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Abstract. Deep learning tools are now widely used across various ar-
eas due to the increasing interest in applied machine learning. While
these tools demonstrate exceptional performance in prediction and clas-
sification tasks, they are often deployed as black-box inferencing entities
without any precise measure of uncertainty associated with their outputs.
Uncertainty quantification is essential for ensuring reliability and ro-
bustness, particularly in safety-critical applications. However, accurately
quantifying model/epistemic uncertainty in machine learning-based re-
gression and classification tasks is challenging. In this paper, we provide
an analytical approach to quantify the epistemic uncertainty related to
deep neural network models using neural stochastic differential equa-
tions. Through experiments carried out on synthetic data, we demon-
strate that our proposed framework successfully addresses the challenge
of representing uncertainty in deep neural network-based regression and
classification without the computational complexity associated with the
classic Monte Carlo dropout method.

Keywords: Uncertainty quantification · deep neural network · Neural
stochastic differential equation

1 Introduction

Deep neural networks, or DNNs, have become highly effective models for han-
dling challenging problems. They exhibit exceptional performance in areas in-
cluding speech recognition, image classification, and natural language processing.
However, despite their remarkable success, DNNs face several challenges that
limit their reliability and interoperability [1]. These challenges include their vul-
nerability to adversarial attacks, their tendency to overfit the training data, and
the lack of transparency in understanding their decision-making process. These
limitations can have significant implications, particularly in safety-critical appli-
cations such as healthcare and autonomous vehicles, where incorrect predictions
or unreliable decisions can lead to severe consequences [20]. Researchers have de-
veloped uncertainty quantification (UQ) methods for estimating and quantifying
the uncertainty associated with DNN predictions. These methods aim to go be-
yond providing point estimates and instead provide measures of uncertainty, such
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as confidence intervals or probability distributions over the predictions. Quanti-
fying uncertainty in DNNs enables better decision-making, risk assessment, and
model interpretability in real-world applications.

Despite the growing importance of uncertainty quantification for DNNs, the
field is still in its early stages [8], and several challenges need to be addressed.
One key challenge is developing scalable and efficient UQ methods that can
handle large datasets and complex models. Additionally, there is a need for UQ
methods that can provide interpretable uncertainty estimates, allowing users to
understand and trust the predictions made by DNNs [20]. Furthermore, it is
essential to integrate UQ methods seamlessly into existing DNN architectures
to ensure practical applicability.

In this paper, we propose a novel framework that can analytically quantify
the epistemic uncertainty of a neural network. Specifically, we use a surrogate
neural stochastic differential equation (Neural SDE) framework that allows the
derivation of the output mean and covariance along all neural network layers.
We present a paradigm that can capture and measure epistemic uncertainty
effectively, offering useful insights into the predictability of neural networks. This
improved understanding of uncertainty will contribute to improved decision-
making and foster trust in the application of neural networks in various domains.

The main contributions of this paper can be summarized as follows:

– We propose a generic framework that quantifies the epistemic uncertainty of
deep neural networks with the help of a neural SDE framework as a surrogate
model applicable across various tasks and domains.

– The framework allows for uncertainty propagation through all the layers of
the target neural network model, and the analytical results capturing the
uncertainty (output mean and covariance) along each neural network layer
are derived.

– It can be applied to pre-trained networks using the analytical method, which
eliminates the need for any computationally demanding uncertainty quan-
tification procedures.

– The effectiveness of the proposed framework is demonstrated using synthetic
data for classification and regression tasks and the results show up to 88.45%
reduction in UQ computational complexity relative to the state-of-the-art
Monte Carlo dropout method.

2 Background and Related work

Deep neural networks (DNNs) are a type of artificial neural network trained using
large datasets, and optimization algorithms to learn the parameters that map
input data to output predictions. However, a significant challenge in deploying
DNNs lies in dealing with uncertainty. Various methods have been proposed
to quantify uncertainty in DNNs. Existing uncertainty quantification techniques
can be divided into (1) Bayesian approaches or (2) sampling-based techniques. A
classic neural network model with input x and output y and network parameter θ
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can be written probabilistically as p(y|x, θ). The posterior distribution obtained
by applying Bayes’ theorem can be written as follows:

p(θ|x, y) = p(y|x, θ)p(θ)∫
p(y|x, θ)p(θ)dθ

(1)

Existing approaches use Bayesian inference to estimate the posterior distribu-
tion over model parameters instead of treating the model parameters as fixed [3].
However, finding the posterior distribution over all possible model parameters
can be intractable. There exists variation inference-based techniques that ap-
proximate the posterior probabilities rather than finding the exact value [6].
The process involves finding a simple distribution that is as close to the actual
distribution. Using this technique training takes longer and inference is slower as
approximating posterior probability requires several samples to be drawn from
the posterior distribution. Laplace approximation is also used in Bayesian infer-
ence, focusing on the region around the maximum of the posterior distribution.
By leveraging a Taylor-series expansion, it provides an approximation of the dis-
tribution in the vicinity of this maximum [15]. This method can only capture
the local behavior of the distribution, which implies that the approximation may
significantly differ from the true distribution in other areas. Among sampling-
based techniques, another efficient technique for approximating inference is the
Monte Carlo Markov chain (MCMC) method, which involves applying a stochas-
tic transition to a random draw from a distribution. [10]. Despite the success of
the MCMC method, the method convergences slowly. Monte Carlo dropout is
yet another technique that uses dropout as a Bayesian Approximation to calcu-
late the intractable posterior distribution [5]. Monte Carlo (MC) dropout, which
involves running inference multiple times with different dropout masks during
testing can be used to estimate the epistemic uncertainty. Although dropout is
a widely used technique, it is an empirical approach that gets computationally
expensive for larger networks. The Deep Ensembles method proposed in [11]
involves training multiple DNNs on the same dataset and combining their pre-
dictions to obtain the mean and variance of the predictions and can be used as
a metric for the uncertainty. However, the existing methods are time-consuming
and require maintaining many copies of the model parameters to quantify uncer-
tainty, which can be costly for large NNs. In [9], stochastic differential equations
(SDEs)-based techniques were employed to train the SDE model using out-of-
distribution (OOD) data for training in order to quantify total uncertainty. How-
ever, the method falls short in its ability to assess uncertainty in a rigorous and
principled manner.

In this paper, we aim to address these challenges and propose a novel ap-
proach to uncertainty quantification in neural networks (UQ-Net) using a neural
SDE framework. Our objective is to develop a method that provides a rigorous
and principled way to measure epistemic uncertainty. By leveraging the neural
SDE framework, our approach overcomes the limitations of existing methods
and offers a more efficient and scalable solution for quantifying uncertainty in
large neural networks.
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3 Proposed UQ-Net approach

This section presents a detailed outline of the problem statement along with an
introduction to the main elements of our suggested structure.

3.1 Problem Statement

Given a training dataset D = (xj , yj)
N
j=1, where xj represents the input data

and yj corresponds to the corresponding ground truth labels, we can train a
model M parameterized by θ to make predictions on new test cases. The pre-
dictive uncertainty originates from two sources as described earlier. Our goal is
to analytically quantify the epistemic uncertainty of the neural network model
with reduced computational time in comparison to the existing methods.

3.2 Uncertainty quantification with UQ-Net

Given a target neural network model that performs a regression or classification
task on a set of data, the UQ-Net works as a surrogate network and helps to
measure how uncertain the neural network model’s predictions are. As shown
in figure 1, the UQ-Net, which has an input, output, and a hidden layer, helps
in propagating the uncertainty in the corresponding layers of the target neural
network. As shown in figure 2, the UQ-Net architecture consists of input and
output linear layers of deep neural networks at both the input and output stages.
The neural SDE layer within UQ-Net corresponds to the hidden layer of the deep
neural network. Since neural SDEs preserve dimensionality, the input and output
layers of the network serve as reshaping layers before and after the hidden layer.
These reshaping layers facilitate the seamless integration of the neural SDE
layer into the overall network structure and help UQ-Net propagate the mean
and covariance analytically from input to output. Each component of UQ-Net is
further elaborated in the following sections, along with the analytical derivation
of the output mean and covariance.

3.3 Neural SDE

Traditional neural networks typically consist of multiple stacked hidden layers
that map input x to output y. However, recent research has shown that these
hidden representations can be interpreted as the states of a continuous dynamical
system rather than discrete layers [4]. For instance, in the case of a residual neural
network (a deep learning model in which each layer learns residual functions with
respect to their input) [7], the transformation between layers can be expressed
as

ht+1 = ht + f(ht, θ) (2)

Here, ht represents the hidden features at depth t, and f is a neural network
function approximation. The continuous limit of the residual neural network
structure is expressed as
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Fig. 1. Neural network with uncertainty quantification module (UQ-Net)

Fig. 2. UQ-Net

ht+1 = ht +

∫ t+1

t

f(hτ , τ, θ)dτ (3)

The equation (3) is the continuous approximation of the transformations
in residual neural network architecture and also the solution to an ordinary
differential equation (ODE) problem. The neural ordinary differential equation
(Neural ODE) method [4] parameterizes f(hτ , τ, θ) with a neural network and
leverages an ODE solver to evaluate the hidden states during the continuous
transformation. However, the deterministic nature of neural ODEs is not suitable
to model epistemic uncertainty. To address this, we employ the neural SDE
model [13], which augments a neural ODE with a stochastic term. Thus, neural
SDE incorporates a diffusion term to model randomness using the Brownian
motion component [13]. Thus equation (3) can be rewritten as follows:

dht = f(ht, t;w)dt︸ ︷︷ ︸
drift

+g(ht, t; v)dBt︸ ︷︷ ︸
diffusion

(4)

Here, g(ht, t; v)dBt represents the Brownian motion variance, which helps to
capture the epistemic uncertainty of the hidden state ht at depth t. The drift and
diffusion terms from the equation are functions that are approximated via neural
networks with w and v as the corresponding network parameters. Equation (4) is
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a general form that can be modified to incorporate existing randomness models,
such as dropout in neural networks.

Dropout using neural SDE: The dropout term randomly deactivates some neu-
rons in the neural network and can be modeled using neural SDE [14]. Math-
ematically, the dropout rate can be incorporated into equation (3) as ht+1 =
ht + f(ht, t;w) ⊙ γn

p , where γn is drawn from i.i.d Bernoulli distribution with
parameter p and ⊙ indicates the Hadamard product. Furthermore, the above
hidden state dynamic can be simplified as,

ht+1 = ht + f(ht, t;w) + f(ht, t;w)⊙ (
γn
p

− I),

= ht + f(ht, t;w) + f(ht, t;w)⊙
√

1− p

p
zn. (5)

where zn
i.i.d.∼ N (0, 1). To compare the quantified epistemic uncertainty

with the state-of-the-art Monte Carlo dropout method, we utilize equation (5),
which unifies dropouts under the neural SDE framework. Here,

√
1−p
p f(ht, t;w)

represents the diffusion term and q =
√

1−p
p controls the strength of regular-

ization. It determines the scaling factor of the diffusion term and affects the
magnitude of the injected noise or uncertainty. By adjusting the value of q, one
can balance the trade-off between regularization and the expressiveness of the
model. q can be treated similarly to the dropout probability term in the MC
dropout method [5].

3.4 UQ-Net

As discussed above, the mean and covariance are computed from the input layer
and subsequently propagated through the hidden layer, effectively carrying the
uncertainty measures to the output layer with the help of UQ-Net. The input
and output layers can be linear or nonlinear functions depending on the presence
of an activation function.

Uncertainty estimation in input/output layer: Quantification of uncertainty for
a non-linear input/output layer can be achieved by computing the statistics of
the linearized approximation of the nonlinear function [2]. Suppose that for a
nonlinear function f and a random vector x with expected value x̂ and covariance
Cxx, the expected value ŷ of the output y = f(x) can be written as a Taylor
series expansion around the mean as ŷ ≈ f(x̂)

Here ∇xf is the Jacobian of the function f at the operating point x. Theorem
1 below can be used to evaluate the expected value of the mean and covariance
of the output from the input/output layers of the neural network.

Theorem 1. Let y = f(x, θ) be the output of the neural network layer
denoted by f, with the network layer parameter θ. The estimation of expected
value (ŷ) and the associated covariance can be calculated as,
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ŷ = f(x̂, θ),

Cyy = (∇xf)Cxx(∇xf)
⊺ (6)

Here, the expected value of the input is E[x] = x̂ and its associated covariance
is Cxx and Cyy is the covariance associated with the output of the neural network
layer.

The uncertainty estimates obtained using Theorem 1 are propagated through
the input layer and are passed to the hidden layer. Theorem 1 can also be applied
to uncertainty estimation at the output layer.

Uncertainty estimation in hidden layer: Uncertainty quantification of the hid-
den layer of the neural network is achieved using Gaussian assumed density
approximation of Neural SDE [18]. By utilizing linearization techniques, we can
compute the statistics of nonlinear neural SDE. Specifically, the nonlinear neural
SDE can be linearized via Taylor series approximation. The drift term can be
approximated by linearizing around the mean m and at depth t as follows:

f(h, t) ≈ f(m, t) + Fh(h, t)(h − m) (7)

And the diffusion term can be linearized as:

g(h, t) ≈ g(m, t) + Gh(h, t)(h − m) (8)

Here Fh and Gh are the Jacobian of f and g with respect to the hidden state
h and the statistics of the hidden state can be calculated using Theorem 2.

Theorem 2. Consider a neural SDE as shown in equation (4), a linearization-
based approximation to neural SDE can be obtained by integrating the equation,

dm
dt

= f(m, t) (9)

dC
dt

= CF⊺
h(m, t) + Fh(m, t)C + Gh(m, t)QG⊺

h(m, t) (10)

where m and C are the mean and covariance of the states of the neural SDE
at depth t and Q is the diffusion matrix.

Equations (9) and (10) enable the analytical determination of the mean and
covariance of the hidden layer output in the neural network. It is to be noted
that the diffusion term, denoted as g, is proportional to the function f in our
particular context and is defined as g =

√
1−p
p f(ht, t;w). Thus, the uncertainty

quantification of a deep neural network can be achieved analytically using UQ-
Net.
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4 Experimental Results

In this section, we conduct a comprehensive evaluation of our proposed uncer-
tainty quantification method through experiments on two synthetic datasets and
two real-world datasets: two designed for regression tasks and the other two for
classification tasks. Detailed descriptions of these datasets are provided below:

Synthetic Regression dataset: This dataset is generated synthetically and
is intended for regression tasks. It comprises of a single feature x and consists of
randomly generated homoscedastic data.

Half Moon dataset: This synthetic dataset consists of two features and is
specifically designed for performing classification tasks. Each data point in the
dataset can be classified into one of two distinct classes.

Housing dataset: The dataset is drawn from the 1990 U.S. Census reflecting
real-world data. It consists 8 distinct features and is utilized to forecast the
median house value within California districts [16]

Ionoshpehere dataset: This real-world dataset consists of 34 feature which
classifies radar returns from the ionosphere into three different categories [19].

By utilizing these datasets, we aim to assess the performance and effectiveness
of our proposed uncertainty quantification method. To assess the effectiveness
of our proposed uncertainty quantification method, we compare its performance
against the widely adopted Monte Carlo dropout technique. All training and
evaluation experiments are performed on a computer with an Intel i7 processor
running at 2.80 GHz with 12GB memory and 12GB RAM. The learning rate set
was 0.001 and the Adam optimizer was used.

Regression task The regression task is performed on the single feature syn-
thetic regression dataset. The uncertainty estimates obtained using UQ-Net is
compared with the MC dropout method using the expected normalized calibra-
tion error (ENCE) metric [12]. The ENCE metric serves as an indicator of the
reliability of the confidence scores provided by the methods. The ENCE metric
is utilized to calibrate the regressor by aligning the mean square error (MSE),
representing the expected error, with the predicted uncertainty, denoted by the
standard deviation σ. To assess the calibration of the regressor, the standard
deviation axis is divided into bins, and the ENCE metric is calculated using the
following formula:

ENCE =
1

N

N∑
j=1

|RMV(j)− RMSE(j)|
RMV(j)

(11)

Here, Bj is a bin that represents the standard deviation axis interval, root
mean variance(RMV) and root mean square error (RMSE) are obtained using
the following equations:

RMV(j) =
1

|Bj |
∑
t∈Bj

σ2
t (12)
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RMSE(j) =
1

|Bj |
∑
t∈Bj

(yt − ŷt)
2 (13)

A lower ENCE value indicates a better-calibrated model. To assess the per-
formance of UQ-Net, we calculate the ENCE score for various values of p, and
the results are shown in Table 1. Similar experiments are conducted for the MC
Dropout method, and the corresponding results are also presented in Table 1.
From the table, it becomes evident that by adjusting the values of p, both meth-
ods effectively quantify the epistemic uncertainty and exhibit a similar trend.
However, the advantage of UQ-Net lies in its analytical nature, resulting in sig-
nificantly reduced computational time required to obtain uncertainty estimates
compared to the empirical MC Dropout approach. The computational time re-
quired for both methods is summarized in Table 3.

For achieving optimal performance, the commonly chosen dropout value for
hidden layers using MC Dropout is 0.5. However, the optimal dropout value may
vary depending on various factors such as data size, model architecture, etc. [17].
Similarly, in the case of UQ-Net, there can be an optimal value of q that can
be chosen to yield a lower ENCE score, making the choice of hyperparameters
crucial for obtaining reliable uncertainty quantification results. We further asses
the performance of our framework using real-world data from the California
housing dataset. The results are detailed in Table 2.The trend observed in Table 1
for regression tasks is similarly evident in the evaluation using real-world datasets
shown in Table 2. The computational time needed for assessing both UQ-Net
and MC dropout is illustrated in Table 4.

Table 1. ENCE scores obtained using two methods for regression and classification
task for synthetic dataset

p Regression Classification
UQ-Net MC dropout UQ-Net MC dropout

0.1 0.760 0.804 0.779 2.685
0.2 0.758 1.608 0.632 1.981
0.3 0.767 0.656 0.693 0.977
0.4 0.747 2.423 0.916 0.992
0.5 0.77 0.300 0.990 0.426
0.6 0.718 0.401 0.607 0.439
0.7 0.246 0.184 0.692 0.638
0.8 0.150 0.492 0.755 0.338
0.9 0.607 0.516 1.343 0.476

Classification task In the classification task, we utilize the half-moon dataset
with two features. Just like in the regression experiments, we compare the un-
certainty estimates obtained using UQ-Net with those from the MC Dropout
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Table 2. ENCE scores obtained using two methods for regression and classification
task for real-world dataset

p Regression Classification
UQ-Net MC dropout UQ-Net MC dropout

0.1 0.43 6.14 0.48 12.08
0.2 0.60 4.35 0.72 9.64
0.3 0.57 3.60 0.51 6.75
0.4 0.59 3.02 0.59 4.70
0.5 0.62 2.65 0.50 4.14
0.6 0.63 2.09 0.64 6.21
0.7 0.67 1.72 0.93 3.82
0.8 0.65 1.13 0.38 1.81
0.9 0.61 0.76 1.50 1.29

Table 3. Computation time in seconds required for regression and classification task
for synthetic dataset

Regression Classification
UQ-Net MC dropout UQ-Net MC dropout
0.83 sec 4.88 sec 0.41 sec 6.47 sec

Table 4. Computation time in seconds required for regression and classification task
for real-world dataset

Regression Classification
UQ-Net MC dropout UQ-Net MC dropout
8.79 sec 79.07 sec 0.37 sec 3.46 sec
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method. While the ENCE score is used for evaluating uncertainty in regression
tasks, it cannot be applied directly to classification tasks, as the RMSE loss is not
relevant for classification. However, classifiers can predict continuous scores that
are often transformed into class labels through a thresholding process during
the final step of classification. To evaluate uncertainty estimates in our specific
framework, we utilize the continuous output prior to this final step. Thus, the
ENCE score is suitable for our specific case in evaluating uncertainty estimates
for classification tasks.

Similar to the regression task, ENCE scores are calculated for various values
of p for both UQ-Net and MC Dropout, and the results are depicted in Table
1. As previously discussed, an optimal value of p can be selected based on a
lower ENCE score. Similarly, an optimal value of q can also be chosen. The
computational time required for both methods is presented in Table 3 and similar
to the case of regression task there is up to 94% reduction in computation time
compared to MC dropout method.

We also evaluate our framework’s performance for classification using real-
world data from the ionosphere dataset. The results are presented in Table 2. The
trend observed in Table 1 for classification tasks is also evident in the evaluation
using real-world datasets, as shown in Table 2. The computational time required
for assessing both UQ-Net and MC dropout is provided in Table 4.

5 Conclusions

Uncertainty quantification plays a critical role in safety-critical applications in-
volving deep neural networks. This paper presents a theoretical approach to un-
certainty quantification in neural networks using a neural stochastic differential
equation framework. The proposed framework allows for the analytical quantifi-
cation of epistemic uncertainty in DNNs for various tasks like classification and
regression. The results were compared with the state of art MC dropout uncer-
tainty quantification technique. The results obtained highlight the effectiveness
of UQ-Net in accurately quantifying uncertainty while offering the advantage
of reduced computational time compared to MC Dropout. This further demon-
strates the practicality and efficiency of our proposed analytical approach in
uncertainty quantification tasks. Future work includes exploring the use of para-
metric dynamic models instead of neural SDEs for uncertainty quantification,
which can potentially improve the interpretability and scalability of the methods.
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