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ABSTRACT: Compound coastal flooding i.e. coastal flooding driven by storm surge, rainfall, and 
riverine dynamics poses a significant and complex hazard. We present a novel framework for statistical 
modeling of this hazard as applied in a preliminary pilot study in Louisiana. This framework extends the 
Joint Probability Modeling with Optimal Sampling (JPM-OS), previously used for purely surge and wave 
driven flooding, with a stochastic rainfall field generator to produce an empirical distribution of 
compound surge-rainfall events with pre-computed surge and wave behavior modeled via ADCIRC + 
SWAN and hydrologic behavior modeled via HEC-HMS. A clustering-based discretization scheme is 
then applied to the sampling distribution in order to reduce set of outcomes to a size which can be 
tractably simulated via HEC-RAS while minimizing the square error induced by discretization. While 
model improvements are ongoing, the clustering-based discretization scheme is highly generalizable, 
provides guaranteed convergence to local optima, and performs well in preliminary analysis. 
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1. INTRODUCTION 
Compound coastal flooding, i.e., flooding driven 
by interacting pluvial, riverine, and coastal 
dynamics, poses a significant hazard which in 
some areas is much greater than can be attributed 
to inland or coastal dynamics separately [1]–[4]. 
Characterizing this hazard requires two major 
model components: a physically driven 
simulation model or metamodel thereof which 
estimates flood depths resulting from a given 
storm event, and a statistical model which 
estimates the probability distribution of the 
number and characteristics of storm events in a 
given year. While physically driven simulation of 
compound flood events represents an active area 
of research [5], the methods discussed here focus 
on the statistical modeling of compound flood 
hazard from tropical storms specifically.  

1.1. The structure of statistical models of 
compound tropical flood hazard 

Statistical models of compound flooding from 
tropical cyclones consist of three major 
components. The first component, the recurrence 
rate analysis, estimates the rate at which tropical 
cyclones occur. The second describes the 
continuous joint distribution of tropical cyclone 
features which drive hazard when tropical 
cyclones occur. The third discretizes the 
continuous distribution of tropical cyclone 
features to a set of events which can tractably be 
run through physically driven simulations.  

The recurrence rate analysis is typically done 
with the capture zone or kernel function weighting 
approach [6], [7]. The capture zone approach 
simply counts and averages the number of storms 
passing through a specified area per year. The 
kernel function weighting approach applies a 
smoothing kernel to the travel paths or “tracks” of 
historical storms and integrates the resulting 
kernel frequency density over a length of 
idealized coastline or region of interest.  

The continuous joint distribution of tropical 
cyclone features is typically captures using 
copulas, physically driven Monte Carlo 
ensembles, and joint probability methods. 

Copulas are common in the literature and easy to 
use, as they require only specified marginal 
distributions and simplified dependence 
structures between hazard drivers such as peak 
surge and total rainfall [8]–[10], but in practice 
can only produce dependency structures which 
match one or at most two dependency measures of 
the true joint distribution [11], e.g. the meta-
gaussian copula which captures rank correlation 
only. Physically driven Monte Carlo ensembles 
are less common, and are generated by randomly 
seeding tropical cyclone vortices and evolving 
them with deterministic meteorological 
simulations [12], which carries the advantages for 
the physical realism of individual cyclones but 
may or may not reflect the true joint variance 
structure of storm features. Joint probability 
methods are uncommon in compound flood 
hazard analysis and more commonly used for 
purely coastal i.e., surge and wave driven flood 
hazard characterization. Joint probability methods 
leverage empirically derived statistical 
relationships and conditional independence 
structures permitting analysts to flexibly express 
the joint distribution of tropical cyclone features 
as a series of conditional distributions or Bayesian 
factorization [13]–[15]. 

Continuous joint distributions of tropical 
cyclone features are typically discretized in one of 
three ways: naïve Monte Carlo sampling [16], 
structured samples [15], and optimization-driven 
subsampling of larger Monte Carlo or structured 
samples[13], [17]. The idealized discrete storm 
events in the resulting distribution are referred to 
as synthetic storms. Naïve Monte Carlo sampling 
directly samples from the continuous joint 
distribution but requires a large sample size. A 
structured sample can more efficiently span 
tropical cyclone parameter space but relies on a 
heuristic integration scheme to assign probability 
masses and may also require a large sample size. 
Optimization-driven subsampling is often used to 
reduce the set of synthetic storms to a size for 
which flood depths can be more tractably 
simulated in coastal flood risk analysis [18], [19], 
but requires initial simulation of the original set 
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[17] or unrealistic assumptions about the variance 
structure of conditional flood depth exceedance 
probabilities for Bayesian quadrature [18]. 

1.2. Project Context 
The methods presented here were developed in 
the course of a preliminary pilot analysis for the 
Louisiana Watershed Initiative and applied in an 
illustrative case study to the Amite River Basin. 
Efforts towards a revision of this pilot study to 
finalize methods before eventual coastwide 
implementation are ongoing and will be noted as 
appropriate.  

2. METHODS 
It was decided at the outset of the project that 

the statistical model of joint flood hazard would 
extend the CLARA model used in Louisiana’s 
2023 Coastal Master Plan [17]. This version of 
CLARA used a one-dimensional capture zone 
(i.e. line-crossing) approach for recurrence 
analysis, although ongoing development has 
replaced this with a kernel density weighting 
approach. CLARA  uses a joint probability 
method to characterize the continuous joint 
distribution of five tropical storm parameters at 
landfall: landfall location, central pressure, radius 
of maximum windspeed, heading angle, and 
forward velocity. While CLARA supports 
discretization via a structured set of 645 synthetic 
storms, it was decided due to computational 
constraints to use a reduced set of 50 synthetic 
storms using subsampling methods previously 
applied in the 2023 Coastal Master Plan [17] 
which performs well in approximating the 
distribution of surge hazard. In future analysis, 
any subsetting of the larger synthetic storm set 
will be conform to optimal sampling methods for 
compound hazard described below. 

The distribution of rainfall conditionally on 
the five tropical cyclone parameters used in 
CLARA was modelled using the stochastic 
rainfall generator for tropical cyclone produced 
by Villarini et al. [20]. This generator estimates 
the expected rainfall associated with a synthetic 
storm and samples from a parameterized model of 
the residual variance. In doing so it captures and 

samples from the aleatory uncertainty in rainfall 
from associated with each synthetic storm. 
Further investigation revealed bias in the stage IV 
data initially used to calibrate the generator, taken 
from the National Centers for Environmental 
Prediction. This resulted in five equiprobable bias 
correction factors applied to rainfall fields 
produced by the generator, and future analysis 
will instead use a similar generator calibrated 
using the alternative Analysis of Record for 
Calibration dataset [21]. Additionally, it was 
found that the distribution of antecedent 
conditions could be reasonably represented using 
three equiprobable cases, although future analysis 
will instead utilize five probability-weighted 
cases. The joint distribution of coastal and inland 
flood drivers was therefore characterized with a 
discrete distribution of 50 probability-weighted 
synthetic storms each of which with an arbitrarily 
large set of equiprobable stochastic rainfall fields 
(50 as implemented although more will be used in 
the future), each with five bias correction factors 
and three antecedent conditions cases. In practice 
this resulted in an empirical distribution 
characterized by a set of 37,500 events  

Flood depths for discrete events were 
simulated via HEC-RAS with upstream 
hydrological boundary conditions from HEC-
HMS and downstream boundary conditions from 
ADCIRC+SWAN, although future analysis will 
utilize updated HEC-RAS with rain-on-grid for 
the full model domain in lieu of upstream 
hydrological modeling. While future analysis will 
use a substantially better-optimized HEC-RAS 
model, the computational efficiency of the HEC-
RAS model available was such that the initial 
pilot analysis was limited to 200 HEC-RAS 
simulations. 

This required the use of a novel optimal 
sampling discretization procedure for compound 
coastal flooding. The available budget of 200 
HEC-RAS simulations was insufficient to 
evaluate even a single rainfall field over all five 
bias corrections for each synthetic storm and 
antecedent conditions case combination. 
However, ADCIRC+SWAN simulation output 
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was already available for each synthetic storm 
from the 20203 Coastal Master Plan, and the 
HEC-HMS model used to calculate upstream 
hydrological boundary conditions was orders of 
magnitude faster than the HEC-RAS model. We 
therefore evaluated discharge behavior of each of 
50 stochastic rainfall fields for each of the 50 
synthetic storms with each of the 5 bias correction 
factors for each of the three antecedent conditions 
cases, extracted features of each simulation run 
which combined with features of surge behavior 
were taken to represent the joint distribution of 
compound flood drivers given the occurrence of a 
tropical cyclone. This distribution was then 
discretized using a clustering-based approach to 
minimize the integrated square error induced by 
discretization. We refer to the methods used in 
their totality as the extended joint probability 
method with optimal sampling (EJPM-OS). 

2.1. Optimal sampling discretization for 
compound coastal flood risk 

The goal of optimal sampling discretization for 
compound coastal flood risk is to discretize a 
continuous random variable or to more coarsely 
discretize a discrete random variable while 
introducing as little error as possible. We define 
the error induced by discretization as a loss 
function in Equation 1.  

𝐿𝑋(𝑋′) = ∫ ||𝑋(𝜔) − 𝑋′(𝜔)||
Ω

2

𝑑𝑝(𝜔) (1) 

Here 𝑋 is the original (multivariate) random 
variable, 𝑋′  is the discretized random variable, 
𝐿𝑋(𝑋′) is the loss function or error induced by 
approximating 𝑋  as  𝑋′ . The right-hand side of 
the equation invokes the measure-theoretic 
definition of a random variable. A random 
variable is defined as a function 𝑋: Ω → ℝ where 
Ω is a sample space consisting of possible events. 
Our multivariate random variables are vectors of 
univariate random variables 𝑋 = (𝑋1, 𝑋2, … ) , 
𝑋′ = (𝑋1

′ , 𝑋2
′ , … ) . The loss function or 

approximation error can be interpreted as the 
Euclidean distance between the true 
representation of an event 𝜔 ∈ Ω, 𝑋(𝜔) ∈ ℝ𝑛 , 

and its approximated representation after 
discretization 𝑋′(𝜔) ∈ ℝ𝑛 , integrated over the 
space of events Ω with probability measure 𝑝. 

In the case of a continuous original random 
variable, we approximate the continuous random 
variable with one constructed from an arbitrarily 
large random sample, resulting in Equation 2. 
Note that in the case that the original random 
variable is already discrete Equation 2 holds with 
equality. 

𝐿𝑋(𝑋′) ≈ ∑ ||𝑋(𝜔) − 

Ω

𝑋′(𝜔)||2𝑝(𝜔) (2) 

We wish to select 𝑋′  so as to minimize the 
approximated loss function. We see that this is 
achieved by performing weighted k-means 
clustering of 𝑋(𝜔) and setting 𝑋′(𝜔) equal to the 
centroid of the cluster containing 𝑋(𝜔) . This 
follows from equation 2. In equation 3 were-
express equation 2 in terms of outcomes 𝑥 =
𝑋(𝜔)  and set 𝑋′(𝜔) =  𝜇𝑖  where 𝑖  is selected 
such that 𝑋(𝜔) ∈ 𝑆𝑖  where 𝑆𝑖  is the cluster 
containing 𝑋(𝜔) , and we observe that the 
approximated value of our loss function from 
equation 2 is exactly equal to the within-cluster 
variance which is minimized by observation-
weighted k-means clustering as we see in equation 
3. 

𝐿𝑋(𝑋′) ≈ ∑ ∑||𝑥 − 𝜇𝑖||
2

𝑝(𝑥)

𝑥∈𝑆𝑖

𝑘

𝑖=1

(3) 

Note that 𝑘 is the number of clusters or discrete 
values of 𝑋′, which we set a-prior based on our 
computational constraints. While k-means 
clustering algorithms guarantee convergence only 
to locally optimal clusterings, repeated 
optimization with randomly initialized centroids 
ensures results which are close to globally 
optimal. 

The most significant weakness of this 
approach as initially implemented is that optimal 
sampling on boundary condition features i.e. 
surge and discharge information is not necessarily 
the same as optimal sampling on peak water 
surface elevation, which is ultimately the hazard 
of interest. However, HEC-RAS is a deterministic 
simulation, so a discretization of the hazard 
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distribution which induces no error in the 
distribution of boundary conditions would 
similarly induce no error in the distribution peak 
water surface elevations. While a discretization 
which induces no error is of course impossible 
both for fundamental reasons and because the 
features of surge and discharge behavior used for 
discretization are much lower-dimensional than 
the full spatially explicit time series used as 
boundary conditions, this leads us to believe that 
a discretization which performs well in 
minimizing error in the distribution of boundary 
conditions will similarly perform well in 
minimizing the error in peak water surface 
elevation. Future analysis using a much better-
optimized HEC-RAS model will permit us to 
empirically investigate this assumption. 
Additionally, due to the availability of better-
optimized HEC-RAS models, future work will 
use the output of HEC-RAS model runs with a 
coarser computational mesh for discretization 
rather than HEC-HMS and ADCIRC+SWAN 
results. 

An additional limitation of this method in 
practice is that there is no observation at the exact 
centroid of each cluster, so the observation nearest 
each cluster centroid is used instead. 
Investigations into how many stochastic rainfall 
fields per synthetic tropical cyclone are required 
to adequately characterize the aleatory uncertainty 
in rainfall, as well as how many clusters are 
required to adequately capture the variability of 
the full distribution are ongoing. Work is also 
ongoing to refine pre-processing steps and 
implementation details of the clustering-based 
optimal sampling scheme, detailed below. 

2.2. Implementation of optimal sampling 
discretization 

We start by extracting peak discharge, runup time, 
and drawdown time from each major inlet to the 
HEC-RAS domain, as well lag time between time 
of peak surge and peak discharge and surge 
characteristics including average peak surge 
depth, runup time, and drawdown time among 
representative points. Discharge runup times are 
calculated by treating the discharge from the time 

at which discharge first exceeds its mean value 
over the hydrograph up to the time of peak 
discharge as the left half of a gaussian density 
function and calculating the corresponding 
standard deviation. Drawdown times were 
similarly calculated from the time of peak 
discharge up to the point at which discharge 
receded below its mean value over the 
hydrograph. Surge runup and drawdown times 
were similarly calculated.  A log transformation 
was applied to peak, runup, and drawdown of 
discharge and surge in the preliminary study due 
to pronounced skewness, but future analysis will 
not apply the log transformation as doing so 
reduces the effective weight of extreme results. 
All features were then standardized to have mean 
zero and standard deviation equal to 1, and future 
analysis will have all feature scaled by the square 
root of an assigned importance weight. The 
importance weights will likely be assigned such 
that the total weight assigned to surge behavior is 
equal to that of discharge behavior, and half of the 
weight placed on both surge and discharge 
behavior will be placed on peak values. 
Preliminary results are believed to have placed 
insufficient weight on surge compared to 
discharge, and insufficient weight on peak values 
compared to runup and drawdown rates. Further 
analysis is required to investigate the impacts of 
these feature weights. Events were heuristically 
observation-weighted according to the CLARA-
derived probability mass of their corresponding 
synthetic storms by use of repeated observations, 
permitting us to treat the set of events as a random 
sample of equiprobable events. Future analysis 
will permit continuous observation weights 
instead. 

Following extraction and standardization 
(and feature weighting in future analysis), we 
apply principal component analysis to the 
empirical distribution. The dimensionality and 
size of the sample did not require dimensionality 
reduction in preliminary analysis, but principal 
component analysis was helpful in holistically 
evaluating the performance of the sampling 
approach. Future analysis may or may not require 
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dropping small principal components for 
computational tractability. 

From this point the sample was clustered and 
discretized such that the observation nearest the 
centroid of each cluster was assigned the summed 
probability mass of observations in the respective 
cluster. Several synthetic storms were 
unrepresented in the resulting discretization, 
likely due to aforementioned under-weighting of 
storm surge features. In the preliminary analysis 
this led to an adjustment which replaced certain 
cluster centroids with nearby events from 
unrepresented synthetic storms so as to minimize 
additional error induced by the adjustment, but 
this adjustment is unlikely to be included in future 
analyses both due to the anticipated effects of 
feature-weighting prior to clustering on the 
diversity of synthetic storms in the optimal sample 
and due to the larger set of synthetic storms which 
will be used in future analysis.  

3. RESULTS 
While the methods described above as 
implemented in the preliminary analysis reflect a 
non-negligible contribution to the state of practice 
of statistical modeling of compound coastal flood 
hazard, they reflect development for an 
exploratory and preliminary analysis and are not 
fully reflective of the final methods which will be 
used for the Louisiana Watershed Initiative or the 
revised pilot study of the Amite River Basin. As 
noted throughout, it contains several 
methodological details which will be revised and 
improved upon. For this reason, this report does 
not contain any results or figures which could be 
construed as flood maps or hazard estimates. 
Instead, the results presented here reflect the 
performance of the optimal sampling 
discretization scheme.  

3.1. Fidelity of optimal sampling results to 
original sample 

The clustering-based optimal sampling scheme 
for compound coastal flood hazard presented 
here, despite the various implementation issues 
described which had yet to be adjusted, performed 
surprisingly well at approximating a distribution 

characterized by 37,500 events in 16 dimensions 
(50 synthetic storms, 50 rainfall fields, five bias 
correction factors, and three antecedent 
conditions cases with peak surge, surge runup and 
drawdown, lag time between peak surge and peak 
discharge, and peak discharge and discharge 
runup and drawdown for four inlets). Figure 
Figure 1: Cumulative distribution functions of 
first principal component value and peak 
discharge at the largest inlet of the HEC-RAS 
domain, characterized by the original sample and 
the optimal subsample. shows the cumulative 
distribution functions of the first principal 
component of the sample and of peak discharge at 
the largest inlet to the HEC-RAS domain. The 
optimal subsample matches the distribution of the 
first principal component of the original sample 
almost exactly. The optimal subsample appears to 
underestimate peak discharge for extreme events. 
We expect this to improve in future analyses when 
we no longer apply the log transformation in pre-
processing.  

 
Figure 1: Cumulative distribution functions of first 
principal component value and peak discharge at the 
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largest inlet of the HEC-RAS domain, characterized by 
the original sample and the optimal subsample. 
 

3.2. Agreement between coastal hazard 
characterization of original sample and 
optimal subsample 

 

 
Figure 2: Difference between surge-only flood hazard 
estimated by EJPM-OS as implemented and previous 
CLARA methods, expressed in feet at the 10-, 50-, and 
100-year return periods. Only pixels with a difference 
of 6 inches or greater are shaded. 

 
The clustering-based optimal subsampling 
approach will typically result in clusters 
containing storm events generated from more than 
one synthetic storm and therefore results in 
changes to the probability masses assigned to each 
synthetic storm compared to those in the original 
sample. To investigate the magnitude of this 
effect, we compared surge-driven flood hazard 
estimated by the original CLARA model with 
surge-driven flood hazard estimated using 
probability masses for each synthetic storm 
corresponding to the results of the optimal 

subsampling procedure from EJPM-OS. The 
results are shown in Figure 2. We see broad 
agreement between the methods at the 10- and 
100-year return periods, although we do see that 
the EJPM-OS-derived probability masses 
underestimate the 50-year flood depth by about a 
foot in a section of the model domain. We expect 
this performance to only improve as we increase 
the weight placed on surge features in the optimal 
sampling process.  

4. CONCLUSIONS 
The extended joint probability method with 
optimal sampling (EJPM-OS) represents a novel 
approach for statistical modeling of compound 
coastal flood hazard. Preliminary implementation 
has shown good performance over several 
measures, and more detailed evaluation of 
assumptions and methodological details will be 
published in the future as a part of the Louisiana 
Watershed Initiative. 

The clustering-based optimal sampling 
procedure used in EJPM-OS is highly 
generalizable to statistical characterization of 
natural hazards where the outcome of interest of a 
random event is calculated with a computationally 
expensive model, and for which boundary 
conditions or lower-fidelity estimates (via coarser 
model structure or metamodeling) can be 
produced more efficiently. It can be applied 
directly in cases where the distribution of events 
is represented as an empirical distribution or 
random sample, and it can be applied to a large 
Monte Carlo sample of an arbitrary joint 
distribution without requiring any assumptions 
about the variance structure of the hazard. The 
optimality guarantee associated with this 
approach, that of minimizing integrated square 
error in discretization, is highly appropriate from 
the perspective of viewing natural hazards 
through the lens of multivariate random 
processes. 
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