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Abstract.  

The sustainability of farming methods relies on the quality of soil health. Rich soil supplies vital 
nutrients to plants. Long-term and extensive monitoring of soil is crucial for obtaining important 
information regarding moisture and nutrient dynamics. Comprehending the dynamics of soil 
moisture and nutrients is particularly important to predict and improve agricultural productivity. 
Nevertheless, access to data related to soil health is frequently impeded by the absence of 
complete information from agricultural fields. Multiple factors, including number of available 
sensors, challenges in data collection, communication network disruptions, and maintenance 
problems contribute to the quality and quantity of data gathered. With only a few spatial locations 
sampled for measuring soil characteristics, data from agricultural fields tend to be spatially sparse. 
One of the critical challenges in precision agriculture is to determine how to exploit this spatially 
sparse data to obtain soil health awareness of the entire field and use that information for effective 
management.  This work addresses this challenging problem via an innovative machine learning 
framework. Semi-supervised learning approaches like Active Learning (AL) are very beneficial for 
predicting measurements across the entire field by using spatially sparse data. This work 
proposes an AL-based methodology for prediction of soil information across the entire farm based 
on sparsely collected field measurements. The field measurement prediction problem is 
represented in the form of a graph. The learning process is then executed by using a combination 
of AL and state-of-the-art Graph Neural Network (GNN) techniques. A major advantage of the 
proposed methodology is that the information across both space and time domains are 
simultaneously captured within the learning scheme. The proposed framework also supports 
systematic propagation of uncertainty through the machine learning algorithm to finally obtain the 
uncertainty in model predictions, which is then leveraged as an AL heuristic. The proposed ML 
framework is applied to spatially sparse soil moisture and temperature data. Results demonstrate 
that even with a limited fraction of sensors and strategically selected measurement locations, it is 
possible to predict soil moisture/temperature over a large spatial area with over 90% accuracy.   
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Introduction 

In modern agricultural practices, there is an environmental obligation to ensure efficient usage of 
water. Frequent monitoring of soil moisture and temperature can help farmers to optimize 
irrigation, reduce water usage and ensure that the plants receive the exact amount of water 
required (Gałęzewski et al., 2021). Accurately monitoring soil moisture and temperature can also 
be a valuable tool to detect changes in the soil environment that may indicate the presence of 
plant disease (Montgomery et al., 2024). Thus, frequent monitoring of soil moisture is critical for 
many applications and efficient agriculture management. Soil dynamics vary across both space 
and time, necessitating regular measurements for various applications. For instance, in regional 
planning, it is essential to have soil moisture data at different spatial and temporal scales, which 
require measurements at various depths and time intervals (Joshi & Mohanty, 2010). To 
effectively represent these variations, data can be well-represented in the form of a spatio-
temporal graph, aiding in the quantitative monitoring of soil health. 

Over the past decade, the use of machine learning (ML) algorithms such as deep learning 
(Saleem et al., 2021), support vector machines (Pereira et al., 2022), random forests (Basha et 
al., 2020) and so on has significantly increased in soil health research. This increase is attributed 
to their non-parametric nature and their ability to capture complex, non-linear relationships 
(Padarian et al., 2020). Recently, advanced ML methodologies like graph neural networks (Q. 
Zhang et al., 2022) and recurrent neural networks (Mythili & Al, 2021) have also been explored in 
order to efficiently capture spatial and temporal variations among the soil measurements, 
respectively. Despite the importance of soil health data, its availability from agricultural lands is 
often hindered by several factors, including the number of sensors and their reliability, challenges 
with data collection, maintenance issues, and inadequate network connectivity. Moreover, 
deploying large number of sensors in the field can be prohibitively expensive, resulting in spatially 
sparse data  from the field (Sishodia et al., 2020). 

Missing data creates substantial issues for ML-based analysis. Omitting missing data can lead to 
biased or incorrect conclusions, complicating the identification of temporal or spatial patterns (Y. 
Zhang & Thorburn, 2021). Therefore, developing effective approaches to handle incomplete data 
is crucial when designing machine learning-based decision support models. Given the constraints 
of sparse measurements, we propose a novel uncertainty-guided framework to strategically 
choose sensor locations to take measurements from rather than relying on random placement. 
This can be achieved using semi-supervised approaches, such as active learning, which enable 
the use of a limited number of in situ sensors while maintaining high-quality predictive modeling 
of soil health (Chen & Wang, 2023). 

Related Work 

Spatio-temporal graphs incorporate both spatial and temporal dimensions into their structure. 
They represent connections or relationships between entities not only in space but also over time 
and are useful in modeling complex systems such as transportation systems (Lablack & Shen, 
2023), climate patterns (Laurini, 2019) and precision agriculture (San Emeterio de la Parte et al., 
2023).  Owing to their applications in a wide variety of complex systems, learning in spatio-
temporal graphs has attracted significant research attention recently. Among these studies, there 
is a proposal to explicitly model the structure information into the convolutional operation and 
combine it with pseudo three-dimensional networks to capture temporal dependencies in the 
traffic data . Another work proposes to learn temporal features using an attention-based Long 
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Short-Term Memory (LSTM) network and the spatial features using Multi-Task Learning (MTL) 
output layers . Deep Spatio-Temporal Graph Convolutional Network (DSTGCN) exploits a 
combination of graph convolution operations and standard convolutions to capture the dynamic 
variations in both spatial and temporal perspective (Yu et al., 2021).  

LSTM unit and convolutional neural network are used to encode the spatial features of the target 
points, which are then fed to temporal attention mechanism to complete the decoding process 
and predict grain temperature (Duan et al., 2021). A graph-based Recurrent Neural Network 
(RNN) is proposed that incorporates both geographical and temporal knowledge in the model for 
crop yield prediction (Fan et al., 2022). More recently, Dynamic Traffic Correlation-based Spatio-
Temporal Graph Convolutional Network (DTC-STGCN) is proposed to extract a dynamic 
adjacency matrix from different traffic characters to describe dynamic spatio-temporal 
correlations. Further, an attention and dynamic adjacency matrix-based GCNs framework is used 
to capture dynamic spatial features, while a LSTM is used to capture urban traffic temporal 
features, respectively (Xu et al., 2023). A multi-output and spatiotemporal model combining GCN 
and transformer is used to capture spatial correlations and temporal dependencies of the sensor 
network in a granary (Qu et al., 2023). Hierarchical Spatio-temporal Graph Neural Network 
(HiSTGNN) incorporates an adaptive graph learning module that constructs a self-learning 
hierarchical graph and leverages convolution and gated temporal convolution with a dilated 
inception as the backbone to capture hidden spatial dependencies and diverse long-term 
meteorological trends (Ma et al., 2023). 

Most of the approaches proposed for learning in spatio-temporal graphs require huge amounts of 
training data, which might be difficult to obtain in practical scenarios like precision agriculture. 
Despite the advances in sensor technology, several challenges remain in collecting consistent 
and comprehensive soil data from the agricultural fields. Sensor reliability, data transmission 
issues, maintenance, and field operations often lead to sparse and uneven data distribution. The 
high cost and logistical challenges of widespread sensor deployment further worsen these issues 
(Lloret et al., 2021). Developing machine learning-based predictive frameworks to model the 
dynamics of these sparse soil measurements is challenging. Sparse measurements can introduce 
bias and are not always representative of the space that is being learned (Santana et al., 2022). 
There are existing works that capture spatial and temporal dynamics in sparse data setups by 
imputing the data at missing locations (Tharzeen et al., 2023). However, these methods may bias 
the results as the missingness itself might be informative (Van Ness et al., 2023). Semi-
supervised learning methods such as Active Learning (AL), have addressed the sparsity in data 
in a machine learning setting. AL can significantly reduce the need for extensive labeled data by 
strategically selecting the most informative samples for labeling, resulting in higher prediction 
accuracy with limited data (Agarwal et al., 2021), (Agarwal & Natarajan, 2022). The integration of 
AL with Graph Neural Networks (GNNs) has emerged as a potent approach for spatial and 
temporal data prediction.   

The application of AL and GNNs in environmental and agricultural data prediction has been 
explored in recent studies. (Y. Wu et al., 2019) demonstrated the efficacy of GNNs in handling 
spatial dependencies in various applications. Similarly, (Z. Wu et al., 2021) have illustrated the 
advantages of semi-supervised learning on graph structures, facilitating effective learning from 
sparsely labeled data. Though GNNs excel in capturing complex dependencies and relationships 
in data structured as graphs, they fail to capture temporal dependencies. This work, for the first 
time, presents a novel uncertainty-guided AL framework for applications involving spatio-temporal 
processes and graphs. 

Contributions 

This work addresses the problem of active learning in spatio-temporal graphs. For the first time, 
we propose a novel uncertainty-guided learning scheme involving a combination of Dilated Causal 
Convolutional Neural Network (DC-CNN) and Graph Neural Network (GNN). We systematically 
propagate the uncertainties associated with graph node features (representing  the noise in 
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sensor measurements) through all the layers of DC-CNN and GNN. This helps us estimate the 
uncertainty associated with the model predictions, which is then leveraged to guide the 
informative sample selection via querying in the context of AL. We evaluate the effectiveness of 
the proposed methodology by conducting experiments over a field-scale sensor network data set 
for monitoring and modeling the spatial and temporal variation of soil moisture and temperature 
in a dryland agricultural field. The experimental evaluation reveals that it is possible to predict soil 
moisture/temperature over a large spatial area with over 90% accuracy even with a limited fraction 
of sensors and strategically selected measurement locations. The proposed methodology is 
generic and can be applied to the problem of monitoring of any soil parameter (such as nitrogen, 
phosphorus, potassium etc.) within any spatio-temporal graph setup, irrespective of the learning 
scheme and model architecture. Such an approach of utilizing uncertainty information to support 
AL in spatio-temporal graphs has not been reported in the literature so far and is a novel 
contribution of this work.  

The remainder of this article is organized as follows: background on spatio-temporal graphs, DC-
CNN, GNN and AL is provided in Section 2. We discuss the specific problem formulation targeted 
in this work and the proposed approach to implement uncertainty-guided AL on spatio-temporal 
graphs in Section 3. Experimental evaluation is outlined in Section 4 and the article ends with 
concluding remarks in Section 5.   

Preliminaries 

Spatio-Temporal Graphs 

Spatiotemporal graphs represent data that is indexed in both spatial and temporal dimensions. 
These types of graphs are useful for modeling complex systems with features and relationships 
that change over space and time, such as transportation networks, soil parameter dynamics in 
agriculture, climate patterns, and biological processes (Del Mondo et al., 2021). In the context of 
spatiotemporal graphs, nodes/vertices represent spatial entities such as traffic intersections or 
location of field sensors. Edges/links represent the relationships between the nodes, such as 
roads between the intersection, communication links between sensing units or parametric 
dependencies across soil sensor locations. As a result, the spatial aspect of the spatiotemporal 
graph captures the geographical or logical locations of the nodes, as well as the spatial 
relationships represented by distance metrics, adjacency matrices, or spatial clustering 
techniques. On the other hand, temporal aspect captures the dynamic nature of the graph, such 
as the change in features or attributes over time and the appearance or disappearance of nodes 
or edges, thereby helping to model the evolution of the system it represents.  Advances in 
machine learning have led to the development of novel models such as Graph Attention Networks 
(GAT) (Wang et al., 2022), a combination of Graph Neural Networks (GNNs) and Recurrent 
Neural Networks (Jain et al., 2016), and Temporal Convolution Neural Networks (Zhao et al., 
2020) which can effectively learn from spatiotemporal data. Leveraging recent technological 
advancements, spatiotemporal graphs offer a powerful framework for modeling and analyzing 
complex systems where spatial and temporal dimensions interplay. 

Dilated Causal Convolutional Neural Networks 

Dilated Causal Convolutional Neural Networks (DC-CNN) provide an efficient mechanism for 
capturing temporal information in sequential data and for temporal prediction tasks (Tully et al., 
2023). The major component of the dilated causal convolution is the convolutional neural network. 
In the context of sequential data, a 1D convolutional layer is applied to the data. Causal 
convolution ensures that the output at time step 𝑡 only depends on inputs from time steps 𝑡 and 
earlier. This is crucial for sequence prediction tasks where future data points should not be used 
to predict past or present values. In a causal convolution, the convolution operation is modified 
so that each filter only accesses past and present input values. Traditional convolutional layers 
have a limited receptive field, meaning they can only consider a small window of the input at a 
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time. Dilated convolution introduces a spacing (dilation) between the filter elements, allowing the 
network to have a larger receptive field without increasing the number of parameters or 
computational cost excessively (Oord et al., 2016). The dilation factor decides the number of input 
elements to skip which is decided by the spacing between the filter elements. For instance, with 
a dilation factor of 2, the filter skips every other input element. 

Compared to other frameworks used for capturing temporal relationships, such as RNN, DC-CNN 
maintain a manageable number of parameters while being able to look back at a larger context 
in the input sequence (Chang et al., 2017). The hierarchical nature of the dilation factor allows 
the network to capture both short-term and long-term dependencies. Lower layers with smaller 
dilation factor capture finer details, while higher layers with larger dilation rates capture broader 
patterns (Oord et al., 2016). 

Graph Neural Networks 

The field of graph neural networks (GNNs) has experienced remarkable and swift advancements 
in recent years. GNNs are a class of deep learning models designed to perform inferencing on 
graph structured data (Scarselli et al., 2009). GNNs can capture complex relations and 
interactions in various domains such as sensor networks, transportation systems, social networks 
and so on (Gupta et al., 2021). Unlike traditional neural networks that operate on regular grids 
like images or sequences, GNNs are tailored to capture the underlying structure and properties 
of graph-based data, which consists of nodes representing entities or objects and edges 
representing relationships or interactions between these nodes (Zhou et al., 2020). The nodes 
representing entities are called node embeddings of a graph. These vectors capture the structural 
information and properties of the nodes, making them suitable for various downstream tasks like 
node classification, link prediction, and clustering. 

GNNs operate by passing messages between nodes, where each node updates its representation 
by aggregating messages from its neighbors and combining them with its current state. Various 
GNN variants exist based on different aggregation and combination operations (S. Zhang et al., 
2019), (Veličković et al., 2018). In this work, we use GraphSAGE, an inductive framework that 
can generalize to unseen nodes and subgraphs, unlike transductive models that require re-
training when new nodes are added (Hamilton et al., 2017). GraphSAGE enhances scalability 
and adaptability to dynamic graphs by sampling a fixed-size set of neighbors for each node and 
aggregating their features to form the updated representation for the node of interest. This 
approach significantly reduces the computational complexity associated with large graphs. The 

equation used to update node features of a node 𝑢 at 𝑖𝑡ℎ node embedding layer is as follows. 

ℎ𝑢
(𝑖)

= 𝑓(𝑖) (ℎ𝑢
(𝑖−1)

, ℎ𝑁(𝑢)
(𝑖−1)

) 

                                     = 𝑔 (𝜃𝐶
(𝑖)

 ℎ𝑢
(𝑖−1)

, 𝜃𝐴
(𝑖)

𝐴̃ (ℎ𝑁(𝑢)
(𝑖−1)

))  

Active Learning 

AL is a semi-supervised machine learning approach that selectively queries the most informative 
data points for labeling, aiming to build accurate models with fewer labeled instances (Agarwal & 
Natarajan, 2022). It allows the learning algorithm to leverage information from external sources 
(e.g., human experts) and train an efficient decision model using much fewer labeled instances 
as compared to traditional supervised ML methodologies. This approach is particularly useful in 
situations where labeling is expensive or time-consuming, such as in natural language 
processing, computer vision, medical imaging, and speech recognition. The learning algorithm in 
AL settings is referred to as Active Learner and the external information source is termed as the 
Oracle. The Active Learner is permitted to select the data it wants to learn from. Thus, it poses 
queries to the Oracle in the form of unlabeled data instances, and the Oracle is expected to supply 
corresponding labels. By employing various query strategies such as uncertainty sampling, query 
by committee and sampling diversity, AL helps in selecting the candidate query instance that is 
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the most informative, enhancing model performance while operating under a labeling budget 
(Agarwal et al., 2021).  In this work, we employ an AL strategy combined with Graph Neural 
Networks (GNN) and Dilated Convolutional Neural Networks (DC-CNN) to predict soil health in 
agricultural fields. 

Methodology 

This work presents a novel framework to perform Active Learning on spatio-temporal graphs. The 
proposed architecture involves two modules: (i) Dilated Causal Convolutional Neural Network for 
learning in the temporal domain, and (ii) Graph Neural Network for the spatial counterpart. The 
proposed framework supports systematic propagation of uncertainty in node features through the 
DC-CNN and GNN layers using Assumed Density Filtering (ADF), followed by moment matching. 
This allows us to derive the uncertainty associated with model predictions, which is further 
leveraged to select the most informative nodes for AL in spatio-temporal graphs.  

Problem Formulation 

We consider a spatio-temporal graph 𝐺  =  (𝐴,  𝐸,  𝑋𝑡), where 𝐴  ∈  𝑅𝑁×𝑁 denotes the spatial 
adjacency matrix; 𝑁  denotes the number of nodes and the element 𝑎𝑖,𝑗  ∈  𝐴 is 1 if the nodes 𝑖  

and 𝑗  are connected via an edge. 𝐸  represents the spatial relationship between the nodes, and 

𝑋𝑡   ∈  𝑅𝑁×𝐷 is the set of 𝐷  dimensional dynamic features corresponding to each node at time 𝑡 .  
The uncertainty in node features is assumed to be Gaussian with zero mean and known variance. 
For a node 𝑢 in 𝐺 , the uncertainty in the feature vector can be represented as ℎ𝑢 ∼ 𝒩(ℎ𝑢

∗ ,  Σ) 

where ℎ and ℎ∗ are the measured and true values of the feature vector, respectively, and Σ is a 
diagonal matrix comprising of known variances of noise in individual features. It is also assumed 
that the noise in features of different nodes is uncorrelated. 

The uncertainties in ML frameworks can be either aleatoric or epistemic. The intrinsic randomness 
of data caused due to noisy or faulty measurements is referred to as aleatoric uncertainty. In a 
graph-structed data, it can be captured via uncertainty associated with node features and 
probabilistic links (Munikoti et al., 2023). The uncertainty in node features takes acre of the 
measurement noise and probabilistic links handle the imprecise information about underlying 
graph structure. The inability of a model to comprehend the underlying process leads to epistemic 
uncertainty. In a graph-structed data, it can be captured via uncertainty in parameters of GNN 
and the associated activation functions. In this work, we consider the propagation of aleatoric 
uncertainty through the layers of DC-CNN and GNN, and propagation of epistemic uncertainty 
shall be considered as a part of the future work. The proposed methodology shall be evaluated 
over a field-scale sensor network data set for monitoring and modeling the spatial and temporal 
variation of soil health in a dryland agricultural field (Gasch et al., 2017). Therefore, in the context 
of measurements obtained from agricultural fields, every node in 𝐺 corresponds to a location with 
two sensors, soil temperature and volumetric water content, each with a hourly time-series 
measurement for 1000 time instances. The node features comprise of the truncated Singular 
Value Decomposition (SVD) of the weighted adjacency matrix (Lingam et al., 2021). This helps 
to improve the learning scheme by incorporating higher order neighbor embeddings, while 
keeping self-embedding separate from the neighbor embeddings in aggregation function of GNN 
(Lingam et al., 2021). 

In this work, we systematically quantify the uncertainties through different layers of DC-CNN and 
GNN in order to finally obtain the uncertainty in model predictions because of noise in the node 
features. Incorporating prior information about the data, such as sensor or measurement noise, 
allows for more reliable predictions by quantifying uncertainties in data through confidence 
intervals around the predictions. For instance, it is critical to account for measurement noise in 
the readings obtained from various sensors like temperature and soil moisture sensors installed 
in agricultural fields. If these uncertainties are overlooked and the features are assumed to be 
deterministic, it can lead to unreliable predictions.  
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It is well known that the widespread installation of sensors can be excessively costly and can 
place a substantial burden on communication networks. This work, for the first time, presents an 
uncertainty guided AL framework for predicting measurements across the entire field by using 
sparsely available data. The uncertainty associated with the model prediction of individual nodes 
is used as the heuristic for iterative selection of nodes in the context of AL. This allows to learn a 
robust decision model by utilizing significantly lesser number of labeled nodes for training, as 
compared to conventional supervised learning approaches. Such a framework is highly beneficial 
for developing predictive engines using information from the agricultural fields, as the data is 
frequently impeded by absence of information owing to multiple factors like sensor dependability, 
data collection, communication disruptions, maintenance problems, and field operations. 

Proposed Framework 

This work proposes a novel uncertainty-guided framework to implement AL on spatio-temporal 
graphs. The learning scheme utilized in the proposed methodology involves a combination of DC-
CNN and GNN. While DC-CNN addresses the temporal relations associated with individual 
nodes, GNN captures the spatial dependencies between different nodes of the given spatio-
temporal graph 𝐺. The proposed framework is illustrated in Figure 1. A small fraction of nodes (~ 

10%) from 𝐺 is chosen for initial training of the decision model. During this process, we 
systematically propagate the uncertainties associated with node features (assumed as sensor or 
measurement noise) through different layers of DC-CNN and GNN in order to finally obtain the 
uncertainty in model predictions. This is achieved by making use of ADF, followed by moment 
matching. We consider propagation and matching the means and variances of the output 
probability density functions (PDFs) of all DC-CNN and GNN layers. The uncertainty in model 
predictions is then leveraged to iteratively select the most informative nodes in the context of AL. 
This process is repeated until the query budget is exhausted. 

 

 

Fig 1. Proposed framework for uncertainty-guided AL on spatio-temporal graphs. 

The following result formalizes the propagation of uncertainty across DC-CNN and GNN layers. 

Theorem 1: The expected value (𝜇𝑢,𝑡) and variance (𝑣𝑢,𝑡) of node embedding for node 𝑢 at time 

𝑡, accounting for aleatoric uncertainty with mean aggregation and linear activation functions are: 

μ𝑢,𝑡
(𝑖)

= θ𝐶,𝑡
(𝑖)

μ𝑢,𝑡
(𝑖−1)

+ θ𝐴,𝑡
(𝑖) 𝑛

𝑘|𝑁(𝑢)|𝐷(𝑢)
∑ 𝑝𝑢ν,𝑡𝜇v,𝑡

(𝑖−1)(𝑡 − ηs)

𝑘−1

𝑠=0
ν∈𝑁(𝑢)

(1) 

𝑣𝑢,𝑡
(𝑖)

= 𝜃𝐶,𝑡
(𝑖)2

𝑣𝑢,𝑡
(𝑖−1)

+ 𝜃𝐴,𝑡
(𝑖)2 𝑛

𝑘|𝑁(𝑢)|𝐷(𝑢)
∑ 𝑝𝑢𝑣,𝑡

2 𝑣𝑣,𝑡
(𝑖−1)(𝑡 − 𝜂𝑠)

𝑘−1

𝑠=0
𝜈∈𝑁(𝑢)

(2) 
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where, (𝑖) corresponds to quantities of 𝑖𝑡ℎ layer, 𝜃𝐶 denotes the combination parameters, 𝜃𝐴 
denotes the aggregation parameters, 𝑁(𝑢) is the neighborhood of the node  𝑢, 𝐷(𝑢) is the degree 
of node 𝑢 and 𝜂 is the dilation factor. 𝑝𝑢v,𝑡 represents the probability of the link between nodes 𝑢 

and 𝑣 at time 𝑡. 

Proof: 

For a node 𝑢, let the noisy feature vector be: ℎ𝑢 ∼ 𝒩(ℎ𝑢
∗ ,  Σ). The aggregation and the combination 

operations at the 𝑖𝑡ℎ node embedding layer is written as: 

ℎ𝑢
(𝑖)

= 𝑓 (ℎ𝑢
(𝑖−1)

, ℎ𝑁(𝑢)
(𝑖−1)

) 

= 𝑔 (𝜃𝐶
(𝑖)

 ℎ𝑢
(𝑖−1)

, 𝜃𝐴
(𝑖)

𝐴̃ (ℎ𝑁(𝑢)
(𝑖−1)

)) (3) 

 

where, 𝑔[∙] is the activation function and 𝐴̃ is the aggregation operator. At time 𝑡, for node 𝑢, the 
temporal representation learned by the causal convolution can be written as: 

ℎ𝑢,𝑡
(𝑖)

  = ℎ𝑢
(𝑖−1)

∗ 𝑘(𝑖)(𝑡) 

= ∑ 𝑘(𝑖)(𝑠) ⊙ ℎ𝑢
(𝑖−1)

(𝑡 − 𝜂𝑠)

𝑘−1

𝑠=0

(4) 

  

where 𝑘 is the kernel and ⊙ is the Hadamard product. 

Using ADF, the joint density of all embeddings for a node 𝑢, i.e., 𝑝(ℎ𝑢,(𝑡−𝑛𝑠):𝑡
(𝑜:𝑙)

) can be approximated 

(Gast & Roth, 2018), (Munikoti et al., 2023). This can be done by minimizing KL divergence and 
moment matching (first two moments) (Munikoti et al., 2023): 

μ𝑢,𝑡
(𝑖)

= 𝔼𝑞 (ℎ𝑢,𝑡
(𝑖−1)

) [𝑓(𝑖) (ℎ𝑢,𝑡
(𝑖−1)

, ℎ𝑁(𝑢)
(𝑖−1)(𝑡 − 𝑛𝑠))] (5) 

ν𝑢,𝑡
(𝑖)

= 𝜈𝑎𝑟𝑞 (ℎ𝑢,𝑡
(𝑖−1)

) [𝑓(𝑖) (ℎ𝑢,𝑡
(𝑖−1)

, ℎ𝑁(𝑢)
(𝑖−1)(𝑡 − 𝑛𝑠))] (6) 

where, 𝔼 is the expectation operator and 𝜐𝑎𝑟 is the variance operator. 

The following assumptions were made: 𝐴̃  is a mean operator and 𝑔[∙] is linear activation. As a 
result of these assumption, (i) the variance of mean is normalized form of mean of variances; and 
(ii) the mean of expectations is same as expectation of means.  

By substituting equation (3) and (4) in equation (5) and (6) the mean and variance can be obtained 
as: 

𝜇𝑢,𝑡
(𝑖)

= 𝜃𝐶,𝑡
(𝑖)

𝜇𝑢,𝑡
(𝑖−1)

+ 𝜃𝐴,𝑡
(𝑖) 𝑛

𝑘|𝑁(𝑢)|𝐷(𝑢)
∑ 𝑝𝑢𝜈,𝑡𝜇v,𝑡

(𝑖−1)(𝑡 − 𝜂𝑠)

𝑘−1

𝑠=0
𝜈∈𝑁(𝑢)

 

𝑣𝑢,𝑡
(𝑖)

= 𝜃𝐶,𝑡
(𝑖)2

𝑣𝑢,𝑡
(𝑖−1)

+ 𝜃𝐴,𝑡
(𝑖)2 𝑛

𝑘|𝑁(𝑢)|𝐷(𝑢)
∑ 𝑝𝑢𝑣,𝑡

2 𝑣𝑣,𝑡
(𝑖−1)(𝑡 − 𝜂𝑠)

𝑘−1

𝑠=0
𝜈∈𝑁(𝑢)

 

This proves Theorem 1. 
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Experimental Evaluation 

We evaluate the proposed methodology over a field-scale sensor network data set for monitoring 
and modeling the spatial and temporal variation of soil health in a dryland agricultural field (Gasch 
et al., 2017). We consider hourly measurements of volumetric water content and soil temperature 
collected at 42 monitoring locations and 5 depths (30, 60, 90, 120, and 150 cm) across Cook 
Agronomy Farm (Gasch et al., 2017). A window of 1000 measurements is chosen for each 
measurement location at every depth. The next step is to create a connected graph 𝐺 with 210 
nodes (i.e., 42 locations at 5 depth). The Euclidean distances 𝑑𝑖𝑗 between all node pairs 𝑖 and 𝑗 

were calculated, and an edge was considered between the ones where 𝑑𝑖𝑗 was found to be less 

than a pre-defined threshold distance 𝑑𝑇. The selection criteria for 𝑑𝑇 was to ensure that the 
resulting graph is connected. Therefore, every node in 𝐺 corresponds to a location with two 
sensors, soil temperature and volumetric water content, each with a hourly time-series 
measurement for 1000 time instances.  

The node features comprise of the truncated Singular Value Decomposition (SVD) of the weighted 
adjacency matrix (Lingam et al., 2021). This helps to improve the learning scheme by 
incorporating higher order neighbor embeddings, while keeping self-embedding separate from 
the neighbor embeddings in aggregation function of GNN (Lingam et al., 2021). The detailed 
architecture used in our experiments is as follows: (i) DC-CNN: number of convolution layers: 1; 
number of LSTM layers: 1; number of linear layers: 3; hidden dimensions: 48, 24; kernel size: 3; 
window size: 100 (ii) GNN: depth (i.e., number of node embedding modules): 2; number of 
neurons in 2 layers: 48, 36; number of multi-layer perceptron (MLP) layers: 2; activation function: 
linear (except last layer with softmax); aggregation function: mean. The training of GNN is carried 
out in a mini-batch manner. 

An initial labeled dataset was curated by randomly selecting around 10% of nodes in 𝐺. It is 
assumed that both soil temperature and volumetric water content data are available for all these 
nodes for the first 100-time instances. Subsequently, this data is used to train an initial model as 
per the aforementioned architecture. During this process, the uncertainties arising from sensor or 
measurement noise are also propagated systematically through different layers of DC-CNN and 
GNN, as outlined in Theorem 1. After training an initial model, the querying procedure is 
commenced, and the decision model is updated after each query step. We use the uncertainty in 
model predictions obtained during the previous step as a heuristic to iteratively select the most 
informative nodes at each successive query step. Around 30% of the nodes in 𝐺 are used for AL 
queries and 40% are held out separately for testing.  

We have designed four tasks in order to demonstrate the utility of our proposed framework. The 
first two tasks are intended to predict soil temperature (TR) and volumetric water content (VWR) 
for the test nodes during all time instances by using truncated SVD values as node features. The 
third task is designed to predict TR by using both truncated SVD values and VWR measurements 
as node features. The last task is to predict VWR by using a combination of truncated SVD values 
and TR measurements as node features. We use Mean Squared Error (𝑀𝑆𝐸) and Predictive 
Performance (𝑃𝑃) as metrics to evaluate the performance of the proposed methodology over 

different tasks. 𝑃𝑃 is calculated using eq. (7). Here, 𝐴𝑖 and 𝑃𝑖 are actual and predicted values, 
respectively, and 𝑛 is the total number of observations.  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑃𝑃) = 100 −
100

𝑛
∑ |

𝐴𝑖 − 𝑃𝑖

𝐴𝑖
|

𝑛

𝑖=1

(7) 

Firstly, we establish the benefits of utilizing AL for strategic selection of nodes for model training 
during each query step. The random selection of nodes from the dataset is treated as the baseline. 
Table 1 illustrates the percentage of node labels required to achieve 90% predictive performance. 
It can be observed that the proposed framework achieves a predictive performance of 90% using 
30% or lesser node labels for all the tasks. On the other hand, 65% - 70% of node labels are 
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required to achieve the same level of performance using baseline, i.e., if the node labels are 
selected at random for model training. This is because the proposed framework strategically 
selects the nodes with highest uncertainty at each query step, thereby improving the label 
efficiency. Such an approach is highly beneficial for developing predictive engines using 
information from the agricultural fields, where data availability is sparse. It can also be seen that 
the percentage of node labels required to achieve 90% 𝑃𝑃 is lesser for tasks 3 and 4, as compared 
to those for tasks 1 and 2. This is intuitive because a larger amount of information is utilized as 
node features for model training in these tasks, namely, VWR for task 3 and TR for task 4, 
respectively, which is missing in tasks 1 and 2. 

Table 1. Percentage of node labels required to achieve 90% predictive performance. 

Sr. No. Task Baseline Proposed Framework 

1 Prediction of TR 71.42% 30.95% 

2 Prediction of VWR 70.47% 29.52% 

3 Prediction of TR based on VWR 64.28% 28.57% 

4 Prediction of VWR based on TR 65.23% 27.61% 

Secondly, we demonstrate the efficacy of AL approach by evaluating performance for all the tasks 
after specific query steps. The values of 𝑀𝑆𝐸 and 𝑃𝑃 after regular intervals of query steps are 

provided in Table 2. It is clearly observed that the values of 𝑀𝑆𝐸 reduce and 𝑃𝑃 improves as 
more queries are made. This indicates the incremental learning of the decision model, as it is 
updated after each query step. Once again, it can be observed that the performance of decision 
model is better for tasks 3 and 4 as compared to tasks 1 and 2. This is because additional 
information is incorporated as node features during model training for these tasks.  

We also capture the uncertainty associated with model predictions for all the tasks after specific 
query steps, as outlined in Table 3. These uncertainty values were calculated by considering that 
the sensor measurements are corrupted with 10% Gaussian noise, i.e., an input uncertainty of 
0.10. It was observed that the values of uncertainties reduce as more queries are made. This is 
intuitive because learning of the decision model improves with each query step, as the information 
about strategically selected uncertain nodes is incorporated in the learning scheme. 

Table 2. Performance Evaluation at different stages of Active Learning. 

 

Sr. No. 

 

Task 

Performance Metrics after number of queries 

20 40 60 

𝑴𝑺𝑬 𝑷𝑷 𝑴𝑺𝑬 𝑷𝑷 𝑴𝑺𝑬 𝑷𝑷 

1 Prediction of TR 0.1123 52.23% 0.0911 77.90% 0.0537 92.07% 

2 Prediction of VWR 0.1345 51.54% 0.1032 75.15% 0.0625 92.85% 

3 Prediction of TR based on VWR 0.1056 55.87% 0.0744 81.33% 0.0498 94.67% 

4 Prediction of VWR based on TR 0.0988 56.12% 0.0779 80.47% 0.0386 96.58% 

 

Table 3. Uncertainty Evaluation at different stages of Active Learning (considering 0.10 at input). 

Sr. No. Task Uncertainty after number of queries 

20 40 60 

1 Prediction of TR 0.0823 0.0621 0.0408 

2 Prediction of VWR 0.0965 0.0612 0.0536 

3 Prediction of TR based on VWR 0.0809 0.0577 0.0245 

4 Prediction of VWR based on TR 0.0767 0.0448 0.0287 
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Finally, the effectiveness of the proposed framework is demonstrated by carrying out longitudinal 
studies corresponding to specific nodes in 𝐺 for task of predicting TR based on VWR. A few nodes 
were selected at random and the variations in 𝑃𝑃 and uncertainty values are examined. Table 4 

presents a summary of the results for four randomly selected nodes from 𝐺. It can be seen that 
the predictive performance improves, and uncertainty reduces as more queries are made. These 
observations illustrate the systematic propagation of uncertainties across all layers of DC-CNN 
and GNN, as well as incremental learning of the decision model after subsequent query steps in 
the context of AL. 

Table 4. Longitudinal Studies for specific nodes: Prediction of TR based on VWR (uncertainty measured by considering 
0.10 at input). 

 

Sr. No. 

Node 

Instance 

Performance Metrics after number of queries 

20 40 60 

𝑷𝑷 Uncertainty 𝑷𝑷 Uncertainty 𝑷𝑷 Uncertainty 

1 13 55.41% 0.0798 82.08% 0.0542 95.31% 0.0265 

2 46 56.22% 0.0877 81.53% 0.0603 94.87% 0.0247 

3 88 54.85% 0.0843 83.16% 0.0528 94.63% 0.0316 

4 162 55.91% 0.0812 81.74% 0.0537 93.96% 0.0255 

Conclusion 

In this paper, we propose a novel framework to perform AL on spatio-temporal graphs. 
Specifically, we have developed an uncertainty-guided learning scheme involving a combination 
of DC-CNN and GNN. While DC-CNN addresses the temporal relations associated with individual 
nodes, GNN captures the spatial dependencies between different nodes of the spatio-temporal 
graph. The proposed framework supports systematic propagation of uncertainty in node features 
through the DC-CNN and GNN layers using ADF, followed by moment matching in order to finally 
obtain the uncertainty in model predictions. This allows for more reliable predictions by quantifying 
uncertainties in data through confidence intervals around the predictions. The uncertainty in 
model predictions is then leveraged to iteratively select the most informative nodes in the context 
of AL. It is worthwhile to note that the proposed methodology is generic and hence, agnostic to 
learning architecture, AL setup and query strategy.  

The proposed methodology is evaluated by conducting experiments over a field-scale sensor 
network data set for monitoring and modeling the spatial and temporal variation of soil health in a 
dryland agricultural field. Experimental results demonstrate the applicability of the proposed 
methodology to train a decision model for soil moisture and temperature monitoring using a limited 
number of sensor measurements which are strategically selected to minimize uncertainty in model 
predictions. Such a framework is highly beneficial for developing predictive engines driving 
precision agriculture applications using spatially sparse information from the agricultural fields. 
The future extension of this work will involve extending the framework for (1) monitoring other soil 
parameters; (2) uncertainty propagation aspect across non-linear activation functions, and (3) 
evaluating the proposed methodology across more dynamic setups related to spatio-temporal 
graphs. 
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