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ABSTRACT
The Generalized Linear Model (GLM) has been widely used in practice to model counts or other types of
non-Gaussian data. This article introduces a framework for feature selection in the GLM that can achieve
robust False Discovery Rate (FDR) control. The main idea is to construct a mirror statistic based on data
perturbation to measure the importance of each feature. FDR control is achieved by taking advantage of
the mirror statistic’s property that its sampling distribution is (asymptotically) symmetric about zero for any
null feature. In themoderate-dimensional setting, that is, p/n → κ ∈ (0, 1), we construct themirror statistic
based on the maximum likelihood estimation. In the high-dimensional setting, that is, p � n, we use the
debiased Lasso to build the mirror statistic. The proposed methodology is scale-free as it only hinges on
the symmetry of the mirror statistic, thus, can be more robust in finite-sample cases compared to existing
methods. Both simulation results and a real data application show that the proposedmethods are capable of
controlling the FDR and are oftenmore powerful than existingmethods including the Benjamini-Hochberg
procedure and the knockoff filter. Supplementary materials for this article are available online.
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1. Introduction

The Generalized Linear Model (GLM) is a powerful tool for
building a linear relationship between certain characteristic of
a non-Gaussian response variable y (e.g., categorical and count
data) and p explanatory features X1, . . . ,Xp through a link func-
tion. Although p is often large in the current big data era, the
response variable y most likely depends only on a small subset
of features. Thus, it is of significant interest to identify those
relevant features in order to both sharpen the analysis and better
understand the results. A desirable feature selection procedure is
expected to control the False Discovery Rate (FDR) (Benjamini
and Hochberg 1995) defined as

FDR = E[FDP], with FDP = |S0 ∩ Ŝ|
|̂S| ∨ 1

,

in which FDP stands for the “false discovery proportion,” and
S0, Ŝ denote the index sets of the null and the selected features,
respectively. The expectation is taken with respect to the ran-
domness in both the data and the selection procedure. Existing
FDR control methods that can be applied to GLMs include
the Benjamini-Hochberg (BHq) procedure and the model-X
knockoff filter (Candès et al. 2018; Huang and Janson 2020).

There are notable limitations, however, when applying either
BHq or Knockoff in practice. BHq requires p-values, which
are difficult to construct in high dimensions. Javanmard and
Javadi (2019) and Ma, Tony Cai, and Li (2020) considered
applying BHq to high-dimensional linear and logistic regression
models, respectively, with p-values obtained via the debaised
Lasso (Javanmard and Montanari 2014; Van de Geer et al.
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2014; Zhang and Zhang 2014). However, the debiased Lasso
only provides asymptotically valid p-values, which often appear
highly nonuniform under the null in finite-sample cases (e.g.,
see Figure 1 and also the discussions and empirical evidences in
Candès et al. 2018).

Knockoff requires nearly exact knowledge of the joint
distribution of all features, potentially limiting its applicability
in high dimensions. If this distribution is unknown, Barber,
Candès, and Samworth (2020) showed that the inflation of the
FDR is proportional to the estimation error in the conditional
distribution P(Xj | X−j), where X−j = {X1, . . . ,Xp}\{Xj}.
Simulation results in Dai et al. (2022) also suggest that mis-
specifying the joint distribution of the features may result
in an FDR inflation and power loss. Recent developments in
generating good knockoff features include Romano, Sesia, and
Candès (2019), Jordon, Yoon, and Schaar (2019) (using deep
generative models) and Bates et al. (2020) (using sequential
MCMC algorithms). Furthermore, Huang and Janson (2020)
generalized the model-X knockoff filter using conditioning
to allow features following an exponential family distribution
with unknown parameters. Bates et al. (2021), Yang et al.
(2021), and Marandon et al. (2022) apply the similar “knockoff-
type” idea to the novel detection problem. Power analysis of
Knockoff and relatedmethods has been carried out inWeinstein,
Barber, and Candes (2017), Weinstein et al. (2020) and
Ke, Liu, and Ma (2020).

In this article, we propose a new FDR control framework for
the GLM, which requires neither p-values nor the joint distribu-
tion of features. Two asymptotic regimes for the GLM are con-
sidered. The moderate-dimensional setting refers to the regime

© 2023 American Statistical Association
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Figure 1. A logistic regression examplewith n = 250, p = 500, p1 = 10, and Xi ∼ N(0, Ip). The true coefficient for a nonnull feature j ∈ S1 is set to beβ�
j = ±4with equal

probability. Top left: the normalized debiased Lasso estimates TBHqj for the null features. Top right: the p-values of the null features. Both histograms are generated based
on 20 independent runs (with regeneration of the response vector y) of the algorithm in Ma, Tony Cai, and Li (2020). Bottom left: the normalized debiased Lasso estimates
TDSj (see (21)) for the null features. Bottom right: the mirror statistics of the null features. Both histograms are generated based on a single run of Algorithm 6.

where p/n → κ ∈ (0, 1). In this case, the classical asymptotic
result for the Maximum Likelihood Estimator (MLE) breaks
down in the sense that the asymptotic normal distribution of
the MLE involves additional bias and variance scaling factors
(Sur and Candès 2019). As a result, BHq faces the challenge of
estimating these two scaling factors in order to obtain valid p-
values, which remains an open problem for GLMs other than
logistic/probit regressions. In contrast, our proposed method is
scale-free and does not require estimating the aforementioned
scaling factors, thus, can be easily and validly applied to all
GLMs. The high-dimensional setting refers to the regime where
p � n, in which we use debiased Lasso estimates and prove
that the proposed method achieves FDR control under certain
regularity conditions. A main advantage of our method over
BHq is that we do not need the variances of debiased Lasso
estimates and only rely on the symmetry of the estimates under
the null to control FDR,which ismuch easier to achieve in finite-
sample cases.

The rest of the article is structured as follows. Section 2
introduces our FDR control framework and two basic methods
for constructing the mirror statistic: Gaussian mirror and data
splitting. Sections 3 and 4 concern FDR control for the GLM in
the moderate-dimensional and the high-dimensional settings,
respectively. Sections 5.1 and 5.2 demonstrate the competitive
performances of our proposed methods through simulation
studies on popular GLMs including logistic, Poisson and neg-
ative binomial regressions. Section 5.3 considers selecting rel-
evant genes associated with the glucocorticoid response based
on a single-cell RNA sequencing data. Section 6 concludes with
final remarks. Proofs and additional numerical results are given
in supplementary materials.

2. FDR Control via Mirror Statistics

For a given response variable y, we consider p candidate features
X1, . . . ,Xp. LetXn×p be the designmatrix, in which each row xᵀi
for i ∈ [n]1 is an independent realization of these features. Let
y = (y1, . . . , yn)ᵀ be the associated response vector. We assume
that the conditional distribution P(y | X) depends only on a
subset of features with the corresponding index set denoted as
S1. Let p1 = |S1| and p0 = p − p1. We call Xj relevant (non-
null) if j ∈ S1; otherwise we call it a null feature. The index set
of the null features is denoted as S0. The goal is to identify as
many relevant features as possible with the FDR under control.
Throughout, we denote the power of a selection procedure as

Power = E|S1 ∩ Ŝ|/p1,
in which Ŝ denotes the index set of the selected features.

Similar to Knockoff, our FDR control framework requires
constructing a mirror statistic Mj for each feature Xj with the
following two properties:

(A1) A feature with a larger mirror statistic is more likely to be
a relevant feature.

(A2) Themirror statistic’s distribution under the null is (asymp-
totically) symmetric about zero.

By Property (A1), we can rank the features by their mirror
statistics and select those with their mirror statistics greater
than a cutoff. For any cutoff t > 0, Property (A2) suggests an
approximate upper bound on the number of false positives,

FDP(t) = #{j : j ∈ S0,Mj > t}
#{j : Mj > t} ∨ 1

�
#{j : Mj < −t}
#{j : Mj > t} ∨ 1

, (1)

1[n] denotes the set {1, . . . , n}.
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which leads to the following FDR control framework as outlined
in Algorithm 1.

Algorithm 1 The FDR control framework.
1. Construct the mirror statisticMj for j ∈ [p].
2. Given a designated FDR level q ∈ (0, 1), set the cutoff τq as

τq = inf
{
t > 0 : F̂DP(t) = #{j : Mj < −t} + 1

#{j : Mj > t} ∨ 1
≤ q

}
.

3. Select the features Ŝ = {j : Mj > τq}.

Remark 2.1. The data-driven cutoff τq and the selection set
Ŝ are motivated by Knockoff (Barber and Candès 2015). The
“+1” in the numerator of F̂DP(t) is theoretically redundant for
asymptotic FDR control, but is critical for Knockoff to achieve
finite-sample FDR control. We recommend to keep the “+1” in
practice to make Ŝ slightly more conservative, especially when
the number of relevant features p1 is small.

A general recipe for constructing the mirror statistic in
regression settings is as follows. For j ∈ [p], we obtain
two estimates, β̂

(1)
j and β̂

(2)
j , of the true coefficient β�

j . We
standardize the two estimates (more details in Section 3.2) so
that the resulting mirror statistics to have comparable variances.
The standardized estimates T(1)

j and T(2)
j should satisfy the

following conditions:

Condition 2.1.

• (Independence) The two regression coefficients are (asymp-
totically) independent.

• (Symmetry) The distribution of either of the two regression
coefficients is (asymptotically) symmetric about zero under
the null.

The mirror statistic Mj proposed in Dai et al. (2022) takes a
general form:

Mj = sign
(
T(1)
j T(2)

j
)
f
(|T(1)

j |, |T(2)
j |), (2)

where f (u, v) is a user-specified bivariate function defined on
R+ × R+ that is nonnegative, exchangeable in u and v, that is,
f (u, v) = f (v, u), and monotonically increasing in both u and v.

Note that for a relevant feature j ∈ S1, the two regression
coefficients T(1)

j and T(2)
j tend to be large in magnitude and

have the same sign if the estimation procedures are reasonably
accurate. Since f (u, v) is monotonically increasing in both |u|
and |v|, the mirror statistic Mj is likely to be positive and rela-
tively large, which implies Property (A1). In addition, for a null
feature j ∈ S0, Property (A2) holds given Condition 2.1 since
T(1)
j and T(2)

j are (asymptotically) independent and one of them
is (asymptotically) symmetric about zero.

Three convenient choices of f (u, v) are

f (u, v) = 2min(u, v), f (u, v) = uv, f (u, v) = u + v. (3)

The first choice leads to the mirror statistic proposed in Xing,
Zhao, and Liu (2019), while the third choice corresponds to the

“sign-maximum” between
∣∣T(1)

j + T(2)
j

∣∣ and ∣∣T(1)
j − T(2)

j
∣∣, and

is optimal in a simplified setting as shown by Dai et al. (2022).
The optimality of the sign-max mirror statistic for Knockoff has
also been empirically observed byBarber andCandès (2015) and
recently proved by Ke, Liu, and Ma (2020) under the weak-and-
rare signal setting. The following sections review two recently
proposedmethods, Gaussian mirror (Xing, Zhao, and Liu 2019)
and data splitting (Dai et al. 2022), for constructing the two
regression coefficients T(1)

j and T(2)
j that satisfy Condition 2.1.

2.1. GaussianMirror

For an easy illustration, we restrict ourselves to low-dimensional
(n > p) linear models. The idea of Gaussian mirror is to create
a pair of perturbed mirror features,

X+
j = Xj + cjZj, X−

j = Xj − cjZj, (4)

in which cj is an adjustable scalar and Zj follows N(0, 1) inde-
pendently across j ∈ [p]. The linear model with β∗ as the true
parameter vector can then be equivalently recasted as

y = β�
j

2
X+
j + β�

j

2
X−
j + X−jβ

�−j + ε. (5)

In low dimensions, we obtain β̂+ and β̂−, as well as the nor-
malized estimates T+

j and T−
j , via the ordinary least squares

(OLS). For any null feature j ∈ S0, both T+
j and T−

j follow a
t-distribution centered at zero. Thus, the resulting Mj satisfies
the symmetry requirement in Condition 2.1. Furthermore, since
(T+

j ,T
−
j ) asymptotically follows a bivariate normal distribution,

we can choose a proper cj as below so that T+
j and T−

j are
asymptotically independent:2

cj = ‖P⊥−jXj‖/‖P⊥−jZj‖, (6)

where P⊥−j is the projection matrix onto the orthogonal comple-
ment of the column space spanned by X−j.

It is possible to generate (X+
j ,X

−
j ) simultaneously for all

j ∈ [p] and fit the GLM once. However, despite the increas-
ing computational demand, the one-feature-per-fit procedure
introduces the least noise, and thus gives a better ranking of
the features. In simulation studies, we also consistently observe
superior performances of the one-feature-per-fit procedure.

2.2. Data Splitting

The simplest way to obtain two independent regression coef-
ficients is via data splitting. Specifically, we randomly split the
data into two halves, (y(1),X(1)) and (y(2),X(2)), and estimate
β̂

(1)
j and β̂

(2)
j , as well as their normalized versions T(1)

j and T(2)
j ,

using each part of the data. The independence between the two
estimates is naturally implied by data splitting. The symmetry
requirement in Condition 2.1 can be satisfied if, for any null
feature, either of the estimates is (asymptotically) normal and

2Slightly different from Xing, Zhao, and Liu (2019), because we standardize
the OLS estimates, we cannot achieve the finite-sample independence
between T+

j and T−
j by varying cj .
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centered at zero. As we will show later, desirable estimates can be
constructed for the GLMunder certain conditions.We assume a
half-half data splitting throughout, which generally leads to the
highest power based on our empirical observations.

The potential power loss is a major concern of using data
splitting. Dai et al. (2022) proposed to remedy this issue by
aggregating results from repeated sample splits, which also helps
to stabilize the selection result. We use DS and MDS to refer
to the single data-splitting and multiple data-splitting methods,
respectively. The idea of MDS is to obtain multiple selection
results via repeated sample splits, and determine the importance
of a feature based on its inclusion rate Ij defined as

Ij = E

[
1(j ∈ Ŝ)
|̂S| ∨ 1

∣∣∣∣ X, y] , Îj = 1
m

m∑
k=1

1(j ∈ Ŝ(k))

|̂S(k)| ∨ 1
, (7)

where Îj is a natural estimate of Ij, m is the total number of
sample splits, and Ŝ(k) is the index set of the selected features
in the kth sample split. Note that

∑
j Ij =Pr(|̂S| ≥ 1), and, if

all |̂S(k)| ≥ 1, then
∑

j Îj =1. We then select those features with
their empirical inclusion rates Îj larger than a properly chosen
cutoff. The MDS procedure as summarized in Algorithm 2 can
be applied on top of theDS procedure designed for theGLM (see
Sections 3 and 4).

Algorithm2Aggregating selection results frommultiple sample
splits.
1. Sort the estimated inclusion rates: 0 ≤ Î(1) ≤ Î(2) ≤ · · · ≤

Î(p).
2. Given a designated FDR level q ∈ (0, 1), find the largest � ∈

[p] such that Î(1) + · · · + Î(�) ≤ q.
3. Select the features Ŝ = {j : Îj > Î(�)}.

Ideally, we would like to conduct as many sample splits as
possible in order to estimate the inclusion rates accurately. In
practice, however, we find that the power of MDS no longer
improves much after a small number of independent sample
splits (e.g., m ≥ 50). In addition, Dai et al. (2022) showed that,
for the normal means problem,MDS can retrieve almost the full
information regarding the feature selection task, in the sense that
with high probability the inclusion rates give the same ranking
of features as the p-values calculated using the full data.

3. Generalized Linear Models in Moderate
Dimensions

For y = (y1, . . . , yn)
, we consider the following GLM with a
canonical link function ρ:

p(y | X,β�) =
n∏

i=1
c(yi) exp

(
yixᵀi β� − ρ(xᵀi β�)

)
, (8)

in which β� denotes the p dimensional true coefficient vector. In
the moderate-dimensional setting, we assume that p/n → κ ∈
(0, 1). Note that the classical setting with fixed p corresponds to
the case κ = 0.We impose the following assumption on the link
function ρ as in Abbasi (2020).

Assumption 3.1 (Assumption 1 in Abbasi (2020)). Define the
Moreau envelop of the loss function that is, the negative log-
likelihood, of the GLM in (8) as

G(x, y, t) = min
v∈R

{
1
2t

(v − x)2 + ρ(x) − xy
}
.

For all c1, c2 ∈ R and τ > 0, there exists a continuous function
g : R × R × R>0 → R such that

1
n

n∑
i=1

G(c1hi + c2xᵀi β�, yi, τ)
p−→ g(c1, c2, τ),

where the convergence is in probability over the distribution of
y, the random matrix X ∈ Rn×p with iid standard Gaussian
entries, and the random vector h with iid standard Gaussian
entries.

Assumption 3.1 holds for a wide range of GLMs andmachine
learning models including logistic regression, Poisson regres-
sion, and support vector machines (Abbasi 2020). We further
assume that xi’s are iid observations for a distribution with
mean 0 and covariance matrix 	, and that the signal strength
converges to a constant, that is, γn := var(xᵀi β�) → γ 2.

3.1. Properties of theMLE

Let ρ(Xβ) = (ρ(xᵀ1 β), . . . , ρ(xᵀnβ))ᵀ. The MLE of β� can be
written as

β̂ = argminβ∈Rp

{
1
n
1ᵀρ(Xβ) − 1

n
yᵀXβ

}
, (9)

which can behave very differently when κ > 0 compared with
the classical setting. First, the GLMmay not be identifiable, that
is, the MLE does not exist uniquely. For instance, for logistic
regression, the MLE does not exist if the two classes are well
separated, and the corresponding phase transition curve for the
existence of a unique MLE is recently derived by Candès and
Sur (2020). Throughout Section 3, we assume the existence of
a unique MLE with probability approaching 1 as n, p → ∞
whenever necessary. Second, the MLE is asymptotically biased
and its asymptotic variance also differs from the classical result.
By generalizing the results of Zhao, Sur, and Candès (2020)
and Salehi, Abbasi, and Hassibi (2019), we have the following
asymptotic characterization of the MLE.

Proposition 3.1. Consider the GLM defined in (8) in which
xi

iid∼ N(0,	). Let � = 	−1 and τ 2j = �−1
jj . Assuming that√

nτjβ�
j = O(1), we have

P

(√
n(β̂j − α�β

�
j )

σ�/τj
≤ x

∣∣∣∣ MLE exists

)
−→ �(x), (10)

where �(x) is the CDF of the standard Gaussian, and α�, σ� are
two universal constants depending on the link function ρ, the
true coefficient vector β�, the signal strength γ , and the ratio κ .

Remark 3.1. The proof of Proposition 3.1 uses the stochastic
representation of the MLE in Zhao, Sur, and Candès (2020)
and the Convex Gaussian Min-max Theorem (CGMT). The
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Gaussian assumption on the xi’s is not required for the DS
procedures per se, but allows us to use the CGMT directly
to prove theoretical results. The constant pair (α�, κσ 2

� ) is the
limit of

αn = 〈β̂ ,β�〉
‖β̂‖2 , σ 2

n = ‖P⊥
β� β̂‖, (11)

in which P⊥
β� is the projection matrix onto the orthogonal com-

plement of β�. The convergence of (αn, σ 2
n ) follows from a

routine application of CGMT as in Salehi, Abbasi, and Hassibi
(2019). More details can be found in Lemma A.1 in supplemen-
tary materials.

Remark 3.2. Note that τ 2j = var(Xj | X−j). We can thus estimate
it via a a node-wise regression approach. More precisely, we
regress Xj against X−j and obtain the residual sum of squares
RSSj. An unbiased estimator of τ 2j is then τ̂ 2j = RSSj/(n−p+1).

By Proposition 3.1, we need to estimate the bias and variance
scaling factors (α�, σ�) in order to obtain p-values. This is in gen-
eral very challenging as it requires one to first estimate the signal
strength γ . Sur and Candès (2019) proposed the ProbFrontier
method to estimate γ using the phase transition curve that cali-
brates the existence of a uniqueMLE.However, to the best of our
knowledge, existing results only cover logistic/probit regressions
and there is no unified approach to derive the curve for a general
GLM. Therefore, it remains unknown how one should apply
BHq going beyond logistic/probit regressions.

3.2. FDR Control via Data Splitting

In comparison with BHq, the DS procedure outlined in
Algorithm 3 does not require estimating the scaling factors
(α�, σ�), thus, is applicable to all GLMs in the moderate-
dimensional setting. By (10), we normalize the two independent
MLEs β̂(1) and β̂(2) as below,

T(1)
j = τ̂

(1)
j β̂

(1)
j , T(2)

j = τ̂
(2)
j β̂

(2)
j , (12)

where τ̂
(1)
j and τ̂

(2)
j are two independent estimates of τj (see

Remark 3.2). Although the asymptotic standard deviation of β̂j
is σ�/τj, we can safely drop the constant σ� because our FDR
control framework (Algorithm 1) is scale-invariant with respect
to the mirror statistics. DS also does not require estimating the
bias scaling factor α� since α�β

�
j = 0 under the null. Thus,

the symmetry requirement in Condition 2.1 is asymptotically
satisfied according to Proposition 3.1.

To theoretically justify DS, we define S1,strong to be the largest
subset of S1 such that

√
n min
j∈S1,strong

|β�
j | → ∞. (13)

Note such a set might be empty. Let p1,strong = |S1,strong|. We
require the following assumptions.

Assumption 3.2.

1. 1/C ≤ σmin(	) ≤ σmax(	) ≤ C for some constant C > 0.
2. p0 → ∞, lim inf p1,strong/p0 > 0 as n, p → ∞.

Algorithm 3 The data-splitting method for GLMs in the
moderate-dimensional setting.
1. Split the data into two equal-sized halves (y(1),X(1)) and

(y(2),X(2)).
2. For j ∈ [p], regress X(1)

j onto X(1)
−j , and regress X

(2)
j onto X(2)

−j .
Let

τ̂ 2j
(1) = RSS(1)

j

n/2 − p + 1
, τ̂ 2j

(2) = RSS(2)
j

n/2 − p + 1
,

in which RSSj is the residual sum of squares.
3. Find the MLEs β̂(1) and β̂(2) using each part of the data. For

j ∈ [p], calculate the mirror statistic Mj following (2) based
on T(1)

j and T(2)
j defined in (12).

4. Select features using Algorithm 1.

Remark 3.3. Assumption 3.2 (1) also appears in Zhao, Sur, and
Candès (2020), in which σmin(	) and σmax(	) refer to the
smallest and the largest eigenvalues of the covariance matrix
	. Empirically we observed that DS may still achieve FDR
control even if Assumption 3.2 (1) is violated, for example,
when features have constant pairwise correlation (see Sections
B.1.1 and B.1.2 in supplementary materials). The condition
lim inf p1,strong/p0 > 0 can be possibly relaxed to accommodate
the cases of very sparse signals and the global null by imposing
some additional weak-correlated assumption among the mirror
statistics (e.g., see Assumption 4.1 (2)(a)).

Proposition 3.2. Consider a GLM defined in (8), in which xi
iid∼

N(0,	). For any FDR control level q ∈ (0, 1), under Assump-
tion 3.2, we have

FDP ≤ q + op(1) and lim sup
n,p→∞

FDR ≤ q

for the DS procedure outlined in Algorithm 3.

Remark 3.4. We give a sketch of proof for Proposition 3.2.
Without loss of generality, we assume qp1 < (1−q)p0, otherwise
we can simply select all features and the FDR is under control.
Let

H(t) = P
(
sign(Z1Z2)f (|Z1|, |Z2|) > t

)
,

in which Z1,Z2 are two independent standard Gaussian vari-
ables, and f is the bivariate function used in constructing the
mirror statistic. The main proof arguments are

sup
0≤t≤t�

∣∣∣∣∣
∑

j∈S0 1(Mj > t)∑
j∈S0 1(Mj < −t)

− 1

∣∣∣∣∣ p−→ 0 and P(τq ≤ t�) → 1,

(14)
in which t� satisfies H(t�) = qp1,strong

2(1−q)p0 . Assumption 3.2 (2)
ensures that t� is bounded as n, p → ∞. We show the first part
of (14) via Markov’s inequality, that is, bounding cov(1(Mi >

t),1(Mj > t)) for i, j ∈ S0. For the second part, using the signal
strength condition (13), we prove that

P
(

min
j∈S1,strong

Mj > t�
)

→ 1, n, p → ∞.

By the definitions of t� and τq, this implies F̂DP(t�) ≤ q, and
thus,P(τq ≤ t�) → 1.



1556 C. DAI ET AL.

Asdiscussed in Section 2.2, we can further enhance the power
and the stability of the selection result via MDS. The following
proposition establishes FDR control for MDS.

Proposition 3.3. Consider the GLMdefined in (8), in which xi
iid∼

N(0,	). For any FDR control level q ∈ (0, 1), if p1,strong/p1 → 1
as n, p → ∞, under Assumption 3.2, we have

FDP ≤ q + op(1) and lim sup
n,p→∞

FDR ≤ q

for the MDS procedure based on Algorithm 3.

Remark 3.5. We impose an additional signal strength condition
p1,strong/p1 → 1 when proving FDR control for MDS. Note that
DS is free of this assumption (see Proposition 3.2), and numer-
ical studies (e.g., see Section 5 and Table B.2 in supplementary
materials) suggest thatMDS achieves FDR control whenever DS
does, even if p1,strong/p1 � 1. However, it remains unclear how
this assumption can be possibly relaxed.

3.3. FDR Control via GaussianMirror

Cover (Cover 1964, 1965) showed that the MLE exists uniquely
only if κ ∈ (0, 1/2], hence, DS is only applicable when κ ∈
(0, 1/4], that is, n ≥ 4p. The same issue also occurs to Knockoff
as it doubles the number of features. Besides, even if κ ∈ (0, 1/4]
and the MLE exists uniquely as n, p → ∞, in the finite-sample
case, there is still a chance that the MLE does not exist uniquely
for some sample splits used in MDS. To overcome this issue,
we consider the Gaussian mirror method, which extends the
applicability to κ ∈ (0, 1/2] as long as the MLE exists uniquely
on the full data.

As discussed in Section 2.1, we fit a GLM using the response
vector y and the augmented set of features (X−j,X+

j ,X
−
j ) to find

the MLEs, β̂+
j and β̂−

j , associated with the pair of perturbed
mirror features (X+

j ,X
−
j ) defined in (4). Let 	aug be the covari-

ance matrix of (X−j,X+
j ,X

−
j ), and let�aug = 	−1

aug. We have the
following asymptotic characterization.

Proposition 3.4. Consider fitting a GLM using the response
vector y and the augmented set of features (X−j,X+

j ,X
−
j ) defined

in (4). Then, the asymptotic distribution of theMLE (β̂+
j , β̂

−
j ) is

√
n

σ�

((
β̂+
j

β̂−
j

)
− α�

2

(
β�
j

β�
j

))
d−→ N

(
0,�∗), (15)

in which �∗ is the 2 × 2 submatrix at the right bottom of �aug
corresponding to (X+

j ,X
−
j ), α�, σ� are defined as in Proposi-

tion 3.1, and the design matrix is Gaussian.

We can choose a proper scalar cj so that the off-diagonal
entry of �∗ is zero. This implies that the MLEs β̂+

j and β̂−
j are

asymptotically independent by Proposition 3.4. In practice, we
can plug in the sample version of	aug and the resulting scalar cj
is in the form of (6). Besides,

1/�∗
11 = 1/�∗

22 = Var(X+
j | X−

j ,X−j)

≈ var(X+
j | X−j) = τ 2j + c2j ,

where the approximately-equal sign follows from the fact that
the asymptotic independence between β̂+

j and β̂−
j implies the

asymptotic independence between X+
j and X−

j conditioning on
X−j. We thus normalize β̂+

j and β̂−
j as

T+
j =

√
τ̂ 2j + c2j β̂+

j , T−
j =

√
τ̂ 2j + c2j β̂−

j , (16)

with τ̂ 2j defined in Remark 3.2. We summarize the Gaussian
mirror method in Algorithm 4.

Algorithm 4 The Gaussian mirror method for GLMs in the
moderate-dimensional setting.
1. For j ∈ [p], calculate the mirror statisticMj as follows.

(a) Simulate Zj from N(0, In).
(b) Calculate the scaling factor cj according to (6).
(c) Fit a GLM using y and (X−j,X+

j ,X
−
j ) to find the MLEs

β̂+
j and β̂−

j .
(d) Estimate τ̂ 2j following Remark 3.2.
(e) Calculate the mirror statistic Mj following (2) based on

T+
j and T−

j defined in (16).

2. Select features using Algorithm 1.

Proposition 3.5. Consider a GLM defined in (8), in which xi
iid∼

N(0,	). For any FDR control level q ∈ (0, 1), under Assump-
tion 3.2, we have

FDP ≤ q + op(1) and lim sup
n,p→∞

FDR ≤ q

for the Gaussian mirror method outlined in Algorithm 4.

The normality assumption on the design matrix in this sec-
tion is mainly for technical purposes to apply the Convex Gaus-
sian Min-max Theorem (CGMT). We expect that all proposi-
tions in Section 3 hold more generally with the proviso that the
joint distribution of features has a sufficiently light tail (see the
discussion in Sur and Candès 2019). Empirically, the proposed
methods work well for non-Gaussian designs (e.g., see Figure
B.6 in supplementary materials).

4. Generalized Linear Models in High Dimensions

We consider the high-dimensional setting (p � n), in which we
base the mirror statistic on the regularized estimator instead of
theMLE. Considering computational feasibility, we focus on the
data-splittingmethods. For theGLMdefined in (8), we define its
loss function as

�(u, v) = −uv + ρ(v),

which is just the negative log-likelihood up to an additive con-
stant. Denote

�̇(u, v) = ∂�(u, v)
∂v

, �̈(u, v) = ∂2�(u, v)
∂v2

, �̇β(y, x)

= ∂�(y, xᵀβ)

∂β
, �̈β(y, x) = ∂2�(y, xᵀβ)

∂β∂βᵀ .
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Note that both �̇(u, v) and �̈(u, v) are scalars, whereas �̇β(y, x)
is a p × 1 vector and �̈β(y, x) is a p × p matrix. For a general
mapping g defined on the space (y, x), we define

Png = 1
n

n∑
i=1

g(yi, xi) and Pg = E
[
Png

]
.

Let Wβ be an n × n diagonal matrix with W2
ii = ρ̈(xᵀi β).

Then the sample version of the Hessian matrix can be written as
Pn�̈β = Xᵀ

βXβ/n, in which Xβ = WβX is the weighted design
matrix.

4.1. Construction of theMirror Statistic via Debiased Lasso

The mirror statistic is built upon the Lasso estimator:

β̂(y,X; λ) = argminβ∈Rp

{
1
n

n∑
i=1

�(yi, xᵀi β) + λ‖β‖1
}
. (17)

To symmetrize β̂ , we consider the following debiasing adjust-
ment (Van de Geer et al. 2014):

β̂d = β̂ − �̂Pn�̇β̂ . (18)

Here �̂ is referred to as the decorrelating matrix.
Various proposals of �̂ have been documented in the litera-

ture. For example, Javanmard and Montanari (2014) proposed
an optimization approach to simultaneously minimize the bias
and the variance of β̂d. We follow the approach in Javanmard
and Montanari (2013) and Zhang and Zhang (2014), and set �̂

as an estimator of � = 	−1, where 	 = E[Xᵀ
β�Xβ� ]/n is the

Hessian matrix evaluated at the true coefficient vector β�.
One natural way to construct �̂ in high dimensions is via

regularized node-wise regression as detailed in Algorithm 5,
based on the fact that�j,−j corresponds to the coefficients of the
best linear predictor of Xβ�,j using Xβ�,−j. Note that estimating
� only involves the second moment and does not require any
distributional assumption of X (e.g., normality).

Algorithm 5 Construction of the decorrelating matrix �̂.
1. Node-wise Lasso regression. For j ∈ [p], let

γ̂j = argminγ∈Rp−1

{
1
2n

‖Xβ̂ ,j − Xβ̂ ,−jγ ‖22 + λj‖γ ‖1
}
.

2. Define matrix Ĉ with Ĉjj = 1 and Ĉjk = −γ̂j,k for k �= j,
where γ̂j,k is the kth entry of γ̂j.

3. Let �̂ = Ĝ−2Ĉ, in which Ĝ2 = diag(̂τ 21 , . . . , τ̂ 2p ) with

τ̂ 2j = (Xβ̂ ,j − Xβ̂ ,−jγ̂j)
ᵀXβ̂ ,j/n.

As an example, for linear models, the canonical link function
is ρ(v) = v2/2, and the loss function and its derivative simplify
to

�(u, v) = −uv + v2/2, �̇β(y, x) = −xᵀ(y − xᵀβ).

In addition, since ρ̈(v) ≡ 1, Wβ and Xβ simplify to In and X,
respectively. Thus, � = 	−1 is simply the population precision

matrix of features. As a result, the debiased Lasso estimator for
linear models takes the form of

β̂d = β̂ + 1
n
�̂Xᵀ(y − Xβ̂).

Plugging in y = Xβ� + ε, we have the following decomposition,
√
n(β̂d − β�) = Z + �, Z | X
∼ N(0, σ 2�̂	̂�̂ᵀ), � = √

n(�̂	̂ − I)(β� − β̂), (19)

where 	̂ = (XᵀX)/n is the sample covariance matrix.
For GLMs, we have a similar decomposition as (19),

√
n(β̂d

j − β�
j ) = Zj + �j for j ∈ [p], (20)

in which Zj, defined as

Zj = −√
n�j,·Pn�̇β� = −√

n
n∑

i=1
�j,·xi[−yi + ρ̇(xᵀi β�)],

asymptotically follows the normal distribution by the central
limit theorem. Here�j,· denotes the jth row of�. Under certain
conditions, we show that the bias term � vanishes asymptoti-
cally (see Proposition 4.1), thus, the symmetry requirement in
Condition 2.1 is satisfied. Note that the asymptotic variance of
Zj is

σ 2
j = (�E[Pn�̇β� �̇


β� ]�)jj = (�	�)jj = �jj,

and we further normalize β̂d
j as

Tj = β̂d
j /σ̂j with σ̂ 2

j = (�̂Pn�̇β̂ �̇
̂
β
�̂
)jj, (21)

in which σ̂ 2
j is a consistent estimator of σ 2

j .
DS proceeds by first randomly splitting the data into two

halves, (y(1),X(1)) and (y(2),X(2)), and then calculating the two
independent debiased Lasso estimates β̂(1,d) and β̂(2,d) following
(18), in which β̂(1), β̂(2) and �̂(1), �̂(2) are computed via (17)
and Algorithm 5, respectively. The mirror statistic Mj is con-
structed following (2) based on the normalized estimators T(1)

and T(2) defined in (21). A summary of the DS procedure for
high-dimensional GLMs is given in Algorithm 6.

For FDR control, DS relies only on the symmetry of the debi-
ased Lasso estimator, whereas BHq further requires estimating
its variance in order to obtain the Z-score. Our simulations
show that the symmetry requirement is much less stringent and
kicks in much earlier than the asymptotic normality of the Z-
score in finite-sample cases. In the case of linear models, BHq
needs to estimate the noise level σ , which is a challenging task
in high dimensions (e.g., see the right panel of Figure B.9 in
supplementary materials). If the variance is under-estimated,
BHq is at the risk of losing FDR control since the resulting
p-values for the null features would skew to the left. On the
other hand, if the variance is over-estimated, BHq can be overly
conservative, leading to a significant power loss. In contrast,
DS is scale-free, that is, any rescaling of all the mirror statistics
does not materially change the selection result, thus, is expected
to perform more robustly than BHq. Numerical comparisons
between DS and BHq can be found in Figures B.8 and B.10 in
supplementary materials.
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Algorithm 6 The data-splitting method for GLMs in the high-
dimensional setting.
1. Split the data into two equal-sized halves (y(1),X(1)) and

(y(2),X(2)).
2. Construct the normalized debiased Lasso estimator on each

part of the data.

(a) Calculate the Lasso estimators β̂(1) and β̂(2) via (17).
(b) Obtain �̂(1) and �̂(2) following Algorithm 5. For j ∈ [p],

let

σ̂ 2
j

(1) = (
�̂(1)Pn/2�̇β̂(1) �̇


̂
β(1) �̂

(1)
)
jj,

σ̂ 2
j

(2) = (
�̂(2)Pn/2�̇β̂(2) �̇


̂
β(2) �̂

(2)
)
jj.

(c) Normalize the debiased Lasso estimators β̂(1,d) and β̂(2,d)

from (18), that is, for j ∈ [p],
T(1)
j = β̂

(1,d)
j /σ̂

(1)
j , T(2)

j = β̂
(2,d)
j /σ̂

(2)
j . (22)

3. For j ∈ [p], calculate the mirror statistic Mj following (2)
based on T(1)

j and T(2)
j .

4. Select features using Algorithm 1.

Figure 1 illustrates the above discussion via logistic regres-
sion. Detailed algorithmic settings are in the figure caption. We
obtain the normalized debiased Lasso estimators TBHq

j and TDS
j

following Ma, Tony Cai, and Li (2020) and Algorithm 6, respec-
tively. We see that for BHq, the histogram of TBHq

j under the
null is far from that of the standard Gaussian, and the resulting
p-values of the null features are significantly right-skewed. In
contrast, for DS, the symmetry requirement in Condition 2.1 is
approximately satisfied.

Xing, Zhao, and Liu (2019) and Dai et al. (2022) consider
high-dimensional linear models based on the same FDR con-
trol framework described in Section 2. However, both methods
may not be easily applicable to GLMs. Xing, Zhao, and Liu
(2019) hinges on post-selection adjustments to symmetrize the
regression coefficients under the null. To the best of our knowl-
edge, post-selection adjustments have only been worked out for
specific GLMs including logistic regressions and Cox’s propor-
tional hazards model (Taylor and Tibshirani 2018), but remain
unknown for general GLMs. The DS procedure proposed in Dai
et al. (2022) requires the sure screening property, which is a
stronger signal strength assumption than the one in this article.

4.2. Theoretical Justification of the Data-Splitting
Methods

Let �0
ij = �ij/(�ii�jj)1/2, � = maxi�=j |�0

ij|, s = maxj∈[p] #
{
i :

�0
ij �= 0

}
, and define γj as

γj = argminγ∈Rp−1E
[‖Xβ�,j − Xβ�,−jγ ‖22

]
,

that is, the coefficient vector of the best linear predictor of Xβ�,j
using Xβ�,−j. Define S1,strong as the largest subset of S1 such that√

n/ log p min
j∈S1,strong

|β�
j | → ∞. (23)

Assumption 4.1. There exist some constants α1 ∈ (0, (1 −
�)/(1 + �)), α2 > 0, C > 0, c > 0 such that the following
conditions are satisfied.

1. Bounded design. maxi∈[n], j∈[p] |Xij| ≤ C almost surely, and

P
(
max
i∈[n] |xᵀi β�| ∨ max

j∈[p] ‖Xβ�,−jγj‖∞ ≥ C
)

= O(p−c).

2. Regularity conditions.

(a)ρ̈(v) is Lipschitz continuous for |v| ≤ C;
(b)|ρ̇(v)| and |ρ̈(v)| are upper bounded for |v| ≤ C;
(c)1/C ≤ σmin(	) ≤ σmax(	) ≤ C.

3. Sparsity conditions.

(a)s = o(
√
n/ log3/2 p) and s = O(pα1);

(b)p1 = o(
√
n/ log3/2 p ∧ p1/2−α2) and p1,strong ≥

C(log p)α2 .

Remark 4.1. We consider the random-design scenario with a
boundedness assumption (Ma, Tony Cai, and Li 2020). Similar
conditions for the canonical link function ρ appear in Van
de Geer et al. (2014), and hold for popular GLMs including
logistic, Poisson, and negative binomial regressions. In contrast
to themoderate-dimensional setting, we impose certain sparsity
conditions on the true coefficient vector β� and the asymptotic
covariance matrix � of the debiased Lasso estimator, so that
their respective estimators enjoy a fast convergence rate (see
Bickel, Ritov, and Tsybakov 2009, Javanmard and Montanari
2013, and Van de Geer et al. 2014).

Proposition 4.1. Under Assumption 4.1, we have ‖�‖∞ =
Op(max{s, p1} log p/√n). where � is the bias term as defined
in (20).

Proposition 4.2. For any FDR control level q ∈ (0, 1), in the
asymptotic regime p = O(nr) for some constant r > 1, under
Assumption 4.1, we have

FDP ≤ q + op(1) and lim sup
n,p→∞

FDR ≤ q

for the DS procedure outlined in Algorithm 6.

Remark 4.2. The proof of Proposition 4.2 still hinges on (14),
except that t� can no longer be bounded given that features are
sparse. We conduct a more delicate analysis of cov(1(Mi >

t),1(Mj > t)) for i, j ∈ S0 under Assumption 4.1 to obtain a
tighter upper bound. The key technical tools are Lemmas 6.1 and
6.2 in Liu (2013).

Proposition 4.3. Assume that there exists some constant C > 0
such that maxj∈S1\S1,strong

√
n|β�

j | ≤ C. Then, under Assump-
tion 4.1, the MDS procedure based on Algorithm 6 satisfies

FDP ≤ q + op(1) and lim sup
n,p→∞

FDR ≤ q

in the asymptotic regime p = O(nr) for some constant r > 1.

Remark 4.3. Similar signal strength conditions on S1,strong and
S1\S1,strong also appear in Bühlmann and Mandozzi (2014).
Althoughwe do not find aworkaround to drop those conditions,
we conjecture that they are not essential forMDS to achieve FDR
control.
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Figure 2. Empirical FDRs and powers for logistic regressions in the small-n-and-p setting. In the left panel, we fix the signal strength at |β�
j | = 6.5 for j ∈ S1 and vary the

correlation r. In the right panel, we fix the correlation at r = 0.2 and vary the signal strength. The number of the relevant features is p1 = 30 across all settings. Knockoff
features are created using the minimum variance-based reconstructability (MVR) construction.

Remark 4.4. In both moderate and high dimensions, DS and
MDS are able to select all relevant features in S1,strong with prob-
ability approaching one. Thus, an immediate lower bound of the
power is p1,strong/p1. See Dai et al. (2022) for more discussions
on the power guarantees of DS, MDS (for linear models) and
Knockoff.

5. Numerical Illustrations

Recall that the abbreviations DS, MDS, BHq, GM, and Knockoff
refer to the single data-splitting method, the multiple data-
splittingmethod, the Benjamini-Hochberg procedure, theGaus-
sian mirror method, and the model-X knockoff filter, respec-
tively. For DS, we construct the mirror statistic by (2) with
f (u, v) = uv. For MDS, we replicate DS for 50 times and aggre-
gate the results using Algorithm 2. For Knockoff, we test out
the following constructions and report the best results: (a) the
second-order construction, including the equi-correlated con-
struction and the asdp3 construction; (b) the minimizing recon-
structability construction (Spector and Janson 2020), includ-
ing the minimum variance-based reconstructability (MVR) con-
struction and the maximum entropy (ME) construction. We
assume that the covariance matrix of the features is unknown,
and examine two estimators including the Ledoit–Wolf esti-
mator (the python package knockpy) and a James-Stein-type
shrinkage estimator (the R package knockoff ). The computa-
tional costs of different procedures are summarized in Table B.3
in supplementary materials.

For all the synthetic examples, we set |β�
j | the same across the

relevant features j ∈ S1 and randomly generate their signs with
equal probability. The elements of S1 are randomly drawn from
{1, . . . , p}. With a bit abuse of terminology, we refer to |β�

j | for
j ∈ S1 as the signal strength. The designated FDR control level is
set to be q = 0.1 henceforth. Each dot in the figures represents
the average from 50 independent runs.

3asdp refers to approximate semidefinite program.

5.1. TheModerate-Dimensional Setting

5.1.1. Logistic Regression
We consider two moderate-dimensional settings for logistic
regressions. The first one is the classical small-n-and-p setting,
with sample size n = 500, dimension p = 60, and the
dimension-to-sample-size ratio κ = p/n = 0.12. The second
one concerns with the large-n-and-p setting, with n = 3000,
p = 500, and κ = 1/6. The number of the relevant features
p1 is 30 and 50 in the small-n-and-p and the large-n-and-p
settings, respectively. In both settings, we consider six competing
methods based on the MLE, including DS, MDS, GM, BHq
along with its adjusted version ABHq, and Knockoff. The
implementation details of DS and GM are given in Algorithms 3
and 4, respectively. BHq uses the classical p-values calculated
via the Fisher information, whereas ABHq is based upon the
adjusted p-values derived recently by Sur and Candès (2019).

Each row of the design matrix is independently drawn from
N(0,	) with a Toeplitz correlation structure, that is, 	ij =
r|i−j|. The variance of each feature is then standardized to be
1/n. We consider the scenarios with different correlations r and
signal strengths. The detailed simulation settings can be found
in the captions of Figures 2 and 3. We report additional results
for different types of covariance matrix 	 in Section B.1.1 of
supplementarymaterials, including the case where features have
constant pairwise (partial) correlation.

Empirical FDRs and powers of different methods under the
small-n-and-p setting are summarized in Figure 2. The FDRs
of all the six competing methods are under control across all
settings. In terms of the power, BHq performs the best in all
cases and MDS performs the second best. We see that ABHq
is less powerful than BHq, indicating that the asymptotics for
the p-value adjustment has not kicked in when n and p are
small. Except for MDS, all the perturbation-based methods,
such as DS, GM and Knockoff, are not as powerful as the p-
value-based methods. A possible reason is that when n and p
are small, perturbations employed in these methods may have
diluted the signal too much. More interestingly, however, MDS
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Figure 3. Empirical FDRs and powers for logistic regressions in the large-n-and-p setting. In the left panel, we fix the signal strength at |β�
j | = 11 for j ∈ S1 and vary the

correlation r. In the right panel, we fix the correlation at r = 0.2 and vary the signal strength. The number of the relevant features is p1 = 50 across all settings. Knockoff
features are created using the minimum variance-based reconstructability (MVR) construction.

gains back almost all the lost power due to sample splitting
without sacrificing FDR control.

Results under the large-n-and-p setting are summarized in
Figure 3.We see that BHq loses FDR control because the classical
p-value under the null, calculated via the Fisher information,
is nonuniform and skew to the left. In contrast, ABHq still
controls the FDRwell and enjoys the highest power, verifying the
asymptotics of theMLE derived in Sur and Candès (2019). MDS
and GM also perform competitively and have a slightly lower
power than ABHq. In particular, GM shows much improved
performances compared with the small n-and-p setting.

5.1.2. Negative Binomial Regression
We consider a negative binomial regression model with the
dispersion parameter set to be 2, that is, the target number of
successful trials is 2.We set sample size n = 3000 and dimension
p = 500, resulting in a dimension-to-sample-size ratio of κ =
1/6.We simulate the designmatrix as described in Section 5.1.1,
and test out the scenarios with different correlations r and signal
strengths. The detailed simulation settings can be found in the
caption of Figure 4. The number of the relevant features is
p1 = 50 across all settings. In Section B.1.2 of Supplementary
Materials, we report additional results for the casewhere features
have constant pairwise correlation.

We consider five competing methods based on the MLE,
including DS, MDS, BHq, GM, and Knockoff. The implemen-
tation details of DS and GM are given in Algorithms 3 and 4,
respectively. BHq is based upon the classical p-values calculated
via the Fisher information, which is known to be incorrect Can-
dès and Sur (2020). However, to the best of our knowledge, the
exact asymptotic distribution of the MLE has not been derived
and no proper adjustment exists.

The empirical FDRs and powers of different methods are
summarized in Figure 4. We see that BHq is the only method
losing FDR control because of the nonuniformity (skew to the
left) of the p-values under the null. We also tested using the
debiased LASSO method to get p-values for BHq and FDRs
were still out of control (see Figure B.7 in supplementary mate-

rials). Among the methods with FDR control, GM and MDS
consistently perform the best over different levels of correlation
and signal strength. MDS has a slightly lower power but also
a lower FDR compared with GM, and is significantly better
than DS in the sense that it simultaneously reduces the FDR
and boosts the power. Knockoff has the lowest power among
all competing methods for the same reason as discussed in
Section 5.1.1.

5.2. The High-Dimensional Setting

5.2.1. Logistic Regression
We consider a case with sample size n=800 and dimension
p=2000. Each row of the design matrix is independently drawn
fromN(0,	). Following a similar setup as in Ma, Tony Cai, and
Li (2020), we let 	 = 0.1× 	B, where 	B is blockwise diagonal
consisting of 10 identical unit-diagonal Toeplitz matrices with
the correlation factor r=0.3. In Section B.2 of supplementary
materials, we give more details about the simulation setup and
report additional results for r=0.1. Scenarios with different spar-
sity levels p1 and signal strengths are examined, for which details
can be found in the caption of Figure 5. We consider four
competing methods, including DS, MDS, Knockoff, and the
BHq procedure in Ma, Tony Cai, and Li (2020). DS and MDS
use the debiased Lasso estimator, with implementation details
given in Algorithm 6. For Knockoff, we empirically found that
the equi-correlated construction of knockoff features yields the
highest power.

The empirical FDRs and powers of different methods are
summarized in Figure 5. We see that all methods control the
FDR successfully. In terms of the power, MDS is the leading
method across different levels of sparsity and signal strength,
and has a significantly higher power than DS. Even DS appears
to be more powerful than BHq, suggesting that the p-values
constructed followingMa, Tony Cai, and Li (2020) can be highly
non-informative (skew to the right) in finite-sample cases.
Knockoff performs competitively when the signal is sparse, but
can potentially suffer when p1 becomes larger.
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Figure 4. Empirical FDRs and powers for negative binomial regressions. In the left panel, we fix the signal strength at |β�
j | = 6 for j ∈ S1 and vary the correlation r. In the

right panel, we fix the correlation at r = 0.3 and vary the signal strength. The number of the relevant features is p1 = 50 across all setting. Knockoff features are created
using the minimum variance-based reconstructability (MVR) construction.

Figure 5. Empirical FDRs and powers for logistic regressions. Left panel: the signal strength is fixed at |β�
j |=4 for j ∈ S1, and the number of the relevant features p1 (i.e.,

sparsity) varies. Right panel: p1 is fixed at 60 and the signal strength varies. Knockoff features are created using the equi-correlated construction.

5.2.2. Poisson Regression
We consider a case with sample size n= 800 and dimension
p= 1600. In Section B.2.2 of supplementarymaterials, we report
additional results for various values of p. Similar as described in
Section 5.2.1, each row of the design matrix is independently
drawn from a (|xᵀi β�| < 4)-truncated multivariate normal
distribution, with covariance matrix 	 = 0.01× 	B, where 	B
is blockwise diagonal consisting of eight identical unit-diagonal
matrices, of which all the off-diagonal entries are set to be r. We
consider the scenarios with different correlation factors r and
signal strengths (see the caption of Figure 6).MethodsDS,MDS,
and Knockoff are examined. To the best of our knowledge, there
is no available BHq procedure for high-dimensional Poisson
regression. We follow Algorithm 6 to implement DS and MDS,
and use the equi-correlated construction to create knockoff
features.

The empirical FDRs and powers of different methods are
summarized in Figure 6. All the three competing methods have
FDR under control across all settings. In terms of the power,

Knockoff achieves the highest power when the correlation
among features is small. However, the power of Knockoff
decreases rapidly when the correlation becomes larger and can
be much lower compared with MDS. Besides, we see that MDS
significantly boosts the performance of DS by simultaneously
reducing the FDR and increasing the power.

5.3. Real Data Application

Compared with traditional bulk RNA sequencing technologies,
single-cell RNA sequencing (scRNAseq) allows researchers to
examine the sequence information of each individual cell, thus,
promises to advance research in cancer genomics and metage-
nomics. In this section, we consider selecting the relevant genes
with respect to the glucocorticoid response in a human breast
cancer cell line, using the scRNAseq data in Hoffman et al.
(2020). A total of 400T47DA1–2 human breast cancer cells were
treated with 100 nM synthetic glucocorticoid dexamethasone
(Dex) at 1 hr, 2 hr, 4 hr, 8 hr, and 18 hr timestamps.An scRNASeq



1562 C. DAI ET AL.

Figure 6. Empirical FDRs and powers for Poisson regressions. Left panel: the signal strength is fixed at |β�
j |=2 for j ∈ S1 and the correlation factor r varies. Right panel: the

correlation factor is fixed at r =0.5 and the signal strength varies. The number of the relevant features is p1=50.

experimentwas performed at each timestamp, resulting in a total
of 2,000 samples of gene expressions for the treatment group.
For the control group, there are 400 vehicle-treated control cells.
An scRNAseq experiment was performed at the 18h timestamp
to obtain the corresponding profile of gene expressions. After
proper normalization, the final scRNAseq data4 contains 2400
samples, each with 32,049 gene expressions. To further reduce
the dimensionality, we first screen out the genes detected in
fewer than 10% of cells, and then pick up the top 500 most
variable genes following Hoffman et al. (2020).

We consider a logistic regression model with n = 2400 and
p = 500. Since the MLE does not exist uniquely on this data,
we cannot use the method in Sur and Candès (2019) to obtain
p-values. Instead, we apply DS outlined in Algorithm 6 using
the debiased Lasso estimator. As sample size n is larger than
dimension p, we directly estimate the precision matrix � (see
(18) and the discussion therein) by inverting the sample Hessian
matrix 	̂. We then replicate DS for 500 times and aggregate
the results using the MDS procedure outlined in Algorithm 2.
Table 1 summarizes the selected genes by MDS, BHq (Ma,
Tony Cai, and Li 2020), Knockoff, and three de-randomized
Knockoff procedures. BHq only selects 1 gene, RPL10, which is
also selected by MDS.

We run Knockoff for 500 times and report the genes whose
selection frequencies are above 0.5. The set of the selected genes
appears unstable. Specifically, the highest selection frequency is
only 0.75, and the size of the selection set ranges from 0 to 53
with a mean of 16 (see Figure B.12 in supplementary materi-
als). As shown in Table 1, there are 17 genes whose selection
frequency by Knockoff is above 0.5, among which 14 are also
selected by MDS. We also found that Knockoff does not select
any genes for approximately 20% of the 500 runs. Further, FDR
control is no longer guaranteed for the aggregated list of the
genes selected by multiple Knockoff runs.

To stabilize Knockoff, we test out three de-randomized
Knockoff procedures proposed in the following papers.

4The data is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE141834.

Table1. Genes selectedbyMDS, Knockoffandde-randomizedKnockoffprocedures
(Gimenez and Zou 2019; Nguyen et al. 2020; Ren, Wei, and Candès 2020).

Gene MDS Knockoff Nguyen et al. Gimenez and Zou Ren et al.

k = 1 k = 2 k = 3

NFKBIA � 0.75 � 0.59 � � �
HSPB1 � 0.71 � � � �
LY6E � 0.66 � 0.41 � � �
BLOC1S1 � 0.65 � 0.34 � �
IGFBP4 � 0.64 � � � �
ATF4 � 0.64 � � �
SERPINA6 � 0.63 � � �
RPL10 � 0.61 � � � �
DDIT4 � 0.60 � � �
EEF1A1 � 0.59 � � � �
SEMA3C � 0.58 � � �
EIF4EBP1 � 0.57 � � � �
FKBP5 � 0.54 � � � �
NUPR1 � 0.51 � �
DSCAM-AS1 � � � �
BCL6 � � �
HSPA1A �
KRT19 0.52 � � �
MSX2 0.51 0.40 � �
S100A11 0.50 � �
RPLP0P6 �
UHMK1 �
NOTE: For Knockoff and the method in Gimenez and Zou (2019), we report the genes with
selection frequencies above 0.5 and 0.3 among 500 independent runs, respectively. For MDS
and the methods in Nguyen et al. (2020) and Ren, Wei, and Candès (2020), we repeat the
corresponding base procedure for 50 times and aggregate the selection results. The de-
randomized Knockoff procedure in Ren, Wei, and Candès (2020) controls the k family-wise
error rate, and we report the selection results for k ∈ {1, 2, 3}.

1. Ren, Wei, and Candès (2020). The method repeats the base
procedure v-Knockoff (Janson and Su 2016) and controls
the k family-wise error rate, that is, the number of the false
discoveries, rather than the FDR. Table 1 lists the selected
genes with k ∈ {1, 2, 3}. Compared to the selection results
of MDS, the set of the selected genes with k = 2 are similar,
while the selection results with k = 1 and k = 3 are more and
less conservative, respectively.

2. Nguyen et al. (2020). Based on “intermediate p-values,” the
method summarizes the selection results of multiple Knock-
off runs using quantile aggregation (Meinshausen,Meier, and

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141834
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141834
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Table 2. The references in support of the selected genes.

Gene References

NFKBIA Auphan et al. (1995); Deroo and Archer (2001)
HSPB1 Barr and Dokas (1999); Tuckermann et al. (1999)
LY6E –
BLOC1S1 –
IGFBP4 Cheung et al. (1994); Okazaki, Riggs, and Conover (1994);

Conover, Clarkson, and Bale (1995)
ATF4 Adams (2007)
SERPINA6 GeneCards-SERPINA6, Zhou et al. (2008)
RPL10 Zorzatto et al. (2015)
DDIT4 Wang et al. (2003); Boldizsár et al. (2006); Wolff, McKay, and

Brugarolas (2014)
EEF1A1 NCBI-EEF1A1
SEMA3C Williamson, Garg, and Wells (2020)
EIF4EBP1 Watson et al. (2012)
FKBP5 AGCOH-FKBP5, Nair et al. (1997)
NUPR1 Wikigenes-NUPR1, Mukaida et al. (1994)
DSCAM-AS1 Zhao et al. (2016); Chen and Cai (2020)
BCL6 Goodman et al. (2016)
HSPA1A NCBI-Gene, Kirschke et al. (2014)
KRT19 Romanò et al. (2020)
MSX2 Jaskoll, Luo, and Snead (1998)
S100A11 –
RPLP0P6 –
UHMK1 –

NOTE: There are five genes that we do not find direct supporting evidence in the
existing literature for their interactions with the glucocorticoid receptor (GR),
which might be of interest for further investigations. The red hyperlinks point
to the documented information of the corresponding genes in some widely
referred databases including GeneCards, Strings, Wikigenes, the National Center
for Biotechnology Information (NCBI), and Atlas of Genetics and Cytogenetics in
Oncology and Harmatology (AGCOH).

Bühlmann 2009). As shown in Table 1, it selects 15 genes,
among which 14 are also selected by MDS.

3. Gimenez and Zou (2019). The method simultaneously sam-
ples two knockoff copies in the base Knockoff procedure
in order to stabilize the selection result. We independently
repeat the procedure for 500 times and report the selection
frequency of each gene. As shown in Table 1, there is only
1 gene with selection frequency above 0.5, and only four
genes with selection frequency above 0.3. The selection result
becomes more conservative when we further increase the
number of knockoff copies.

The existing literature confirms interactions between the glu-
cocorticoid receptor (GR) and amajority of the genes selected by
MDS. A summary of the references associated with the selected
genes are given in Table 2, and we highlight some of the sup-
porting evidences in Section B.3 of supplementary materials.
Curiously, we do not find any relevant literature documenting
how GR may interact with genes LY6E and BLOC1S1, which
have been consistently selected by most of the tested methods
and can be of interest for further investigations. Figure B.11 in
supplementary materials demonstrates the sharp difference in
the gene expression distributions between the treatment group
and the control group for four genes: NFKBIA, EEF1A1, FKBP5,
and RPL10, all of which are selected by MDS and having a
Knockoff selection frequency above 0.5.

6. Conclusion

We have described a general framework for feature selection
in GLMs with FDR asymptotically under control. In particular,

we detail the constructions of the mirror statistic under two
asymptotic regimes, that is, the moderate-dimensional setting
(p/n → κ ∈ (0, 1)) and the high-dimensional setting (p � n).
Compared to BHq, the proposed methodology enjoys a wider
applicability and improved robustness due to its scale-free prop-
erty. Compared to Knockoff, it does not require the knowledge
of the joint distribution of features and is less affected by the
correlations among features.

We conclude by pointing out several directions for future
work. First, it is of immediate interest to generalize the proposed
methods to handle cases where subsets of explanatory features
exhibit group structures. Second, we would like to investigate
the applicability of our FDR control framework to dependent
observations (e.g., stationary time series data). These two types
of data structures appear a lot in practice including genetic stud-
ies and financial engineering. Third, moving beyond parametric
models, we can consider the FDR control problem in semi-
parametric single-index models, in which the link function
becomes unknown.

Supplementary Materials

The supplementary materials include detailed proofs of all the main theo-
rems and some additional simulation results.
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