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Abstract. We extend the algebraic K-stability theory to projective klt pairs with a big anticanonical
class. While in general such a pair could behave pathologically, it is observed in this note that
the K-semistability condition will force them to have a klt anticanonical model, whose stability
property is the same as that of the original pair.
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1. Introduction

There has been tremendous progress in algebraic K-stability theory of log Fano pairs (see [Xu21] for a
survey of the topic). In the recent works [DZ22] and [DR22], the Kähler–Einstein problem is considered for a
Kähler manifold (X,ω) such that −KX is big. More precisely, in [DZ22] the authors prove a transcendental
Yau–Tian–Donaldson theorem for twisted big Kähler–Einstein metrics. As a consequence of their result,
in the algebraic setting, uniform K-stability of X with a big anticanonical class implies the existence of
a Kähler–Einstein metric. In this note we want to show that the K-stability theory in this setting, i.e. a
projective klt pair with a big anticanonical class, essentially follows from the original (log) Fano case.

In general, there could be pathological examples in projective varieties X with a big anticanonical class
−KX ; e.g. the anticanonical ring R(X,−KX) =

⊕
m∈NH0(X,−mKX) is not necessarily finitely generated (see

Example 3.8). However, we will show that the K-stability condition implies that X is of log Fano type.

Theorem 1.1. Let (X,∆) be a klt projective pair with −KX −∆ big. Assume δ(X,∆) ≥ 1. Then there exists an
effective Q-divisor Γ such that (X,∆+ Γ) is a log Fano pair, i.e. (X,∆+ Γ) is klt and −KX −∆− Γ is ample. In
particular,

R(X,−r(KX +∆)) =
⊕
m∈r·N

H0(X,−m(KX +∆))

is finitely generated for any r such that r(KX +∆) is Cartier.

Here δ(X,∆) is defined in the exactly same fashion as in the case when −KX−∆ is ample (see [FO18,BJ20]),
i.e.

δ(X,∆) = inf
E

AX,∆(E)
SX,∆(E)

.

For the stronger and more precise statement, see Theorem 3.4. We note that the above finite generation is
asked in [DR22].

The above observation makes it possible to use existing birational geometry techniques to study K-stability
questions for X with a big anticanonical class. In fact, without too much difficulty, it reduces K-stability
questions for (X,∆) to K-stability questions for its anticanonical model (Z,∆Z ), as we can see from the
following statement.

Theorem 1.2. Let (X,∆) be a klt projective pair with −KX −∆ big. Assume R =
⊕

m∈r·NH0(−m(KX +∆)) is
finitely generated, and denote by (Z,∆Z ) the anticanonical model. Then (X,∆) is K-semistable (resp. K-stable,
uniformly K-stable) if and only (Z,∆Z ) is K-semistable (resp. K-stable, uniformly K-stable). In particular, uniform
K-stability of (X,∆) is the same as K-stability of (X,∆).

Remark 1.3. In [DR22], Ding stability notions for a projective klt pair (X,∆) with big −KX −∆ are developed.
If one assumes R =

⊕
m∈r·NH0(−m(KX +∆)) is finitely generated and denotes by (Z,∆Z ) the anticanonical

model, then one can show a similar statement to Theorem 1.2; i.e. the Ding stability notions for (X,∆) are
equivalent to the notions for (Z,∆Z ).
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Notation and Convention. Throughout this paper, we work over an algebraically closed field k of
characteristic 0. We follow the standard terminology from [KM98,Kol13].

For a normal log pair (X,∆) such that KX +∆ is Q-Cartier and a divisor E over X, we denote by AX,∆(E)
the log discrepancy of E with respect to (X,∆).

We say a klt projective pair (X,∆) is log Fano if (X,∆) is klt and −KX −∆ is ample, and a klt projective
pair (X,∆) is of log Fano type if there exists an effective Q-divisor D such that (X,∆+D) is a log Fano pair.

We say an effective Q-divisor Γ on a projective log pair (X,∆) is an N -complement for a positive integer
N if N (KX +∆+ Γ) ∼ 0 and (X,∆+ Γ) is log canonical. A Q-complement is an N -complement for some N .
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2. S-invariants

Let (X,∆) be an n-dimensional projective normal pair such that −KX −∆ is big. For any prime divisor E
which appears on a birational model µ : Y → X, the S-invariant is defined as

SX,∆(E) :=
1

vol(−KX −∆)

∫ ∞

0
vol(−µ∗(KX +∆)− tE) dt.

Definition 2.1. If (X,∆) is klt, we define

δ(X,∆) := inf
E

AX,∆(E)
SX,∆(E)

,

where E runs through all valuations over (X,∆). We say (X,∆) is uniformly K-stable (resp. K-semistable), if
δ(X,∆) > 1 (resp. δ(X,∆) ≥ 1). We say (X,∆) is K-stable if AX,∆(E) > SX,∆(E) for any E over X.

Remark 2.2. When (X,∆) is log Fano, the equivalence between this way of defining K-stability notions using
valuations and the original one using test configurations, called the Fujita–Li criterion, is proved in [Fuj19],
[Li17] and [BX19]. For (X,∆) with a big anticanonical class, the current definition is formulated in [DZ22].

Remark 2.3. Theorem 1.2 says K-stability is indeed the same as uniform K-stability. For a log Fano pair, this
is proved in [LXZ22] (see [XZ22] for a different proof).

Fix m ∈ r ·N, let Rm =H0(X,−m(KX +∆)), and assume Nm := dimH0(X,−m(KX +∆)) > 0. Following
[FO18], we say a Q-divisor D is an m-basis type divisor if

1
m ·Nm

ordE
(
div(s1) + · · ·+div(sNm

)
)

for a basis {s1, . . . , sNm
} of Rm. In particular, D ∼

Q
−KX −∆.

We define SX,∆,m(E) (or Sm(E) if (X,∆) is clear) for any E over X as follows: E yields a decreasing
filtration F λ

E (λ ∈R) on Rm :=H0(X,−m(KX +∆)) by

F λ
E Rm =

{
s ∈H0(X,−m(KX +∆)) | ordE(s) ≥ λ

}
,

and

Sm(E) =
1

m ·Nm
ordE

(
div(s1) + · · ·+div(sNm

)
)
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for any basis {s1, . . . , sNm
} of Rm compatible with F λ

E (λ ∈R). Here the basis {s1, . . . , sNm
} is compatible with

F λ
E (λ ∈R) if for any λ, all the elements si contained in F λ

E Rm span F λ
E Rm. Then

Sm(E) =
1

m ·Nm

∑
λ∈N

λ ·dimGrλERm,

where GrλERm := F λ
E Rm/F λ+1

E Rm.
We also define

δm(X,∆) := inf
E

AX,∆(E)
Sm(E)

.

The following are basic properties proved in [BJ20].

Theorem 2.4. Keep the notation as above.

(1) We have limm→∞Sm(E) = S(E).
(2) For any ε > 0, there exists an m0 such that for any E over X and m ≥m0 with m ∈ r ·N,

Sm(E) ≤ (1 + ε)S(E).

(3) We have δm(X,∆) = infD lct(X,∆;D), where D runs through all m-basis type divisors.
(4) We have limm→∞ δm(X,∆) = δ(X,∆).

Proof. Statement (1) follows from [BJ20, Lemma 2.9] and (2) from [BJ20, Corollary 2.10]. Statement (3) is
[BJ20, Proposition 4.3], and (4) is [BJ20, Theorem 4.4]. □

We can consider more general filtrations.

Definition 2.5. By a (linearly bounded) filtration F on R(X,−r(KX +∆)) =
⊕

m∈r·NRm, we mean the data
of a family F λRm ⊆ Rm of k-vector subspaces of Rm for m ∈ r ·N and λ ∈R, satisfying

(1) F λ′
Rm ⊆ F λRm when λ ≥ λ′ ;

(2) F λRm =
⋂

λ′<λF λ′
Rm for any λ;

(3) there exist e−, e+ ∈R such that F me−Rm = Rm and F me+Rm = 0 for any m;
(4) F λRm · F λ′

Rm′ ⊆ F λ+λ′
Rm+m′ .

For any filtration F on R, we can define Sm(F ) and S(F ) as in [BJ20, Sections 2.5 and 2.6, pp. 15–16],
and we have

(2.1) lim
m→∞

Sm(F ) −→ S(F );

see [BJ20, Lemma 2.9].

Lemma 2.6. If A is an effective ample Q-divisor on X such that −KX −∆−A is pseudoeffective, then SX,∆(A) ≥
1

n+1 .

Proof. Since −KX −∆−A is pseudoeffective, for any t ≥ 0, we have

vol(−KX −∆− tA) ≥ vol((1− t)(−KX −∆)).

Thus

S(A) =
1

vol(−KX −∆)

∫ +∞

0
vol(−KX −∆− tA)dt

≥ 1
vol(−KX −∆)

∫ 1

0
vol((1− t)(−KX −∆))dt

=
1

(n+1)
. □
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3. Finite generation

3.1. Q-complements and finite generation

For a Q-divisor D with |rD| , 0 and any m ∈N, we denote by Bs(|mrD|) the base ideal. We can define
the log canonical threshold of the asymptotic linear series as follows:

lct(X,∆;∥ −KX −∆∥) := sup
ℓ

lct
(
X,∆;

1
ℓr

Bs |ℓr(−KX −∆)|
)
.

We can define a sequence of multiplier ideals

I
(
X,∆;

1
r
Bs(|rD|)

)
⊆ I

(
X,∆;

1
2r

Bs(|2rD|)
)
⊆ · · · ⊆ I

(
X,∆;

1
ℓ!r

Bs(|ℓ!rD|)
)
⊆ · · · .

By the ascending chain condition of ideals, this sequence will stabilize. We denote the maximal element
by I (X,∆;∥ −KX −∆∥) and call it the asymptotic multiplier ideal sheaf of D. For more background, see
[Laz04, Section 11.1]. Recall that for any ideal a ⊆ OX , we have lct(X,∆;a) > 1 if and only if I (X,∆;a) > 1.

Lemma 3.1. Assume (X,∆) is a projective pair with −KX −∆ big. If

lct(X,∆;∥ −KX −∆∥) > 1 (or equivalently I (X,∆;∥ −KX −∆∥) = OX),

then (X,∆) is of log Fano type.

Proof. From the assumption, there exists an effective Q-divisor D ∼
Q
−(KX +∆) such that (X,∆+D) is klt.

Since D is big, then D ∼
Q
A+E for an ample Q-divisor A and an effective Q-divisor E. Set

Γ := (1− ε)D + εE

for 0 < ε≪ 1; then (X,∆+ Γ) is klt, and −KX −∆− Γ ∼ εA is ample. Thus (X,∆) is of log Fano type. □

Definition 3.2. For any projective pair (X,∆), we define the constant a(X,∆) by

a(X,∆) = sup
t∈R

there exists an ample divisor A such that A− t(KX +∆)

is ample and −KX −∆−A is pseudoeffective

 .(3.1)

If −KX −∆ is big, then a(X,∆) > 0; if −KX −∆ is ample, then a(X,∆) = +∞.

Assumption 3.3. Let (X,∆) be an n-dimensional klt projective pair with −KX −∆ big. Assume

(3.2) δ(X,∆) >
n+1

n+1+ a0
, where a0 = a(X,∆).

Now we can show the following.

Theorem 3.4. Let (X,∆) satisfy Assumption 3.3; then (X,∆) is of log Fano type. In particular, any Cartier divisor
E on X satisfies that R(X,E) :=

⊕
m∈NH0(X,mE) is finitely generated.

Proof. Let us first prove this when δ(X,∆) > 1 as it is quite straightforward. By Theorem 2.4, we know that
for a sufficiently large m and any m-basis type divisor D,

lct(X,∆;D) ≥ δm(X,∆) > 1.

Thus we can apply Lemma 3.1.

In the general case, we may assume δ(X,∆) ≤ 1, and we need some perturbation argument. By our
definition of a(X,∆), for any t ∈ (0, a(X,∆)), there exists an ample Q-divisor A such that

−KX −∆−A ∼
Q
E1 and A− t(KX +∆) ∼

Q
A0,
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where E1 is an effective Q-divisor and A0 is an ample Q-divisor. Moreover, by (3.2) we may assume

(3.3) 1− δ(X,∆) <
t

n+1
δ(X,∆).

Fix m0 ∈N such that |m0A| is base-point-free. Then for any prime divisor H ∈ |m0A|, by Lemma 2.6,

S(H) =
1

vol(−KX −∆)

∫
vol(−KX −∆− tH)dt

=
1
m0

SX,∆(A)

≥ 1
m0(n+1)

.

We can choose an m-basis type Q-divisor Dm compatible with H , so we can write Dm = Fm+bmH , where

(3.4) lim
m→∞

bm = lim
m→∞

Sm(H) = S(H) ≥ 1
m0(n+1)

.

By (3.3), (3.4), and the equality limm δm(X,∆) = δ(X,∆), we can find a sufficiently large m and a positive
δ′ such that δ′ <min{δm(X,∆),1} and

(3.5) 1− δ′ < tm0bmδ
′ .

Then (X,∆+ δ′Fm) is klt, as (X,∆+ δ′Dm) is klt and Dm = Fm + bmH . Moreover,

−KX −∆− δ′Fm ∼
Q
−(1− δ′)(KX +∆) + δ′bmH,

which implies (X,∆+ δ′Fm) is a log Fano pair since

−(1− δ′)(KX +∆) + δ′bmH ∼
Q
(1− δ′)

(
−(KX +∆) +

1
t
A
)
+
(
δ′bmm0 −

1− δ′

t

)
A

∼
Q

1− δ′

t
A0 +

(
δ′bmm0 −

1− δ′

t

)
A

is ample by (3.5).
The last statement then follows from [BCH+10]. □

Corollary 3.5. Let (X,∆) satisfy Assumption 3.3. Let r(KX +∆) be Cartier and Z := Proj R(X,−r(KX +∆)).
Denote by ∆Z the birational transform of ∆ on Z; then (Z,∆Z ) is a log Fano pair.

Proof. We know f : X d Z is a birational contraction; i.e. Ex(f −1) does not contain any divisor, and
f∗(KX +∆) = KZ +∆Z is antiample.

It follows from Theorem 3.4 that there exists a Q-complement Γ for (X,∆) such that (X,∆+ Γ) is klt.
Then (Z,∆Z + f∗Γ) is klt as the pullbacks of KZ +∆Z + f∗Γ and KX +∆+ Γ on a common resolution are
equal. So (Z,∆Z ) is klt. □

3.2. K-stability of the anticanonical model

Let (X,∆) be a projective log pair with big −KX − ∆. Let (Z,∆Z ) be its anticanonical model; i.e.
Z = Proj R(X,−r(KX +∆)), and ∆Z is the birational transform of ∆ on Z . Let Y be a common resolution.

(3.6) Y
µ

||

π

##

(X,∆)
f

// (Z,∆Z ).

Then
π∗(KZ +∆Z )−µ∗(KX +∆) = B ≥ 0
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Lemma 3.6. Let (X,∆) satisfy Assumption 3.3. Then for any prime divisor E over X,

AX,∆(E) = AZ,∆Z
(E) + ordE(B) and SX,∆(E) = SZ,∆Z

(E) + ordE(B).

Proof. For the log discrepancy function, this follows directly from the definition. Since

|µ∗(−m(KX +∆))| = |π∗(−m(KZ +∆Z ))|+mB,

we have SX,∆,m(E) = SZ,∆Z ,m(E) + ordE(B). Therefore, the same is true for the S-function. □

Lemma 3.7. If (Z,∆Z ) is klt, there exists a t > 0 depending on Z (but not E) such that for any divisor E over X

AZ,∆Z
(E) ≥ t · ordE(B).

Proof. Since (Z,∆Z ) is klt, we know that there exists a t > 0 such that if we write π∗(KZ +∆Z ) = KY +∆1,
then (KY +∆1 + tB) is sub-lc for some t > 0; i.e. for any E,

AZ,∆Z
(E) ≥ t · ordE(B). □

Proof of Theorem 1.2. Since

δ(X,∆) = inf
E

AZ,∆Z
(E) + ordE(B)

SZ,∆Z
(E) + ordE(B)

,

it is clear that δ(X,∆) ≥ 1 if and only if AZ,∆Z
(E) ≥ SZ,∆Z

(E), i.e. (Z,∆) is klt and δ(Z,∆Z ) ≥ 1. Moreover,

AX,∆(E) = AZ,∆Z
(E) + ordE(B) > SZ,∆Z

(E) + ordE(B) = SX,∆(E)

if and only if AZ,∆Z
(E) > SZ,∆Z

(E).
Assume δ(X,∆) > 1; then δ(Z,∆Z ) ≥ δ(X,∆). Conversely, if δ(Z,∆Z ) > 1, an easy calculation shows that

δ(X,∆) ≥ δ(Z,∆Z )(t +1)
δ(Z,∆Z ) + t

> 1,

where t is the constant from Lemma 3.7. □

Example 3.8. This example has appeared in several works to present pathological phenomena, see e.g.
[Gon12]: Let S be the blowup of P2 at nine very general points. Then −KS is known to be nef but not
semiample. In fact, there will be a unique cubic curve passing through these nine points, and if we denote by
E its birational transform on S , then for any m ∈N, | −mKS | has one element mE.

Let H be an ample Cartier divisor on S and X = PS(E), where E := OS +OS(H). Denote by π : X → S
the natural morphism. We claim −KX is big. In fact, since

ωX/S = ∧2O
P(E)(−2),

we have

H0(OX(−mKX)) =H0(S,π∗(OX(−mKX)))

=H0(S,Sym2m(E)⊗ (∧2E)⊗−m ⊗ω⊗m
S )

=H0

S,
 2m⊕
i=0

OS (iH)

⊗OS(−mH −mKS )


=H0

S, m⊕
i=0

OS(iH −mKS )

 ,
and since −KS ∼ E is nef, we have

volX(−KX) = 6
∫ 1

0

1
2
(tH −KS )

2 = 3
∫ 1

0
(t2H2 − 2tH(−KS ))

=H2 +3H · (−KS ) > 0.
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However, the algebra
⊕

i≤mH0(iH −mKS ) is not finitely generated, since∑
1≤j≤m−1

H0(OS(−jKS ))⊗H0(OS(H − (m− j)KS )) −→H0(OS(H −mKS ))

is not surjective for any m. Thus we need generators from H0(OS(H −mKS )) for every m.
By Theorem 1.1, we know δ(X) < 1. Here we give a direct verification of this. We denote by Y ⊆ X the

section given by

E = OS ⊕OS(H) −→OS .

Then similarly to before, we have

H0(OX(−mKX −m0Y )) =H0

S,
 2m⊕
i=m0

OS (iH)

⊗OS(−mH −mKS )

 ,
where we follow the convention that if m0 > 2m, then the direct sum is 0. Hence a direct calculation implies

vol(−KX − tY ) =

H2 +3H · (−KS ) if t ≤ 1,

(2− t)((t2 − t +1)H2 +3tH · (−KS )) if 1 ≤ t ≤ 2.

By an elementary calculation,

SX(Y ) =
7
4H

2 +5H · (−KS )

H2 +3H · (−KS )
>
5
3
> 1 = AX(Y ),

which implies δ(X) < 3
5 .
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