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Abstract—This paper introduces extensions to data-driven
polar decoders, enabling list decoding and accommodating asym-
metric input distributions. These are crucial steps to develop
data-driven codes that 1) achieve capacity and 2) are competitive
in moderate block lengths. We commence by integrating list de-
coding into the data-driven polar codes, which significantly allevi-
ates the inherent error propagation issues associated with succes-
sive cancellation decoding. Secondly, we expand the applicability
of these codes to channels with stationary, non-uniform input
distributions by incorporating the Honda-Yamamoto scheme.
Both modifications are computationally efficient and do not
require an explicit channel model. Numerical results validate the
efficacy of our contributions, which offer a robust and versatile
coding mechanism for various channel conditions.

I. INTRODUCTION

Polar codes allow the construction of capacity-achieving
codes for symmetric binary-input memoryless channels [1].
When given N independent copies of a binary discrete
memoryless channel (DMC) W , successive cancellation (SC)
decoding induces a new set of N binary effective channels

W
(i)
N . Channel polarization is the phenomenon whereby, for

N sufficiently large, almost all of the effective bit channels

W
(i)
N have capacities close to 0 or 1. Specifically, the fraction

of channels with capacity close to 1 approaches I(W ) and
the fraction of channels with capacity close to 0 approaches
1�I(W ), where I(W ) is the channel’s symmetric capacity. The
construction of polar codes involves choosing which rows to
keep from the square generator matrix given by Arikan’s trans-
form [1, Section VII]. The encoding and decoding procedures
are performed by recursive formulas whose computational
complexity is O(N logN).

Polar codes can also be applied to finite state channels
(FSCs). Arikan’s transform also polarizes the bit channels

W
(i)
N in the presence of memory [2], and thus the encoding

algorithm is the same as if the channel is memoryless. How-
ever, the decoding algorithm needs to be updated since the
derivation of the SC decoder in [1] relies on the memoryless
property. To account for the channel memory, the channel
outputs are represented by a trellis, whose nodes capture the
information of the channel’s memory. This trellis was embed-
ded into the SC decoding algorithm to yield the successive
cancellation trellis (SCT) decoding algorithm [3], [4].

However, the SCT decoder is only applicable when the
channel model is known and when the channel’s state alphabet
size is finite and relatively small. For FSCs, the computational
complexity of the SCT decoder is O(|S|3N logN), where |S|
is the number of channel states. For Markov channels where

the set of channel states is not finite, the SCT decoder is not
applicable without quantization of its states. With quantization,
there may be a strong tension between the computational com-
plexity and the error introduced by quantization. Additionally,
the SCT decoder cannot be used for an unknown channel with
memory without first estimating the channel as it requires an
explicit channel model.

The authors of [5] proposed a novel methodology for data-
driven polar decoders. The methodology uses a neural SC
(NSC) decoder, which uses four distinct neural networks
(NNs) instead of the elementary operations of the SC de-
coder. Specifically, the NNs approximate the channel’s output
statistics, the check-node, the bit-node, and the soft decision
operations, denoted by E,F,G,H , respectively. The param-
eters of E,F,G,H are determined in a training phase, in
which the mutual information (MI) of the effective channels

W
(i)
N is estimated. After the training phase, the set of “clean”

effective channels are determined by a Monte Carlo (MC)
evaluation of the MI of the effective bit channels to complete
the code design. The main advantage of this scheme is 1)
its computational complexity does not grow cubicly with the
channel’s state alphabet size, and 2) it does not require an
explicit channel model.

However, despite the fact that polar codes are capacity
achieving, their performance under SC decoding are inferior to
low density parity check (LDPC) and turbo codes at moderate
block lengths. One of the reasons for that, as identified in [6],
is that in SC decoding, decoding errors at early stages of the
decoding procedure propagate to the succeeding bits, which
yields in sub-optimal performance. Hence, the authors of [6]
design a successive cancellation list (SCL) decoder for polar
codes that instead of decoding a single codeword, as in the SC
decoder, it decodes L codewords. Then, the decoder chooses
one codeword from the list with the highest likelihood1.
The performance of the SCL decoder improved dramatically
towards the performance of the maximum likelihood (ML)
decoder, and accordingly it is now part of the 5G standard.
Therefore, it is of great interest to examine the performance
of data-driven polar codes with list decoding, which is the first
goal of this paper.

An additional issue to be addressed when designing capacity
achieving codes is to accommodate data-driven polar codes

1The authors of [6] also showed the cyclic redundancy check (CRC) bits
can be used as side information shared between the decoder and the encoder
that allows to choose the correct codeword by checking which word in the
list passes the CRC.
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with asymmetric input distributions, as the capacity achieving
input distribution is not necessarily uniform independently
identically distributed (i.i.d.). In that regard, this paper pro-
vides an extension of data driven polar codes for stationary
input distributions by incorporating the Honda-Yamamoto
scheme [7] into the methodology of data-driven polar codes.
This is the second goal of the paper.

The paper is organized as follows. Section II defines the
notation and gives the necessary background on polar codes.
Specifically, it presents polar codes as given in [1], and data-
driven polar codes, as given in [5]. Section III extends data-
driven polar codes to stationary input distributions. Section
IV presents the idea of list decoding and its application to
data-driven polar codes. Section V presents the numerical
experiments.

II. NOTATIONS AND PRELIMINARIES

Throughout this paper, we denote by (Ω,F ,P) the under-
lying probability space on which all random variables are
defined, with E denoting expectation. Random variables (RVs)
are denoted by capital letters and their realizations are denoted
by lower-case letters. Calligraphic letters denote sets, e.g. X .
We use the notation Xn to denote the RV (X1, X2, . . . , Xn)
and xn to denote its realization. The probability Pr[X = x]
is denoted by PX(x). Stochastic processes are denoted by
blackboard bold letters, e.g., X := (Xi)i2N. An n-coordinate
projection of P is denoted by PXnY n := P

�

�

σ(Xn,Y n)
, where

�(Xn, Y n) is the �-algebra generated by (Xn, Y n). We
denote by [N ] the set of integers {1, . . . , N}. The MI between
two RVs X,Y is denoted by I (X;Y ).For two distributions
P,Q, the cross entropy (CE) is denoted by hCE (P,Q), the
entropy is denoted by H (P ) and the Kullback Leibler (KL)
divergence is denoted by DKL (PkQ). The notation P ' Q
indicates that P is absolutely continuous with respect to Q.

The tuple
�

WY |X ,X ,Y
�

defines a memoryless channel
with input alphabet X , output alphabet Y and a transi-
tion kernel WY |X . Throughout the paper, we assume that
X = {0, 1}. For a memoryless channel, we denote its
input distribution by PX = PXi

for all i 2 Z. The
tuple

�

WY kX ,X ,Y
�

defines a time invariant channel with

memory, where WY kX =
n

WY0|Y
−1

−i+1
,X0

−i+1

o

i2N

. The term

WY NkXN =
QN

i=1 WY0|Y
−1

−i+1
,X0

−i+1

denotes the probability

of observing Y N causally conditioned on XN [8]. The sym-
metric capacity of a channel is denoted by I (W ). We denote
by DM,N = {xj,i, yj,i}j2[M ],i2[N ] á PXMN ' WY MNkXMN

a finite sample of pairs of input-output vectors for M consec-
utive blocks of N symbols, where xj,i, yj,i denotes the i-th
input and output of the j-th block.

A. Polar Codes for Symmetric Channels

Let GN = BNF'n be Arikan’s polar transform with the
generator matrix for block length N = 2n for n 2 N. The
matrix BN is the permutation matrix associated with the bit-
reversal permutation. It is defined by the recursive relation
BN = RN (I2 ' BN

2
) starting from B2 = I2. The term

IN denotes the identity matrix of size N and RN denotes a

permutation matrix called reverse-shuffle [1]. The term A'B
denotes the Kronecker product of A and B when A,B are
matrices, and it denotes a tensor product whenever A,B are
distributions. The term A'N := A ' · · · ' A denotes an
application of the ' operator N times.

We define a polar code by the tuple
�

X ,Y,W,EW , F,G,H
�

that contains the channel W ,

the channels embedding EW and the core components of the
SC decoder, F,G,H . We define the effective bit channels by

the tuple
ã

W
(i)
N ,X ,X i�1 å YN

;

for all i 2 [N ]. The term

EW : Y ! E denotes the channel embedding, where E ã R
d.

For example, for a memoryless channel W := WY |X , a valid

choice of EW , as used in the remainder of this paper, is
given by the following:

EW (y) = log
W (y|1)

W (y|0)
+ log

PX (1)

PX (0)
, (1)

where the second term in the right-hand-side (RHS) cancels
out in the case where PX is uniform.

The functions F : E å E ! E , G : E å E å X ! E
denote the check-node and bit-node operations, respectively.
We denote by H : E ! [0, 1] a mapping of the embedding
into a probability value, i.e. a soft decision. For the choice of
EW in (1), F,G,H are given by

F (e1, e2) = 2 tanh�1
ã

tanh
e1

2
tanh

e2

2

;

,

G(e1, e2, u) = e2 + (�1)ue1,

H(e1) = �(e1), (2)

where �(x) = 1
1+e−x is the logistic function and e1, e2 2

E , u 2 X . For this choice, the hard decision rule h :
[0, 1] ! X is the round function h(l) = Il>0.5, where
I is the indicator function. Applying SC decoding on the
channel outputs yields an estimate of the transmitted bits
and their corresponding posterior distribution [1]. Specifi-
cally, after observing yN , SC decoding performs the map
(yN , fN ) 7!

�

ûi, PUi|Ui−1,Y N

�

1|ûi�1, yN
� 

i2[N ]
, where fN

are the frozen bits that are shared between the encoder and the
decoder. That is, fi 2 {0, 1} if i 2 [N ] is frozen, and fi = 0.52

if i is an information bit. This mapping is denoted by
�

ûi, PUi|Ui−1,Y N

�

1|ûi�1, yN
� 

i2[N ]
= SCdecode

�

yN , fN
�

.

(3)
For more details on SC decoding, the reader may refer to [1,
Section VIII].

B. Neural Successive Cancellation Decoder

A NSC decoder [5] is defined by the tuple
�

X ,Y,W,EW
θ1
, Fθ2

, Gθ3
, Hθ4

�

, where EW
θ1
, Fθ2

, Gθ3
, Hθ4

are
NNs with parameters 7i 2 Θ ã R

p in a compact space Θ.
For simplicity, we denote 7 = {71, 72, 73, 74}. The parameters
7 are estimated in a training phase, in which the MI of
the effective bit channels is estimated. The training phase
includes the following steps. First, draw xN , yN á DM,N and

2The value 0.5 is chosen arbitrarily to indicate that the bit needs to be
decoded.
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compute uN = xNGN . Next, the functions EW
θ
, Fθ, Gθ, Hθ,

are used to decode uN with the SC decoding scheme, i.e. by
applying SCdecode

�

yN , fN
�

with fN = uN . This yields in

an estimate of
�

PUi|Ui−1,Y N

�

1|ui�1, yN
� 

i2[N ]
denoted by

n

P θ

Ui|Ui−1,Y N

�

1|ui�1, yN
�

o

i2[N ]
. Finally, 7 is optimized by

the negative-log-loss (NLL) via stochastic gradient descent
(SGD), as given by:

min
θ2Θ

�
1

M

M
X

i=1

logP θ

Ui|Ui−1,Y N

�

ui|u
i�1, yN

�

. (4)

In [5, Algorithm 2], the authors showed a recursive formula
for the computation of the NLL. Let

L = NSCTrain
�

eN , uN
�

, (5)

where ei = EW
θ

(yi), denote the computation of the NSC loss.
Also, the authors of [5] showed that the NSC decoder is a
consistent estimator of the theoretical polar decoder whenever
W is a FSC.

III. DATA-DRIVEN POLAR CODES FOR ASYMMETRIC

SOURCES

This section describes how to extend the data-driven polar
decoder in Section II-B to the case where the input distribution
is not necessarily symmetric. Specifically, it starts with a
brief description of the Honda-Yamamoto scheme [7]. Then,
it extends the data-driven polar decoder to accommodate
asymmetric input distributions by incorporating this scheme
in Section III-B.

A. Honda-Yamamoto Scheme for Asymmetric Channels

The Honda-Yamamoto scheme [7] generalizes polar coding
for asymmetric input distributions. Here, the polar decoder is
applied twice: first, before observing the channel outputs and
second, after observing the channel outputs. An equivalent
interpretation is that the first application of SC decoding is
done on a different channel whose outputs are independent
of its inputs. Indeed, in this case, as given in (1), the first
term of the RHS cancels out, and it follows that the channel
embedding are constant for all y 2 Y . Thus, for the first
application of SC decoding, we denote the constant input

embedding by EX (rather than EW ). The second application
of SC decoding follows the same procedure as in the case of
symmetric channels.

Accordingly, a polar decoder with non symmetric input dis-
tribution is defined by the tuple

�

X ,Y,W,EX , EW , F,G,H
�

.

Here, we add the input embedding EX to the definition, where
EX(y) is constant for all y 2 Y . An important observation is
that the functions F,G,H are independent of the channel, i.e.
both applications of SC decoding (before and after observing
the channel outputs) share the same functions F,G,H .

B. Honda-Yamamoto Scheme for Data-Driven Polar Decoders

This section considers two issues. The first is the choice
of an input distribution. This is addressed by employing
algorithms for capacity estimation [9], [10]. The second issue

Algorithm 1 Data-driven polar code design for channels with
memory and non-i.i.d. input distribution

input: Input distribution PXN , Channel WY NkXN , block
length nt, #of info. bits k
output: Optimized eX

θ
, EW

θ
, Gθ, Fθ, Hθ

Initiate the weights of eX
θ
, EW

θ
, Gθ, Fθ, Hθ

N = 2nt

for k = 1 to Niters do
Sample xN , yN á PXN 'WY NkXN

uN = xNGN

Duplicate eX
θ

to eNX
Compute eNY by ei = EW

θ
(yi)

Compute LX by applying NSCTrain
�

eNX , uN , 0
�

Compute LY by applying NSCTrain
�

eNY , uN , 0
�

Minimize LX + LY w.r.t. 7.
end for
return Optimized 7

addresses the construction of a NSC decoder that is tailored
for stationary input distributions.

For the choice of the input distribution, we employ a recent
method for the optimization of the directed information neural
estimator (DINE), as presented in [10]. Therein, the authors
provide an reinforcement learning (RL) algorithm that uses
DINE to estimate capacity achieving input distributions. The
input distribution is approximated with an recurrent neural
network (RNN) with parameter space denoted by Π. Let Pπ

X

be the estimated capacity achieving input distribution. Thus,
by application of [10, Algorithm 1], we obtain a model of Pπ

X

from which we are able to sample the channel inputs.

Extension of the NSC decoder to PXN (that is not uni-
form and i.i.d.) involves introducing additional parameters,
that we denote by 75 2 Θ. Accordingly, we denote the
set of the channel embedding by 71, 75, where 75 denotes
the parameters of EX and 71 are the parameters of EW .
We define EX

θ
: Y ! R

d as a constant RV that satisfies
EX

θ
(y) = eX 2 R

d for all y 2 Y . Accordingly, the NSC in
this case is defined by EX

θ
, EW

θ
, Fθ, Gθ, Hθ. Thus, the NSC

decoder needs to be updated in order to optimize EX
θ

as well.
This is addressed by first applying the NSC with inputs eNX
to compute P θ

Ui|Ui−1 , where eNX 2 R
dåN is a matrix whose

columns are duplicates of eX . Second, the NSC is applied with
eNY to compute P θ

Ui|Ui−1,Y N , where eNY 2 R
dåN is a matrix

whose i-th column is EW
θ

(yi).

The training procedure admits the following steps. First,
the channel inputs and outputs are sampled by xN , yN á
Pπ

XN ' WY NkXN . Then, the values of uN = xNGN are
computed, and form the labels of the algorithm. Next, the
channel statistics eNY are computed and the input statistics are
duplicated to obtain eNX . The next step is to apply the NSC-
Train procedure twice, i.e.

LX = NSCTrain(eNX , uN ) (6)

LY = NSCTrain(eNY , uN ), (7)

which are minimized via SGD, as shown in Algorithm 1.
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IV. LIST DECODING OF DATA-DRIVEN POLAR CODES

In this section, we delve into the concept of list decoding
for polar codes and discuss its integration into our data-driven
polar codes. To this end, the NSC is benchmarked against
two ground truth decoding methods: the SC decoder and the
SCT decoder, depending on the presence or absence of chan-
nel memory. Notably, contemporary algorithms predominantly
utilize the list decoding technique, known for its improved
performance compared to the conventional SC algorithm. Con-
sequently, to enable the NSC decoder to compete with state-
of-the-art algorithms, this section incorporates list decoding
with the NSC decoder.

A. SC List Decoder

To enhance the error correction performance of polar codes,
especially with codes of moderate lengths, the SCL decoding
algorithm was introduced in [6]. The fundamental concept
behind list decoding lies in leveraging the structured nature of
the polar transformation. Instead of relying solely on a single
SC decoder, the SCL decoder concurrently decodes multiple
codeword candidates. This is achieved by applying multiple
SC decoders over the same channel’s outputs, with the number
of these decoders denoted as the list size L.

The SCL decoder generates a list of potential codewords,
each ranked by its likelihood of being the transmitted message.
Subsequently, this list undergoes a refining process to identify
the most likely original message. To achieve this, the SCL
algorithm estimates each bit’s value (0 or 1) while considering
both possibilities. At each estimation step, the number of
codeword candidates (also referred to as paths) doubles. To
manage the algorithm’s complexity, it employs a memory-
saving strategy by retaining only a limited set of L codeword
candidates at any given time. Consequently, after each estima-
tion, half of the paths are discarded. To determine which paths
to retain, a path metric (PM) is associated with each path. This
metric is continuously updated with each new estimation and is
computed via the log-likelihood ratios (LLRs). The algorithm
maintains the L paths with the lowest path metrics, allowing
them to persist and continue the decoding process.

B. NSC List Decoder

Here we highlight that the concept of list decoding can be
integrated into our data-driven polar codes. Recall that the
NSC decoder uses the same structure as the SC decoder and
the SCT decoder, with the only distinction being the replace-
ment of elementary operations with NN. Accordingly, we can
seamlessly incorporate the list decoding concept into the NSC
decoder. Specifically, since the NSC decoding algorithm can
estimate the LLRs at the decision points, we can leverage
them to compute the PM and follow the same SCL decoding
procedure.

C. Computational Complexity

The standard SC algorithm has a computational complexity
of O (N log(N)), whereas the SCT algorithm’s computa-
tional complexity is O

�

|S|3N log(N)
�

. In the context of

list decoding, a technique based on leveraging the memory
sharing structure among the candidate paths was introduced
in [6]. This technique demonstrates that the SCL decoder
can be implemented with a computational complexity of
O (LN log(N)). When applying the same technique to the
SCT algorithm with list decoding, it follows directly that the
computational complexity increases to O

�

L|S|3N log(N)
�

.

The following theorem examines the computational com-
plexity of the NSC list decoder for the case where
Eθ, Fθ, Gθ, Hθ are NNs with k hidden units and the embed-
ding space satisfies E ã R

d. Due to space limitation, the proof
is omitted.

Theorem 1. Let Eθ, Fθ, Gθ, Hθ be NNs with k hidden units

and let E ã R
d. Then, the computational complexity of NSC

list decoding is O (LkdN log2 N).

The main purpose of Theorem 1 is to facilitate a comparison
between the NSC list decoder and SCT list decoder. Note
that the computational complexity of the SCT list decoder,
as previously mentioned, scales with the memory size of the
channel O

�

L|S|3N logN
�

. This highlights a key advantage
of the NSC list decoder since its computational complexity
remains independent of the channel’s memory size.

V. EXPERIMENTS

This section presents experiments designed to evaluate
the performance of our proposed algorithms. It begins with
asymmetric channels in Section V-A and continues with
list decoding in Section V-B. In all experiments, the NNs,
Fθ, Gθ, Hθ, E

X
θ
, EW

θ
, are implemented by two layered fully-

connected NNs with 50 hidden units per layer.

A. Asymmetric Channels

In this section, we conduct experiments to evaluate our
methodology for designing polar codes tailored to asym-
metric channels. As an example of a memoryless channel,
we consider the non-symmetric BEC, as defined in [11].
This channel is defined by two erasures probabilities, /0, /1,

4 6 8 10
10�3

10�2

10�1

n

B
E

R

SC-HY

NSC-HY

4 6 8 10
10�3

10�2

10�1

n

SCT-HY

NSC-HY

Figure 1: These figures compare the bit error rates (BERs)
attained by the Honda-Yamamoto scheme (SC-HY) and its
extension to the NSC decoder (NSC-HY). The left and right
figures show the results on an asymmetric binary errasure
channel (BEC), and the Ising channel, respectively.
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0.02

L

SCL
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Figure 2: These figures compare the FERs attained by the the
SCL decoder and its extension the NSC decoder (NSCL). The
left figure shows the results on an binary-input AWGN channel
with signal-to-noise ratio (SNR) of 1.5, and the right figure
shows the results on the Ising channel.

namely the probabilities for an erasure of the “0” symbol
and the “1” symbol, respectively. Accordingly, W (x|x) =
1 � /x, W (?|x) = /x for x 2 {0, 1}. Similar to [11], we
choose /0 = 0.4 and /1 = 0.8159.

As an instance of a channel with memory, we choose the
Ising channel that was introduced in [12], which belongs to
the family of FSCs, and therefore, its optimal decoding rule is
given by the SCT decoder. This channel is defined by Y = X
or Y = S with equal probability, and S0 = X , where X is the
channel input, Y is the channel output, S is the channel states
at the beginning of the transmission and S0 is the channel’s
state at the end of the transmission.

Figure 1 compares the BERs obtained via the extension of
the Honda-Yamamoto scheme, as described in Section III, and
by the optimal decoding rule of the Honda-Yamamoto scheme.
The left figure compares the result on the asymmetric BEC, a
memoryless channel, and the right figure compares the results
on the Ising channel, a FSC.

B. List Decoding

In this Section, we demonstrate the performance of NSC list
decoder compared to the SCL decoder. As an example of a
memoryless channel, we consider the additive white Gaussian
noise (AWGN) channel. The AWGN channel is defined by
the following relation Y = X + N , where X is the channel
input, Y is the channel output, and N á N (0,�2) is an
i.i.d. Gaussian noise. In our experiments �

2 = 1.5. Figure 2
illustrates the frame error rates (FERs) obtained via the SCL
decoder with the FERs obtained via the NSC list decoder as
a function of the list size L. The left figure demonstrates the
results for the AWGN channel while the right figure compares
the results for the Ising channel. As can be seen in the figures,
the NSC list decoder indeed converges to the ground truth SCL
decoder for both channels.

VI. CONCLUSIONS

This paper presents pivotal extensions to data-driven polar
decoder, addressing two critical applications: list decoding

and adaptation to asymmetric input distributions. These en-
hancements are essential steps towards realizing data-driven
codes that achieve channel capacity and excel at moderate
block lengths. By seamlessly integrating list decoding, we
effectively mitigate error propagation issues inherent to SC
decoding, improving the practical performance of polar codes.
Simultaneously, our incorporation of the Honda-Yamamoto
scheme enables these codes to adapt to non-uniform input
distributions in a computationally efficient manner, without
the need for explicit channel model. Our numerical results
validate the effectiveness of these contributions, establishing
data-driven polar codes as robust and versatile coding solutions
adaptable to diverse channel conditions.
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