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ABSTRACT: Compound coastal flooding i.e. coastal flooding driven by storm surge, rainfall, and
riverine dynamics poses a significant and complex hazard. We present a novel framework for statistical
modeling of this hazard as applied in a preliminary pilot study in Louisiana. This framework extends the
Joint Probability Modeling with Optimal Sampling (JPM-OS), previously used for purely surge and wave
driven flooding, with a stochastic rainfall field generator to produce an empirical distribution of
compound surge-rainfall events with pre-computed surge and wave behavior modeled via ADCIRC +
SWAN and hydrologic behavior modeled via HEC-HMS. A clustering-based discretization scheme is
then applied to the sampling distribution in order to reduce set of outcomes to a size which can be
tractably simulated via HEC-RAS while minimizing the square error induced by discretization. While
model improvements are ongoing, the clustering-based discretization scheme is highly generalizable,
provides guaranteed convergence to local optima, and performs well in preliminary analysis.
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1. INTRODUCTION

Compound coastal flooding, i.e., flooding driven
by interacting pluvial, riverine, and coastal
dynamics, poses a significant hazard which in
some areas is much greater than can be attributed
to inland or coastal dynamics separately [1]-[4].
Characterizing this hazard requires two major
model components: a physically driven
simulation model or metamodel thereof which
estimates flood depths resulting from a given
storm event, and a statistical model which
estimates the probability distribution of the
number and characteristics of storm events in a
given year. While physically driven simulation of
compound flood events represents an active area
of research [5], the methods discussed here focus
on the statistical modeling of compound flood
hazard from tropical storms specifically.

1.1. The structure of statistical models of
compound tropical flood hazard

Statistical models of compound flooding from
tropical cyclones consist of three major
components. The first component, the recurrence
rate analysis, estimates the rate at which tropical
cyclones occur. The second describes the
continuous joint distribution of tropical cyclone
features which drive hazard when tropical
cyclones occur. The third discretizes the
continuous distribution of tropical cyclone
features to a set of events which can tractably be
run through physically driven simulations.

The recurrence rate analysis is typically done
with the capture zone or kernel function weighting
approach [6], [7]. The capture zone approach
simply counts and averages the number of storms
passing through a specified area per year. The
kernel function weighting approach applies a
smoothing kernel to the travel paths or “tracks” of
historical storms and integrates the resulting
kernel frequency density over a length of
idealized coastline or region of interest.

The continuous joint distribution of tropical
cyclone features is typically captures using
copulas, physically driven Monte Carlo
ensembles, and joint probability methods.
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Copulas are common in the literature and easy to
use, as they require only specified marginal
distributions and  simplified dependence
structures between hazard drivers such as peak
surge and total rainfall [8]-[10], but in practice
can only produce dependency structures which
match one or at most two dependency measures of
the true joint distribution [11], e.g. the meta-
gaussian copula which captures rank correlation
only. Physically driven Monte Carlo ensembles
are less common, and are generated by randomly
seeding tropical cyclone vortices and evolving
them  with  deterministic = meteorological
simulations [12], which carries the advantages for
the physical realism of individual cyclones but
may or may not reflect the true joint variance
structure of storm features. Joint probability
methods are uncommon in compound flood
hazard analysis and more commonly used for
purely coastal i.e., surge and wave driven flood
hazard characterization. Joint probability methods
leverage  empirically  derived  statistical
relationships and conditional independence
structures permitting analysts to flexibly express
the joint distribution of tropical cyclone features
as a series of conditional distributions or Bayesian
factorization [13]-[15].

Continuous joint distributions of tropical
cyclone features are typically discretized in one of
three ways: naive Monte Carlo sampling [16],
structured samples [15], and optimization-driven
subsampling of larger Monte Carlo or structured
samples[13], [17]. The idealized discrete storm
events in the resulting distribution are referred to
as synthetic storms. Naive Monte Carlo sampling
directly samples from the continuous joint
distribution but requires a large sample size. A
structured sample can more efficiently span
tropical cyclone parameter space but relies on a
heuristic integration scheme to assign probability
masses and may also require a large sample size.
Optimization-driven subsampling is often used to
reduce the set of synthetic storms to a size for
which flood depths can be more tractably
simulated in coastal flood risk analysis [18], [19],
but requires initial simulation of the original set
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[17] or unrealistic assumptions about the variance
structure of conditional flood depth exceedance
probabilities for Bayesian quadrature [18].

1.2. Project Context

The methods presented here were developed in
the course of a preliminary pilot analysis for the
Louisiana Watershed Initiative and applied in an
illustrative case study to the Amite River Basin.
Efforts towards a revision of this pilot study to
finalize methods before eventual coastwide
implementation are ongoing and will be noted as
appropriate.

2. METHODS

It was decided at the outset of the project that
the statistical model of joint flood hazard would
extend the CLARA model used in Louisiana’s
2023 Coastal Master Plan [17]. This version of
CLARA used a one-dimensional capture zone
(i.e. line-crossing) approach for recurrence
analysis, although ongoing development has
replaced this with a kernel density weighting
approach. CLARA uses a joint probability
method to characterize the continuous joint
distribution of five tropical storm parameters at
landfall: landfall location, central pressure, radius
of maximum windspeed, heading angle, and
forward velocity. While CLARA supports
discretization via a structured set of 645 synthetic
storms, it was decided due to computational
constraints to use a reduced set of 50 synthetic
storms using subsampling methods previously
applied in the 2023 Coastal Master Plan [17]
which performs well in approximating the
distribution of surge hazard. In future analysis,
any subsetting of the larger synthetic storm set
will be conform to optimal sampling methods for
compound hazard described below.

The distribution of rainfall conditionally on
the five tropical cyclone parameters used in
CLARA was modelled using the stochastic
rainfall generator for tropical cyclone produced
by Villarini et al. [20]. This generator estimates
the expected rainfall associated with a synthetic
storm and samples from a parameterized model of
the residual variance. In doing so it captures and
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samples from the aleatory uncertainty in rainfall
from associated with each synthetic storm.
Further investigation revealed bias in the stage [V
data initially used to calibrate the generator, taken
from the National Centers for Environmental
Prediction. This resulted in five equiprobable bias
correction factors applied to rainfall fields
produced by the generator, and future analysis
will instead use a similar generator calibrated
using the alternative Analysis of Record for
Calibration dataset [21]. Additionally, it was
found that the distribution of antecedent
conditions could be reasonably represented using
three equiprobable cases, although future analysis
will instead utilize five probability-weighted
cases. The joint distribution of coastal and inland
flood drivers was therefore characterized with a
discrete distribution of 50 probability-weighted
synthetic storms each of which with an arbitrarily
large set of equiprobable stochastic rainfall fields
(50 as implemented although more will be used in
the future), each with five bias correction factors
and three antecedent conditions cases. In practice
this resulted in an empirical distribution
characterized by a set of 37,500 events

Flood depths for discrete events were
simulated via HEC-RAS with upstream
hydrological boundary conditions from HEC-
HMS and downstream boundary conditions from
ADCIRC+SWAN, although future analysis will
utilize updated HEC-RAS with rain-on-grid for
the full model domain in lieu of upstream
hydrological modeling. While future analysis will
use a substantially better-optimized HEC-RAS
model, the computational efficiency of the HEC-
RAS model available was such that the initial
pilot analysis was limited to 200 HEC-RAS
simulations.

This required the use of a novel optimal
sampling discretization procedure for compound
coastal flooding. The available budget of 200
HEC-RAS simulations was insufficient to
evaluate even a single rainfall field over all five
bias corrections for each synthetic storm and
antecedent  conditions case  combination.
However, ADCIRC+SWAN simulation output
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was already available for each synthetic storm
from the 20203 Coastal Master Plan, and the
HEC-HMS model used to calculate upstream
hydrological boundary conditions was orders of
magnitude faster than the HEC-RAS model. We
therefore evaluated discharge behavior of each of
50 stochastic rainfall fields for each of the 50
synthetic storms with each of the 5 bias correction
factors for each of the three antecedent conditions
cases, extracted features of each simulation run
which combined with features of surge behavior
were taken to represent the joint distribution of
compound flood drivers given the occurrence of a
tropical cyclone. This distribution was then
discretized using a clustering-based approach to
minimize the integrated square error induced by
discretization. We refer to the methods used in
their totality as the extended joint probability
method with optimal sampling (EJPM-OS).

2.1. Optimal sampling discretization for
compound coastal flood risk

The goal of optimal sampling discretization for
compound coastal flood risk is to discretize a
continuous random variable or to more coarsely
discretize a discrete random variable while
introducing as little error as possible. We define
the error induced by discretization as a loss
function in Equation 1.

LX(X’)=j|IX(w)—X’(w)I| dp(w) (1)
Q

Here X is the original (multivariate) random
variable, X' is the discretized random variable,
Ly (X") is the loss function or error induced by
approximating X as X'. The right-hand side of
the equation invokes the measure-theoretic
definition of a random variable. A random
variable is defined as a function X: Q — R where
(1 is a sample space consisting of possible events.
Our multivariate random variables are vectors of
univariate random variables X = (X1, X5,...) ,
X' =(X{,X5..) . The loss function or
approximation error can be interpreted as the
Euclidean  distance  between  the  true
representation of an event w € Q, X(w) € R™,
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and its approximated representation after
discretization X'(w) € R™, integrated over the
space of events () with probability measure p.

In the case of a continuous original random
variable, we approximate the continuous random
variable with one constructed from an arbitrarily
large random sample, resulting in Equation 2.
Note that in the case that the original random
variable is already discrete Equation 2 holds with
equality.

LX) = ) [IX(@) = X'@)p@) (@)
Q

We wish to select X' so as to minimize the
approximated loss function. We see that this is
achieved by performing weighted k-means
clustering of X (w) and setting X'(w) equal to the
centroid of the cluster containing X(w). This
follows from equation 2. In equation 3 were-
express equation 2 in terms of outcomes x =
X(w) and set X'(w) = p; where i is selected
such that X(w) € S; where S; is the cluster
containing X(w) , and we observe that the
approximated value of our loss function from
equation 2 is exactly equal to the within-cluster
variance which is minimized by observation-
weighted k-means clustering as we see in equation

3.
k

L) = ) Y flr-wll'p@ @)

i=1 XES;
Note that k is the number of clusters or discrete
values of X', which we set a-prior based on our

computational constraints. While k-means
clustering algorithms guarantee convergence only
to locally optimal clusterings, repeated

optimization with randomly initialized centroids
ensures results which are close to globally
optimal.

The most significant weakness of this
approach as initially implemented is that optimal
sampling on boundary condition features i.e.
surge and discharge information is not necessarily
the same as optimal sampling on peak water
surface elevation, which is ultimately the hazard
of interest. However, HEC-RAS is a deterministic
simulation, so a discretization of the hazard
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distribution which induces no error in the
distribution of boundary conditions would
similarly induce no error in the distribution peak
water surface elevations. While a discretization
which induces no error is of course impossible
both for fundamental reasons and because the
features of surge and discharge behavior used for
discretization are much lower-dimensional than
the full spatially explicit time series used as
boundary conditions, this leads us to believe that
a discretization which performs well in
minimizing error in the distribution of boundary
conditions will similarly perform well in
minimizing the error in peak water surface
elevation. Future analysis using a much better-
optimized HEC-RAS model will permit us to
empirically  investigate  this  assumption.
Additionally, due to the availability of better-
optimized HEC-RAS models, future work will
use the output of HEC-RAS model runs with a
coarser computational mesh for discretization
rather than HEC-HMS and ADCIRC+SWAN
results.

An additional limitation of this method in
practice is that there is no observation at the exact
centroid of each cluster, so the observation nearest
each cluster centroid is used instead.
Investigations into how many stochastic rainfall
fields per synthetic tropical cyclone are required
to adequately characterize the aleatory uncertainty
in rainfall, as well as how many clusters are
required to adequately capture the variability of
the full distribution are ongoing. Work is also
ongoing to refine pre-processing steps and
implementation details of the clustering-based
optimal sampling scheme, detailed below.

2.2. Implementation of optimal sampling
discretization

We start by extracting peak discharge, runup time,
and drawdown time from each major inlet to the
HEC-RAS domain, as well lag time between time
of peak surge and peak discharge and surge
characteristics including average peak surge
depth, runup time, and drawdown time among
representative points. Discharge runup times are
calculated by treating the discharge from the time

Dublin, Ireland, July 9-13, 2023

at which discharge first exceeds its mean value
over the hydrograph up to the time of peak
discharge as the left half of a gaussian density
function and calculating the corresponding
standard deviation. Drawdown times were
similarly calculated from the time of peak
discharge up to the point at which discharge
receded below its mean value over the
hydrograph. Surge runup and drawdown times
were similarly calculated. A log transformation
was applied to peak, runup, and drawdown of
discharge and surge in the preliminary study due
to pronounced skewness, but future analysis will
not apply the log transformation as doing so
reduces the effective weight of extreme results.
All features were then standardized to have mean
zero and standard deviation equal to 1, and future
analysis will have all feature scaled by the square
root of an assigned importance weight. The
importance weights will likely be assigned such
that the total weight assigned to surge behavior is
equal to that of discharge behavior, and half of the
weight placed on both surge and discharge
behavior will be placed on peak values.
Preliminary results are believed to have placed
insufficient weight on surge compared to
discharge, and insufficient weight on peak values
compared to runup and drawdown rates. Further
analysis is required to investigate the impacts of
these feature weights. Events were heuristically
observation-weighted according to the CLARA-
derived probability mass of their corresponding
synthetic storms by use of repeated observations,
permitting us to treat the set of events as a random
sample of equiprobable events. Future analysis
will permit continuous observation weights
instead.

Following extraction and standardization
(and feature weighting in future analysis), we
apply principal component analysis to the
empirical distribution. The dimensionality and
size of the sample did not require dimensionality
reduction in preliminary analysis, but principal
component analysis was helpful in holistically
evaluating the performance of the sampling
approach. Future analysis may or may not require
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dropping small principal
computational tractability.

From this point the sample was clustered and
discretized such that the observation nearest the
centroid of each cluster was assigned the summed
probability mass of observations in the respective
cluster.  Several synthetic storms  were
unrepresented in the resulting discretization,
likely due to aforementioned under-weighting of
storm surge features. In the preliminary analysis
this led to an adjustment which replaced certain
cluster centroids with nearby events from
unrepresented synthetic storms so as to minimize
additional error induced by the adjustment, but
this adjustment is unlikely to be included in future
analyses both due to the anticipated effects of
feature-weighting prior to clustering on the
diversity of synthetic storms in the optimal sample
and due to the larger set of synthetic storms which
will be used in future analysis.

components for

3. RESULTS

While the methods described above as
implemented in the preliminary analysis reflect a
non-negligible contribution to the state of practice
of statistical modeling of compound coastal flood
hazard, they reflect development for an
exploratory and preliminary analysis and are not
fully reflective of the final methods which will be
used for the Louisiana Watershed Initiative or the
revised pilot study of the Amite River Basin. As
noted  throughout, it contains  several
methodological details which will be revised and
improved upon. For this reason, this report does
not contain any results or figures which could be
construed as flood maps or hazard estimates.
Instead, the results presented here reflect the
performance  of the optimal sampling
discretization scheme.

3.1. Fidelity of optimal sampling results to
original sample

The clustering-based optimal sampling scheme

for compound coastal flood hazard presented

here, despite the various implementation issues

described which had yet to be adjusted, performed

surprisingly well at approximating a distribution
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characterized by 37,500 events in 16 dimensions
(50 synthetic storms, 50 rainfall fields, five bias
correction factors, and three antecedent
conditions cases with peak surge, surge runup and
drawdown, lag time between peak surge and peak
discharge, and peak discharge and discharge
runup and drawdown for four inlets). Figure
Figure 1: Cumulative distribution functions of
first principal component value and peak
discharge at the largest inlet of the HEC-RAS
domain, characterized by the original sample and
the optimal subsample. shows the cumulative
distribution functions of the first principal
component of the sample and of peak discharge at
the largest inlet to the HEC-RAS domain. The
optimal subsample matches the distribution of the
first principal component of the original sample
almost exactly. The optimal subsample appears to
underestimate peak discharge for extreme events.
We expect this to improve in future analyses when
we no longer apply the log transformation in pre-
processing.
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Figure 1: Cumulative distribution functions of first
principal component value and peak discharge at the
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largest inlet of the HEC-RAS domain, characterized by
the original sample and the optimal subsample.

3.2. Agreement between coastal hazard
characterization of original sample and
optimal subsample

10-Year

50-Year

100-Year

Difference in Depth Exceedance (ft)
-0 | 10

Figure 2: Difference between surge-only flood hazard
estimated by EJPM-OS as implemented and previous
CLARA methods, expressed in feet at the 10-, 50-, and
100-year return periods. Only pixels with a difference
of 6 inches or greater are shaded.

The clustering-based optimal subsampling
approach will typically result in clusters
containing storm events generated from more than
one synthetic storm and therefore results in
changes to the probability masses assigned to each
synthetic storm compared to those in the original
sample. To investigate the magnitude of this
effect, we compared surge-driven flood hazard
estimated by the original CLARA model with
surge-driven flood hazard estimated using
probability masses for each synthetic storm
corresponding to the results of the optimal
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subsampling procedure from EJPM-OS. The
results are shown in Figure 2. We see broad
agreement between the methods at the 10- and
100-year return periods, although we do see that
the EJPM-OS-derived probability masses
underestimate the 50-year flood depth by about a
foot in a section of the model domain. We expect
this performance to only improve as we increase
the weight placed on surge features in the optimal
sampling process.

4. CONCLUSIONS

The extended joint probability method with
optimal sampling (EJPM-OS) represents a novel
approach for statistical modeling of compound
coastal flood hazard. Preliminary implementation
has shown good performance over several
measures, and more detailed evaluation of
assumptions and methodological details will be
published in the future as a part of the Louisiana
Watershed Initiative.

The clustering-based optimal sampling
procedure wused in EJPM-OS is highly
generalizable to statistical characterization of
natural hazards where the outcome of interest of a
random event is calculated with a computationally
expensive model, and for which boundary
conditions or lower-fidelity estimates (via coarser
model structure or metamodeling) can be
produced more efficiently. It can be applied
directly in cases where the distribution of events
is represented as an empirical distribution or
random sample, and it can be applied to a large
Monte Carlo sample of an arbitrary joint
distribution without requiring any assumptions
about the variance structure of the hazard. The
optimality —guarantee associated with this
approach, that of minimizing integrated square
error in discretization, is highly appropriate from
the perspective of viewing natural hazards
through the lens of multivariate random
processes.
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