in neural text generation (Welleck et al., 2020; |Li et al., 2020), or
given by external classifiers that operate on text prefixes (Yang & Klein, 2021)). When there are no negative

1 new — (]
examples for a given pex_,, then pg’ , = pg«_,-

Because a language model can be defined by its constituent distributions pc x_,, if all distributions pc x_,
match the desired pc%” ,, then the overall model matches p"®". However, because it is computationally
impractical to enumerate every constituent distribution pc x_,, we instead opt to constrain the distributions
that are more likely to be relevant in the generations for a given task, as approximated by the original
model’s generations. Thus, given a task specified by a distribution over input queries p(c), TNT optimizes for
a sequence-to-sequence model that approximates pc%’ , as well as possible on average, where the average is
defined by the original model’s generation process. In other words, the distributions pc x_, that are more
likely in decoding under the original model are also more likely for training the new model. For a given choice

of divergences D,, and D,,, TNT’s objective is

len(x)

£(0) = EempeBxopgi) | D 10 € DEE D (05, (1) 1p.c.x-. (x1)) W
t=1

10k & P IDp (PR, (%0l Po.coxc, (%)) ]

3The aforementioned cases do not force the constraint to be hard, i.e. p(x & supp(p™®8)|x) can lie between 0 and 1, but
in practice, the types of control desired for generation implies hard constraints that the text either meets or does not, i.e.
p(x & supp(p"°) |x) € {0, 1}.
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To implement this loss, we generate outputs from the original model and annotate them for undesirable text.
Then, we obtain pg ,_, and pgcx., for all ¢ € (1,len(x)) via one forward pass of the original and current
model and compute pg%’, based on the annotation for the given token. For divergences D, we consider both
the forward and reverse KL divergence, noting that the two encode difference preferences. Minimizing the
former is equivalent to minimizing token-level cross entropy, which can be computed analytically. To minimize
the latter, we smooth the desired distribution p"°" by adding le-6 to all elements and renormalizing. We
perform gradient-based optimization by summing over the per-sequence losses in a minibatch and calculating
the relevant gradients (See Algorithm 1). Note that the Monte Carlo nature of TNT is only to choose which
distributions pex_, to update, as the constituent target distributions pz%’ , can be given exactly and thus

the divergences computed analytically.

[ T =

(a) TNT given a negative example token (b) TNT given no negative token

Figure 1: Summary of Targeted Negative Training (TNT): For negative tokens (i.e. those flagged as undesirable
given the preceding tokens), TNT optimizes for a distribution that matches the original, renormalized after
the offending token probability is set to zero. For all other tokens, TNT encourages the new distribution to
match the original.

3.1 The Commutative Property of Negative Updates

A practical benefit of TNT for iterative model updates is that not all negative tokens need to be specified up
front. Because of the deterministic nature of the operation to zero out probability mass, one can apply negative
examples in any order, both across different p x_, distributions as well as within a given pc x_, distribution.
This commutative nature of negative updates typically does not apply to “positive” updates—that is, training
on samples from the distribution of interest—except for the scenario where the distributions of interest
places all their mass on a single token. Negative examples are unique in that they have a known probability
mass associated with them under the distribution of interest, i.e. 0. Given an existing distribution and a
positive example, on the other hand, there is not enough information to know the probability that an updated
distribution should assign to elements in the support of the existing distribution, presumably itself derived
from previously training on other positive examples.

Algorithm 1 Targeted Negative Training

1: Input: initial model p° (already trained), inputs {c}}, model outputs {x}7, token annotations {a}?
denoting x; € supp(pex.,)

2: p™ < p°

3: for each iteration do

4 Get pg'y_, for all ¢, x<; in batch (forward pass of p™)
5. Get pg_, for all ¢,x<; in batch (forward pass of p°)
6:  Compute pa%  for all ¢,x; in batch (Equation )
7. Calculate TNT loss (Equation (4))

8:  Calculate gradients for weights in p™ and update p™
9: end for

10: Return p™

3.2 Annotating Data for Targeted Negative Training

Ideally, the token-level annotations should align with the autoregressive structure of TNT methods; namely, a
negative token should indicate that the subsequence up to and including token x; is no longer acceptable
such that p(x¢|x<¢,c) should be 0. For one, this means that not all tokens in an unwanted multi-token
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word or expression should necessarily be marked negative—an example includes word or phrase prefixes that
could potentially be continued in a manner that is acceptable. For simplicity in the annotations, we make
the assumption that for any undesirable phrase, the tokens are undesirable immediately. This is generally
a reasonable assumption as long as there are good replacements for the undesirable content which do not
overlap in prefix.

In addition, in certain cases a given pc x_, will not be relevant in the optimal model. For instance, for a
sequence such that pa%’ , (x;) = 0, the sequence [c,x<;] is out-of-support under p"*" meaning pe x., is not
a relevant distribution. However, in initial study, we found that including such distributions (e.g. all the
constituent distributions that occur at time steps after a negative token) still helped constrain the model
towards its original. Thus, we chose to include them in the loss.

4 Related Work

Inference-time procedures for controllable generation. Many works consider alternative decoding
strategies to constrain model outputs, either with hard-coded rules such as length penalties and lexical
constraints (Paulus et al.l |2018; [Hokamp & Liul [2017; [Wu et al.| 2016; |[Lu et al., 2021) or auxiliary models
such as classifiers or other conditional generative models (Dathathri et al., |2019; [Krause et al., 2021} |Yang &
Klein| 2021; [Liu et al., [2021; [Meng et al., [2022). These approaches do not change the original model but
change the sampling process to effectively sample from an alternative distribution. These approaches can
incur non-trivial complexity to the inference process: guided decoding based on rules can result in significant
maintenance overhead as the rule set gets more complicated, and controllable generation via auxiliary models
involves at least an additional forward pass by the auxiliary model at every decoding time step. In contrast,
we propose finetuning approach which does not require a specialized inference pipeline.

Controllable generation using moment constraints. The solution of a minimal targeted update is
equivalent to that of a pointwise moment constraint defined previously in |Khalifa et al.| (2020); [Korbak
et al.|(2022a). However, the proposed algorithms differ substantially. Namely, the above works generally
consider both distributional and pointwise constraints and employ a two-stage training procedure to build a
model to satisfy both: first, they train an energy-based model (EBM) to match the desired solution, and
second they train an autoregressive generative model to approximate the distribution implied by the EBM
via importance weighting using samples from the model being trained. In contrast, this work considers
pointwise constraints only and derives a finetuning procedure which only requires training one model via
analytically computable token-level divergences (Section . Like previous work, [Meng et al. (2022) also
consider sequence-level constraints but prove that this setting can be translated into token-level guidance
(i.e., relating ppew(@t|z<t,¢) to po(w¢|r<s,c)) via the approximation of Pry. ., [C(z,y)|y<:] for all y;
and sequence-level boolean constraint function C. Consequently, Meng et al. (2022) are able to propose a
simpler algorithm than existing work, and by combining ideas in their work with this work, it is possible to
define a finetuning algorithm that optimizes analytical token-level divergences even given only sequence-level

annotations (define Pex., using results from |Meng et al. (2022), optimize using TNT).

The solution to a minimal targeted update differs from the solution of other objectives which incorporate
some form of KL divergence penalty to the loss, as the latter interpolate between the competing objectives
of maximizing reward and minimizing KL divergence (Ziegler et al., |2019; Wu et al., [2023; [Lu et al., |2022).
However, some objectives, e.g., (Ziegler et al., [2019; [Wu et al., |2023), can be rewritten as minimizing the
reverse KL divergence between the current model and a target distribution that reweights the original model
according to exp(%r(x)) for sequence-level rewards (see [Korbak et al.| (2022b); Rafailov et al. (2023)) or

exp(% > rt(x<¢)) for token-level rewards (see Appendix 7 both of which are approximately equal to the
solution of minimal targeted update when rewards denote whether a constraint is met and  is small.

Model editing approaches. Model editing (Cao et al.; [2021; |Zhu et al.| |2020; Hase et al.| 2021; Mitchell
et al.| [2021; |2022) focuses on updating a language model to output a corrected fact (e.g. updating the answer
to “Who is the Prime Minister of the UK?" when someone new is appointed), rather than constraining a
model to avoid certain generations. In fact, most model editing techniques do not even take into account the
negative example (i.e. the outdated or incorrect fact), instead focusing on maximizing the likelihood of correct
facts. The reliance on corrected outputs distinguishes the model editing setup from minimal targeted updates.
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Whereas corrections may be a natural source of supervision for updating facts, they can be overly prescriptive
for tasks such as detoxification where there is a wide range of possible “corrections” to an undesirable output.
In addition, maximizing the likelihood over a sample of corrected outputs does not preclude the resulting
model from placing non-negligible probability mass over undesirable examples, so a method for avoiding
certain outputs can still be useful even when corrections exist.

Parameter-efficient finetuning. Parameter-efficient finetuning (Houlsby et al., [2019; |Chen et al., [2023; |Li
& Liang, 2021; Ben Zaken et al.| [2022; Hu et al., |2022) is orthogonal to minimal targeted updates, as it is
possible to both change a small number of parameters but greatly modify model behavior (as evidenced by
the parameter-efficient finetuning literature), as well as change all parameters without changing the model
distribution (due to the non-identifiability of neural networks). Parameter-efficient finetuning can be used in
tandem with an objective for minimal targeted updates.

5 Experiments

We consider two use cases for targeted negative training, reducing hallucinations and toxicity. All experiments
utilize T5 base (220M parameters). First, we finetune T5 on the original training set. Then, we generate from
the model given training and validation inputs and annotate the generations. Next, we use the annotated
generations to update the model. To evaluate, we compute the prevalence of the unwanted behavior among
the new model’s generations on the test inputs, as well as similarity between the old and new model’s
generations. We use greedy decoding for all generations.

Next, we describe the datasets and methods. See Appendix [Bfor full dataset and experimental details.

5.1 Reducing Hallucinations in Summarization

We train a summarization model using the XSUM dataset (Narayan et al., |2018|) consisting of articles as
inputs and summaries as outputs. Models trained on this dataset are known to hallucinate in their generations
(Ji et al., [2022)), and we see the same behavior in the model we train. Using the automated heuristic for
detecting hallucination in |[Nan et al.| (2021), we see that approximately 21% of the model’s generations
contain some form of hallucination. We use the same hallucination detection logic to annotate the model’s
generations on the training inputs and identify hallucinations in the test generations for evaluation.

5.2 Avoiding Toxicity in Response Generation

We train a response generation model using the Civil Comments dataset of online comments (Borkan et al.,
2019)). Due to the nature of online forums, the comments and responses occasionally contain toxic language.
To label text spans as toxic, we train a token-level toxicity classifier on the Civil Comments Spans dataset
Pavlopoulos et al.| (2021), a subset of the Civil Comments dataset (same splits) where individual spans were
labeled “insulting, threatening, an identity-based attack, profane/obscene, or otherwise toxic." We finetune
Spacy’s CNN-based named entity recognition (NER) model, following [Pavlopoulos et al.| (2022)), and use the
finetuned model (65.1/59.5/65.8 F1 on train/val/test) to annotate our language model’s generations. Among
the initial T5 model’s generations, 8.2% contain toxic spans as labeled by our toxicity classifier.

We recognize that our notion of hallucination and toxicity in these tasks is simplistic, as both are based on
automated heuristics rather than human annotations and evaluations. However, the goal in these experiments
is not to solve the open problems of hallucination and toxicity in text generation but rather to evaluate TNT
as a method for producing a minimal targeted update given examples of outputs to avoid, in comparison to
other finetuning approaches.
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5.3 Methods

We consider two baseline finetuning procedures that consider token-level negative signal: negative likelihood
for negative tokens and LL for all other tokens in the generations (NL + LL) and unlikelihood for negative
tokens and log-likelihood for all other tokens in the generations (UL + LL)E

We consider the following targeted negative training methods: Targeted Negative Training Forward-Forward
(TNFF) uses the forward KL divergence for both positive and negative signals and Targeted Negative Training
Reverse-Reverse (TNRR) uses the reverse KL divergence for both. Targeted Negative Training Reverse-forward
(TNRF) uses the reverse KL for negative tokens and forward KL for positive token indices. Finally, to compare
more closely to the UL and NL, we consider Targeted Negative Training Forward-LL (TNFLL) and Targeted
Negative Training Reverse-LL (TNRLL), which utilize forward and reverse KL divergence for negative tokens
and maximum likelihood of the token sample for positive tokens, i.e., a single-sample Monte Carlo estimate
of the forward KL divergence.

Following Welleck et al.| (2020]), we introduce a hyperparameter a on the negative losses for all methods. We
consider alpha values le-4 to le4 (every power of ten). For each method, we perform a hyperparameter sweep
for learning rate at & = 1 and use the chosen learning rate across all values of a. For each run, we perform
model selection using validation loss.

5.4 Results

Main results. Inspired by precision-recall curves, we construct a curve for each objective’s similarity score
across different rates of unwanted behavior reduction (Figure E(a) and (c)). Namely, for each method we
plot the highest BLEU achieved across « values that achieve less than the given level of hallucination or
toxicity. We consider hallucination and toxicity values in increments of 0.1 percentage points. We also
plot the composite curve between baseline methods and TNT methods (Figure 2(b) and (d)). Selection is
performed on validation data.

For both tasks, we see that the targeted negative training losses allow for a greater flexibility in the trade-off
between maintaining similarity with original generations and reducing unwanted behavior. Notably, while the
baseline methods cannot achieve a BLEU score above 54 for XSUM and 40 for Civil Comments, regardless of
what level alpha is set to, TNT methods which compute an exact divergence on the positive tokens (TNFF,
TNRR, TNRF) can trade off how much hallucination or toxicity is reduced to achieve significantly higher BLEU
scores. In fact, for the task of reducing toxicity, several of the targeted negative training losses are strictly
better than the baseline methods at targeted updates across all levels of toxicity rate reduction. In general,
TNFF is the TNT loss that yields the least amount of change overall but can only reduce unwanted behavior
up to a certain level, while TNRR and TNRF can yield even further reductions with large enough « while
still being more targeted than baselines. Overall, the area under the similarity-reduction curves for TNT
methods far outstrips that of the baseline methods (55.5 vs. 44.6 for hallucination, 73.9 vs. 32.9 for toxicity).
We include similarity vs. reduction plots for other measures of similarity in Appendix [E| and see that TNT
methods continue to outperform baselines.

Once we also consider the amount of introduced disfluencies (see Appendix @ for details and examples), even
TNT methods that achieve comparable similarity and reduction rates as baselines are shown to be significantly
better at avoiding the introduction of new disfluencies to the generations (see Table [1| for combined similarity
and disfluency results at a fixed rate of reduction, and Figure [3 for disfluency results across multiple rates
of reduction). Note that TNFLL and TNRLL introduce fewer disfluencies relative to baselines despite only
differing their loss terms for negative tokens, empirically corroborating the analysis in Section that a
targeted negative loss constrains the resulting update in a way existing negative losses do not.

Increasing model size. We repeat the hallucination experiment on the 1-billion parameter variant of
Pal.M-2, a decoder-only model (see Figure [4]). For rates of reduction up to 50%, TNT methods offer a better
trade-off between similarity and reduction than baseline methods; beyond this point, baseline methods look

4We find that without LL terms on the non-negative tokens, the model degrades to outputting purely disfluent text after a
few steps of finetuning. Our results are corroborated by |He & Glass (2020), who also acknowledge that they cannot retain model
performance without positive signals.
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Figure 2: Across nearly all values of reducing unwanted behavior, the suite of TNT objectives is able to achieve
a comparable or better trade-off than baseline methods (NL + LL and UL + LL) between reducing unwanted
behavior and minimizing change relative to the original model’s generations. On the y-axis, higher is better.

better with respect to the similarity vs. reduction trade-off but introduce many more obvious disfluencies.
Compared to the results in Figure [2| on T5-base, the results on PaLM 2 are worse for similarity vs. reduction
but better for disfluencies vs. reduction. On one hand, the larger and better model seems harder to update.
On the other hand, given larger models are generally better to begin with, it arguably becomes even more
important to focus on targeting an update versus fully removing unwanted behavior, and this regime is where
TNT methods shine over baselines.

Ablations. On the toxicity reduction task, we also report the results of an ablation where methods are
trained on external data (i.e., labeled spans from the original Civil Comments spans dataset) rather than
model generations (Appendix ; all methods yield more targeted updates when using model generations,
highlighting the benefit of prioritizing more common token conditional distributions, yet TNT still methods
outperform baselines, highlighting the benefit of the proposed losses regardless of the set of token conditionals
that are targeted.

We also vary the dataset size used for the update to assess how different TNT methods perform at lower data
volumes. Results are presented in Figure[5. Overall, less data results in a smaller reduction in unwanted
behavior, and the more a TNT loss constrains the outputs, the better the trade-off with similarity metrics as
dataset size decreases. Namely, while TNFLL and TNRLL get strictly worse in both similarity and hallucination
as dataset size decreases, TNFF, TNRF, and TNRR are able to better trade-off between similarity and reduction
as dataset size decreases. TNFF shows a strictly positive trend implying that generations change less in
general, suggesting its promise as a method even at small dataset sizes.
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Figure 3: Baseline methods introduce more obvious disfluencies (word repeats and random ?? tokens) than
TNT methods, especially as the rate of unwanted behavior is reduced to small amounts. For readability and a
more direct comparison to Figure [2] only points that are located on the frontier of the similarity vs. reduction
curves are plotted.
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Figure 4: Results on XSUM and PaLLM 2 1B. TNT methods yield a better trade-off between similarity vs.
reduction than baselines up to a 50% reduction rate. TNT methods struggle to reduce the hallucination
rate past this point, while baseline methods do so but at the expense of increasing obvious disfluencies. For
readability and a more direct comparison to Figure [2, only points that are located on the frontier of the

similarity vs. reduction curves are plotted.
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(d) PaLM 2 1B, Aggregated disfluency vs. reduction plot
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Figure 5: Similarity vs. reduction results as dataset size varies (results are on PaLM 2 1b with «
Numbers signify percentage of the original dataset used for training and validation, with test set for evaluation

held constant. With less data, TNT methods are generally less effective at reducing hallucination rate.

However, TNFF stands out as method that is able to minimize the changes to the original model behavior even
with less data (positive slope in the results), suggesting its practical efficacy for minimal targeted updates in
low-data regimes. Black dot signifies the original model’s metrics.
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Table 1: Comparison of methods when the rate of hallucination or toxicity has been reduced by at least 75%
(i.e., to less than 5.25% hallucination rate and 2.06% toxicity rate). BLEU, ROUGE-L and Seq Acc measure
similarity to the original generations; Hallucination and Toxicity measure the rate of unwanted behavior; and
Repeats and Random 7?7 give counts of obvious disfluencies. Results are bolded if better than all baseline
methods. See Appendix [D]for examples of disfluencies, and Figure [9] for disfluency results for each of Repeats
and Random 77 across different reduction rates.

BLEU ROUGE-L  Seq Acc Hallucination Repeats Random 77?7

Original 100.0000 100.0000  100.0000 21.3432 76 0
NL+LL (o = 1.0) 32.8334 52.2349 1.5397 3.1148 1297 92
UL+LL (o = 10.) 50.2975 65.8047 8.2117 3.4068 127 324
TNRLL (o = 1.0) 49.2464 64.9200 7.3268 3.7342 99 67

BLEU ROUGE-L Seq Acc Toxicity Repeats Random 77

Original 100.0000 100.0000  100.0000 8.1830 16 4
NL+LL (o = .01) 13.6497 32.6104 2.0661 1.8150 287 136
UL+LL (o = 1.0) 37.1265 59.9806  20.4405 1.6784 23 1122
TNFLL (a0 = 1.0) 33.7884 57.1009 18.1630 1.7577 36 1
TNRLL (v = 0.1)  39.1922 61.4776 22.9207 1.9471 23 1
TNRR (a=0.1) 55.9532 71.5365 35.1366  1.4493 34 3
TNRF (a=1.0) 60.2071 74.8574 39.6167 1.0396 21 3
TNFF (a=10.) 61.0565 74.2388 40.0749 1.9031 33 3

6 Discussion

In this work, we propose targeted negative training, a suite of methods for finetuning a language model to
avoid unwanted behavior in a targeted fashion, given token-level annotations of the model’s generations.
While baseline finetuning objectives do not sufficiently constrain how probability mass is dispersed in a
negative update, TNT methods directly optimize for a model whose constituent token distributions are the
solutions to a minimal targeted update.

Broadly, TNT could be a useful tool for improving the safety of autoregressive generative models by offering a
means to iteratively refine a model after it has been initially trained.

TNT is not without its limitations, however. First, TNT requires keeping the original model during training,
meaning a larger memory footprint. The additional forward pass through the original model also incurs
additional computational cost at each gradient step. Fortunately, however, TNT does not require any extra
computational or memory cost during inference. Plus, given the growing interest in finetuning methods that
utilize multiple models to regularize towards the original (e.g., RLHF-PPO |Ziegler et al. (2019) utilizes three),
strategies for mitigating these extra costs during finetuning could be useful broadly.

TNT also requires token-level annotations which may be hard to acquire in certain cases. Next, TNT only
targets negative examples that have been specified and could increase the presence of other similar bad words
that were present in the generations but not flagged. This result highlights the importance of high-quality
annotations. Luckily, the commutative property of negative updates makes it easy to apply TNT iteratively
for different sets of negatives to address unwanted behavior as it is noticed. Finally, our experiments show
that even though all TNT methods target the same updated model, the choice of objective matters for where
on the spectrum between a complete reduction vs. minimal change the resulting model ends up. The methods
that allow for the most targeted changes struggle to reach the highest levels of rate reduction and vice versa,
suggesting that the optimization strategies in this suite of methods still have room for improvement. For
instance, future work could consider other choices of divergences as well as additional optimization tricks
to see if it is possible to achieve a more Pareto optimal trade off between reducing unwanted behavior and
minimally changing the original model.
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Broader Impact Statement

This work aims to update a language model to reduce the generation of unwanted outputs. However, we
note that the experiments consider simplified definitions of unwanted text, and more sophisticated definitions
should be annotated and considered in real-world uses of TNT.
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A Optimal Distribution in Targeted Negative Likelihood

Targeted negative likelihood optimizes for the distribution in p* € P, that minimizes the reverse KL divergence
with the original distribution: p"*¥ = min«cp, KL(p"||p°). This distribution is also known as the information
projection of the original distribution onto Py.

To solve for p"*%, we use Theorem 1 Property A from Khalifa et al. (2020) (also Remark 3.1 in [Csiszar &
Shields (2004)). We first restate Theorem 1 A from [Khalifa et al.|(2020) below for readability, and then
reiterate the theorem using using notation consistent with the main paper.

To quote Khalifa et al. (2020):

To recap our formal approach, we have a finite set X, a distribution a over X s.t. a(z) >
0,Vx € X, and real functions ¢y, ..., ¢x over X. We specify moment constraints p;, = fi;
on distributions ¢ over X, where u; = E,. ¢;(z) and the i;’s are given targets; the set of
distributions satisfying these constraints is denoted by C. Our problem is to find a p such
that p = argmin, .. Dxr(c, a).

Theorem 1. (A) There exists a unique solution p to the problem above, obtained as
p(x) < P(x) where P is in exponential family form:

P(z) = a(z) 1z € X¢] e2oi Midi(@), (5)

In other words p(x) = 1/Z P(x), with Z =3 P(x); P is an unnormalized distribution,
i.e. an EBM. Here X¢ = {x € X| Jc € C s.t. c(x) > 0} is the “support set” associated with
C. The \;’s are real numbers called the natural parameters associated with the moments p;.

Reframed in the notation and setting of this work, we have the following: For distribution a(x), we have our
original distribution p,(x). The support set X¢ in this setting is the complement of supp(p"¢®); thus, for
1[z € X¢], we have 1[z & supp(p"8)]. The moment constraint E,.[¢(x)] is a pointwise constraint, namely
that B,k (o) [1[z ¢ supp(p"°®)]] = 1. Then, since ¢(x) is constant for z & supp(p™°8), we have

P (x) o< p°(x)[x & supp(p"®)] exp(Af(z)) (6)
oc p°(z)[z & supp(p"°®)]. (7)

In other words, the optimal distribution removes probability at the negative tokens and renormalizes.

B Experimental Set Up

B.1 Dataset Creation.

We use the XSUM dataset (Narayan et al.,|2018) for the reducing hallucination task and Civil Comments
(Borkan et al., [2019)) for the reducing offensive phrases task. We use the datasets themselves for finetuning
the base models and generations from the model itself for updating afterward. We describe both in detail
below.

Datasets for Initial Finetuning. For the hallucination experiment, we use the XSUM train, validation, and
test splits. The dataset sizes for train, validation, and test are 203,577, 11,305, and 11,301. For the offensive
phrases experiment, we use the Civil Comments dataset of toxic online comments. This dataset is traditionally
used for toxicity detection, but here we repurpose the dataset for response generation. In particular, we train
our encoder-decoder model to output the text given its parent text, the previous comment the main text is
responding to. For the main finetuning dataset, we use only examples that include parent text, decreasing
the original dataset size from 1.8 million to 1 million. We use the List of Dirty, Naughty, Obscene, and
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Otherwise Bad Words, downloaded from https://github.com/ LDNOOBW /List-of-Dirty-Naughty-Obscene-
and-Otherwise-Bad-Words/blob/master/en, as our list of offensive phrases to avoid. In the dataset of 1
million examples, words from the aforementioned list occur in approximately 2% of the targets. To increase
the relative proportion of examples with obscenity in the dataset that the model sees to 10%, we subsample
the dataset further by randomly removing examples whose outputs do not contain any of the offensive words
in the list. The resulting train, validation, and test (unused) sets are of size 175,754, 21,974, and 22,009.

Filtered Datasets for Finetuning. To generated the filtered dataset from XSUM (for both finetuning
from stratch and from the current model), we use code from [Nan et al. (2021) as an automated heuristic to
determine whether a hallucination exists in the generated summary. The code uses spacy’s named entity
recognition to first locate a set of entites from the output, followed by a regex-based matching to determine if
the entity is present in the source input.

Datasets for Finetuning Updates. After the initial models have been trained (see next section for training
details), we generate an output from the model for each input using greedy decoding. We then take the
model’s outputs and annotate the undesirable tokens using the procedure described in the main paper. For
hallucination if an entity detected in the output is not detected in the input, then we marked the entire entity
as a hallucination, and if our trained toxicity classifier labels a span in the output as offensive, we mark it as
undesirable, even if the input contained the same offensive phrase. We use the train, validation, and test
splits for the inputs but the model’s own generations for the output. We evaluate all methods on the test set
from this process, to compare how much these alternative methods result in deviations from the original
model’s generations.

B.2 Training

For all runs, we use a batch size of 32, dropout rate of 0.1, and no label smoothing. For all runs, the cross
entropy loss includes the square of the logsumexp of the logits as a penalty, scaled by a factor of 0.0001. For
all experiments, we use Google Cloud v4 TPU pods.

For the initial finetuning, we train a base T5 model with learning rate le-3 and select the best checkpoint
every 10,000 steps based on validation loss. Our resulting models are finetuned for 30,000 steps on XSUM
and 40,000 steps on Civil Comments.

For the updates and alternative finetuning, we run a sweep across four different learning rates (le-3, le-4,
le-5, 1e-6) and choose the best model per every 1,000 steps based on validation loss. We run updates for a
total of 100,000 steps for the T5 model, and 200,000 steps for the the PaLM-2 1b model. The learning rates
used for the various methods are as follows:

C Results from retraining or finetuning on filtered data

Here, we present automated metrics of similarity and hallucination rate on T5-Base and PaLM-2 1b (Table
and Table E respectively), as well as a sample generation comparison, to highlight that while training on
filtered data can reduce the prevalence of unwanted behavior, the resulting model is far from a minimal
targeted update of the original model. In contrast, the TNT update methods presented can enable more
targeted changes to a model’s behavior.

D Disfluencies introduced when using existing losses for negative signal

While other forms of disfluencies can exist, we notice two obvious forms in the existing model generations,
which we denote word repeats and random ?7. We define a word repeat as the repetition of a single word
multiple times; note that this definition does not include phrase repeats, so the prevalence of repetition more
broadly is likely higher what is reported under ‘word repeats.” We define random 77 as the occurrence of
any number of question marks preceding and following a space, meaning its presence is not at the end of a

sentence but rather in the middle. See Figure |[7] and Figure [§| for examples of both word repeats and random
77.
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Dataset Method Learning rate
Filtered, trained from scratch le-3
Filtered, trained from current le-4
XSUM, T5 Base UL + LL le-4
NL + LL le-3
TNFF le-3
TNRR le-3
TNRF le-4
TNFLL le-4
TNRLL le-4
Filtered, trained from scratch le-4
Filtered, trained from current le-6
XSUM, PaLM-2 1b UL + LL le-5
NL + LL le-4
TNFF le-4
TNRR le-4
TNRF le-4
TNFLL le-5
TNRLL le-4
Filtered, trained from scratch le-4
Filtered, trained from current le-4
Civil Comments, T5 Base UL + LL le-3
NL + LL le-3
TNFF le-4
TNRR le-3
TNRF le-3
TNFLL le-3
TNRLL le-4

Table 2: Learning rates chosen based on best validation loss from a sweep of learning rates (1le-3, le-4, le-5,
le-6). Learning rates for updates were chosen from the runs with o = 1 and shared across all a values.

Table 3: A comparison of the original summarization model to ones obtained by retraining or finetuning on
data filtered to remove examples with hallucinations. Model is T5-base.

BLEU ROUGE-L Seq Acc hallucination rate
Original 100.0000 100.0000  100.0000 21.3432
Filtered & Retrained 35.9402 54.4479 2.0087 9.3797
Filtered & Finetuned  47.9839 64.0057 6.7339 13.6271

Table 4: A comparison of the original summarization model to ones obtained by retraining or finetuning on

data filtered to remove examples with hallucinations. Model is PaLM-2 1b.

BLEU ROUGE-L  Seq Acc hallucination rate
Original 100.0000 100.0000  100.0000 25.3606
Filtered & Retrained 44.9260 61.2929 5.4951 14.0077
Filtered & Finetuned  71.5848 80.8366  36.0765 22.9095
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Input 12 August 2016 Last updated at 11:51 BST

The report was commissioned by former PM David Cameron in the wake of the
Tower Hamlets election fraud scandal in 2015.

He said the review had heard evidence that in a London borough at the general
election someone arrived at the polling station with 500 postal votes.

"I'm very worried - | don't believe political parties should touch or handle in any
way a completed ballot paper," he said.

Original A review into the way postal votes are handled in the UK has found that the

electoral system is not safe.

Retraine

d A review into electoral fraud has found that voters were handed ballot papers
with a "significant" number of postal votes.

Finetune

d A review into electoral fraud has found that a voter may have contacted the
polling station with a ballot paper.

Figure 6: Comparison of an example generation from the original model, a model retrained on filtered data,

and the original

model finetuned on filtered data. Model is TH-base.

Input | The summertime routes were due to end in late September but due to poor seat sales,
the airline is stopping the service at the end of August.
The airline said it had reallocated its planes to "routes with greater demand".
It said it would offer a "full refund or alternative flights" to customers who were booked
to fly in September
"We apologise sincerely for the inconvenience caused," said an Aer Lingus statement.
Original | Aer Lingus has cancelled all flights between the UK and the Republic of Ireland due to a
lack of passengers.
NL + LL | Aer Lingus is to stop flying to the the the the the the the the the the country is based on.
TNFLL | Aer Lingus has cancelled all flights between the two countries due to a lack of capacity.
TNRLL | Aer Lingus has cancelled all of its summer flights from the country to the mainland.

Figure 7: Example of a word repeat. The original offending text, as well as the word repeat disfluency, has

been underlined.
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Input "Thanks for pointing out my error, anyhow."
_oldgit_gittinolder

Not a problem and yes, | knew what you meant - just couldn't
pass up a feeble attempt at humor

Original | 'msorry, but I'm not a troll.

UL + LL | I'msorry, but I'm not a 22 inbot.

TNFLL | I'msorry, but I'm not a joker.

TNRLL | I'msorry, but I'm not a 'oldgit..

Figure 8: Example of a random ?7?. The original offending text, as well as the random ?? disfluency, has been
underlined.
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Figure 9: Number of disfluencies for different rates of unwanted behavior reduction. For each method, only
models that are used in the BLEU similarity vs. reduction curves are plotted here (i.e., the models that are
best at maintaining similarity with the original for a given rate of reduction). This choice makes it easy to
directly analyze this plot in conjunction to the main figure (Figure . From these plots, it is easy to see that
baseline methods introduce disfluencies at high rates as they reduce unwanted behavior, where NL + LL tends
to introduce repetition while UL 4 LL tends to introduce random 77 disfluencies. In contrast, the number of
disfluencies introduced by TNT methods in both categories combined is orders of magnitudes smaller than the
total number introduced by baseline methods.
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E Main Results with alternative similarity metrics

ROUGE-Lsum

Sequence Accuracy

Figure 10: Alternative similarity measures to BLEU (ROUGE, Sequence Accuracy) show the same trend as
the main result in Figure [2: TNT methods yield a better trade-off than baseline methods between reducing
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unwanted behavior and maintaining similar generations to the original model.
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F Training with model generations vs. external data
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Figure 11: Similarity vs. toxicity rate reduction curves for the Civil Comments response generation task,
comparing a model finetuned on its own generations (top, AUC is 73.9 for TNT vs. 32.9 for baselines) vs.
external data (bottom, AUC is 41.9 for TNT vs. 7.4 for baselines). The model stays closer to its original
using its own generations for finetuning rather than the data it was trained on.

G Token-level KL-constrained RL as a divergence minimization

Here, we show that a token-level version of the objective in Wu et al| (2023) is equivalent to mini-
mizing reverse KL divergence between the policy model py(x|c) and a target distribution ppew(x|c)

Po(x[e) exp(5 3, ri(x<t)):

mg‘X Epe)Ex~ps(x|c) [Z rt(x<t) — Bllog po(zt|r<t, €) — log po(Tt|r <t C)]} ®)
t
1
= ngX Ep(C)ExNPB(X|C) [Z 1og[eXP(E7’t(X§t))] —log pg(t]x<t, €) 4 log po(we|z<t, c)} ©)
t
' Do (Te|T <t C)
= min Ep(e)Expp (xle 1 "
meln p(c) Po (x| )[zt: 08 po(xt|x<t’c) exp(l(lart()cgt))j| ( )
) po(Tt|r<t, €)
=minE, ) Expy(x(c) | ] !
N Epe) By (xle) | OgH Po(@i|<1, ) exp(é“(th))} "
. po(x]c)
= E Exr\/ X 1 12
i Byt Bxpatui) 108 e S ) "
= mein ]Ep(c)KL (p@ (X|C)||pnew(xlc)) . (13)
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