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1.1. Set-up. To fix ideas, assume we want to approximate a probability measure
µ(dx) = zf(x)dx for some constant z > 0 in the compact region K = [0, 1]n

in Euclidean space, that is, approximate µ(A) for reasonable subsets A ⊆ K, or
compute µ(g) =

∫
K g(x)µ(dx) for reasonable functions g. In fact, one can think of

the “test problem” of computing the normalizing constant

z =

(∫
K
f(x)dx

)−1

appearing in the definition of the probability measure µ.
For simplicity, let us assume K = [0, 1]× [0, 1] and f > 0 is smooth (this assump-

tion will be made more precise later) so that it makes sense to pick a large N and
work on the small squares of the finite grid

{0, 1/N, 2/N, . . . , N/N}2.

There are N2 such small squares and we will parametrize them by the the integer
grid points BN = {1, . . . , N}2 in such a way that the small square (k1, k2) has
upper-right corner at (k1/N, k2/N). Equivalently, the center of that square is ((k1−
1/2)/N, (k2 − 1/2)/N).

Figure 1. Grid approximation at level N : The red grid has N
vertical lines and N horizontal lines; the grey grid decomposes [0, 1]2

into N2 little squares.

By blowing up this picture (together with the density f), we arrive to the finite
Metropolis problem: Find a Markov chain which converges toward the discrete
probability measure ZNFN on BN = {1, . . . , N}2 where FN is defined for k =
(k1, k2) ∈ BN by

FN (k) = f

((
k1 − 1

2

N
,
k2 − 1

2

N

))
.
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Let Qk be the square of side length 1/N centered at
(
k1− 1

2
N ,

k2− 1
2

N

)
. If f is regular

enough, we should be able to find ϵN > 0 such that∣∣∣∣FN (k)−N2

∫
Qk

fdµ

∣∣∣∣ < ϵNFN (k)

and ∣∣∣∣∣∣ 1

N2

∑
k∈BN

FN (k)−
∫
[0,1]2

fdµ

∣∣∣∣∣∣ < ϵN
N2

∑
k∈BN

FN (k).

Of course, we have

ZN =

 ∑
k∈BN

FN (k)

−1

, z =

(∫
[0,1]2

fdx

)−1

and thus ∣∣∣∣N2ZN

z
− 1

∣∣∣∣ < ϵN .

To find a Markov chain which converges toward the discrete probability measure
ZNFN on BN = {1, . . . , N}2, we use the Metropolis algorithm with proposal based
on simple random walk on the grid in continuous time. Namely, our proposal is

QN (k, l) =

 1/4 for all k, l ∈ BN with |k1 − l1|+ |k2 − l2| = 1,
1/4 if k = l ∈ BN and exactly one of k1, k2 is in {1, N},
1/2 if k = l ∈ BN and both k1, k2 are in {1, N}.

This proposal has the uniform distribution as its equilibrium measure. We set
|k| = |k1|+ |k2|.

Throughout we use the notation Z � T to signify that there are constants 0 <
c ≤ C < +∞ such that cT ≤ Z ≤ CT . The constant c, C do not depend of
varying parameter (in particular do not depend on the size parameter N). They
may depends on some additional fixed parameters such as the dimension, and on
the parameters defining the functions f, F .

1.2. The Metropolis chain. Dropping the reference to N , assume we are given
a positive function F defined on B = {1, . . . , N}2. For our target, the discrete
probability measure π = ZF , Z−1 =

∑
B F , the Metropolis Chain with kernel M

on B2 is given as follows

M(k, l) =

{ 1
4 min{1, F (y)/F (x)} for all k, l ∈ B with |k− l| = 1,

Q(k,k) +
∑

m:|k−m|=1
F (m)<F (k)

1
4

(
1− F (m)

F (k)

)
if k = l ∈ B.

This kernel is reversible with reversible measure π = Z−1F on B in the sense that

∀k, l ∈ B, M(k, l)π(k) = M(l,k)π(l).

Moreover, for k, l ∈ B with |k− l| = 1,

M(k, l)π(k) = M(l,k)π(l) =
1

4
min{π(k), π(l)}.
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It follows that the Markov operator

u 7→ Mu, Mu(k) =
∑
l∈B

M(k, l)u(l)

is self-adjoint on L2(B, π) = L2 with spectrum composed of N2 eigenvalues con-
tained in [−1, 1]. The largest eigenvalue of M is β0 = 1, associated with constant
eigenfunctions. Our focus will be to estimate the second largest eigenvalue, β1 < 1
through the related quantity,

λ = 1− β1.

Following standard practice, we call λ the spectral gap of the chain. It is the
second lowest eigenvalue of I−M , which is minus the infinitesimal generator of the
continuous semigroup of operators,

Ht : u 7→ Htu = e−t
∞∑

m=0

tn

n!
Mnu.

For each k ∈ B, Ht(k, ·) is a probability distribution on B and it is the distribution
of the continuous time random Markov chains driven by the kernel M . It is well
understood that

(1.1) lim
t→+∞

Ht(k, ·) = π.

Moreover, if we set π∗ = minB{π}, we have (e.g., [11, Cor. 2.1.5])

max
k,l

{∣∣∣∣Ht(k, l)

π(l)
− 1

∣∣∣∣} ≤ 1

π∗
e−λt.

This basic inequality provides a simple quantitative control of the convergence of
Ht(k, ·) to π in terms of the spectral gap λ and justify in large part our interest in
estimating λ. A similar result holds for the discrete time Markov chains but the
details are complicated by the role played by the negative spectrum despite the fact
that Metropolis chains typically have good aperiodicity properties. In the sequel
we focus on estimating λ for a number of examples using the well established path
technique (and variations on it) to obtain lower-bounds on λ. In most cases, we
establish also upper-bounds of the same order of magnitude. In the last section,
we briefly discuss what one can expect regarding the mixing time of the studied
examples.

2. The path technique for spectral gap lower-bounds

2.1. Dirichlet form notation. Let B be a finite set and K,π be be a reversible
Markov kernel and its reversible probability measure on B. These assumptions
mean that

K : B ×B → [0, 1], (x, y) 7→ K(x, y)

satisfies ∑
y

K(x, y) = 1 and π(x)K(x, y) = π(y)K(y, x).
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We can view K as an operator acting on function defined on B by the rule

Ku(x) =
∑
y

K(x, y)u(y).

We work in the finite vector space of functions u on B equipped with the scalar
product

〈u, v〉 = 〈u, v〉π =
∑
b∈B

u(b)v(b)π(b).

Note that

π(u2) =
∑
b∈B

|u(b)|2π(b) = 〈u, u〉.

On this vector space, K is diagonalizable with highest eigenvalue 1 (associated with
the constant functions) and second highest eigenvalue β and spectral gap λ = 1−β.
The Dirichlet form E = EK,π associated with the pair (K,π) is the quadratic form

E(u, v) =
∑

x,y∈B
(u(x)− u(y))(v(x)− v(y))π(x)K(x, y).

It allows us to compute the spectral gap λ through the variational formula

λ = inf

{
E(u, u)
π(u2)

: π(u) = 0, π(u2) 6= 0

}
.

To obtain a lower-bound λ ≥ ϵ > 0, we need to prove that for all functions u,

Varπ(u) = π(|u− π(u)|2)

is bounded above by

Varπ(u) ≤
1

ϵ
E(u, u).

To prove an upper-bound λ ≤ ϵ, we need to find a function u such that π(u) = 0
and

E(u, u)
π(u2)

≤ ϵ.

The well-known formulas

Varπ(u) =
1

2

∑
x,y∈B

|u(x)− u(y)|2π(x)π(y) = min
ξ∈R

∑
b∈B

|u(b)− ξ|2π(b)

are key for the path technique recalled below.

2.2. The path-technique. This work can be viewed as an illustration of the path
techniques we are about to describe. There are many variations that turn out to
be useful when treating particular examples (we do not discuss here all possible
variations). It is useful to view B as the vertex set of a graph whose edge set
E consists of those pairs e = (x, y) in B × B such that x 6= y (no loops) and
π(x)K(x, y) > 0 (possible connection through K). We will use the graph distance
d : B × B → [0,+∞) which, for x, y ∈ B is defined as the minimal number of
edges in E that one must cross to go from x to y. For a subset A ⊆ B, d(x,A) =
min{d(x, y) : y ∈ A}. With a slight abuse of notation, for any edge e = (x, y) and



310 L. SALOFF-COSTE AND S. ULUATAM

z ∈ B, d(z, e) = d(z, {x, y}). For all pairs e = (x, y) of vertices (not just those in
E), we set

Q(e) = π(x)K(x, y)

so that a pair e is in E if and only if Q(e) > 0. Because of our standing assumptions,
Q((x, y)) = Q((y, x)) and thus (x, y) ∈ E ⇐⇒ (y, x) ∈ E. We let ě = (y, x) if
e = (x, y). With this notation, we have

E(u, v) =
1

2

∑
e∈B2

(u(y)− u(x))(v(y)− v(x))Q(e)

=
1

2

∑
e∈E

(u(y)− u(x))(v(y)− v(x))Q(e).

By definition, a path is any finite string of vertices, γ = (x0, . . . , xn), such that
any two consecutive vertices in the path form a pair which belongs to E.

Let A be a particular subset of B and let πA = π(A)−1 π|A, the normalized
restriction of π to A. Observe that

π(|u− πA(u|A)|2) = π(u2) + πA(u|A)2 − 2π(u)πA(u|A)

and ∑
x∈B,y∈A

|u(x)− u(y)|2π(x)πA(y) = π(u2) + πA(u|2A)− 2π(u)πA(u|A).

By Jensen’s inequality, πA(u|A)2 ≤ πA(u|2A), and thus

π(|u− πA(u|A)|2) ≤
∑

x∈B,y∈A
|u(x)− u(y)|2π(x)πA(y).

Note that, as noted earlier, when A = B, this can be improved to

π(|u− π(u)|2) = 1

2

∑
x,y∈B

|u(x)− u(y)|2π(x)π(y).

Now, Let Γ = {γxy : x ∈ B, y ∈ A} be a collection of paths γxy, indexed by
the ordered pairs xy, x, y ∈ B, such that γxy starts at x and ends at y. Let
w : E → (0,+∞) be a positive edge function which we call a weight function. For
an edge e = (a, b), write du(e) = u(b) − u(a) for any function u : B → R. Observe
that (edges in a path are the pair of consecutive vertices along the path)

u(y)− u(x) =
∑
e∈γxy

du(e)

and

|u(y)− u(x)|2 ≤

∑
e∈γxy

1

w(e)2

∑
e∈γxy

|du(e)|2w(e)2
 .

Set

|γ| = |γ|w =
∑
e∈γ

1

w(e)2
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and call this the w-length of γ. Multiply by π(x)πA(y) and sum over B × A to
obtain ∑

x∈B,y∈A
|u(x)− u(y)|2π(x)πA(y) ≤

∑
x∈B,y∈A

∑
e∈γxy

|γ|w
∑
e∈γxy

|du(e)|2w(e)2.

We rearrange this as follows.∑
x∈B,y∈A

|u(x)− u(y)|2π(x)πA(y)

≤
∑
e∈E

w(e)2

Q(e)

∑
x∈B,y∈A
γxy∋e

|γxy|w
∑
e∈γxy

π(x)πA(y)

 |du(e)|2Q(e).

This gives the following result.

Proposition 2.1. Referring to the notation introduce above and for any set A ⊂ B,

λ ≥ 1/W (resp. λ ≥ 2/W if A = B),

where

W = max
e∈E

w(e)2

Q(e)

∑
x∈B,y∈A
γxy∋e

|γxy|wπ(x)πA(y)

 .

In the sequel, we will often use the notation (the set A will be clear from the
context)

W (e) =
w(e)2

Q(e)

∑
x∈B,y∈A
γxy∋e

|γxy|wπ(x)πA(y).

The basic ideas used for this proposition are well-known but its seems difficult to
locate a proper reference using both weights and the subset A as we did above. The
role of the set A is as follows. Choosing a small set A is advantageous because it
reduces the combinatoric complexity of the necessary path counting. However, sets
A with a very small π(A) cannot provide good estimate on λ. Hence Using a set
A 6= B is mostly useful when a large portion of the total probability is concentrated
in A and A is much smaller than B. In such cases, identifying A is often a very
useful first step in providing a good estimate for λ. Good examples of this are in
Sections 3.1-3.2 where A = {x0} contains a single point.

Remark 2.2 (The use of symmetry when A = B). Assume that A = B, the path
γxy is the same as γyx in reverse, and w(ě) = w(e) for all e. This is a very common
situation. Let ē = {x, y} (non-oriented edge) and write ē ∈ γxy if either e or ě is on
γxy. It then follows that

W (ě) = W (e) =
1

2

w(e)2

Q(e)

∑
x,y∈B
γxy∋ē

|γxy|wπ(x)π(y).
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Now, this symmetric expression allow us to break the symmetry via additional
conditions on x and y. For instance, we can bound W (e) from above by

w(e)2

Q(e)

∑
x,y∈B,π(x)≤π(y)

γxy∋e

|γxy|wπ(x)π(y) +
w(e)2

Q(e)

∑
x,y∈B,π(x)≤π(y)

γxy∋ě

|γxy|wπ(x)π(y)

or by

w(e)2

Q(e)

∑
x,y∈B,d(x,e)≤d(y,e)

γxy∋e

|γxy|wπ(x)π(y) +
w(e)2

Q(e)

∑
x,y∈B,d(x,e)≤d(y,e)

γxy∋ě

|γxy|wπ(x)π(y).

This can be very useful in estimating W . For instance, in this context,

(2.1) W ≤ 2max

w(e)2

Q(e)

∑
x,y∈B,π(x)≤π(y)

γxy∋e

|γxy|wπ(x)π(y)

 .

We will make use of this remark in the last section of this paper.

2.3. Two 1-dimensional families of examples. Although our main goals is to
illustrate the path technique in 2 or more dimension, it is worth starting with two
related one dimensional examples which are not found in the literature. See [1, 10]
for other 1-dimensional examples.

2.3.1. First family. Our first family of examples comes from the choice

π(x) = πa−,a+(x) = Za−,a+ ×
{

(1 + |x|)a− if x ≤ 0,
(1 + |x|)a+ if x > 0,

x ∈ B = {−N, . . . , N},

where a−, a+ > 0. It serves as a warm-up for the second family which will be
discussed in Section 2.3.2. Without loss of generality, we assume that

a− ≤ a+.

The case a− = a+ is treated in [10]. The proposal chain is the chain corresponding
to a simple random walk with loops at the two ends, and the Metropolis kernel is
given by

Q(e) = π(x)M(x, y) =
1

2
min{π(x), π(y)}

if |y − x| = 1 and 0 if |y − x| > 1 (the value when x = y can be deduced from the
given formula because

∑
y M(x, y) = 1). Also,

Z−1 = Z−1
a−,a+ = 1 +

N∑
1

(1 + k)a− +

N∑
1

(1 + k)a+

so that Za−,a+ � N−(1+a+).

Proposition 2.3. For each fixed pair 0 ≤ a− ≤ a+ < +∞, the Metropolis chain
for πa−,a+ on B = {−N, . . . , N} has spectral gap λ bounded above and below by

λ �

 1/N2 if a− ∈ (0, 1),
1/N2 logN if a− = 1,
1/N1+a− if a− > 1.
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Proof. In one dimension, there is no questions about the choice of path from x to
y. The question that remains is the choice of weights and this choice is important
here. In general, choosing weights is more of an art than a science and proceeds by
trial and error. In this case, we make the choice (recall that a− ≤ a+)

w(x, x+ 1) = w(x+ 1, x) = (1 + |x|)a−/2

and set

Da− =
N∑
0

(1 + k)−a− �

 N1−a− if a− ∈ (0, 1),
logN if a− = 1,
1 if a− > 1.

The quantity Da− controls the w-length of paths.
We use Proposition 2.1 with A = B = [−N, . . . , N ]. For a fixed edge e = (b, b+1),

we need to compute

W (e) = 2
w(e)2

Q(e)

∑
x≤b<y

|γx,y|wπ(x)π(y).

If b < 0,

W (e) � Da−(1 +N)a−(N − |b|)
and, if 0 ≤ b < N ,

W (e) � Z(1 + b)a−−a+Da−(N
1+a− + (1 + b)1+a+)(1 +N)a+(N − b).

� Da−

(
N1+a−

(1 + b)a+−a−
+ (1 + b)1+a−

)
(1− b/N).

Taking maximum over −N ≤ b < N gives

W � Da−(1 +N)1+a− �

 N2 if a− ∈ (0, 1),
N2 logN if a− = 1,
N1+a− if a− > 1.

Proposition 2.1 gives λ ≥ 2/W . In fact, one can show that λ � 1/W in each of
these cases. We simply indicate which test function to use to obtain, in each case,
an appropriate lower-bound on λ. In the first two cases, the constant c− and c+
below are chosen so that

∑N
1 f(−k)π(k) =

∑N
1 f(k)π(k), so that π(f) = 0 and the

definition of f ensures that c− � c+ as functions of N .

• (a− ∈ (0, 1))

f(k) =

{
c−|k| if k ∈ {−N, . . . , 0},

−c+|k|1+a−−a+ if k ∈ {1, . . . , N}.

By inspection, E(f, f) � c2−ZN1+a− and Varπ(f) � c2−ZN3+a− .
• (a− = 1)

f(k) =

{
c−
∑|k|

1
1
m if k ∈ {−N, . . . , 0},

c+k
1−a+ log k if k ∈ {1, . . . , N}.

By inspection, E(f, f) � c2−Z logN and Varπ(f) � c2−ZN2(logN)2.
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• (a− > 1) ξ = Z
(∑N

0 (1 + k)a−
)
� Na−−a+ and

f(k) =

{
1− ξ if k ∈ {−N, . . . , 0},
−ξ if k ∈ {1, . . . , N}.

By inspection, π(f) = 0, E(f, f) � Z and Varπ(f) � ZNa−+1.

□

2.3.2. Second family. Our second family of examples extends the first by allowing
the two sides of the interval around 0 to have different length, N−, N+. The two
exponents a−, a+ ≥ 0 are not ordered. Set

B = {−N−, . . . , 0, . . . , N+}

with

π(x) = Z ×
{

(1 + |x|)a− if x ∈ {−N−, . . . , 0},
(1 + |x|)a+ if x ∈ {1, . . . , N+}.

What is the order of magnitude of the spectral gap λ for the associated Metropolis
chain? In this section, lower bounds on λ are obtained by applying Proposition 2.1
with A = B = [−N−, . . . , N+].

First observe that

Z−1 = 1 +

N−∑
1

(1 + k)a− +

N+∑
1

(1 + k)a+ � (1 +N−)
a−+1 + (1 +N+)

a++1.

We start by deriving the following upper-bound.

Lemma 2.4. For fixed reals a−, a+ ≥ 0 there is a constant C such that for any
integers N−, N+ ≥ 0, the spectral gap of the Metropolis chain for the measure π
above on {−N−, . . . , N+} satisfies

λ ≤ Cmin

{
1

(N− +N+)2
,max

{
1

(1 +N−)1+a−
,

1

(1 +N+)1+a+

}}
.

Proof. We prove separately that λ is bounded above (up to a multiplicative con-

stant) by each of the quantities max
{

1
(1+N−)1+a− , 1

(1+N+)1+a+

}
and 1

(N−+N+)2
.

For the first part of the proof, without loss of generality, we assume that

(1 +N−)
1+a− ≤ (1 +N+)

1+a+ .

We then want to show that λ ≤ C(1 + N−)
−(1+a−). We use the test function f

equals to 1− ξ on {−N−, . . . , 0}, and −ξ on {1, . . . , N+}. Here

ξ = π({−N−, . . . , 0}) =
∑N−

0 (1 + k)a−∑N−
0 (1 + k)a− +

∑N+

1 (1 + k)a+
� (1 +N−)

1+a−

(1 +N+)1+a+

so that π(f) = 0. We simply need to estimate E(f, f) from above and Varπ(f) =
π(f2) from below. Only the edges {(0, 1), (1, 0)} contribute to E(f, f) � Z and

π(f2) � Z
(
(1− ξ)2(1 +N−)

1+a− + ξ2(1 +N+)
1+a+

)
� Z(1 +N−)

1+a− .
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This proves that λ ≤ C(1 + N−)
−(1+a−). Removing the extra assumption that

(1 +N−)
1+a− ≤ (1 +N+)

a+ , we obtain

λ ≤ Cmax

{
1

(1 +N−)1+a−
,

1

(1 +N+)1+a+

}
.

Our next goal is to show that λ ≤ C(N−+N+)
−2. For this, we can assume without

loss of generality that N− ≤ N+ so that the desired result reads λ ≤ C ′N−2
+ . We

consider two cases, depending on which side gives the main contribution to Z−1.

We start with the case when N
1+a−
− ≤ N

1+a+
+ and use the test function f(k) = k

whose Dirichlet form satisfies E(f, f) � 1. The mean of f , π(f), is a number
between −N− and N+ and, whatever it is, there is always an interval of size N+/8 in
{[N+/2], . . . , N+} over which |f − π(f)| ≥ N+/8. This implies that Varπ(f) ≥ cN2

+

and thus λ ≤ C ′N−2
+ as desired. This does not work if N

1+a−
− is the dominant term

in Z−1 � N
1+a−
− +N

1+a+
+ .

When N
1+a−
− > N

1+a+
+ , consider the test function

f(k) =

{
−N

1+a+
+ k if k ∈ {−N−, . . . , 0},

cN
1+a−
− k if k ∈ {1, 2, . . . , N+}.

The constant c � 1 is chosen so that π(f) = 0. The Dirichlet form of f satisfies

E(f, f) � Z(N
2(1+a+)
+ N

1+a−
− +N

2(1+a−)
− N

1+a+
+ ) ≤ 2ZN

2(1+a−)
− N

1+a+
+

because we assume that N
1+a−
− > N

1+a+
+ . The variance of f satisfies

Varπ(f) � Z(N
2(1+a+)
+ N

3+a−
− +N

2(1+a−)
− N

3+a+
+ ) ≥ ZN

2(1+a−)
− N

3+a+
+ .

This gives us λ ≤ C ′N−2
+ as desired. □

Next, we derive lower-bounds on the spectral gap.

Lemma 2.5.

• Assume that a−, a+ ∈ (1,+∞). Then

λ � min

{
1

(N− +N+)2
,max

{
1

(1 +N−)1+a−
,

1

(1 +N+)1+a+

}}
.

• Assume that min{a−, a+} ∈ (0, 1). Then

λ � 1

(N− +N+)2
.

• Assume that a+ = a− = 1 and N− ≤ N+. Then

λ � 1

N2
+ +N2

− logN−.

In particular λ � N−2
+ whenever N− ≤ N+/

√
logN+.

• Assume that min{a−, a+} = 1 and max{a−, a+} > 1. For convenience,
assume a− = 1 < a+. Then

λ � max

{
1

N2
+ +N2

− logN−
,

1

N2
− +N

1+a+
+ logN+

}
.
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Remark 2.6. The last two cases can be stated together as follows: if min{a−, a+} =
1 then

λ � max

{
1

N2
+ +N

1+a−
− logN−

,
1

N2
− +N

1+a+
+ logN+

}
.

Proof. Because of Lemma 2.4, in the first two cases, it suffices to prove the lower-
bounds. In the first case when a−, a+ ∈ (1,+∞), without loss of generality, we can

assume that N
1+a−
− ≤ N

1+a+
+ so that we want to prove that

λ ≥ cmin{(1 +N+)
−2, (1 +N−)

−(1+a−)}.

Note that Z � N
−(1+a+)
+ and fix 1 < η < min{a−, a+}. For an edge e whose vertex

farthest from 0 is k, set w(e) = (1 + |k|)η/2 when |k| ≤ N− and w(e) = N
1/2
+ if

N− < k ≤ N+ (if such k exist). This gives |γxy|w � 1 for all x, y ∈ {−N−, . . . , N+}.
We consider

W (e) =
w(e)2

Q(e)

∑
x≤b<y

|γx,y|wπ(x)π(y)

and write (again, k denote the vertex of e farthest from 0)

W (e) ≤ CZ


N+k

−a+(N+ − k + 1)N
a+
+ (N

1+a−
− + k1+a+) if N− < k ≤ N+,

kη−a+(N+ − k + 1)N
a+
+ (N

1+a−
− + k1+a+) if 0 < k ≤ N−,

|k|η−a−(N− − |k|+ 1)N
a−
− (N

1+a+
+ + |k|1+a−) if k < 0.

Because, by assumption, Z � N
−1−a+
+ , this gives

W (e) ≤ C


N+k

−a+(N
1+a−
− + k1+a+) if N− < k ≤ N+,

kη−a+(N
1+a−
− + k1+a+) if 0 < k ≤ N−,

|k|η−a−N
1+a−
− if k < 0.

By inspection, W (e) ≤ Cmax{N2
+, N

1+a−
− } where C may have changed from the

previous line. Under our assumption, this gives the desired lower-bound on λ.
Next, we treat the case when min{a−, a+} ∈ (0, 1). Without loss of generality

we can assume that a− ≤ a+. We have Z−1 � N
1+a−
− +N

1+a+
+ . We set

w(k − 1, k) = w(−k + 1,−k) = (1 + k)a−/2, k > 0.

This gives |γxy|w ≤ C(N− +N+)
1−a− = D and

W (e) ≤ CDN
1+a−
−

if e = (−k + 1,−k), k > 0, and

W (e) ≤ CD|k|a−−a+(N
1+a−
− + |k|1+a+)

if e = (k − 1, k), k > 0. The maximum for k > 0 is less than CD(N− + N+)
1+a− .

All together, this yields W (e) ≤ C(N− +N+)
2 as desired.

Next, assume that a− = a+ = 1 and N− ≤ N+. In this case, we need to prove
both an upper-bound and a lower-bound. We start with the lower-bound. For an
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edge e whose vertex furthest to 0 is k, set

w(e) =

{
|k|1/2 if k ∈ [−N−, N−],

(N+/ logN−)
1/2 if k > N−.

The w-length |γxy|w of any path is bounded above by

D = (3−N−/N+)(logN−) ≤ 2 logN−.

The quantity W (e) is bounded above by

W (e) ≤ CD

{
N2

− if k ∈ [−N−, N−],
N+

k logN−
(N2

− + k2) if k ∈ {N− + 1, . . . , N+}.

It follows that

W (e) ≤ Cmax{N2
− logN−, N

2
+}.

To obtain a matching upper-bound, we use the test function

f(k) =

{
−(N2

+ logN+)
∑|k|

1
1
m if k ∈ {−N−, . . . , 0},

c(N2
− logN−)

∑k
1

1
m if k ∈ {1, . . . , N+},

where c � 1 is chosen so that π(f) = 0. For this test function,

E(f, f) � N−2
+ [(N2

+ logN+)
2 logN− + (N2

− logN−)
2 logN+]

and

Varπ(f) � N−2
+ (N+ logN+)

2(N− logN−)
2(N2

+ +N2
−).

Because we assume N− ≤ N+, this gives

λ ≤ C

N2
− logN−

.

We already know that λ ≤ CN−2
+ and the stated result follows.

Finally, we consider the case when a− = 1 < a+. First, assume thatN
1+a+
+ ≥ N2

−.
We start with the lower-bound. For an edge e whose vertex farthest from 0 is k, we
set

w(e) =


|k|1/2 if k ∈ {−N−, . . . ,−1},

ka+/2(logN−)
−1/2 if k ∈ {1, . . . , [N2/(1+a+)

− ]},
N

1/2
+ (logN−)

−1/2 if k ∈ {[N2/(1+a+)
− ], . . . , N+}.

These edge weights give a maximal path length of order logN− and the constant

Z−1 is or order N
1+a+
+ . We estimate

W (e) ≤ C ×


N2

−(logN−) if k ∈ {−N−, . . . ,−1},
N2

− if k ∈ {1, . . . , [N2/(1+a+)
− ]},

N+(k
a+)−1(N2

− + k1+a+) if k ≥ [N
2/(1+a+)
− ].

This gives W (e) ≤ C(N2
+ +N2

− logN−) and

λ ≥ c

N2
+ +N2

− logN−
.
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An upper-bound is needed only when N− ≥ N+. Because we also assume N2
− ≤

N
1+a+
+ , we have logN− � logN+ in this case. For the upper-bound we use the test

function

f(k) =

{
−N

1+a+
+

∑|k|
1 1/m if k < 0,

cN2
−
∑|k|

1 1/m if k > 0.

The constant c � 1 is chosen so that π(f) = 0. We have

E(f, f) � N
−(1+a+)
+ (N

2(1+a+)
+ logN− +N4

− logN+)

and

Varπ(f) � N
−(1+a+)
+ (N

2(1+a+)
+ N2

−(logN−)
2 +N4

−N
1+a+
+ (logN+)

2).

This gives

λ ≤ C
N

2(1+a+)
+ logN−

N
2(1+a+)
+ N2

−(logN−)2
� 1

N2
− logN−

.

We are left with the case when N
1+a+
+ ≤ N2

− which implies N+ ≤ N− because
a+ > 1. We pick

w(e) =


(ka+/ logN+)

1/2 if k ∈ {1, . . . , N+},
|k|1/2 if k ∈ {−N+, . . . ,−1},

N
1/2
− /(logN+)

1/2 if k ∈ {−N−, . . . ,−N+}.
This gives a maximal w-length for paths of order logN+ and W (e) is bounded by

C(logN+)


N

1+a+
+ /(logN+) if k ∈ {1, . . . , N+},

N
1+a+
+ if k ∈ {−N+, . . . ,−1},

N−/(|k| logN+)(N
1+a+
+ + |k|2) if k ∈ {−N−, . . . ,−N+}.

It follows that W (e) ≤ Cmax{N2
−, N

1+a+
+ logN+} and

λ ≥ c

N2
− +N

1+a+
+ logN+

.

Given that N+ ≤ N−, we already have the upper-bound λ ≤ C
N2

−
. It thus suf-

fices to consider the case when N
1+a+
+ ≤ N2

− ≤ N
1+a+
+ logN+. This implies that

logN+ � logN−. We use the test function

f(k) =

{
−N

1+a+
+

∑|k|
1 1/m if k < 0,

cN2
−
∑|k|

1 1/m if k > 0.

The constant c � 1 is chosen so that π(f) = 0. We have

E(f, f) � N−2
− (N

2(1+a+)
+ logN− +N4

− logN+)

and
Varπ(f) � N−2

− (N
2(1+a+)
+ N2

−(logN−)
2 +N4

−N
1+a+
+ (logN+)

2)

This gives

λ ≤ C
N4

− logN+

N4
−N

1+a+
+ (logN+)2

� 1

N
1+a+
+ logN+

.
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□

3. Some basic examples in higher dimensions

The same basic techniques discussed above apply in any dimension but many
complications arise. In particular, what choice of paths is appropriate becomes a
nontrivial question. Overall, we understand much less in two than in one dimen-
sion. We hope the examples treated below provide some illustration. We set these
examples in the context explained in Section 1.1, starting from a target density f
over [0, 1]n, most of the time with n = 2 for simplicity.

3.1. Exponential of a linear function. This family of examples is based on the
function f(x) = eax+by, a, b ∈ R with |a| + |b| > 0 (the case a = b = 0 is not
particularly interesting). We treat it as a warm-up for the next example and for
illustration. It can be studied in many different ways. Recall that we consider
the grid approximation, BN = {1, . . . , N}2, of the unit square equipped with the
probability measure

π(x, y) = Z−1
N FN (x, y), FN (x, y) = exp

(
1

N
(ax+ by − (a+ b)/2)

)
.

Note that, if Qx,y =
{
(u, v) :

∣∣∣u− x− 1
2

N

∣∣∣ < 1
N ,
∣∣∣v − y− 1

2
N

∣∣∣ < 1
N

}
,∣∣∣∣∣FN (x, y)−N2

∫
Qx,y

f(u, v)dudv

∣∣∣∣∣ ≤ e
|a|+|b|

N
|a|+ |b|

N
FN (x, y).

Hence, it is natural to assume that (|a|+ |b|)/N ≤ 1.
The Metropolis kernel M(k, l) on B = BN satisfies

Q(k, l) � min{π(k), π(l)} � π(k)

for all k, l such that |k1− l1|+ |k2− l2| = 1. There are two cases to consider. Assume
first that ab = 0. By symmetry there is no loss of generality to assume b = 0. We
do not treat this case in detail but note that it can be analyzed by comparison with
the product of two one-dimensional chains, the uniform proposal chain itself in the
y coordinate and the one-dimensional Metropolis chain for eax/N in the x direction.
See [1, Sect. 6.1-6.2] and [5]. This comparison results in a spectral gap of order
1/N2 for the two-dimensional Metropolis chain with b = 0. In the case when either
one or both of a and b are small, one can also show (e.g., by comparison) that the
spectral gap is of order 1/N2. When both a and b are of order N , we will show
below that the spectral gap is of order 1.

This illustrates a crucial fact regarding the procedure we describe which is based
on a uniform square grid: the size N of grid has to be taken large enough that the
grid provides a good approximation and not so large that it flattens the profile of the
function being approximated to the point of making its special features disappear.
In the present example, the special feature is the exponential nature of the function.
If the coefficients a, b in this example have different order of magnitude, the correct
choice would be to use a rectangular discretization that would take this into account.

We now treat the case when min{|a|, |b|} ≥ ϵN where ϵ > 0 is fixed. Under this
assumption FN has a unique local maximum which is also a global maximum and is
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located at one of the four corners, call it k∗. Moreover, π(k∗) �ϵ 1. Since it is clear
by reason of symmetry that we can assume a, b > 0, we will do so in all arguments
below. When a, b > 0, k∗ = (N,N), and

Z−1 =
N∑
1

N∑
1

exp

(
1

N
(ax+ by − (a+ b)/2)

)

= e−
a+b
2N

(
N∑

x=1

N∑
1

e
a
N
x

) N∑
1

N∑
y=1

e
b
N
y


= e

a+b
N ea+b 1− e−a(1+1/N)

1− e−a/N

1− e−b(1+1/N)

1− e−b/N
�ϵ e

a+b

and
π(k∗) = Zea+b �ϵ 1.

Proposition 3.1. Fix ϵ > 0. When f(x, y) = eax+by with |a| + |b| ≤ N and
min{|a|, |b|} ≥ ϵN , the spectral gap λ of the associated finite Metropolis chain on
BN satisfies λ �ϵ 1

Proof. The only thing to prove is the lower-bound and this can be done by using
Proposition 2.1 with A = {k∗} and weights w(e) = Q(e)θ where θ < 1/2. For each
k ∈ B, we define the path γk to be one of the (possibly two) paths from k to k∗ with
only one turn and along which π increases at each step. Without loss of generality,
we assume a, b > 0 so that k∗ = (N,N), and we let the path γk from k to k∗ be
the path that go up to the top then right. The w-length |γk|w satisfies

|γk|w �ϵ π(k)
−2θ.

Fix an edge e and let n be the vertex on e farthest from k∗ along the path. We
have

W (e) =
w(e)2

Q(e)

∑
k∈B,γk∋e

|γk|wπ(k)

�ϵ Q(e)2θ−1
∑

k∈B,γk∋e
π(k)1−2θ

�ϵ Q(e)2θ−1π(n)1−2θ �ϵ 1.

□

3.2. Further examples with exponential fall-off. In this subsection, we assume
that f has the form f(x) = e−g(x) where g has the following crucial properties. The
constants a,A introduced in these properties are key parameters.

(1) There exists A > 0 such that, for all z = (x, y), z′ = (x′, y′) ∈ [0, 1]2,
|g(z)− g(z′)| ≤ A‖z − z′‖;

(2) There exists 0 < a ≤ A such that, for some z0 ∈ [0, 1]2 and all z ∈ [0, 1]2

and t ∈ [0, 1],

g(z0) = 0 and g(z)− g(z + t(z0 − z)) ≥ at;

(3) The ratio A/a is bounded above by a fixed constant C ≥ 1.
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So, essentially, f has a maximum at z0 with exponential fall-off. The condition
g(z0) = 0 is not restrictive, it is a simple normalization. Condition (1) is a regularity
and growth condition (g is Lipschitz with constant A). The main part of condition
(2) ensures a uniform exponential growth along straight lines ending at z0 with
rate a. It is clear from (1)-(2) that 0 < a ≤ A < +∞. Condition (3) is crucial and
ensures that the key parameters a and A are comparable in the sense that A/a �C 1.
Simple examples of function g satisfying these hypotheses are g(z) = A|z − z0| and
g(z) = a|x − x0| + A|y − y0| with a � A, z = (x, y), z0 = (x0, y0) (these constants
a,A are perhaps not exactly those for which (1)–(3) are satisfied for these example).

The discretization on the size N grid is the function

FN (x, y) = e−g(((x−1/2)/N,(y−1/2)/N)), (x, y) ∈ BN = {1, . . . , N}2

and, in order, to have a good approximation, we need to choose N of order at least
A. In order to retain the exponential fall-off, we also need to have N not much
bigger than a. This means the we need to choose ϵA ≤ N ≤ ϵ−1a, say, and this is
possible because A/a ≤ C. The positive real number ϵ can be taken of order 1/

√
C

which we assume in what follows.

Proposition 3.2. Fix C > 0. Let f(z) = e−g(z) with g having the properties (1)-
(2)-(3) stated above with constant C and key parameters a,A. The spectral gap λ of
the associated finite Metropolis chain on BN with N �C A �C a satisfies λ �C 1.

Proof. Let zN0 = (xN0 , yN0 ) be the point of BN closest to Nz0 = (Nx0, Ny0) and
observe that FN (zN0 ) ≈C 1 because of properties (1)-(2) and the choice of N . First,
we show that

Z−1
N =

∑
z∈BN

FN (z) �C FN (zN0 ).

So it suffices to prove that
∑

z∈BN
FN (z) ≤ C1, independently of a,A,N and the

function g. This follows easily from the fact that

FN (z) = e−g(z′), z = (x, y) ∈ BN , z′ = (x′, y′) ∈ [0, 1]2,

where

(3.1)

{
x′ = (x− 1/2)/N,
y′ = (y − 1/2)/N.

Set z′0 = (xN0 /N, yN0 /N) and write

g(z′) ≥ a‖z′ − z0‖
≥ a(‖z′ − (zN0 /N)‖ − ‖(zN0 /N)− z0‖)

≥ −
√
2
a

N
+

a

N
‖z − zN0 ‖

≥ −
√
2ϵ−1 + ϵ‖z − zN0 ‖.

It follows that ∑
BN

FN (z) ≤ e
√
2ϵ−1

∑
BN

e−ϵ∥z−zN0 ∥ ≤ C2(ϵ)

as desired.
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Having proved that Z−1
N � 1 � FN (zN0 ), we can use Proposition 2.1 with the

set A = {zN0 } ⊂ B = BN (the set A in Proposition 2.1 has, of course, nothing
to do with the constants a,A that define the key property of the function g). For
each z ∈ BN , we need a path γz from z to z0 and we pick a discrete path that
remains at distance at most

√
2 from the straight line from z to zN0 . For each

edge e, we pick the weight w(e) = Q(e)θ with θ ∈ (0, 1/2), e.g., θ = 1/4. Here
Q(e) = 1

2 min {πN (e−), πN (e+)}, e = (e−, e+) (for some arbitrary orientation of the
edge of the square grid, say, up and to the right). By assumption (1) and the choice
of N , we have

Q(e) �C πN (e−) �C πN (e+).

Observe that assumption (2) and the choice of N show that the maximal w-length
of one of our chose paths γz satisfies

|γz|w =
∑
e∈γz

Q(e)−2θ ≤ C1

∑
e∈γz

π(e−)
−2θ ≤ C1π(z)

−2θ
∑
e∈γz

(
π(z)

π(e−)

)2θ

.

We have
π(z)

π(e−)
= e−(g(z′)−g(e′−))

and, because e′− is at distance at most
√
2/N of the straight line from z to Nz0

g(z′)− g(e′−) ≥ −C2(A/N) + a‖z − z0‖/N.

If follows that

|γz|w ≤ C3(ϵ)π(z)
−2θ.

Finally, for any fixed edge e, we need to estimate

W (e) =
w(e)2

Q(e)

∑
z∈BN ,γz∋e

|γz|wπ(z)

�ϵ Q(e)2θ−1
∑

z∈BN ,γz∋e
π(z)1−2θ.

We claim that ∑
z∈BN ,γz∋e

π(z)1−2θ ≤ C4(ϵ)π(e−)
1−2θ.

Indeed, because e− is close to the straight line from z to Nz0, for any integer ℓ,
there are at most order ℓ point z such that ‖z − e−‖ � ℓ. Noting that 1 − 2θ > 0,
it follows that ∑

z∈B,γz∋e
π(z)1−2θ ≤ π(e−)

1−2θ
∑

z∈BN ,γz∋e

(
π(z)

π(e−)

)1−2θ

≤ C5(ϵ)π(e−)
1−2θ

∑
ℓe−C6aℓ/N

≤ C7(ϵ)π(e−)
1−2θ.

This is the desired inequality. It gives W (e) ≤ C7(ϵ) and Proposition 3.2 follows. □
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3.3. No worse than the flat spectral gap 1/N2. In [1, Proposition 6.3], it
is proved that for the Metropolis chain based on nearest neighbor random walk
on {1, . . . , N} with target a distribution π that has a unique local maximum, the
spectral gap is greater or equal to 1/2N2. We do not know of a similar result in
higher dimension and it seems to be difficult to capture different cases for which
the spectral gap is at least of order 1/N2 with a single argument. The following
proposition captures one particular class of examples.

In this subsection, we explicitly work in a fixed dimension n ≥ 2. For A ≥ 1 and
ϵ, η > 0, let Cn,ϵ,η(A) be the class of continuously differentiable function f on [0, 1]n

such that

(3.2) min
[0,1]n

{f} > 0, sup
[0,1]n,i=1,...,n

{|∂i log f |} ≤ A,

(3.3) ∀x, y ∈ [0, 1]n, t ∈ [0, 1], f(x+ t(y − x)) ≥ ϵmin{f(x), f(y)},

and

(3.4) η‖f‖∞ ≤
∫
[0,1]n

f(x)dx.

As in the previous example, the parameter A is a key parameter and one can think of
it as being large (otherwise the result is relatively obvious). The second hypothesis
is a weak form of convexity of the level sets of f . If the sets {x : f(x) > t} were
convex then, certainly, we would have

∀x, y ∈ [0, 1]n, t ∈ [0, 1], f(x+ t(y − x)) ≥ min{f(x), f(y)}

and we could take ϵ = 1.
It may be useful to observe that the function f(x, y) = eA(x+y) does not belong to

C2,ϵ,η(A) because (3.4) fails but, for any θ > 0, f(x, y) = (1+A(x+y))θ does belong
to C2,1,ηθ(Aθ) for some easily computed explicit ηθ. Other examples satisfying (3.2)-

(3.3)-(3.4) are f(x, y) = (1 + ((Ax)2 + (Ay)4))θ, θ > 0, and f(x, y) = eAmin{x+y,1}.
Next, as always, we pick an integer N ≥ A to ensure a good approximation

between the discretized function

FN (x) = f
((
N−1(xi − 1/2)

)n
1

)
, x ∈ BN = {1, . . . , N}n

and f .

Proposition 3.3. Fix ϵ, η > 0 and the dimension n. Let N ≥ A ≥ 1. For any
function f ∈ Cn,ϵ,η(A), the spectral gap λ of the associated finite Metropolis chain
on BN satisfies λ ≥ cn,ϵ,η/N

2.

Proof. For any pair of points x, y in the discrete box BN , pick a discrete path γxy in
BN which remains always at distance at most

√
n/N of the straight line joining the

points and assume without loss of generality that γyx is the same path in reverse.
Here

√
n/N is the length of the diagonal of the n dimensional cube if side size 1/N .

Note that, at any point z ∈ BN along this discrete path, the value taken by FN at
z, FN (z), satisfies

FN (z) �n f(z′xy)
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where z′xy is the point closest to z′ = (N−1(zi − 1/2))n1 ) ∈ [0, 1]n along the straight
line from x′ to y′ in [0, 1]n. This is because FN (z) = f(z′) and

| log(f(z′)/f(z′xy))| ≤ A
√
n/N.

This will allow us to use (a version of) the second hypothesis (3.3) along the discrete
path γxy.

We now apply Proposition 2.1 with set A = BN and trivial weight w(e) = 1.
Obviously, the maximal path length is no more than nN �n N and

W (e) ≤ nN

Q(e)

∑
x∈BN,y∈BN

γxy∋e

π(x)π(y)

where π = ZNFN is our target probability distribution, the normalized form of FN

and Q(e) � π(e−) � π(e+) because of (3.2) and the fact that A ≤ N . By hypothesis
(3.3) and the remark above, we have

π(x)π(y)

π(e+)
≤ Cnϵ

−1 sup
z
{π(z)}.

Because of (3.2)-(3.4), we have

π(z) = ZNf(z′) ≤ η−1ZN

∫
[0,1]n

fdµ

and ∫
[0,1]n

fdµ ≤ C ′
nN

−n
∑
ξ∈BN

FN (ξ) = C ′
nN

−nZ−1
N .

This gives

π(z) ≤ η−1C ′
nN

−n

and

W (e) ≤ C ′′
nϵ

−1η−1N−n
∑

x∈BN,y∈BN
γxy∋e

1.

By symmetry,

∑
x∈BN,y∈BN

γxy∋e

1 ≤ 2max
e


∑

x∈BN,y∈BN,d(x,e)≤d(y,e)
γxy∋e

1


A simple geometric argument based on the nature of the paths γxy (they stay close
to the straight line joining x to y), implies that, for any y there are at most C ′′′

n N
possible points x satisfying the conditions required in the sum and thus∑

x∈BN,y∈BN,d(x,e)≤d(y,e)
γxy∋e

1 ≤ C ′′′
n Nn+1.

Putting all these pieces together gives

W (e) ≤ Cn(ϵη)
−1N2

as desired. □
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We do not discuss upper-bounds on λ even though is seems plausible that the
hypotheses (3.2)–(3.4) might be enough to obtain a matching upper-bound. This
is a major weakness of this result as one would like to find hypotheses that suffices
for the lower bound λ ≥ cN−2 but cover a great variety of examples including some
with larger spectral gap.

4. The valley effect in dimension 2

We close this work with a two-dimensional example that is reminiscent to the
simplest version of the examples in Section 2.3. See also [10]. For this example, it
is convenient to work on the cube [−1, 1]2 and the associated discrete box BN =
{−N + 1, . . . , N}2. Because this leads to some slightly unusual coordinate shifts,
we draw a small N example for illustration and check.

-4 50 1

-4

5

0
1

Figure 2. Grid approximation BN = {−N + 1, . . . , N}2 of the box
[−1, 1]2 at level N = 5: The red grid has 2N vertical lines and 2N
horizontal lines; the grey grid decomposes [−1, 1]2 into (2N)2 little
squares.

The model function we want to consider is

f(x, y) = (A|x+ y|+ 1)α

where A is a large constant and α is a fixed non-negative constant (in fact, the case
of a negative α is covered by the results of the previous section). Using the map
(x1, x2) 7→ N−1(x1 − 1/2, x2 − 1/2) from BN to [−1, 1]2, this yields the probability
measure

(4.1) π = ZNFN with FN (x1, x2) =

(
A

N
|x1 + x2 − 1|+ 1

)α

on BN .

The constant ZN is given by

Z−1
N =

N∑
x1=−N+1

N∑
x2=−N+1

(
A

N
|x1 + x2 − 1|+ 1

)α

� AαN2.

Examples of such π are illustrated below, with N = 5 and α = 0.5, 2.
In fact, we will treat the following natural variation on these examples. Let L be

a straight line through the origin in [−1, 1]2 and let

(4.2) f(x) = (1 + Ad2(x, L))
α, α > 0,
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Figure 3. The measure π at (4.1) for α = 0.5 and α = 2

where d2(x, L) is the Euclidean distance from x = (x1, x2) ∈ [−1, 1]2 to the line L.
As before, we set π = ZNFN with

(4.3) FN (x1, x2) = [1 + Ad2 (((x1 − 1/2)/N, (x2 − 1/2)/N) , L)]α on BN .

The constant ZN is again of order AαN2.

Proposition 4.1. Fix ϵ ∈ (0, 1). For all N ∈ [ϵA,A/ϵ], the Metropolis chain for
the probability measure π on BN defined at (4.3)has spectral gap

λ �ϵ


1
N2 α < 1,

1
N2 log(N)

α = 1,
1

Nα+1 α > 1.

Proof of the upper-bound. We explain the upper-bound in the case A = N and for
example (4.1). A similar argument works for measures of the type (4.2)-(4.3). We
have

λ = inf
f

{
E(f |f)
‖f‖22

: π(f) = 0 and π(f2) 6= 0

}
.

Consider the test function

f(x) = f(x1, x2) =


∑k

ℓ=2
1

(ℓ−1)α if x1 + x2 = k ∈ {2, . . . , 2N}
0 if x1 + x2 = 1,

−
∑k

ℓ=0
1

(1+ℓ)α if x1 + x2 = −k ∈ {−2N + 2, . . . , 0}.

Notice that this function f is antisymmetric with respect to the diagonal x1+x2 = 1
in {−N + 1, . . . , N}2. Since π is symmetric with respect to the same diagonal, f
has mean 0. We note that

|f(x1, x2)| �


1 if α > 1 and x1 + x2 − 1 6= 0,

log(1 + |x1 + x2 − 1|) if α = 1,

(1 + |x1 + x2 − 1|)1−α if α < 1 and x1 + x2 − 1 6= 0.

It follows that

‖f‖22 �


1 if α > 1,

(log(1 +N))2 if α = 1,

(1 +N)2−2α if α < 1.
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Next, we note that for x ∼ y (i.e., M(x, y) > 0) in BN , we have

|f(x)− f(y)| � (1 + |x1 + x2 − 1|)−α.

This allows us to estimate

E(f, f) �


N−α−1 if α > 1,

N−2 log(1 +N) if α = 1,

(1 +N)−2α if α < 1.

Together, these computations of ‖f‖22 and E(f, f) give the desired upper-bound on
λ. □

We treat the lower-bound in the case of measures of type (4.2)-(4.3) because this
case requires a few interesting adjustments compared to (4.1) but we will start with
the case (4.1) as a warm-up. To obtain a lower-bound on λ, we return to the formula
λ ≥ 2

W as in Proposition 2.1 with the set A in Proposition 2.1 being the full space
A = BN .

Choice of paths. Consider π is as in (4.3) with L = {(x1, x2) : ax1 + bx2 = 0},
a2 + b2 = 1. Without loss of generality, we can assume that a ≥ |b|. This means
that the line L is more vertical than horizontal because the slope is a/b (vertical if
b = 0).

Each pair (x, y) ∈ B2
N determines a rectangle Rxy with sides parallel to the two

axes. If x, y are on the same side of L, γxy follows the two consecutive sides of
the rectangles that are farthest away from L. If x, y are on different sides of L
and d2(x, L) ≤ d2(y, L), we must have one of the following four configurations, Ri,
1 ≤ i ≤ 4, which focuses on the two sides of Rxy which intersect the line L.

Figure 4. The four configrurations Ri, 1 ≤ i ≤ 4, when x, y are on
different sides of L and d2(x, L) ≤ d2(y, L). In each case the black
circle show the corner used by γxy.

In all cases, γxy starts with the side at x that crosses L with preference for the
horizontal crossing. If d2(x, L) = d2(y, L) make a choice to break the tie. In all
cases, γyx is chosen to be γxy travelled in reverse order.

Choice of weights. Given an edge e = (x, y) ∈ E and α > 0 as in (4.1)-(4.3), set

w(e) = (1 + max{d2(x, L), d2(y, L)})α/2 � FN (x)1/2 � FN (y)1/2.
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Given that these choices of path and weight satisfy the assumptions in Remark 2.1,
in order to bound W , it suffices to bound W (e) (for all e) or (also, for all e)

(4.4) W̃ (e) =
w(e)2

Q(e)

∑
x,y∈BN,π(x)≤π(y)

γxy∋e

|γxy|wπ(x)π(y).

This differs from W (e) by the extra condition π(x) ≤ π(y) in the summation.

Proof of the lower-bound on λ for (4.1). In this case, L joins diagonally opposite
corners. What makes the case (4.1) simpler than the general case is the computation
of the w-length of paths. Indeed, the w-diameter of BN is easily computed to satisfy

diam �α D(α,N) =

 1 if α > 1,
logN if α = 1,
N1−α if α ∈ (0, 1).

This easily follows from computing the length of any vertical and horizontal line in
BN . It is possible to track down the dependence on α in these computations but
we do not do so. Moreover, the same holds true in the general case (4.3) as long as
the angle of the line L with each of the axes is bounded away from 0 (uniformly in
N). Now, because of the choice of the weight, we have

W (e) ≤ CNα+2D(α,N)
∑

x,y∈BN
γxy∋e

π(x)π(y).

It is a simple matter to verify that

(4.5)
∑

x,y∈BN
γxy∋e

π(x)π(y) ≤ C ′N−1.

This is because the condition γxy 3 e for some fixed e places either x or y on a line
parallel to one of the axes. Together, these computations give

W (e) ≤ Cα

 N1+α if α > 1,
N2 logN if α = 1,

N2 if α ∈ (0, 1).

and this provides the desired lower bound on λ. □

Proof of the lower-bound on λ, vertical case . To understand why the previous ar-
gument does not work in general, consider the case when L is vertical. In this case,
assuming π(x) ≤ π(y), the length of a path going from x = (x1, x2) to y = (y1, y2)
with |x1| < |y1| is of order

|γxy|w �α
|y2 − x2|
FN (y)

+

 1 if α > 1,
log(1 + |y1 − x1|) if α = 1,

|y1 − x1|1−α if α ∈ (0, 1).

Using W̃ (e) instead of W (e) for convenience, we write

W̃ (e) ≤ Cα(W1(e) +W2(e))
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where

W1(e) = Nα+2
∑

x,y∈BN,π(x)≤π(y)
γxy∋e

|y2 − x2|
FN (y)

π(x)π(y)

and (see the definition of D(α,N) above)

W2(e) = Nα+2D(α,N)
∑

x,y∈BN,π(x)≤π(y)
γxy∋e

π(x)π(y).

As above, (4.5) gives

W2(e) ≤ C ′
α

 N1+α if α > 1,
N2 logN if α = 1,

N2 if α ∈ (0, 1).

ForW1(e), the computation is slightly different depending on whether e is horizontal
or vertical. In both cases, we have

W1(e) ≤ C ′
αN

∑
x,y∈BN,π(x)≤π(y)

γxy∋e

π(x) ≤ C ′′
αN

2.

Observe that the upper-bound for W2(e) always dominates that on W1(e). The
desired result follows in this case. This argument remains valid as long as the
line L crosses the top and bottom sides at bounded distance from their respective
mid-point (uniformly in N). □
Proof of the lower-bound on λ, in general. Now, consider the general case. So far,
we have treated the cases a = |b| (more generally, a � b) and b = 0 (more generally,
|b| ≤ C/N for some fixed C).

To treat the general case, we partition the pairs (x, y) into three subsets: P0 is the
set of pairs for which π(x) ≤ π(y) and x and y lie on the same side of L. The second
subset, P12, is the set of pairs on different sides of L for which π(x) ≤ π(y) and L is
crossed horizontally. Such pairs (after the use of some symmetries) corresponds to
configurations R1,R2 in Figure 4. The third and last subset, P34, is the set of pairs
on different sides of L for which π(x) ≤ π(y) and L is crossed vertically. Such pairs
(after the use of some symmetries) corresponds to configurations R3,R4 in Figure

4. We need to bound W̃ (e) at (4.4) from above and we split the sum in (4.4) into
three parts corresponding to the the contributions of P0, P12 and P34 which we call

W̃0(e), W̃12(e) and W̃34(e).

Contribution of P0. The length of any paths associated with (x, y) ∈ P0 is bounded
by

|γxy|w ≤ Cα

(
N

FN (x)
+D(α,N)

)
.

It follows that (the computation is similar to the one done above in the case when
L is vertical; the constant Cα may change from line to line)

W̃0(e) ≤ CαN
2 + Cα

 N1+α if α > 1,
N2 logN if α = 1,

N2 if α ∈ (0, 1).
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Note that the second term always dominates.

Contribution of P12. The contribution to W̃12(e) of the horizontal w-length of paths
is always bounded by

Cα

 N1+α if α > 1,
N2 logN if α = 1,

N2 if α ∈ (0, 1).

So, we concentrate on the vertical w-length of the paths. For a given e, call the

corresponding sum W̃ v
12(e) (this is the vertical component of W̃12(e)).

Figure 5. The configrurations R1,R2

Call z the turning point on γxy (z = x if there is no turning point). When
(x, y) ∈ P12, the w-length vxy of the vertical component of the path γxy is of order

|y2−x2|∑
0

1

(1 +
√
d2(z, L)2 + (bk)2)α

�
∫ |y2−x2|

0

ds

(1 +
√
d(z, L)2 + (bk)2)α

.

Hence, vxy is bounded above by

vxy ≤ Cα


1
|b|

1
FN (z) if α > 1,

1
|b| log

(
FN (y)
FN (z)

)
if α = 1,

1
|b|

d2(y,L)
FN (y) if α ∈ (0, 1).

In the case α ∈ (0, 1), d(y, L) ≤ |b|N and it follows that vxy ≤ N/FN (y). As

discussed earlier, this gives W̃ v
12(e) ≤ CN2. In the case α = 1,

vxy ≤ 1

|b|
log

(
1 + d2(y, L)

1 + d2(z, L)

)
≤ C log

(
1 + C

|b||y2 − z2|
1 + d2(y, L)

)
≤ C ′ N

FN (y)
.

Earlier computations applied again and gives W̃ v
12(e) ≤ CN2. In the last case,

α > 1, we consider two sub-cases. For those x, y such that d2(z, L) ≥ d2(x, L), we
have vxy ≤ CN/FN (x) and

Nα+2
∑

x,y∈P12,d2(x,L)≤d2(z,L)
γxy∋e

vxyπ(x)π(y) ≤ CN
∑

x,y∈P12
γxy∋e

π(y) ≤ C ′N2.
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For those x, y such that d2(z, L) < d2(x, L), we have |y1 − x1| ≤ bN and it follows
that ∑

x,y∈P12,d2(z,L)≤d2(x,L)
γxy∋e

vxyπ(x)π(y) ≤ C|b|−1
∑

x,y∈P12,|y1−x1|≤bN,
γxy∋e

π(x)π(y)

≤ C ′|b|−1|b|N−1 ≤ C ′N−1.

After multiplying by N2+α, this shows that

W̃ v
12(e) ≤ Cα

{
N1+α if α > 1,
N2 if α ∈ (0, 1],

and thus

W̃12(e) ≤ Cα

 N1+α if α > 1,
N2 logN if α = 1,

N2 if α ∈ (0, 1).

Contribution of P34. As in the treatment of W̃12 above, the contribution of the

horizontal w-length of the paths to W̃34(e) is always bounded by

Cα

 N1+α if α > 1,
N2 logN if α = 1,

N2 if α ∈ (0, 1).

So, we concentrate on the vertical w-length of the paths. For a given e, call the

corresponding sum W̃ v
34(e) (this is the vertical component of W̃34(e)).

Figure 6. The configrurations R3 and R4

Computing as in the case of P12, the vertical contribution vxy to the w-length of
γxy is bounded above by

vxy ≤ Cα


1
|b| if α > 1,

1
|b| logFN (y) if α = 1,

1
|b|

d2(y,L)
FN (y) if α ∈ (0, 1).

In addition, because (x, y) ∈ P34, we must have d2(y, L), d2(x, L) ≤ bN and |y1 −
x1| ≤ bN . Now, in order to compute W̃ v

34(e) when α ∈ (0, 1), we proceed exactly as
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before and we get W̃ v
34(e) ≤ CN2 as desired. In the case α = 1, we have

W̃ v
34(e) ≤ CNα+2

∑
x,y∈P34,
γxy∋e

vxyπ(x)π(y)

≤ C ′|b|−1 log(|b|N)N3
∑

x,y∈P34
γxy∋e

π(x)π(y)

≤ C ′′N2 log(|b|N).

Here, we have used the fact that the summation in x is necessarily reduced to a
range of order at most |b|N and that, for each e, either x or y is located along a
single line parallel to an axis (as usual in these computations).

Finally, in the case α > 1,

W̃ v
34(e) ≤ CNα+2

∑
x,y∈P34,
γxy∋e

vxyπ(x)π(y) ≤ C ′|b|−1Nα+2
∑

x,y∈P34
γxy∋e

π(x)π(y)

≤ C ′′Nα+1

because ∑
x,y∈P34
γxy∋e

π(x)π(y) ≤ C|b|N−1.

This last inequality uses again the fact that the summation in x is necessarily
reduced to a range of order at most |b|N and that, for each e, either x or y is
located along a single line parallel to an axis. □

5. Concluding remarks

Working on the cube [0, 1]2 and its discrete approximation, we have identified
a number of simple examples of target probability densities illustrating different
behavior of the Metropolis chain based on simple random walk. More precisely,
we provided matching upper- and lower-bounds for the spectral gap λ of these
Metropolis chains.

5.1. The role of (quasi)-unimodality. The valley effect treated in Section 2.3
and Section 4 shows how the existence of at least two peacks leads to a much
smaller spectral gap λ even in the polynomial realm if the degree of polynomial
growth of the two peacks are large enough. Multiple exponential peacks leads to
even much smaller spectral gap. This, of course, is a well identified difficulty in
practical implementation when multiple peacks cannot be ruled out.

5.2. Related but different algorithms. This paper aims to illustrate the use of
path techniques to bound the spectral gap and this is easiest to implement via the
type of discretization scheme discussed here. Given a target density f in [0, 1]n,
one may wish to implement algorithms that do not use discretization. Two come
to mind.

The first is to use the Metropolis algorithm directly on [0, 1]n using a proposal
chain based on picking a point uniformly in a ball of radius r around the current
location x. Here, the parameter r is small and plays the role of the grid parameter N
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in the sense that one can think of r as similar to the width 1/N of the approximating
grid (the reader should note that, in the examples we treat, N is chosen to match
certain basic features of the problem). See [3, 4] for detailed descriptions of how
such chain are constructed and studied. One expects results very similar to those
described here to hold despite significant technical differences in the treatment of
such chains.

The second is to use a Langevin diffusion process with equilibrium measure having
density proportional to the target f . This is achieved by considering the Dirichlet
form E(u, u) =

∫
[0,1]n |∇u|2f(x)dx on L2([0, 1]2, f(x)dx). This process has a spectral

gap. Note that, in this case, there is no parameter r or N . Instead, the spectral gap
depends directly on the features of the target density f . In the examples treated
here, one expects that the discretization procedure studied in this paper (at a proper
scale, depending on the features of f) can be compared to the Dirichlet form of the
Langevin process in such a way that one can relate the spectral gaps of both in a
useful way (but this is not universally true: The Langevin process for a Gaussian is
not easily related to the discrete procedure because its profile presents both flat and
very steep zones). Using path techniques directly on the Langevin Dirichlet forms
to prove spectral gap estimates has proved somewhat difficult (again, Gaussian
densities illustrate such difficulties).

5.3. Convergence. The spectral gap λ, and its inverse, the so-called relaxation
time 1/λ, are key parameters in understanding the running time of the correspond-
ing Monte-Carlo algorithms. However, the directly relevant parameter is the so-
called mixing time, either in total variation distance, or maximum distance (or
L2-distance). Namely, referring to (1.1), the mixing time in total variation is often
defined as

TTV = inf

{
t : sup

x

∑
y

|Ht(x, y)− π(y)| ≤ 1/e

}
(here e denotes the number e, the base of the natural logarithm) whereas

T∞ = inf

{
t : sup

x,y

∣∣∣∣Ht(x, y)

π(y)
− 1

∣∣∣∣ ≤ 1/e

}
.

With this notation, it is well-known that (see, e.g., [9, 11], π∗ is the minimal value
taken by π(x))

(5.1)
1

λ
≤ TTV ≤ T∞ ≤ (1 + log 1/π∗)

λ
.

To conclude this work, we review how this applies to some of our examples and
what the expected true behavior should be.

5.3.1. Asymmetric one-dimensional examples of Section 2.3. In these examples
log(1 + 1/π∗) � logmax{N−, N+}. In the symmetric case when N− = N+ = N
and a− = a+ = a, treated in [10], TTV � T∞ � 1/λ (the implied constants may
depend on a but they do not depend on N ; see [10]). One expects that the same is
true in the asymmetric cases discussed here but the technique of [10] does not apply
directly: getting rid of the factor of log(1 + 1/π∗) requires some different ideas and
we do not know of a directly applicable reference.
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5.3.2. Exponential fall-off. In the case of the examples treated in Subsections 3.1-
3.2 (assume a � b in Subsection (3.1)), we have log(1 + 1/π∗) � N and 1/λ � 1.
Moreover, it is relatively easy to see that the lower bound 1 � 1

λ ≤ TTV is off
by a factor of N . Heuristically, starting from a position that is away from the
exponential peak of the distribution, it takes at least order N steps to reach a set A
with π(A) ≥ 1/2, providing the desired lower bound. So the upper-bound T∞ ≤ CN
is sharp and TTV � T∞ � N in these cases.

5.3.3. Examples with spectral gap no worse than 1/N2. Examples treated in this
section can have log(1 + 1/π∗) of order varying from logN to N and it seems
difficult to improve upon (5.1) without making more restrictive hypotheses.

5.3.4. The valley effect. Regarding the examples treated in Section 4, the basic
ideas used to treat the one-dimensional versions of these examples in [10] do apply
and it is thus possible to improve upon the lower bound in (5.1) and show that,
with constants depending on the parameter α > 0 but not on N ,

1

λ
� TTV � T∞.

Note that in these examples log(1 + 1/π∗) � logN . The application of the Nash
inequality technique used in [10] to the present 2-dimensional examples requires
some work and we only indicate briefly the main idea. The reason such examples
satisfy the proper Nash inequality, uniformly in N , is because each side of the valley
does satisfy such an inequality and it is possible to glue together these functional
inequalities to obtain one for the entire box. When α ≥ 1, these examples present
a variety of interesting behaviors including the following: (a) from a starting point
on the line L (the valley), or appropriately close to it, the chain mixes in time of
orderN2, significantly shorter than the relaxation time 1/λ (this is not immediate to
prove); (b) when starting away from the line L, the chain displays a quasi-stationary
behavior in the sense that it appears to equilibrate after a time of order N2 on about
half the box (one side of the line L) before reaching its true equilibrium in a time
of order 1/λ. This requires showing that there is a large gap between the spectral
gap λ and the next eigenvalue which is of order 1/N2 ≫ λ. Such effects do not
occur when α ∈ (0, 1). See [2, Section 6] for a related discussion and examples.
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