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ABSTRACT

While score-based generative models (SGMs) have achieved remarkable suc-
cesses in enormous image generation tasks, their mathematical foundations are
still limited. In this paper, we analyze the approximation and generalization of
SGMs in learning a family of sub-Gaussian probability distributions. We intro-
duce a notion of complexity for probability distributions in terms of their rel-
ative density with respect to the standard Gaussian measure. We prove that if
the log-relative density can be locally approximated by a neural network whose
parameters can be suitably bounded, then the distribution generated by empiri-
cal score matching approximates the target distribution in total variation with a
dimension-independent rate. We illustrate our theory through examples, which
include certain mixtures of Gaussians. An essential ingredient of our proof is to
derive a dimension-free deep neural network approximation rate for the true score
function associated to the forward process, which is interesting in its own right.

1 INTRODUCTION

Generative modeling is a central task in modern machine learning, where the goal is to learn a
high dimensional probability distribution given a finite number of samples. Score-based generative
models (SGMs) Sohl-Dickstein et al. (2015); Song et al. (2021)) recently arise as a novel family
of generative models achieving remarkable empirical success in the generation of audio and im-
ages Yang et al. (2022); Croitoru et al. (2023), even outperforming state-of-the-art generative mod-
els such as generative adversarial networks Dhariwal and Nichol (2021). More recently, SGMs
have proven effective in a variety of applications such as natural language processing Austin et al.
(2021); Savinov et al. (2021), computational physics Lee et al. (2023a); Jing et al. (2022), computer
vision Amit et al. (2021); Baranchuk et al. (2021); Brempong et al. (2022), and medical imaging
Chung and Ye (2022). In addition to their own expressive power, SGMs can also help to understand
and improve other existing generative models, such as variational autoencoders Huang et al. (2021);
Luo (2022) and normalizing flows Gong and Li (2021)).

SGMs are often implemented by a pair of diffusion processes, known as forward and backward pro-
cesses. The forward process transforms given data into pure Gaussian noise, while the backward
process turns the noises into approximate samples from the target distribution, thereby accomplish-
ing generative modeling. The analytical form of the reverse process is unknown, since its parameters
depend on the target distribution, which is only accessible through data; hence, the reverse process
must be learned. This is made possible by the remarkable fact that the time reversal of an diffusion
process is again a diffusion process whose coefficients depend only on the target distribution via the
score function, a time-dependent vector field given by the gradient of the log-density of the forward
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process. There exist well-studied techniques to cast the estimation of the score function from data
as a supervised learning problem Hyvirinen and Dayan (2005); Vincent (2011), which is crucial to
the practical implementation of SGMs.

While SGMs have received significant attention from theoretical viewpoints, there are still several
barriers to a complete theoretical understanding. Recent results Chen et al. (2023a;b); Benton et al.
(2023) have shown that the distribution recovery error of SGMs is essentially controlled by the
estimation error of the score function, which is typically parameterized by a neural network. While
neural networks are known to be universal approximators for many classes of functions Cybenko
(1989); Yarotsky (2017), the number of parameters of the neural network needed to approximate a
function to error € often scales like ¢~%, where d is the dimension of the data. Such rates are of
little practical significance for high dimensional problems, and thus the ability of neural networks to
express the score function of a general probability distribution remains a mystery.

Nonetheless, SGMs have still exhibited great success in generating high-quality samples from com-
plex, high-dimensional data distributions. One salient reason for this is that, while the data itself
may be very high-dimensional, the score function of the noising process often possesses some in-
trinsic structure that can be exploited by neural networks. The purpose of this article is to justify this
intuition rigorously for a broad class of probability distributions. Specifically, we study the genera-
tive power of SGMs for probability distributions which are absolutely continuous with respect to the
standard Gaussian distribution. Such distributions admit a probability density function of the form
s

o) = e (155 + 5@ m

where exp(f) : R — R* is the Radon-Nikodym derivative of p with respect to the Gaussian
distribution and Z is the normalization constant. This representation of the density has proven par-
ticularly elucidating in the context of statistical learning and Bayesian inference, where the Gaussian
component can model our subjective beliefs on the data. In this paper, we show that the expression
for the density in Equation 1 is also relevant to SGMs, because the score function is related to the
function f by a tractable composition of functions. A central theme of this work is that if f belongs
to a low-complexity function class, then the score function inherits a similar low-complexity struc-
ture. This enables deep neural networks to learn the score function of diffusion processes without
the curse of dimensionality in some concrete cases.

1.1 OUR CONTRIBUTIONS
We summarize our contributions as follows.

1. We prove that if the log-relative density of the data distribution with respect to the standard
Gaussian can be locally approximated without the curse of dimensionality, then the score
function at any fixed time ¢ can be approximated in the L?(p;) norm, where p; denotes the
marginal density of the forward process at time ¢, without the curse of dimensionality.

2. We show that the empirical score matching estimator within a prescribed class neural net-
works can estimate the score at any fixed time without the curse of dimensionality. The
error is decomposed into the approximation error of the score and the Rademacher com-
plexity of the neural network class.

3. We combine our results with existing discretization error bounds (e.g., in Chen et al.
(2023b)) to obtain explicit error estimates for SGMs in terms of the number of training
samples. As an application, we prove that SGMs can sample from certain Gaussian mix-
ture distributions with dimension-independent sample complexity.

1.2 RELATED WORK

A majority of the recent theoretical analysis of SGMs De Bortoli et al. (2021); Lee et al. (2022;
2023b); Chen et al. (2023a;c); Benton et al. (2023) focuses on obtaining convergence guarantees for
SGMs under minimal assumptions on the target distribution but, crucially, under the assumption
that the score estimator is accurate in the sense of L? or L>°. The common message shared among
these works is that learning the distribution is as easy (or hard) as learning the score function. More
precisely, the estimation error of the target density is mainly controlled by the estimation error of
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the score function and the discretization error of the diffusion processes (as another error source)
scales at most polynomially in the data dimension. However, there has been relatively little work to
address the problem of score estimation error.

More recently, it was proven in Oko et al. (2023) that SGMs can estimate Besov densities with a
minimax optimal rate under the total variation distance. However, the obtained sample complexity of
density estimation over a Besov space suffers from the curse of dimensionality. The paper Oko et al.
(2023) further proved that the estimation rate can be substantially improved under the additional
assumption that the data distribution is supported on a low-dimensional linear subspace, in which
case the resulting rate only depends on the intrinsic dimension. Distributions with the same low-
dimensional structure was also studied by Chen et al. (2023d) in the Lipschitz continuous setting.
The paper De Bortoli (2022) obtained convergence bounds in the Wasserstein distance for SGMs
under a more general manifold hypothesis on the target distributions (including empirical measures).

Our work differs from the work above in that we do not make low-dimensional assumption on the
data distribution. Instead, we assume that the target is absolutely continuous with respect to a Gaus-
sian and that the log-relative-density belongs to the Barron space Barron (1993). Barron functions
have recently received much attention due to the fact that shallow networks can approximation them
without curse of dimensionality; see, e.g., Klusowski and Barron (2018); Siegel and Xu (2022);
Ma et al. (2022). In the context of generative modeling, the recent work Domingo-Enrich et al.
(2021a;b) investigated the statistical guarantees of energy-based models under the assumption that
the underlying energy function lie in Barron space (or the F; space therein). The work Lee et al.
(2017) obtained expressive bounds for normalizing flows in representing distributions that are push-
forwards of a base distribution through compositions of Barron functions. This work shares the same
spirit as Domingo-Enrich et al. (2021a;b); Lee et al. (2017) and demonstrates the statistical benefits
of SGMs when target distribution exhibits low-complexity structures.

We note that in an earlier version of this work, the log-relative density f was assumed to be bounded.
After discussions with an anonymous reviewer, we were inspired to strengthen the results to allow
f to grow at infinity. In more detail, the reviewer pointed out that when f is bounded, the data
distribution satisfies a log-Sobolev inequality (LSI) with constant ell/ll which implies that the
distribution can be sampled via Langevin dynamics with an estimator for the vanilla score. Our
current results extend beyond the LSI case.

1.3 NOTATION

Throughout this article, we study functions and probability distributions on a Euclidean space R¢
of a fixed dimension d. We let || - || denote the Euclidean norm on R?. For a vector or function,
Il - loc denotes the supremum norm, and || - || z;, denotes the Lipschitz seminorm of a metric space-

valued function. We let v4(dz) denote the standard Gaussian measure on R, i.e., [ f(z)ya(dz) =

(2m) =2 [, f(x)e 1#I°/2dx. The indicator of a set S is denoted Is. We denote by (-)* the ReLU
activation function, defined by (¢)* = max(0,c) for ¢ € R. For a vector z, (z)" is interpreted
componentwise. For Xo € R? and t > 0, we define ¥;(-|Xy) as the Gaussian density function
with mean e~* X and variance 1 — e~2*. For non-negative functions g(x), h(z) defined on R?, we
write g(z) < h(x) (resp. 2) or g(x) = O(h(z)) (resp. Q(h(x)) if there exists a constant Cy > 0
which depends at most polynomially on the dimension d such that g(z) < Cyh(z) (resp. >). We
write g(z) = O(h(x)) if g(z) < h(z) < g(z). For B € (0,1/2) and g € L?(v4) we define
3

Mp(g) = fra |9 (55| a(du).

2 BACKGROUND

In this section, we give a brief overview of the mathematical preliminaries required to understand
our main result.

2.1 A PRIMER ON SGMs

In a score-based generative model (SGM), data is first transformed to noise via a forward process;
we work with an Ornstein-Uhlenbeck process (X;)o<i<7 , which solves the stochastic differential
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equation

dX, = —X,dt +V2dW,, Xo ~ po. )
Here, pg is some initial data distribution on R<, and W, denotes d-dimensional Brownian motion.
In the limit T" — oo, the law p, of the process X7 quickly approaches that of the standard Gaussian
measure vg4; in particular, we have p, — 4 exponentially fast in ¢ in the KL divergence, total
variation metric and 2-Wasserstein metric Bakry et al. (2014); Villani (2021). The SDE can be
solved explicitly and, at each fixed time ¢, the solution coincides in law with the random variable

X = eith +4v1-— 6_2t§, Xo ~ po, €~ N(O,Id)

In particular, X; conditioned on Xy is a Gaussian random variable with mean et X and variance
1 — e~2t, By averaging over X, we obtain a simple expression for the density p; in terms of py:

o) = 27 [ e (-2 dpat) ®

where Z; = (27(1 — e~2%))%/?2 is the time-dependent normalization constant.

The reverse process, X, = Xpr_, is also a diffusion process Anderson (1982);
Haussmann and Pardoux (1986), solving the SDE (for 0 < ¢ < T))

X, = (X, + 2V logpr_¢(X,))dt + V2dW,, Xo ~ py, 4)

where T; denotes time-reversed Brownian motion on R?. In order to implement SGMs in practice,
one must discretize the OU process, and a canonical algorithm is the exponential integrator scheme

(EIS). In order to implement the EIS, one samples Xodis ~ pr, picks time steps 0 = o < t1 <
-+« < tny < T and simulates the SDE

dXéjis = (X;izs + 2V long_tk (th)) dt + dBt

for each interval [, tx 1 1]. S Also, the reverse process is typically initialized at X ~ 74 in practice,
because pr is unknown. However, the error accrued by this choice is small, evidenced by the
exponential convergence of pr to v4 as T' — oco. The process one samples is then obtained by
replacing the score function at time 7" — ¢;, with a score estimate sy:

Yo ~ N(0,1d).
Loss function: To learn the score function at time ¢, a natural objective to minimize is the following
least-squares risk, namely,

se(t, X) = Ex,~p, [[I5(t, X¢) — Vo log pe(Xe) 7]

for a given estimator s; : R? — R?. However, this risk functional is intractable since, in the genera-
tive modeling setting, one does not have access to pointwise data of the score function. However, it
can be shown Vincent (2011) that for any s,

Ex,~p, I8 (X1) = Va log pe(Xe) "] = Extompo [Bx;mps|xo [lIse(t, Xo) — Ue(Xi] Xo)|°]] + B,

-t
—Xize _Xo denotes the score func-

where E is a constant independent of s;. Here, ¥;(X;|Xo) = —
tion of the forward process conditioned on the initial distribution. Note that the integral on the
right-hand side can be approximated on the basis of samples of py, since the trajectories (X;|Xo)

are easy to generate. This motivates our definition of the population risk at time ¢:

Ri(8t) = Extgmpo [Ex,mpelxo ls(t Xe) — We(Xe| X0) %] - (6)
If we define the individual loss function at time ¢ by
Ci(st, ) = Ex, xo=a [[I5t(Xe) — Wi (Xe| X0)[I?] @)

then the population risk can be written as

Ri (st) = Ezrpyo [@ (st, )]
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We also define the empirical risk associated to the i.i.d. samples {X;}¥ | by

i L\
RY (s) = > (s, X3). 8
=1

We then to solve the optimization problem

. @N
min RY, (s)
where F is an appropriately defined class of vector fields on R (e.g., a class of neural networks).
The use of the risk functional in 6 to learn the score has been termed denoising score matching,
because the function ¥, (X;|Xy) is the noise added to the sample X along the forward process.

2.2 NEURAL NETWORKS

A fully connected feedforward ReLU neural network is a function of the form
4 +
xz— W, (WL—I (Wg (W1£C+b1)++b2...) +bL—l) + by,

where W, : R9-1 x RIL are matrices, by, € R are vectors, and, when z is a vector, (z)*
is interpreted as a componentwise mapping. The parameters (W;)%_ | and (b;)L, are called the
weights and biases of the neural network respectively. The number of columns of W; is called the
width of the ith layer. When L = 2, a neural network is called shallow, and, when they take values

in R, such networks admit a representation
m
x> Zai(<wi,x> +b;)7,
i=1

where z,w; € R? and a;,b; € R. Neural networks have achieved remarkable success in learn-
ing complex, high-dimensional functions. In this work, we study their ability to express the score
function of the diffusion process defined in Equation 2. In order to control the generalization error
incurred by empirical risk minimization, one must introduce a notion of ’complexity’ for neural net-
works, and a natural notion is the path norm, defined for real-valued shallow ReLU neural networks
by

[Dllpan == las| (lwills + [bs]) s () = ai(w] = + b;)™H
=1 i=1

and extended in a natural way to vector valued/deep ReLU neural networks. It has been shown that
the collection of L-fold compositions of shallow networks of uniformly bounded path seminorm
enjoys good generalization properties in terms of Rademacher complexity.

3 PROBLEM AND MAIN RESULTS

We outline our main assumptions on the data distribution.

Assumption 1. The data distribution py is absolutely continuous with respect to the standard Gaus-
sian distribution. Throughout the paper, we let py denote both the probability distribution and the
PDF of the data, and we write f(x) := ||z|*/2 + log po(z) for the log-relative density of py with
respect to the standard Gaussian distribution, so that

[l

1
po(x) = — €XP ( - + f(x))
We further assume that

1. There exist positive constants r¢, o, 3 with 3 < 1 such that —al|z||* < f(z) < 8|z|?

whenever ||z|| > ry, and «, B satisfy c(a, ) := % <1

2. f is continuously differentiable;
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3. sup|,<r [IVf(2)|| grows at most polynomially as a function of R;

Tl')d/2

4. the normalization constant Z satisfies @ 7
most polynomially on dimension.

< C, where C'is a constant depending at

Assumption 1 roughly states that the tail of the data distribution should decay almost as quickly

as a standard Gaussian. As an illustrating example, consider the Gaussian mixture model ¢(z)
_lz—ag)?

e omin —i—%. If we write f(x) = ||2]|?/2+logq(x), then for any € > 0, there exists r. > 0

such that ) )
1_01fr1i1f1_|—e Umax_1+€
- (Bt ol < o) < (P

min max

whenever ||z|| > r.. This shows that Assumption 1 applies to Gaussian mixtures, as long as the
bandwidths are suitably constrained.

The benefit of expressing the data distribution in terms of the log-relative density is that it leads to a
nice explicit calculation of the score function. In particular, Lemma 1 states that the 5™ component
of the score function of the diffusion process is given by

1 F/(z)
ml R P -t
(v ngt(x))J 1—e—2t < Ty te Gt($)> ) 9
where F(z) = [o(e ta; + VI—e Zuy)el o HVImeTT00 ) (du) and Gy(z) =

[ef (e "zt 1=e7*"u)~(du). The linear growth assumption ensures that the tail py has similar de-
cay properties to that of a Gaussian, of which we make frequent use. The other assumptions on V f
and the normalization constant are stated for convenience.

In order to obtain tractable bounds on the estimation error of SGMs for learning such distributions,
it is necessary to impose additional regularity assumptions on the function f.

Assumption 2. [Learnability of the log-relative density] For every € > 0 and R > 0, there exists
an L-layer ReLU neural network (b?’é which satisfies

sup | f(x) — ¢()] < Re.
Jall <R

We denote by (e, R) = H(b?"eﬂpam the path norm of the approximating network as a function of €
and R. '

We will generally abbreviate QS?’E to ¢ in mild abuse of notation. Assumption 2 is weak because any
continuous function can be approximated by neural networks to arbitrary precision on a compact set
(Cybenko (1989)). However, we are mainly interested in cases where ¢ generalizes well to unseen
data; this corresponds to 7)(e, R) growing mildly as e — 0.

3.1 GENERAL RESULTS

Our first result shows that, under Assumptions 1 and 2, the score function can be approximated effi-
ciently by a neural network, even in high dimensions. Our result helps to understand the massive suc-
cess of deep learning-based implementations of SGMs used in large-scale applications. We denote
by NN L. the set of neural networks from R to R? with depth L and path norm at most K. Recall
that for a class of vector fields F, we denote by 75! = {x s —L . (—x +e7tf(2)): f € F}.

1—e—2t
Proposition 1 (Approximation error for score function). Suppose assumptions 1 ad 2 hold. Then
there exists a class of neural networks NN with low complexity such that

it [ 196 = V. tog (o) Pp(e)ds

1 2d _2(1—c(a, 1 1/2
ZO(max (m(l+20€) € ( ( )),mﬁ / s
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The class of neural networks is defined precisely in the appendix. A high-level idea of the proof is
to show that the map from f to the score function V log p; has low-complexity in a suitable sense.
The next result concerns the generalization error of learning the score function via empirical risk
minimization.

Proposition 2. [Generalization error for score function] Set R, = \/d + 17c(1a.[5) log ((Hga)d)

et?

score,t

and R, = +/d —1og(t%¢*). The empirical risk minimizer s in . of the empirical risk Rt

satisfies the population risk bound
R'(5) = O(e?),
provided the number of training samples is N > N, 4, where N, ; satisfies

Nt = Q<max <22Lf+10d2t06(1 + 20) 24t (RE, (1+ 2a)2d62<1*2C<a=ﬁ>>) ,

22Lf+10(1 + 2a)12dt76772c(a,6)67474812(0(,6)774(Rﬂ t6€4)> '

The next result describes how the learned score can be used to produce efficient samples from pg,
with explicit sample complexity rates.

Proposition 3. [Distribution estimation error of SGMs] Let § denote the empirical risk mini-
mizer in NN®"" of the empirical risk R, let D denote the distribution obtained by simulat-
ing the reverse process defined in Equation 5 over the time interval [to,T) with sz, in place of
the true score for each discretization point, using the exponential integrator discretization scheme
outlined in Section 2.1 with maximum step size k and number of steps M. Then, with T =
1 (log(1/d) + 2dlog(1 + Qa? +2(1—- c(q, B)) log(.l./e)), M >dTe £ S 2, to < Mp(f)2€%,
and N > Ny, (where N, is as defined in Proposition 2), we have

TV (po,p) = O (e)
with probability > 1 — poly(1/N).

The proof of the above result has three essential ingredients: Prop 2, which controls the score esti-
mation error for any fixed ¢, an application of Theorem 1 in Benton et al. (2023), which bounds the
KL divergence between p, and p along the exponential integrator scheme in terms of x, M, T and
the score estimation error, and Lemma 10, which proves that the KL divergence between pgy and py,
can be bounded by M3(f).

3.2 EXAMPLES
We now discuss several concrete examples to which our general theory can be applied.

2|2 .
Infinite-width networks: Suppose that pg o e~ =+ (#), where f(z) is an infinite-width ReLU

network of bounded total variation, i.e., f(z) = [ga:2 a(w?z + b)FPdpu(a, w,b), where ¢ > 0 and
u is a probability measure on R%*2, For such an f, the Barron norm is defined as

17l i=inf [ al(lull + Belda, du, ),
B JRd+1

where the infimum is over all ;2 such that the integral representation holds. The space of all such
functions is sometimes referred to as the Barron space or variation space associated to the ReL U acti-
vation function. The Barron space has been identified as the "correct’ function space associated with
approximation theory for shallow ReLU neural networks, since direct and inverse approximation
theorems hold. Namely, for any f in the Barron space and any R > 0, there exists a shallow ReLU
neural network fyx such that supy,<g |f(2) = fan(x)| < Re, where fyn has O(| flle?)
parameters and || fxn||pan S ||f|l3. Conversely, any function which can be approximated to ac-
curacy € by a network with path norm uniformly bounded in € belongs to the Barron space. A
comprehensive study of Barron spaces can be found in Ma et al. (2022).

Under the Barron space assumption on f, we can leverage the linear growth and fast approximation
rate of Barron spaces to obtain dimension-independent sample complexity rates for SGMs.
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Proposition 4. [Distribution estimation under Barron space assumption] Suppose that po(x) o<
e~ 121”/241 (@) swhere f belongs to the Barron space. Let | f|| g denote the Barron norm and let
ey =inf{c>0:|f(z)] <<z} <||flB- Givend € (0,1), let €(&) be small enough that 81% <4,
where R, = = /d —1log(My15/4(f)~10€=10) Then for all € < €, the distribution p learned by the
diffusion model satisfies

TV (p,po) = O(e),

provided the number of samples N satisfies.

12d
2c -
N=Q (22Lf+10 (1 + Rf) Mlli-(ls—/l;l46 16— 1926|f|4>

€

When € is small, we essentially require ¢ ~'° samples to learn py to accuracy e (up to the prefactors) -

this is a significant improvement to classical sample complexity bounds in high dimensions, wherein
the rate typically tends to zero as d — co. We emphasize that the significance of our contribution
is that the rate of the sample complexity is independent of dimension, and we leave it as an open
direction whether all prefactors can be improved to depend only polynomially on d.

Gaussian mixtures: Distributions that describe real-world data are often highly multimodal, and a
natural model for such distributions is the Gaussian mixture model; we assume the initial density to

be of the form
by — 1/1 exp |l =P +iexp BEEEA
0 2 Zl 201211in Z2 O'rzndx ’

where 0 < o2, < o2, are the bandwidths and x1, 22 € R? are the modes of the distribution.
The results that follow can easily be adapted to mixtures with more than two components and with
arbitrary weights, but we keep the setting as simple as possible to illustrate the results. Due to
the growth condition imposed in Assumption 1, our theory cannot be applied to Gaussian mixtures
with arbitrarily small bandwidths; this is discussed further in Appendix E. We prove the following

distribution estimation result for Gaussian mixtures.

Proposition 5. [Distribution estimation for Gaussian mixture] Given € > 0, set

R, = \/d+1c(1a7ﬁ)log((l+2a)) and R. = d — log(t6e?). Let po(z) =

[ERE llz—o?
2 Iy E— . .
% <Z%e *min -+ Z%e 27 faax be a mixture of two Gaussians, and fix § < 1. Assume that

the bandwidths anin, o2 satisfy c(a, B) = 4&—;5) < 1, where v and (8 are as defined in Assump-

tion 1. Then there exists an €y (depending on ) such that for any € < ¢, the distribution D learned
by the SGM satisfies

TV (P, po) = O ((1 n 2a)d61—c(ouﬂ)) 7
provided the number of samples N satisfies N > max(Ne 1, N, 2), where
Ne1=Q <22Lf+10d2t56(1 +2a)2%™ . sup p54(:v)>
llzll<R.

and

’ ~
lzl <R

N,y = QO (22Lf+10(1 + 2a)12dt—6—72c(o¢7,8)6—4—480(&,,8) . sup p04(.’li)> )

=1, then we have
TV (p,po) = Ofe)

provided the number of samples satisfies

N =0 (22Lf+10(1 I 5)12d8d/26—24—7685) .

2
As an example, if o2, = 02,
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The details of the proof are presented in Appendix E. One technical detail is that we need to be able
to approximate the log density by a ReLU neural network so that Assumption 2 is satisfied. Unlike
in the previous example, the log-likelihood is not a Barron function. However, it can be shown that
for any R, the restriction of the log-likelihood to Br can be represented by a composition of two
Barron functions, and from this it follows that the log-likelihood can be locally approximated by a
ReLU network with two hidden layers.

4 CONCLUSION

In this paper, we derived distribution estimation bounds for SGMs, applied to a family of sub-
Gaussian densities parameterized by Barron functions. The highlight of our main result is that the
sample complexity independent of the dimension. An important message of this work is that, for
a data distribution of the form in Assumption 1, a low-complexity structure of the log-likelihood f
induces a similar low-complexity structure of the score function. In particular, the score function can
be approximated in L? by a neural network without the curse of dimensionality. Some recent works
(Oko et al., 2023; Chen et al., 2023d) have derived distribution estimation bounds under assumptions
of low-dimensionality on the data; we chose to investigate an approximation-theoretic notion of
’low-complexity’, and thus our results are a complement to these existing works.

We conclude by mentioning some potential directions for future research. First, we wonder whether
similar results could be achieved if we relax some of our assumptions on the data distribution; for
instance, we would like to extend the results to the case where the log-likelihood is allowed to decay
arbitrarily quickly. Second, it is not clear whether our estimation rate for the class of densities con-
sidered is sharp, and thus obtaining lower bounds for sampling from such densities is an interesting
open problem. We conjecture that our generalization error bound can be improved using more re-
fined techniques such as local Rademacher complexities. Finally, obtaining training guarantees of
score-based generative models remains an important open problem, and another natural direction
for future work would be to study the gradient flow/gradient descent dynamics of score matching
under similar assumptions on the target distribution.
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A PROPERTIES OF THE SCORE FUNCTION AND PROCESS DENSITY

Let us recall the setup of SGMs. We are given samples from a high-dimensional probability distribu-
tion pg, and we wish to learn additional samples. We define the forward process X as the solution
to the SDE
{dXt = —X,dt +/2dW;, 0 <t <T,
X 0 ~ Do,

and we note that the marginal distribution p, of X at time ¢ quickly approaches the standard normal
distribution 7,4. The reverse process X; = X7_; happens to satisfy the SDE

{dXt = (Xt + 2VI 1ngT—t)dt + \/ith, 0 S t S T, (10)

Xo = Xr,

and so to sample the data distribution py, we run the SDE in equation 10, but with X as a standard
normal and with the score function V, log pr_; replaced by an empirical estimator §(¢, ). This
is made possible by a technique known as score matching (Hyvirinen and Dayan, 2005; Vincent,
2011), which frames the score estimation as a supervised learning problem.

. .. e . . [
The key assumption of our analysis is that the data distribution pg is proportional to e~ =2 /(@)
where f has ’low-complexity’ in the sense of Assumptions 1 and 2. Under this assumption, we
can explicitly compute the score function and derive sub-Gaussian bounds on the forward process
density.

Lemma 1. Let ~4(du) denote the standard Gaussian probability measure on R, Then under As-
sumption 1, the §™ component of the score function of the diffusion process is given by

1 —t th (z)
(Vzlogpe(x)); = =T <—517j +e Gi(z) | (1)
where F}(r) = JpaleTtz; + V1-— 6_2tuj)ef(eit”ch VI—e W)y (du) and Gi(x) =

J ef (e oty 1=e ) (du).
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Proof of Lemma 1. The forward process density
1

_/e—

Z

—llz—
2(1

pi(z) =

is given by

e~ ty|?

202 o llvll? 1241 W) gy,

where Z; is the normalization constant. We therefore have

1
(Vape(2)); = 70— )
and thus
1 _
(Vi logpi(x)); = T oo | %ite

By completing the square, we have

_lz—ety)?

e

) <—50jpt($) +€7t/yj€

2(1—e—2%) e*”y” /2 _ —e

—llz—ety|?

S /24 £ >dy>

—llz—e~ty|?

Sy e e IlylI?/2+f (y Ydy

Je

—llz—e—ty|?

me*“y“wyﬂc(ﬂ)dy

_ly—e—ta)?
2(1—e—2%) e*HxH /2

and therefore, after cancellation and an appropriate change of variables, we arrive at

1

—tfya

—lly—e"ta)?

“ (s emllall /24 W) gy

(Vzlogpe(x)); = T | ~%ite

e
tfya

—lly—e—tx|?

2(1—e=2t) o— [l |2 /2+f(7!)dy

_—ly—etz)?

2(1—e2%) of(y )dy

l—e 1—e2t (_‘Tj te

Je

—lly—e~tz|?

S0 ofW)dy
a4+ /1 — e 2ty )efle” frtVI=e ")y (dy)

iZ?

)

[l VI (du)

~

xj—i-e

1_6( el
S )

The following pointwise sub-Gaussian bounds are used throughout this work.

\./

.’L’
12)

Proposition 6. Under assumption 1,for allt > 0, ||z|| > ry,

pe(@) < (%(1 - 23)—1)7(1/2

_(-28)|=|)?
2

Proof. By completing the square as in Lemma 1, we have

L or( - e—2t))—d/2e—\\mu2/2/ .
7 R

For ||z| < ry, we then use the quadratic growth and a change of variables to bound p;:

1 — ||z Vi—e 2tute 'tz
pe(x) = =l /2/d ef (VImemute el (du)
R

_llz—e"ty|?
pt(w) — 2(1—e—2t) ef(y)dy

I /\

oIzl /2/d e
R

o=l /2/deﬂ(”u\‘2+”w|'2)vd(du)
R
d/2
_ (- Z) o

S (2r-26)7")

I /\

Z
1
Z
1
Z
<1—252>qu2

—d/2

_a=29)je|?
e 2
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The following lemma control the growth of th and G;.

Lemma 2. Let F} and Gy be as defined in Lemma 1. Let R > max(ry, \/% SUp|z)<r, | f(2)]).

Then ‘ ,
sup |Ff (a)] = O ((1-28) " #R)
llzl| <R

and for ||z|| < R,
(1+20) Y2 e < Gy(z) < (1—28) Y2 e PR,

Proof. For the lower bound on Gy, for ||z|| < R, R sufficiently large, we have
Gt(x) _ / ef(e’tm-i—\/1—e*2fu),yd(du)
Rd

> / emalle e VT
Rd

2/ eI 11®) )
Rd
>(1+ 20[)701/2 emoR

The upper bound on G; is proven similarly. For the upper bound on th , the proof is similar: we
have for ||z|| > R,

|F] ()] = ’/ (eftfj +Vi- 6_2%') eI T VImE Ny (du)
R4

< [l )y 201419 3

5 Cllull? 2
< fF (/ et 7d(du)+/ (||l W(d@)
Rd Rd
-0 ((1 —2p3)"? 6532)

B HIGH-LEVEL PROOF SKETCH
Before delving into the details of the proof, we give an overview of the proof technique.

B.1 PROOF OVERVIEW OF APPROXIMATION ERROR BOUND

Recall that the j““ component of the score function takes the form (¢,z) +—
i (< + e ) where F (2) = [(e™a; + V= e Bug)el (VI T W (0

and G¢(z) = [ ef(e7 V1= ) (dy). We break our approximation argument into two main
steps.

F (x)
Gi(x)

Step 1- approximation of on the ball Br: The first step of the proof is to approximate

F](x)
Gi(a)
as a composition of three simple functions, namely the function z — f(z), the one-dimensional
exponential map x — e®, and the two-dimensional product map (z,y) — xy. By assumption, f
can be approximated by a shallow neural network ¢ with low path-norm. It is well known that
the latter two maps can be approximated on bounded domains by a shallow neural networks ¢¢,
and ¢,roq; see the Appendix for details. We note that the complexity of the neural network needed
to approximate the exponential map = — e” on the interval [—C, C] grows exponentially with
C. However, the fast tail decay of the data distribution ensures that we can restrict attention to an
interval which is not too large and still achieve good approximation bounds.

on a bounded domain. For the function th , note that the integrand can be viewed

function
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In turn, this allows us to approximate the integrand in the definition of th by a deep neural network
T Oprod(Tj, Pexp(@r(x))). We then discretize the integral with respect to 4 (du) using a Monte
Carlo sampling argument, and the resulting neural network is

) 1 & B B
(@) = — 3 Gproa(e™" s + V1= e i), Gunp (e + VT M),
i=1

for Monte Carlo sample points {u;}7,. The procedure for G:(x) works very similarly, since
Gy(x) = [ef (e " etVI=e=2Tu)y, (dy). This gives us neural networks %, , and ®¢ ; that approxi-
mate th and G on the ball Bg. By approximating the quotient map (z, y) — % by another shallow

network @qu0t, We obtain a deep neural network approximation <I>'tj = qﬁquot(@'}_t(x), D¢ i (x)) for
F(z) :
@ valid on Bp.
Here, it is crucial that our approximation for the individual functions th , G is in the sup norm; this
ensures that the neural network approximation to GG; is bounded away from zero (since G itself is
bounded away from 0), which in turn allows us to control the approximation error of the quotient
map (z,y) — .

Step 2 - approximation on the unbounded domain L?(p; ), for fixed ¢: The approximation metric
we care about is ultimately not the uniform metric on Bg, but the L?(p; ) metric on all of R%. To deal
with the unbounded approximation domain, we bound the tail of the density p; and use a truncation
argument; in particular, p; is sub-Gaussian by Lemma 6, so that the truncation error depends mildly
on the radius of the ball Br from Step 1. By choosing the optimal R, this gives an approximation

of g—{ in L?(p,) for a fixed time, thus completing the second step of the proof.

B.2 PROOF OVERVIEW OF GENERALIZATION

Recall that our goal is, for each ¢, to bound the population risk R (-) at the minimizer of the empirical
risk over a class of neural networks (to be specified in the detailed proof). For technical reasons, we
work with the minimizer s of a truncated version RtR of the empirical risk, where the data is assumed
to be uniformly bounded along the forward process. However, we choose the truncation radius R
large enough so that the error incurred by this step is marginal. If we define R, as the corresponding
R-truncated version of the population risk, then the generalization error can be decomposed as

R(s) = (R'(S) = RR(5)) + (RR(S) = Ri(Sk)) + (RR(Sk) = R'(s") +  R'(s")
~——

truncation error generalization error <0 approximation error

Here, s* is the minimizer of the population risk over the hypothesis class and s%, is the minimizer of
the R-truncated risk. The first term represents the error we create from working with the truncated
risk rather than the true risk, and we bound it using existing large deviation bounds on the OU
process from Oko et al. (2023). Term II represents the generalization error of the truncated risk.
In order to bound the Rademacher complexities of some relevant function classes, we need the
individual loss function ¢! to have certain properties (such as boundedness and Lipschitz-continuity).
Unfortunately, the loss fails to have these properties fail for the loss ¢, but they do hold for it’s
truncated counterpart £%, and this is our primary motivation for working with the truncated risk
rather than the true risk. In turn, it allows us to apply existing generalization results for neural
networks with bounded complexity to our setting.

Term 3 is actually non-negative, because R%(-) < RE(-) for any R, and hence min R% (1) <
min R(-). Term 4 is the approximation error, and thus it will be of order €2, provided the complex-
ity of the hypothesis class is scaled as a suitable function of €. The proof concludes by balancing the
truncation radius R? and sample size IV as suitable functions of e.

B.3 PROOF OVERVIEW OF DISTRIBUTION ESTIMATION
There are several existing works that bound the distribution estimation error of score-based gen-

erative models in terms of the generalization error of the score function. We apply results from
Benton et al. (2023) which state that if the score generalization error is O(e?) then, provided the
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parameters of the sampling algorithm are chosen accordingly and the reverse process is stopped at
time 1" — ¢, the learned distribution p satisfies TV (p, p,) = O(¢), where py, is the distribution of
the forward process at time ¢y < 1. All that remains is to bound 7'V (py,, p+) and choose tg as an
appropriate function of ¢. For this, Lemma 10 shows that TV (p,, po) = O(\/1o)-

C PROOFS FOR APPROXIMATION

The following lemma is a general approximation error bound in the sup norm for functions de-

fined by certain integral representations. We use it to approximate the functions F} and Gy,
since they admit natural integral representations. The proof adapts the proof of Theorem 1 in
Klusowski and Barron (2018). Though the proof idea seems well known, we have not found the
general version of the result in the literature, so we state it here in case it may be of interest to
others.

Lemma 3. Let g : R? x R? — R be a function such that for all K, R > 0,
1. Li,r = supjgi<k 190 O Lip(Br) < o0,
2. Cr.r = sy <k, o <r |9(; )] < 0o

Here, || - || Lip(By) is the Lipschitz constant of a function when restricted to the ball of radius R. Let
f : R* = R be a function of the form

f(a) = / 112 OB

where 1 is a Radon measure on {||0|| < K}. Then, for any R > 0, there exist (a;,0;)"_, with

a; € {£1} and ||0;|| < K such that
24
< 7””%TV Crk,r - \/dlog(mLk rR),

Proof. Notice that by normalizing ;» and decomposing it into positive an negative parts, we can write

f(@) = lullrv / ag(x, 0)fi(da, df),

{F13x{lI0l<K}

lzl<R

sup |7(e) ~ LTV S7 g, 01)
=1

where [i is a probability measure. Let (a;, 8), be ani.i.d. sample from 4™, and define f,,(z;©) =

W S aig(z,0;). We can view f,(x;©) as an empirical process on the parameter space
O = (a;,0;), indexed by = € Bp. Let i denote the empirical measure associated to the samples,
and notice that for any x, ' € Bg, it holds that

1 m
= 2" [Fa@) < — D lgx. 0) — g(a',09)* < Lic gllz —2"|1*
i=1

This proves that the covering number of By, under the L?(1i) norm is O(Lx r(R/€)?). By Dudley’s
Theorem for empirical processes, it holds that

24|\ pllrv . /5/2
E sup z) — fm(2;0)] < ——=—— inf log N (Bg, || - o), €)de,
||w||SR|f() f ( )| vm 0<t<6/2 J4 \/ g ( R H ||L2(H) )

where § = sup|,<g [|[zl|L2(a). We can bound § by Ck g, and by choosing ¢ = O(1/m) in the
infimum in the bound from Dudley’s theorem, we find that

E sup [f(x) ~ fu(w:©)] < 2TV iy / " Jlog(Tacn) + dlog R/t
lzI<R e — m 0<t<Cr.r J; .

=0 (HM% -Ck.R- \/IOg(LK,R) + 1Og(Rm))
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The following lemmas prove that the functions th and G} can be well-approximated by neural
networks. An important feature of the result is that the approximation is done uniformly on the ball
of radius R, as opposed to in L?. The main idea of the proof is to discretize the Gaussian integrals

defining F} and G; via Lemma 3, and then exploit the compositional structure of the integrands.

Lemma 4. Foranyt € (0,00) and 1 < j < d, let Gi(x) be as defined in Lemma 1. Then for any
€ > 0and any R > 1y, there exists a neural network ¢ ;(x) such that

sup |or.q(x) — Gy(z) = O (66R2 (e +(1— 25)—61/28——“*25”*2 )) :

lzll<R

In addition, it holds that || ¢ + || pan = O (eﬁR2 -n(R, e))

Proof. Recall that
Gt(fb) — /ef(e*tm-i-\/l—efztu)/}/d(du)'

Fix R > 0. We break G into two parts:

Gt(x) _ /ef(eitermu)’}/d)R(du) +‘/| ” ef(efter\/lfei*mu),yd(du)
ul|>R

= thR(:Z?) + 5G,R(x)7

where 74, r(du) = Ijjy<r(u)va(du). To proceed, we approximate the local part G r(x) of G¢(x)
and then control the error term Eg gr(z) using the tail decay of the data distribution. We apply
Lemma 3 with g(z,u) = exp(f(e 'z + V1 —e~?M)) and p(du) = 4 r(du). In this case, we
have ”N”TV S 1,

lel<rlul<r’ (z,u) < €™ (by the choice of R),

and
2 2
sup g, )| Lip(Br) < €7 |LipB ) < €T sup [Vf(@)]| := e*' Dy .
lull <R llzll<R
The conclusion of Lemma 3 states that there exist uy, . . ., %, With sup; <, <, [|u;]| < R such that
m
- - - = d
sup / ef(e tz+v1—e Qtu)FYd,R(du) _ H’yd,R“TV Zef(e tetv/1—e 2tu;) -0 eQﬁR2 o
lell<R |JRa m m

Now, by Lemma 14, there exists a ReLU neural network ¢ ., () such that

2
<Pl

wup [é5cupta) — O
lz[|<R

and ¢ cqp satisfies ||¢f eopllpan = O (). We define ¢ 4(z) = % Yoy Ofeaplea +
V1 — e~2tu;), which satisfies the approximation bound

d
<O/ Z | + sup

m lzl<R
< 0| o28R da + sup |o (y) — e/ ®
= P f.exp y) €

m Iyl <3R
=0 62'8R2\/£+66R26 .

m

If we set m = Q(e~2de?R”), then

sup }¢G7t(:v) —ef@
[lz||<R

Va7V <= fletotvieru,
¢f,ezp($)_TZej(e T+ e~ *tu)

i=1

sup |dg(x) — el @)
[[z]|I<R

= O(e'BR2 €)
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It remains to bound the error term g, g (x):

EG,R(«T) _ / ef(e’tac-i-\/1—e*2fu),yd(du)
[lull>R

< / AU HI) )
lull>R

(1—2p8)R?
2 .

< PR (1—28) e
We conclude that
_ 2
sup |brc(@) — Gy(2)] = O <eﬁR2 (e + (1= 28) W26~ >) ,
lz|<R

To see the path norm bounds on ¢¢ ;, we have

m
4,RllTV -
6 ellpan = | DARLIY S g gl v/ T= e )
i=1 path
1 m
= D Nbseaple 'z + V1 )| pan
i=1
< (14 2R)||¢f,expllpan  (Behavior of path norm under scaling/translation)

< (1+2R)- PR n(R,€) (path norm of ¢ exp)
=0 (eBRzn(R, e))
This proves the claim. O

Lemma 5. Foranyt € (0,00) and 1 < j < d, let F} () denote be as defined in Lemma 1. Then
forany e > 0 and any R > ry, there exists a neural network (biF(x) such that

sup ¢§F(:C) - Fg(x)‘ =0 (e'BR2 (6 +(1- 26)_d/2e_(—125m2)> ,

llzll<r

In addition, it holds that H(bgr,thath =0 (esz -n(R, e))

Proof. Recall that
Fl(z) = / B (e tx 4+ /1 — e=2tu)yy(du),
Rd

where h/ (y) = Yj e/ () The proof is very similar to that of Lemma 4. Define local and global parts
F] p(z) and €7, p(x) of F to as in the proof of Lemma 4 (but with G replaced by F; 7). Noting

that Sup”“HnyHSR I’LJ( ZZT —+ Vv 1—e —2t ) S \/_R€25R and that I’LJ 1S (RewR Df_’R + GQﬁR ) =
O(e?8 R2)-Lipschitz on B s, we can apply Lemma 3 to guarantee the existence of w1, ..., unm €

B, such that
<O ewR\/i .
~ m

Lemma 15 guarantees the existence of a neural network Q)Jf- (x) such that

m
sup th;R(a:) - % Z R (e7te 4+ /1 — e2ty)

lzll<R

sup ‘@J x) — b (x )‘ < PR
|z||[<R

If we define the ReLU network ¢/, ,(z) := % oy <I>J]; (e7'z + /1 — e~2'u), then an ap-
plication of the triangle inequality shows that

sup [F] () = ()] = O (1) S 1 ) = o),
lz[|<R ' m
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for m = Q(e2de?PR”). To conclude, we bound the error term E z(x) for ||z|| > R, as in Lemma
4:

Err(z) = /” H R(e_t:vj +v1- €_2tu_j)€f(eitm+v 1=e™" )y (du)
u||>

< / (e—tRJrvl—e*“Iuj'I)eB(HwH2+HUII2)
llwll>R

-0 <eﬁR2(1 —28) 2= ) .

This gives the result. The path norm bound follows a similar argument to that in Lemma 4 and

uses the path norm bound for the neural network approximant for z — x; e/ ) proved in Lemma
15. (]

Lemma 6. Lett € [0, 00), and let th and Gy be defined as in Lemma 1. Let € > 0 be small enough
and R > 0 large enough. Then there exists a ReLU neural network ¢§) F.G Such that

¢§FG(‘T) - Ztég

sup
lzll<R

=0 ((1 +20)4(1 — 28) Y22+ (e +(1- 25)“6%)) :

In addition, we have

167 o llan = O (14 20)(1 = 28) /284", ) ).

Proof. Throughout this proof let us denote FY (z) by F(z), G¢(z) by G(z), and ¢‘Z7F7G(x) by
¢r.c(z), since none of the estimates will depend on ¢ or j. Recall from Lemma 5 and Lemma
4 that there exist ReLU neural networks ¢ and ¢ which approximate F' and G on the ball of

radius R to error
(e'BR2 <e +(1- 2ﬁ)_d/28_(12§m2>)

with respect to the uniform norm, and that in addition the networks satisfy ||¢F||pa[h =
O(e3* 7 (R, €)) and oG path = O(eP®*1)(R, €)) The proof proceeds in two steps:

1. Show that i—g approximates g on the ball of radius R;

2. Show that i—g can be approximated by a neural network ¢ ¢ on the ball of radius R.

Notice that

su F(z) _ ¢r(z) 1 1 “ o i
2l O et = Akl E@ |  or )
Cor@) | A — bl
+|Ijﬁl£R G(z)dc () ||1||£R|G( ) = da()]-

By Lemma 2, we have for ||z|| < R that F’ and G satisfy the bounds
F(2)| =0 ((1=28) 25 ) | (1420) 427 < G(a) < (1 - 28) "2,

It follows from the fact that ¢ and ¢ approximate F' and G uniformly on Br (and the choice of
R and €) that

ba(@) > S(1+20)" 2,

N | =
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and ¢ is bounded above by O ((1 - Qﬂ)*d/QeﬁRz). It follows that

Flo) - or(2) < (14 20)¥2e% sup |F(z) — T
S G@)  datmy| S HRITET sup [Fl@) = dr ()
+ (14 20)7(1 - 28)"42e@H4DR qup |G(x) — e ()|

lz[| <R

S (1+20)%(1 = 28)~#2e2 O (e +(1- 26)“”%-“25”*2)

and this concludes the first step of the proof. To approximate z—g by a neural network, Lemma 13
states that there exists a neural network ¢gy01 : R? — R which satisfies

sup
z€[—r,r],y€la,b]

X
¢quot(x7y) - ;’ 5 €,

where the path norm of ¢gyet is O(ba=2M), where M = max(r?,b%a~*). We apply this lemma
with r = O ((1 - 25)*d/26532), a = (14 20) 2R and b = (1 — 28)~4/2c5R° We
conclude that the network ¢ () := Pquot (PF (), da(x)) satisfies

_E@) o or(@) or(z) F(x)
Hj\l\lgR ¢ra(@) G(z)| ~ ||z||£R ora(@) bc(x)|  jei<r|dc(z) G(x)
Se+ (1+2a)%(1 —2B) 422 FAE ( —d/2,- U= 25>R2)

:O((1+2a)d(1—2ﬁ) d/22(a+B) R? ( (1—28)" 2= MW))

To conclude, we note that ||dguot|/pan = O ((1 —23)734/2(1 + 2a)3de(35+6a)R2), and hence by
the definition of the path norm,

l6r6lipan = O (1= 28)74/2(1 + 20) ™00 max (|| g a6l
~0 ((1 +2a)%(1 — 28)"34/28B+) R (R e)) .
o

We are now in position to prove Proposition 7, which controls the approximation error for the func-

tion G in the L?(p;) norm by leveraging the tail decay of p;.

Proposition 7. Let F] Gy be defined as in Lemma 1. Let € > 0 be small enough. Then there exists
a neural network ¢§,7G7t(:v) such that, with (s¢); =1z R ——2r (—:Ej + e_t¢‘;7G7t), we have

1 e 1
/Rd Is:—V . log pi (a)||*pe (w)da = O (max (m(l + 2a)*d 0@ mGW» :

where c(a, ) := (Ea;g)) In addition, we have

H(bz,F,G“Path =0 ((1 + 204)3%736(0"5)77(307 6)) )

where Ry = O(y/d + log(e~1)).

Proof. Let us again write ¢%7G7t = dra, FtJ = F and G; = G for ease of notation. Let ¢ ¢ be
the neural network constructed in Lemma 6. Then, for any fixed R, it follows from the definition of
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s; that
/HS V. log pi(z)[|*pe (2)dz < ! S sup ¢ ¢ (x) Fg(m)?
-V, x r)dr < ——— u x) —
Rd i &bt bt (1 - 6_2t)2 J=1 mEBPR FGit Gt(l’)
1
+W/ V2 log pi () ||*pe(x)de = T + I1.
(1=¢72)% Jjo>r

The first term is approximation error on the bounded domain, and we have
I=0((1420)2(1 = 28) 1D (&2 4 (1 - 2g) e (17207) )

by Lemma 6. The second term is truncation error, and we have

1/2
IT < By, [||V, log py()|[*]'/2 - (/ Pt(iﬂ)diﬂ)
llzl =R
1 _(-2p)R?
S 1 —e20)2 € f
where the bound E,, [|| V. log p;(2)[|4]*/? < (1—%”)2 follows from Lemma 21 in Chen et al.

(2023a) and the bound for the second factor follows from the tail decay of p; derived in Lemma
6. To optimize over the cutoff radius R, let us choose R > Ry = Q(/d +log(e~1)), so that

(1 —2B)~%e~(1=28)R* — (2 Then it follows that term I satisfies

1
I=0 (7(1 =E (1+ 204)2d62(1c(a'ﬂ)))
— €

1 1/2

This gives the bound as stated in the proposition. The path norm follows by setting R = R, in the
path norm bound from Lemma 6. O

and

D GENERALIZATION ERROR OF SCORE ESTIMATE

Recall that we are to study the estimation properties of a hypothesis class of the form

NN

score

(LK) = {x (—z+e 'onn(z)) : onn E NN (LK)},

1—e 2t

where NN (L, K) is the class of L-depth ReLU networks from R¢ to R? with path norm bounded
by K. It follows from the definition of the path norm that functions in NN (L, K) are K-Lipschitz
continuous. We also restrict attention to functions in NN (L, K') which satisfy |¢(0)] < K. This
mild ! assumption ensures that the ReLU networks we consider satisfy ||¢(z)| < 2K, which we
make frequent use. We will later bound the path norm K in terms of the number of training samples
for some concrete examples. We defined the individual loss function at time ¢ by

(¢, x) = Ex, | xo= (|01, X2) — V(X4 | Xo) %]
and the associated population risk
RY(¢) = Eanpo [l (¢, 2)]-
For 0 < S < R, define
Us(6, @) = Luy<sEx, xoms [0t Xi) — Ue(Xe| X0) |1 - T ]

'The assumption that ||¢(0)|| < K is mild because the network constructed to approximate the score is uni-
formly close to the score function around the origin. Therefore, provided K is large enough, the approximating
network will satisfy ||¢(0)|| < K anyways.
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and
U5(, %) = Ijoy<sBx, o= [0t Xe) = We(Xe|Xo0)[?]
where W, is the event {sup, ;<7 | X¢|| < R + || Xo||}. We also define

Rﬁ%,s(éf’) = Ez~po [%,s(@i x)]

and R%(4) = Eqwp, [l5(0, x)]. In other words, RY, ¢ is the truncated version of the population risk,
where the expectation is restricted to the event that the process begins in the ball of radius S and
remains in the ball of radius R + S throughout the relevant time interval. We will use the following
large deviation bound on the OU process from Theorem A.1 in Oko et al. (2023).

Lemma 7. Let X; denote the OU process. Then there is a universal constant C' > 0 such that for
any 0 < S < R,

(R—5)2

T
P (|| X¢|| > R for somet € [to, T]||| Xo|] < 5) < t—€7 304
0

The following regularity bounds on the truncated loss function will be used later to prove a general-
ization error estimate.

Lemma 8. Lets1(t,z), s2(t, ) € Fycore and write s;(t,x) = —o (—x + e ';()) fori = 1,2
and ¢; € Fyn. Then forany 0 < S < R and any v € R%, we have

16y 60,2) — Ch o(5 )| = { K(R+8) (£) Exixomslé1(a) - da(a), = € B
0, ||lz|| > S.

In addition, the truncated loss function is bounded: for any r € R? and any ¢ € Fnn, we have

tt s(s,0) = O <<1_€7;_2t>2 K2R+ 5)2> .

where s(t,z) = L (—z + e '¢(z)).

Proof. Using the definition of £} R,s» We have, forany x € R4,

‘%,s(sla T) — éﬁ%,s(sb I)’

eft

2
= |[ps() (m) Ex, | Xo=a,Wrll|61(Xt) — Xol|* — [|¢2(X¢) — X0||2]‘

—t

2
¢ ) Ex, xys vl 61 (X0) — 62(X0)]

22K (R + 5) + S)Ip, () (?

Note that for the first inequality, we have used that the map = ~ ||z||? is 2R Lipschitz on B, and
that sup;_; 5 4, <i<7 [9i(Xt) — Xol| < 2K (R + S) + S under the given assumptions. The proof
of boundedness follows similarly: for ¢ € Fyy ands = —— (—z + e '¢(z)), we have by the
Cauchy-Schwarz inequality that

s 2
g, (2) (—) Ex, e [16(Xe) = Xol2- ]

t _
VR,S(SaI” - 1—¢

—t —t

< I (x) (ﬁ)g (K*(R+5)2+5%) =0 <<ﬁ>2 KR+ 5)2> .
O

Before proving the main generalization error bound, we need to control the truncation error incurred
from using RY, ¢ in place of R..
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Proposition 8. Foranyr; < S < R and anys € NN****(L, K), we have

e’ ? _(R—95)2 _ (1-28)R?
‘R%,S(s) - Rt(s)’ =0 ((m) K? ((T/t0)1/2e icd 4 e 3 ) )

Proof. Lets(x) = == (—x + e '¢(x)) with ¢ € NN (L, K). We have
Ris(s) = R'(s) = (R s(s) — Ri(s)) + (RR(s) = R'(s)) =T + 1.

For the first term, we have

4 2
I~ (155) Bon 15 Bxioms [1Xo = 900012 Ty

< (LYIEM (152 (@) - POWE)/2 - E [ X0 — 6(X0)[1]?]

1—e 2t

et 2 _(R-5)2 1/2
S (ﬁ) : (T/t0)1/2€ T Egap, |:I[BS (2)Ex, | xo=x [[| X0 — ¢(Xt)|‘4} } ‘

e

To bound the last term, we have
1/2
Eunpo [18s (0)Ex, 1x0= [1X0 = #(X)I*]"*] S Eampy [T (0)Ex, jxomal I Xoll* + l0(X0)I12]

(Bampo [T5s(z) (|2]* + Ex, xomal6(X0)[1]]))

IN

< (Bampolllll* - Ts (2)] + B, [l 6(2)[4)) '/
< (8 + K* By, [l )
— O(K?).

This proves that

¢ 2
I=0 <<%) (T /t)"? o i K2> .
—e
For term 11, we have

et 2 ,
IT = (m) ‘/|CE|ZSEXtXO_x[”XO — &(X0)|1?]po()da

et 2
s<;f3></ JelPpo(e)ds + | Wm&wwﬂ
€ lzl>s lzl>s
et Y\’ —d/2 5 _(=28)|e]? 9 5 _(=28)je]?
S\ yoo= ) (@r(1-20)) [zl[Fe” =" + K [z]"e” > "d=x
—¢ lle|>s ]| >

> 2
< <€72t> F2e—(1-28) 5
Sy

where we have used the uniform-in-time sub-Gaussian upper bound on the process density from
Lemma 6. Combining the bounds for terms I and I gives the bound as stated in the lemma. o

The following lemma controls the Rademacher complexity of our hypothesis class.

Lemma 9. Fort > 0, R > 0, let ./\/./\/“'”re’t(L,K) be as defined in Section D and let S =
{x1,..., 2N} be a collection of points in R%. Then

i (lr,s0s)(Ti)

HMZ

Rady ((r,s o NN*'(L, K),S) := Ec, per({+1}) [ sup
EN Nt (LK)

L 2
< shar(h+ 57 (1_6%)

ﬁ
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Proof. We can assume that S C Bg, because g s(z,s) = 0 forany = ¢ Bg and any s. By Lemma 8
and Lemma 11 (a vector version of the contraction inequality for Rademacher complexity), it holds
that

¢ 2
Rady ((r,s o NN*Y(L,K),S) < V2dK(R +S) (ﬁ) ‘Rady (NN*(L, K),S) .

Then, since NAV**(L, K) = {x — =2 (—z + e '¢(2)) : ¢ € NN(L, K)}, it holds by the
scaling and translation properties of Rademacher complexity that

—t
e

Rady (NNSCOTevt(L, K)’ S) < EX?‘XO*%;WR 1 —e 2t -Rady (NN(Lv K)7Sz) s

where S* = {X},..., XN} are now random variables. It is well-known(e.g., Lemma 3.13 in
Wojtowytsch et al. (2020a)) that
2log(2d +2)

N .

Note that on the event Wg, we have max; || X/ ||« < (R+ S). Putting everything together gives the
desired bound. (|

Rady (MN(L, K),S") < max || X/||o - 2VK -

The following lemma bounds the error between pg and p;, the forward process at time ¢, by bounding
the derivative of the the function ¢t — K L(p; || po). We emphasize that the estimate is only useful
for short times.

Lemma 10. Define Mg(f) = [ga
po) S Mg(f)t.

2
\%i (ﬁ)“ vq(dz). For any t > 0, we have Dy, (p: ||

Proof. 1t suffices to prove that the time derivative of the KL. divergence satisfies

O Dir(pt |l po) S Ma(f). (13)
To prove inequality 13, we differentiate the relative entropy:

O Drr(pt || po) = at/pt(ﬂﬁ) log (5—2(1)) dx

- /at (p2) (z) log (%@)) do + /ptat (10g (g—;(x))) da.

But the second term is equal to zero, because

/pt()t (log (&>) dr = /pt . %da:
Do Y43

where the last line follows because p, is a probability density function for all ¢, and hence f prdr =1
for all t. Now, recall that p, satisfies the Fokker-Planck equation O;py(z) = V - (zp.(z)) + Ap(x)
for t > 0. This means that, with v, (z) as the standard Gaussian density,

BDxcr (e | po) = / (V- ()2) + Api(a >>log( <x>)

,7
Integrating b y partS we ha\/ €

/v (ee(S) ()
—/v1og <%(x)) - Vlog (i—;(ﬂ) pi(z)dz,
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since the Gaussian tail decay of p; ensures that the boundary term vanishes. Now, note from the
Cauchy-Schwarz inequality that

e (20 e (20 i
= —/ <<V10g <p—;(:17)> + Vlog (ﬂ(x)» - Vlog <§—;(ar)>> pe(z)dz

Vd
1y |l o) + v Tr Tp0) - ( [ [7ios (260)) zpt<x>d:c> "

I(pt || po) :=/HV10g <§—;(:ﬂ)> 2

is the relative Fisher information of p; with respect to po. Using the inequality az — a? <

a > 0, it follows that
O Drr(pe || po) /HVIO (po )

But recall that po(z) = Le~I1#1°/27/(#)  Therefore

/HVlog (%(x))}rpt(x)dw:/|Vf($€)||2pt(:c)dx
Sl ()

—Mﬁ

where

pe(x)dx

1,2
1 for

2
pi(x)dz.

This proves the inequality 10 and hence the original claim as well. O
We are now in position to prove the main generalization bound. The following result is the same
content as Proposition 2, but stated more precisely.

Proposition 9. Let R' denote the population risk functional at time t, let R denote the
associated empirical risk functional, and let RY = ’RER)R and Ry = RERR denote

the truncated risk functionals as defined in Section D. Let § denote the minimizer of 7@‘}%
over the neural network class NN°"*'(L,K). Then, with L = L; + 5 and K =

0 ((1 + 2a)3de=3e(@By( /d 4 log(e~1), e)), we have
R'(S) = O((1 + 2) >0 =e(0)y
with probability 1 — poly(1/N), provided the number of training samples is

N = 9(22Lf+10d2t—6 —4-8¢(a, 5) (Ro, ))

We note that, evidenced by Lemma 8, R! = 7%5% with high probability.

Proof. Lets* = argmingg yrscore.t(1, ;)R (S) and s = argmingg rprecore. (1, oy R(8). Then we

have

R'(S) = (R'(S) — RR()) + (RR() — Ri(sk)) + (Ri(sk) — R'(s*)) + RN (s*) =1+ 1T+ I11 +1V.
Term [ is the truncation error; by Lemma 8, we have

et 1\’ _m —a-mr?
I_O<<m> K*(T[to)!?e7ica +em = |
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Term I1 is the generalization error for the truncated risk; by Lemmas 9 and 8 (controlling the
Rademacher complexity of the relevant function class and uniformly bounding the loss £z) and
Theorem 26.4 in Shalev-Shwartz and Ben-David (2014), we have

et N\ L /1 et \? aps  [2log(2/0)

with probability at least 1 — 6. Term III is nonpositive, because R% () < R'(-) for all
R,t > 0, and hence inf R%(-) < infR'(-). Term IV is the approximation error; by The-

orem 7, it is O ((1 + 2a)?de2(1=¢(@A)) where we recall c(a, ) = 4&—25), provided that

K = O((1 4 2a)e3@B)y(Ry, ¢)) for Ry = © («/d—l—log(e*l) and L = Lj; + 5 (recall

that (R, ¢) is the path norm of the network needed to approximate f to accuracy Re uniformly over
Bp).

To balance terms I, 11 and IV, let us first choose R large enough that term [ is the same order as
the approximation error term /V. Due to the exponential decay in R of term I, this holds for R only
logarithmic in all relevant parameters. Let us also take ¢ to be polynomial in 1/N. It then suffices
to balance N and € so that terms I and I'V are of the same order, and up to logarithmic factors this
amounts to solving

e N\ oryas e [1 L 2d_2(1 1
_ —c(a,B 1/2
(1—6_2t) 2HFTOdKE N _@<max<(1_6_2t)2(1+2a) 2(—cl@h), (1—6_2t)3€ / ))

Since (%) = Ot 1) and K = O ((1 + 2a)>*%e=3(*Fy(Ry, €)) , it therefore holds that if
we have

N = Q<max <22Lf+10d2t56(1 + 200) 24t (Re, (1+ 2a)2d62<1*2°<°«5>>) ,

22Lf+10(1 + 2a)12dt767726(o¢,6)674748c(oc,5)774 (Rﬂ t6€4)>

samples (where R, = \/d + L log ((1tff)d) and R, = /d — log(t5¢%)), our score estimation
error is O(e?). O

We now employ existing sampling guarantees to prove that the distribution returned by the SGM is
close to the true data distribution.

Proof of Proposition 3. By Proposition 9 (which controls the score estimation error) and Theorem 1
in Benton et al. (2023) (which controls the sampling error of SGMs in terms of the score estimation
error) we have that

KL(pry || ) < (14 20)2420-4@8) 4 20 4 pdT + de™7,

where [tg, T] is the time interval of the forward process, « is the maximum step size for the expo-
nential integrator, and M is the number of iterations of the exponential integrator. Choosing M, x,
and T to scale with € as described in the statement of Prop 3 yields that each term is of order at most
(1 + 20)%4e2(1=c(@B) "and hence TV (py,, p) = O((1 + 2a)%e!=*(*A)_ It now remains to bound
TV (pt,, Po), and Lemma 10 shows that

TV (pry, p0) S Ms(f)ty/>.

It follows that if we scale , so that the above expression is O((1 4 2a)2%e2(1=<(@:5))) then we get
TV (D,po) < TV (P, piy) + TV (Pto,po) < (14 2a)%e! ~¢(:A) The number of samples N required
to achieve this error was derived in the proof of Proposition 9.

O
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E DISTRIBUTION ESTIMATION AND PROOFS FOR CONCRETE EXAMPLES

We give the proofs of the distribution estimation bounds for the general case and for the concrete
examples discussed. These proofs are quite short and follow easily from the score estimation results.

Proof of Theorem 3. By Proposition 2, we know that with N > N, ; samples, our score estimator
s¢ is O(e€)-close to the true score at time ¢ in L?(p;). By Theorem 1 in Benton et al. (2023), the
exponential integrator scheme with parameters as defined in Theorem 3 produces a distribution p
which satisfies TV (P, pr,) = O(e€). All that remains then is to bound TV (pg, pt, ). By Lemma 10,
we have under Assumption 1 that TV (p;,,po) S Mato. It follows that choosing ¢ as defined in
Theorem 3 balances TV (D, py, ) and TV (py,, Do), so that TV (D, po) = O(e). O

Proof of Theorem 4. We note that a Barron function f grows linearly with a constant ¢; < || f||3,
and therefore, for any R > 0, we have for all ||z|| > R that |f(z)| < cf||z]| = ¢ ””;””2 < |l
This shows that f satisfies that quadratic growth/decay condition of Assumption 1 with constants

o = 3 = % We choose R. = Q(y/d + log(t5¢%)) to be the optimal cutoff radius for the approx-
imation error argument. In addition, we know (Ma et al., 2020; Klusowski and Barron, 2018) that
for Barron f, there exists a shallow ReL.U neural network ¢ such that

sup |f(z) — o(x)| < Re

lzl<R

and [|¢||pan S || f||5- The result essentially follows from the estimates in Theorem 3 by replacing
a and (8 with ;—f and replacing n(R, €) with || f||z; note that in this case ¢(a, 8) < %ﬁ < 4 by
assumption. o

For the Gaussian mixture example, we first need to show that the log-likelihood has the local ap-
proximation property, which is the content of the following Lemma. The approximating network
has two hidden layers; the inner layer approximates the density and the outer layer approximates
log(x) on the image of the density.

ey ? B
Lemma 11. Suppose that po(z) = % Z%e 2min Z%e 20 hax ) . Then for any R > 0, there

exists a ReLU network fnn with two hidden layers such that

sup |f(z) — fn(z)| < e
lz[|[ <R

Moreover, fnn satisfies || f||pan = O (d . o;iln . maXHIHSRpal(:C)).

Proof. By the theory of spectral Barron functions (e.g., Barron (1993) and Klusowski and Barron

(2018)) there exists a shallow ReLU network fi,; such that sup),<p |fmiz(¥) — po(z)| < €
and || frmiz||pan = O(do ). We also know from Wojtowytsch et al. (2020b) that = +— log(z) can
be locally approximated to error € on [a, b] by a network fiog With || flog|lpan = O(a™'). We set
a = min|z<g po(x) and b = max,<r po(x). Itis then clear that the network fyn = fiog © frmiz
satisfies supy, < | log(po(x))— fvn ()| < eand || fvn [lpan = O (d - oty -) max, <r py (7)) -
To conclude, we note that by Lemma 12, the map « — ||z||?/2 can be approximated on {||z|| < R}
by a network fy,opm to accuracy €, and fporm can be taken to satisty || frorm||pan = O(dR?). In

turn, the network fxn = fNN + frnorm satisfies

sup |f(z) = fun(z)] <€
lzll <R

and || N [lpan = O (d - 0 iy) max g <r Py (2)) - O

We are now equipped to give a simple proof of the distribution estimation result for Gaussian mix-
tures.
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Proof Of Proposition 5. Suppose

11 —le—gi2 p _leea?
) == —e 2%min + —e 29Max
po(z) =5 < 2 7
is a mixture of two Gaussians. Fix some 0 < 6 < 1. Then there exists an r¢(d) > 0 (depending on
L1, 22, Omins Umax) such that

146 1-6
~(322) Ial? <togpate) < = (3 ) el Vilel >ral6) a9

and therefore we can write po(z) = %e‘”muz/%‘f@), where f(z) satisfies

1+6—Ur211in 0'12nax+6_1
“alz]? = - (7) lall? < F(z) < Ble|? = (7) B

202 202

whenever ||z| > ro. For § small enough, the assumption the c(a, 8) < 1 holds, for instance,
whenever 02, > % and 02, < 1. If e > 0 is small enough that 7(J) < min (Re, Re) , then the

result then follows from Theorem 3 by using the above values of o and /3 and using the complexity

measure determined in Lemma 11 in place of 7(R, €). In the special case that 02, = o2, = 1,

we have a = 8 = /2 and c(a, B) < 44. In addition, in this case we also have sup, . 5 po (x) <

~

ed/%=3¢2, O

F BACKGROUND ON NEURAL NETWORKS

F.1 PATH NORMS

Recall that a shallow ReL.U neural network is a function ¢ : RY — R¥ whose j" component is
given by

(¢)J(£L‘) = Zaij(wiT:v + bi)(Jr), w; € Rd, aij,bi eR, 1 <5<k,
=1

and a deep ReLU neural network is a composition of shallow ReLU networks. For scalar valued
networks, we define the path norm by

16 llpaan = int Y Jas| (fJewill + [b:l)

i=1
where the infimum is taken over all choices of parameters (a;, w;,b;) such that ¢(z) =
S ai(wl @ + b;)F). We extend the path norm to vector-valued shallow networks by

IPllpan = max [[(#);]loan, ¢ : RE — RE

1<j<k
and to deep networks by

[ @llpan = inf {|é1lpan -+~ - L llpan,
?1,.--0L

where the infimum is over all representations of ¢ as a composition of shallow networks. A more
thorough study of path norms can be found in Wojtowytsch et al. (2020a).

The path norm captures how large the weights are in an average (i.e., £1) sense. Intuitively, a network
with a large path norm is not likely to generalize well to unseen data, because its pointwise values
depend on large cancellations. In contrast, networks with small path norm provably generalize well,
in the sense of Rademacher complexity. The following result due to Wojtowytsch et al. (2020a)
makes this precise.

Proposition 10. Let NN 1, i denote the set of L-layer ReLU networks whose path norm is bounded

by K. Let S = {x1,... xn} denote a set of points in R%. Then the empirical Rademacher com-
plexity of NN 1 is bounded by

N
1 [210g(2d + 2)
Rad S) = E.. wger — i i) < i OO-QL _—
ad(NN i, S) iBer{x1h) | SUD NZE flai) < max ] N

LK 20 =1
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F.2 APPROXIMATION OF HELPER FUNCTIONS

We will need to approximate some simple functions by shallow ReLU neural networks; the next
result shows that we can do this efficiently (in the sense of path norms). We emphasize that these
results are known (e.g., in Wojtowytsch et al. (2020b)), but we provide the full proofs for the sake
of completeness.

Lemma 12. Lete >0, R > 0, and —00 < a < b < 0.

1. There exists a shallow ReLU neural network ¢cyp : R — R with O(e=2€2%) neurons such
that Sup ¢4 p) |Peap(x) — €*| = O(€). In addition, ey satisfies ||Peap||pan = O(eb).

2. There exists a shallow ReLU neural network ¢proq R? — R with O(€_2R4) neurons such
that

sup |¢pr0d(xa y) - Iy| = O(E)
(z,y)€[-R,R]?

In addition, ¢proq satisfies ||prod||pan = O(R?).

3. If a > O, then exists a shallow neural ¢;,, : R — R with O(e’sza"l) parameters, such
that
Sup | giny(7) — (1/2)] = O(e).
z€[a,b]
In addition, ¢in, satisfies ||Gino||pan = O(ba™?).

Proof. For 1), note that for any z € [a, b], we have

x

e +e'(x—a+1) :/ (v —t)e'dt

a

b
:/ (x — ) preapdt,

where fiezpdt = etdt (note that ||pesp |7y < €b. We apply Lemma 3 with the function g(z,t) =
(z — t)T. The Lipschitz constant is bounded at 1 (since ReLU is 1-Lipschitz) and the function

values of g over (a, b) are bounded at 2b. We conclude that there exist 1, . .., t,, € [a, b] such that
the function ¢eyp () 1= W S (x—t;) 7T satisfies
o7+ e = 1) = Bua(o)] S T b, o) o) = 0 (=)
sup |e* +e*(x —a — Peup()] S —= max(b, —a)+/log(mb) = — .
z€[a,b] i \/m \/E

If we set m = O(e~2e2), then the approximation error is O(€) We note that ¢, (x) — (e%(z —
a + 1)) is also a ReLU network, so that (upon renaming ¢..,,) we have obtained a neural network
approximation to e* on [a, b]. Finally, up to an O(1) summand, we have

eb

j— ea/ m a
| @eapllpan = > It < max(b, —a)(e® — e?) = O(e").
i=1

m

For 2), first observe that we can approximate the one-dimensional map = — z2 by a shallow ReLU
neural network ¢, () on [—2R, 2R] with O(¢~?R?) neurons. Indeed, for z € [—R, R], we can

write
T 2R
2 = / 2(x —t)dt = / 2(x —t)Tdt.
0 0

Using Lemma 3 (in a similar fashion to part 1) above), we conclude the existence of such an approx-
imating ¢sq(z) = 22 3™ (2 —¢;)(*). The path seminorm of ¢, can be bounded by O(R) using
the same argument as in part 1). It follows that zy = %((I +¥)? — (x — y)?) can be approximated
by Gproa(,y) = 3(dsq(z +y) — dsq(z — y)) on [—R, R]>. The number of neurons (and path
norm constant) of ¢y,..q is bounded by the number of neurons (and path norm constant) of ¢, up
to a constant multiple.
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For 3), the idea is very similar, so we omit some of the details: if = € [a,b] with a > 0, then we
have

b 2
_ +
E_E‘FEI—\/(;(.I—t) t_?’dt

The conclusion then follows from another application of Lemma 3, noting that the total variation of
the parameter measure above is f; 2 =0(a?). O

As a consequence of Lemma 12, we can approximate the map (z,y) — % by a neural network,
provided that the domain of the second coordinate is bounded away from 0.

Lemma 13. Lete > 0, R > 0, and 0 < a < b < c0. Let M = max(R, %) Then there exists a
ReLU neural network ¢ g0t with 2 layers and O(a~*e~*R*M?) parameters such that

sup
z€[—R,R],y€|a,b]

x
¢quot(x7y) - _’ = O(E)
Y
Moreover, we have ||¢guot || parn = O(M?ba=2).
Proof. Leté = (R+ 1) 'e. By Lemma 12, we can find shallow neural networks ¢ and ) satisfying
1
P(y) — —‘
(v) ;

sup <e€

y€la,b]

and

sup |(z,y) —xy| <&
(z,y)€[—M,M]

Let ¢qu0t ((E, y) = w(‘ru ¢(y)) Then

T T
sup Pquot (T, y) — —‘ < sup - = w(y)‘

z€[—R,R)],y€|a,b] Yy z€[—R,R],y€la,b] | Y

+ sup lzg(y) — @(z, y)|-
z€[—R,R],y€[a,b]
For the first term, we have
up f—xmw'SRsm>—— @ﬁgRe
z€[—R,R],y€la,b] | Y y€Ela,b] | Y

For the second term, note that an inspection of the proof of Lemma 12 shows that ¢ is O(a~2)-
Lipschitz, so that, up to a constant factor, we have

a

(ot  |o10) ~ 25.60)+ 2]

This guarantees that

sup lzo(y) — ®(z,y)| == sup lzo(y) — v(z, ¢(y))|
z€[—R,R)],y€|a,b] z€[—R,R)],y€|a,b]
< sup |22 — P(z, 2)]
2€[~R,R],y€[¢(0)~ L5 ,6(0)+ L]
<  sup ez —9az)[<E

(z,y)€[—M,M]?

This proves that

Pquot (T, y) — g‘ <(R+1)é=

sup
z€[— R, R],y€la,b]
To conclude, we have that ||¢guot ||pan < |2l path * [|@]|patn = O(ba?M?). O
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Lemma 14. Let f satisfy Assumption 2 . Then for any R > max(ry, \/% SUP| g <r, |f(2)]) and
€ > 0, there exists a ReLU neural network ¢ cup with (Ly + 1) layers such that

2
sup |¢f,ewp(x) - f(fL')| 5 eﬁR €.
lzI<R

In addition, ¢ exp satisfies || ¢ 5 capllpan = O(eﬁR2 -n(R,€)).

Proof. By Assumption 2, there exists an L s-layer ReLU neural network ¢ with

sup |f(z) = ¢f(x)] <e.

lzll<R

By Lemma 2, there exists a shallow neural network ¢¢z;, : R — R such that

Sup  |peap(x) — €| S€
z€[~aR?,BR?]

and || eap||path = O(e'@R2). In turn, the (L s + 1)-layer ReLU network ¢ ¢ cop = @eap © ¢y satisfies

Sup [f,eap(t) — ') < sup [dfeap(@) = (Geap © (@) + sup |(Geap 0 f)(z) — /)|

lzI<R lz|I<R lzI<R
2
S sup |op(x) — f2)] + sup |beap(z) — €7]
lz|I<R z€[—allz||2,8(|=]?]
SeBRze.

In addition, it follows that

2
||¢f-,erp||palh < ||¢ezp|‘path ) H(bepopath N P W(Rv f)-

Lemma 15. Let f satisfy Assumption 2. Then for any R > max(ry, \/% SUp|z <, | f(2)]) and
€ > 0, there exists a ReLU neural network @; (x) such that

sup @;(x)—:zrjef(x) §eﬁR26.
lzl<R' °

In addition, we have Hfbjf-Hpath = O((53'8R2 -n(R,€)).

Proof. Let ¢y erp denote the ReLU network constructed in Lemma 14, so that
SUD)||p| <R |9 cap(2) — ef@| < efR% and Df,capllpan < ePR* . (R, €). This also implies
that sup| < g [#1,exp(®)] < CePR for a universal constant C' > 1. By Lemma 12, there exists a
shallow ReLU neural network ¢4 : R? — R such that

sup |¢prod(y, Z) — y2| 5 €
ly|<R,|z|<CeBR?

and ||¢prodllpath = O(eQﬁRz). In turn,zthe (Ly + 2)-layer 2ReLU network fI)Jf(:zr) =
Gprod(Tj, Oy eap(w)) satisfies H(I)i"”palh S [¢7,eapllpan < eSPR (R, €) and

sup [9}(x) —2;¢/ D] < sup [9}(x) = 20 p.cap(@)] + SUD |20 fcap(w) — zjel )]

lzll <R lzl| <R lzl<R
S sup |¢PT0d(y7 Z) - yZ| + R sup |¢f,ezp(x) - ef(x)”
ly|<R,|z|<CeBR? lz|I<R
<e+ RePF ¢ < AR,
O
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F.3 CONTRACTION INEQUALITY FOR VECTOR-VALUED FUNCTIONS
We present the contraction inequality for vector valued functions, which is a slight modification of
Theorem 3 in Maurer (2016). The proof of this result can be found in the aforementioned paper.
Proposition 11. Let F be a separable class of functions from RY to R, let {zy,...,xx} C Bg
andlet U : F x R* — R satisfy

\I/(fv 'r) - \I/(flv'r) < LEXt|X0:X1:Hf(Xt) - f/(Xt)Ha va fl € ‘Fv MRS Rd'

Then it holds that
N

Ee, sup Y & U(f,2:) < V2LEy; x;_y, Be sup > e fr(X}),
feri= FEF ik

where {€ix }1<i<N,1<k<da are independent Rademacher random variables and fi, denotes the k-th
component of f.
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