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Abstract—Feynman integral reduction by means of integration-by-parts identities is a major
power gadget in a theorist toolbox indispensable for calculation of multiloop quantum effects
relevant for particle phenomenology and formal theory alike. An algorithmic approach consists
of solving a large sparse non-square system of homogeneous linear equations with polynomial
coefficients. While an analytical way of doing this is legitimate and was pursued for decades,
it undoubtedly has its limitations when applied in complicated circumstances. Thus, a
complementary framework based on modular arithmetic becomes critical on the way to conquer
the current ‘what is possible’ frontier. This calls for use of supercomputers to address the
reduction problem. In order to properly utilize these computational resources, one has to
efficiently optimize the technique for this purpose. Presently, we discuss and implement various
methods which allow us to significantly improve performance of Feynman integral reduction
within the FIRE environment.
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1. INTRODUCTION

Successful verification of particle physics models demands accuracy of theoretical predictions on
par with experimental measurements. This calls for calculations of high-order quantum effects in
physical observables. These are readily encoded with Feynman Integrals (FIs)

G(L)
a1,...,aN

(p1, . . . , pE) =

∫
dDk1
iπD/2

. . .
dDkL
iπD/2

D−a1
1 . . . D−aN

N (1)

in a D = 4− 2ε dimensionally regularized theory, where the number L of D-fold integrations
is determined by the perturbative order in coupling constants. The integrand is built out
by a product Lorentz-invariant bilinear functions Di of loop ki = qi (i = 1, . . . , L) and external
pi = qi+L (i = 1, . . . , E) particles’ momenta raised to integer powers ai ∈ Z. For a given kinematical
configuration, the complete basis of Di functions is spanned by N = L(L+ 1)/2 +LE elements and

the number of FIs thus grows as ZN .

To date, the most successful tool to find a minimal set, if it exists, of FIs for a given graph, is
based on the integration-by-parts (IBP) identites [1],∫

dDk1
iπD/2

. . .
dDkL
iπD/2

∂i · qjD
−a1
1 . . . D−aN

N = 0 for i = 1, . . . , L ; j = 1, . . . , L+ E , (2)

which possess vanishing right-hand side only away from the four-dimensional space-time, i.e., ε 6= 0.
This is the first reason to focus on D 6= 4. The second reason being that massless gauge theories
develop infrared and (generally) ultraviolet divergences which require a regulator to make FIs well

defined. As it is obvious from the representation (2), for a given point in the ZN space of FIs there
are L(L+E) IBPs. The derivatives in the integrand shift the ai indices by σi = ±1, 0 and yield
an underdetermined system of homogeneous linear equations for FIs. This system, once solved,
allows one to deduce a minimal set of undetermined FIs known as the Master Integrals (MIs). A
priori, it is completely unclear whether that number is even finite given there are infinitely many
relations for infinitely many integrals as the integers ai are not restricted. However, this was
affirmatively demonstrated in Ref. [2] using algebro-geometric techniques. Unfortunately, the proof
is non-constructive and cannot be used either to help in solving the reduction problem or even to
determine the number of MIs for a given family of FIs.

The procedure is thus to efficiently solve a huge sparse non-rectangular homogeneous system of
linear equations ∑

{σ1,...,σN}

cσ1,...,σN
G

(L)
a1+σ1,...,aN+σN

= 0 (3)

with polynomial coefficients cσ1,...,σN
, being functions of the space-time dimension D and kinematical

invariants sij ≡ (pi + pj)
2. This is a classical problem in linear algebra and belongs to centuries-

old books. However, a practical tool applicable to field-theoretical setups was suggested relatively
recently starting with the work by Laporta [3]. It is based on a version of the well-known Gaussian

elimination technique and takes into account a chosen priority of points in the ZN space of FIs. It
roughly consists in starting with a sector containing the smallest allowed number of Di’s, solving
for a subset of FIs and subsequently substituting these into FIs of the next level in complexity
containing more Di’s etc. etc. This is done analytically in D and sij without specifying their
numerical values and relies on a heavy computer use. This technique is currently implemented in
quite a number of public and private computer codes such as, but not limited to, AIR [4], FIRE [5],
LiteRed [6] and Kira [7].

While the traditional IBP approach described in the previous paragraph was proven to be
extremely successful in practical solution of problems in high energy physics, in many circumstances
it commands the use of computers with multiple CPUs and, what is worse, terabytes of RAM.
Nowadays, multiple CPUs is an industry standard for personal computers and work stations,
however, the need for high-memory nodes is a user-unfriendly constraint, either in their very
availability even on superclusters or long queue waiting times for their access. And even if both of
these conditions are fulfilled, an IBP reduction for a complex Feynman graph could take months of
computer time without any warranty for its success in the end. The reason for this is clear from our
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EFFICIENT REDUCTION OF FEYNMAN INTEGRALS ON SUPERCOMPUTERS 3

brief description of the Laporta algorithm alluded to above. Namely, at every step of the system-
solving procedure, one needs to call for an external simplification library of rational fractions, which
are generated in coefficients accompanying MIs, and bring the fraction c/c′ to a canonical form by
getting rid of common factors in its numerator and denominator. This is a time-consuming process
and turns out to be the bottleneck for the entire endeavor. A recent work [27] introduced efficient
libraries to partially alleviate the problem. However, one definitely needs to look for alternative
approaches which would bypass the need for excessive use of RAM required to handle swelling
intermediate expressions.

A new framework is especially indespensable for physical observables depending on multiple
scales such as high-multiplicity scattering amplitudes and form factors, see, e.g., recent [9, 10].
These involve multiple sij-invariants and, if one needs to consider off-shell kinematics, depend in

addition on external particles’ virtualities p2i 6= 0. The presence of the latter makes the resulting
IBP reduction practically insurmountable for direct analytical calculations. In fact, a technique
which overcomes this predicament is known for almost a decade now [13–21] and is based on
modular arithmetic. Its basic idea is quite simple: substitute numerical values for all variables
involved and then solve the resulting system of IBP equations (3). This problem is naively much
easier since the emerging coefficients are now numbers rather than ratios of lengthy polynomials.
Still working with rational numbers may not be efficient enough for after the number coefficients
can swell uncontrollably as well in the course of the Gaussian elimination and, therefore, not fit
into the machine arithmetic format, either 64-bit or even 128-bit. To practically work with these
numbers, one would need special libraries using long-integer arithmetic. This would make the
reduction inefficient, defeating the purpose from the get-go. This impels one to switch to the
modular arithmetic on the finite field Zp by choosing the prime p not exceeding 264 instead of
working in the field of rationals Q. This is a standard practice in computer science as was reminded
to the physics community in Ref. [11]. In this set-up, all the expansion coefficients cσ1,...,σN

fit into
the machine arithmetic and, as a consequence, an IBP reduction can be effectively run very fast.

A single point or a few (modular or not) in the v = (D, sij) parameter space will not suffice
to get the full parametric dependence of c’s. The question is then how many does one need to
unambiguously reconstruct the polynomials with rational number coefficients without any prior
knowledge of their order or the number of nonvanishing terms, and, in addition, accompanying
expansion coefficients restored in turn from finite fields when these are used. This last step relies
on classical ideas based on the well-known Chinese Remainder Theorem to combine short primes,
which fit into a processor word, into large numbers making subsequent rational reconstruction
from Zp1×···×pn by the Extended Euclidean Algorithm unambiguous [12]. The reconstruction from
rational numbers to rational functions is far more complex and was addressed in Refs. [13–21]
making use of a variety of methods. Some of these are more time consuming than the others. Thus
the goal of an efficient reconstruction approach is then to require (i) the least possible number
of blackbox samples (BBS) and (ii) a feasible restoration of mutivariate polynomials from these
samples. Obviously, these two steps combined have to take significantly less cumulative time than
the actual analytical reduction (if it is at all possible).

A very attractive feature of the modular approach is its amenability to parallelization: IBP
reductions for various values of parameters over the finite field Zp can be performed independently
from one another. And while one might need thousands or even millions of reduction results,
this approach ideally fits for supercomputer use, if properly organized. The IBP program FIRE,
developed in Ref. [22], already had the modular approach built-in in the code starting from the
version 6.0 [23]. However, its previous implementation was not sufficiently practical, in spite of
being successfully used once in Ref. [24], due to unbefitting reconstruction methods. This last
problem was resolved in Ref. [21] with the development of a novel technique for dense interpolation
dubbed the balanced reconstruction, however, it was not coded or optimized for supercomputers.
This drawback will be overcome in this paper. As a benchmark, we will use an example from a
recent study of non-planar FIs contributing to a three-leg off-shell form factor [10], in particular,
one of the most time-consuming IBP reductions of 38 level-7 FIs, arising in differential equations,

down to the level 3 MI G
(2)
0,1,0,1,1,0,0,0,0. The standard analytical route was possible there but it was

taking more than ten days and required extremely high memory use. Below we will report on the
performance upgrade and improvements of the current version of FIRE which yielded a significant
overall time reduction by almost an order of magnitude compared to the analytical approach.

LOBACHEVSKII JOURNAL OF MATHEMATICS
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Below to provide an in-depth analysis of various optimization techniques used to make the
reconstruction of IBP identities more efficient, including the use of coding in C++, memory
management and use of external libraries like Flint.

2. RECONSTRUCTION IN C++

Up to now, all public versions of FIRE capable of reconstruction, the initial [23] and the more
recent [21], relied on codes written in Wolfram Mathematica. The latter is a commercial software
which is typically not installed on supercomputers. Thus, in Ref. [24] alluded to above, proliferating
back-and-forth transfers had to be done between a supercomputer, used to generate sampling points,
and a local machine, used to reconstruct from these, creating a logistical burden. While it was
borderline feasible for two-variable observables studied there, it would be highly impractical for
more. In the current version of FIRE, used throughout this work, the balanced reconstruction [21]
is coded in C++. A typical line in a script, which provides a brief glossary of options, reads6

mpirun -np NC0 FIRE6_MPI --calc ${CALC0} --reconstruct --variables v1_v2_v30 --newton N1_N2
-c config "v10:v1T;v20:v2T;v30:v30;P0"

This calls for the generation of BBS with FIRE for the v-variables v1, v2 and v3 in their Thiele
ranges [v1,0, v1,T], [v2,0, v2,T] (the corresponding Newton ranges of the balanced reconstruction are
defined by the first N1 and N2 elements in these) and the last variable v3 in this example is fixed at
v3,0. The number of primes to be used in the rational reconstruction is set by the value P0. Moreover,
the code is organized in a manner that automatically shuts the production of sampling points down
when their sufficient number is accumulated for a successful unambiguous reconstruction. This is
activated by adding the flag --abort. For large-scale computations, the number of generated files
could potentially exceed the storage capacity of Linux file systems and FIRE can be instructed to
delete BBS no longer needed in the course of a computation with --delete_tables. Last but not
least, external computer algebra systems used in intermediate simplifications is selected with the
option CALC0.

3. OPTIMIZATION BY CHANGING THE ORDER OF RECONSTRUCTIONS

According to the general logic spelled out in the Introduction, and made explicit in its
implementation in the sample script of the previous section, one starts the process by substituting
integer values for all v-variables in IBP identities and then proceeds with a choice of prime numbers
for the modular arithmetic. So it only appears natural to perform the reconstruction in the opposite
order: (let us dub it as the ‘Beast’ mode7) primes → rational coefficients → rational functions. This
approach was originally implemented in FIRE with Mathematica [21] and its private C++ realization.
This route was rather straightforward since it did not require employment of modular-polynomial
arithmetic being that the reconstruction of rational numbers from primes was done first. Then an
external library was called for operations on polynomial and rational function.

However, the reader can already anticipate a drawback intrinsic to the above approach. Namely,
when reconstructing a rational number from its projections over modular fields, the number of primes
required for its unique restoration heavily depends on the ‘size’ of the former, i.e., the maximum
of absolute values of its numerator and denominator. The bigger the size is, the more modular
values one needs and hence more IBP reductions to perform. So this quickly becomes an issue as
the expansion coefficients c in the IBPs (3) are polynomial in the v-variables with integer-valued
expansion coefficients Ci1i2,..., which are sought for,

c =
∑

i1,i2,...

Ci1,i2,...v
i1
1 vi22 . . . (4)

and after the variable substitutions and summation, the result is in general much bigger in size than
the initial values of Ci1,i2,... that one started with.

A panacea to the above predicament was found in changing the order of the two steps by first
reconstructing rational functions with their C-coefficients in a modular field and then restoring

6 Depending on the Slurm scheduler, mpirun can be superseded by srun and the accompanying flag for the number
of cores NC0 used changes from -np to -n.

7 Ugly but works.
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Method Beast mode Beauty mode

vars

BBS
# p’s # r’s # p’s # r’s

d 11 13T 11 13T

w 14 100T 11 100T

v 15 106T 11 106T

u 18 128T 11 128T

(d,w) 15 13T×51N 11 13T×51N

(d,w,v) 16 13T×51N×54N 8 13T×51N×54N

(d,w,v,u) 19 13T×51N×54N×65N 7 13T×51N×54N×65N

Table 1. Comparison of the Beast (primes → rational coefficients → rationals functions) and Beauty modes
(primes → rationals functions → rational coefficients) restorations. Labels on the number of rational numbers
required for polynomial reconstruction stand for Thiele (T) and balanced Newton (N), respectively.

them from primes to rationals, i.e., (let us call it the ‘Beauty’ mode8) primes → rationals functions
→ rational coefficients. The first step here is done with the very same balanced method of Ref. [21],
while in the second step, we parse the reconstructed rational functions over primes by analyzing
their structure: We throw away exceptional cases where something was accidentally canceled out
due to an unfortunate choice of variables and consider only rational functions possessing the same
monomial structure both in their numerators and denominators but, obviously, different expansion
coefficients over primes. Then for each set of these, accompanying a given monomial, we finally run
the rational reconstruction.

Another feature of paramount importance which makes the Beauty preferable to the Beast mode
is the fact that the number of prime values needed for an unambiguous reconstruction of rationals
is not only smaller but stable as well, i.e., it does not depend on numerical values of variables used
because the expansion coefficients Ci1,i2,... in the original function are constants to start with. This
eliminates the guessing game from the robust estimate for seeding of BBS. For the Beast mode it is
almost next to impossible to predict the number of necessary reductions in advance, only an upper
limit estimate, which yields quite an overestimation, is possible. The new way allows us to minimize
the number of IBP reductions. This will be discussed in the following section.

Before closing this section, let us demonstrate the realization of these improvements with our
benchmark. The problem involves five variables v = (D,w, v, u,m), i.e., the space-time dimension
D, three Madelstam invariants u, v, w and a virtuality m. Since FIs are homogeneous functions of
the (w, v, u,m) variables, one can safely set one of them equal to one, say m = 1, and restore it
at the very end from naive dimensional counting. To make a robust estimate for the number of
sample points required in each of these, we ran trial IBP reductions (each takes about a minute
or two on a small number of cores ∼ 50), which are summarised in the first four rows of Table 1.
We used there the following starting value for v0 = (40, 30, 20, 10, 1) and relied on CALC0=Flint

[25] as a simplifying external software. We immediately observe that while the number of necessary
modular values in the finite field grows substantially with increasing initial values of variables for
the Beast mode, it stays the same for the Beauty. The reason for this was already elucidated in the
previous paragraph. As we enlarge the set of to-be-reconstructed variables, for the Beast mode we
always have to employ the largest number of primes among those needed for individual restorations.
Moreover, it was even necessary to add an extra one to warrant successful runs. On the contrary, in
the Beauty mode, the number of primes decreases with the increasing number of variables subject
to restoration. This trend is obvious from the right-hand side of Eq. (4) since, as we first perform

8 Elegant and efficient.
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the rational function reconstruction, the size of accompanying coefficients gets smaller9. This yields
an e-fold, i.e., 19/7 ≃ 2.7, reduction in the overall number of required sample points. In practical
applications, it is advisable to increase the Newton’s range for all variables by a few values to ensure
successful reconstruction. The reason being that sometimes tables may arrive corrupted, or not at
all, from some nodes and, therefore, unsuitable for further use. With this caveat in mind, for the
full (d,w,v,u)-variable computation, performed on 1024 cores of the ASU’s Sol supercomputer [26],
we clocked the two reconstructions at 2-10:26 (∼ 58 hours) and 1-04:22 (∼ 28 hours), respectively.
This is more than a factor of two speedup, making the Beauty mode copacetic. Further details will
be provided in Section 5 below.

4. ANALYZING AND OPTIMIZING APPLICATION PERFORMANCE

The methods discussed in the previous sections were intended to minimize the number of
reductions needed to produce the reconstruction, so they belong to algorithmic improvements.
In this section, we would like to focus on another important area of improvement – software
optimizations based on application performance analysis.

The program analysis was performed on the Lomonosov-2 supercomputer. In most cases, the
pascal partition was used, in which each node contains one 12-core Intel Xeon Gold 6126 CPU
with 92 GB of RAM. The application ran on 210 processors, with Open MPI 1.8.4 being used. The
average execution time of the analyzed application is 115 s.

First, an analysis of working with MPI was carried out. The program operates in a master-worker
paradigm, where an MPI process with rank zero is assigned a role to distribute tasks and control
the execution of other processes. Analysis of MPI usage in the application was performed using
mpiP 3.5 profiler [31].

The results showed that MPI operations occupy only a small portion (<1%) of the overall
execution time. It was observed that the master process spends more than 96% of the time waiting
for the completion of tasks by other processes. But if we start distributing the payload to the
master process as well, this does not lead to noticeable redistribution load, but may cause the
master process to respond more slowly to worker process requests. Moreover, such a small fraction
of the time spent on MPI operations suggests that working with MPI is clearly not a bottleneck in
this program.

Next, a general performance analysis of individual processes was carried out using the Intel
VTune Profiler tool, version 2019.5. Fig. 1 shows our analysis of the most computationally expensive
fragments (functions, loops) used in the application. In each line, the leftmost column corresponds
to the fragment name, the time for executing this fragment is indicated in “CPU Time” column,
and on the right side the columns show the values of metrics from the Top-down approach [32]. A
detailed description of Top-down metrics can be found in Intel documentation [33]. The rightmost
column shows whether this fragment is executed in the program itself (the value “FLAME6”) or
whether it belongs to an external library that was called from the program.

Many of the most frequently used functions are Front-End Bound (corresponding cells are
marked red), which means that the processor quite often does not manage to promptly preprocess
instructions for their execution in functional units, leading to them being idle waiting. Next, one
can notice that there are functions from the Linux kernel module vmlinux for paged memory
organization (for example, copy_page_rep, clear_page_c_e), which also have a high Memory
Bound indicator, i.e., during their execution the processor is often idle waiting for data from the
memory. In addition, many external functions have a high Bad Speculation value. This indicates
that the processor is often busy executing instructions that then turned out to be unnecessary (the
most common reason is incorrect branch prediction). From the other side, the operations add_to

(line 1), mul_mod (line 3) and mul_inv (line 6), which are the part of the analyzed program itself,
have a high Core Bound value, which usually indicates insufficient loading of functional units (e.g.,
due to data dependency) or restrictions imposed by some complex arithmetic operations, such as
division, which is quite widely used in this application. You can also highlight the constructors of
the point class, which are also appear to be Memory Bound functions.

It is worth mentioning the vectorization aspect of the code. In this program, the main operations
are performed on integers, not on floating-point operations, and VTune does not allow assessing the

9 The C coefficients are no longer multiplied by high powers of integers!
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quality of vectorization of such operations (for this purpose, a tool like Intel Advisor can be used).
However, it is known that the vectorization in this program can be improved, and this issue will be
addressed in the future.

Figure 1. The most computationally expensive program fragments and their performance metrics, analysis
performed using Intel VTune Profiler

Based on the performed analysis, the following conclusions can be drawn regarding the possibility
of program optimization:

1. MPI operations occupy only a small part of the program, and optimizing this aspect of the
application will not bring a significant speedup.

2. In addition to application functions, Linux system calls for working with paged memory (for
example, copy_page_rep, clear_page_c_e) take up significant time, and these calls show
rather low performance. Thus, a possible optimization option is to modify the program to
reduce the number of such calls, or to find more optimized implementations of these libraries.

3. A number of program functions (like mul_inv, mul_mod) can leave CPU underutilized due to
the use of operations with large delays (such as the division operation). Modern compilers can
optimize division when using 32-bit numbers, but for 64-bit and 128-bit operands DIV, IDIV
operations are generated, and the delay in this case can exceed 70 processor cycles, as well as
the readiness for the next such operation. In some situations, it may be possible to change
the code to use multiplication instead of division (if overflow problems are not expected), or
to use approximate division implementations.

4. Some functions (for example, add_to) have a high Bad Speculation score, which is usually due
to the Branch Prediction. In the case of the specified add_to function, this can happen both
due to the presence of a loop with a break condition or the presence of branching operators
in the loop. Modifying this fragment can also help speed up the execution of the program.

5. The program is not fully vectorized, and a more detailed study of this issue is also an option
for further optimization.

6. Some constructors of the point class are memory-bound functions – they frequently access
the memory of different arrays. For them, it is worth considering memory optimization (for
example, improving data locality).

LOBACHEVSKII JOURNAL OF MATHEMATICS
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After performance analysis, an optimized version of the program was developed. In the second
version of the application, two modifications are introduced: 1) the constructor of the point class
now uses bit storage to optimize memory management; 2) an approximate implementation of the
division operation is used (the division accuracy is sufficient in this case, and the execution time of
such an implementation of the operation is reduced). Other optimization options are expected to
be tested in the future.

The average execution time of the optimized program decreased by 5 seconds, which is 4.3% of
the total execution time of the initial version.

The performance of the optimized version was analyzed using VTune and compared with the
initial version. The analysis was carried out in the same conditions specified at the beginning of
this section.

Let us briefly describe the main conclusions. Although the speedup is not so notable, the
efficiency metrics (useful utilization of CPU, as well as the average number of clock cycles
per instruction) improved comparing to the initial program. Further, the list of the most
computationally expensive program fragments (see Fig. 2) changed significantly. Now it is mainly
occupied by functions from the glibc library for allocating and freeing memory, such as malloc and
free. Moreover, the fragments from the program itself (i.e., not external functions) first occur only
at the 12th place in Fig. 2, i.e., the top 11 most computationally expensive fragments are executed
outside the body of the program itself. This indicates that for further optimization it is necessary to
either use more optimized implementations of external functions (i.e. use other libraries) or reduce
the number of external calls in the program, primarily related to memory allocation/freeing and
working with memory pages. This will be done in the future.

Figure 2. The most computationally expensive program fragments in the optimized version of the application

5. OPTIMIZATION WITH THE USE OF FLINT LIBRARY

The use of the FLINT library [25] in FIRE was already implemented in Ref. [5] through the
library FUEL [27]. Initially, there was no support for rational functions with modular arithmetic
since these were not used within the Beast mode. But after changing the reconstruction order, as
was discussed in Section 3, there arose an urgent need to efficiently perform such operations in the
Beauty mode.

Since FLINT does not (yet) have an in-house implementation of modular rational functions, we
wrote our own version on top of FLINT’s routines for polynomials over prime fields. The FLINT

LOBACHEVSKII JOURNAL OF MATHEMATICS
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routines include binary arithmetic operations (additions etc.) for such polynomials, polynomial
GCD computations and exact division of polynomials when there is no remainder. We translated
a similar implementation of modular rational functions from the Julia package Nemo [28] to C++.
As an example, let us spell out the algorithm, translated from Nemo, for computing and simplifying
the sum of two rational functions, n1/d1 + n2/d2, where n1, n2, d1, d2 are polynomials (over prime
fields). We assume the two rational functions to have been simplified previously, which means n1

and d1 have no nontrivial polynomial GCD, and similarly for n2 and d2. Various special cases,
corresponding to if-else statements in the actual code, are treated separately to ensure efficiency
on a computer. We summarize the algorithm below.

• Case 1: d1 = d2.

The sum is equal to the new rational function (n1 + n2)/d1. If d1 = 1, this is the returned
result. Otherwise, we compute the polynomial GCD of (n1 + n2) and d1, and divide the
numerator and denominator by the GCD if the GCD is not equal to one, before returning
the rational function.

• Case 2: d1 = 1.

The sum is equal to the new rational function (n2 + d2)/d2. Since n2 and d2 have no nontrivial
polynomial GCD, (n2 + d2) and d2 also have no nontrivial polynomial GCD, and the above
rational function is returned.

• Case 3: d2 = 1.

The treatment is similar to case 2.

• Case 4: all other cases.

We compute the polynomial GCD of d1 and d2 and let the result be g.

– Case 4(a): g is equal to 1.

The sum is (n1d2 + n2d1)/(d1d2). This result is returned, since it is easy to prove
that the numerator and denominator cannot have a nontrivial GCD, under the starting
assumption that n1/d1 and n2/d2 are previously simplified rational functions.

– Case 4(b): g is a nontrivial polynomial.

We let q1 = d1/g and q2 = d2/g. The sum is (n1q2 + n2q1)/(q1q2), and we further
simplify this sum if there is a nontrivial GCD between the numerator and denominator
to be canceled, before we return the result.

Another performance improvement we have implemented is related to the communication
between FIRE and the simplification library, in this case FLINT. All communications are via
strings: FIRE sends strings of rational functions expressions to FLINT, while FLINT (with the
help of our parser code) reads the strings and sends back the simplified rational functions, again as
strings. Since simplified rational functions will be used as sub-expressions in subsequent calculations,
long expressions may be re-sent to the simplification library, causing a re-evaluation before further
calculations. This overhead is avoided if the expression is stored in memory in an internal format
native to the simplification library. To accomplish this without a dramatic rewrite of the FIRE
database, we retained the use of strings as the bidirectional communication format, while adding
special syntax to the strings, support4ed by our parser, to refer to expressions that are stored in
memory. Specifically, the expressions are stored in a hash map that maps its numerical label (1,
2, 3, etc.) to the actual expression in a native (i.e. non-string) format. Imagine two previously
simplified rational functions, say, (1− x)/(1 + x2) and x/(1− x2), have to be added in a subsequent
calculation, previous versions of FIRE will send the string (1− x)/(1 + x2) + x/(1− x2) to the
simplifier, while the current version of FIRE can optionally send a string like {1}+{3} to mean
adding the 1st and 3rd expressions stored in memory.10 This has resulted in dramatic performance
improvements. In our four-variable benchmark example described in the last paragraph of Section
3, the measurement of times needed for rational function reconstruction of one-to-four variables in
the Beauty mode is shown in Table 2.

10 The actual implementation requires some memory management such as periodic cleaning of unneeded stored
expressions to prevent memory usage from growing out of control.
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vars/reconstruction Old Way New Way With storing

d/Thiele 0.06 0.06 0.06

(d, w)/Balanced Newton 2.49 1.77 0.6

(d, w, v)/Balanced Newton 85 39.6 6.28

(d, w, v, u)/Balanced Newton 5213 2346 402

Table 2. Runtimes (in seconds) for rational reconstructions. The ‘Old Way’ corresponds to the initial
implementation of communications with FLINT in FUEL — non-modular functions were called first and then

projection of coefficients to the proper modular field were taken. The ‘New Way’ is the current approach. The use
of storing speeds it up things even more.

6. CONCLUSIONS

In this paper, we devised a number of various techniques for improving performance of Feynman
integral reduction on supercomputers. Cumulatively, with all methods applied, we estimate the
resource economy more that twice compared with the version without their implementation. In
IBP reductions started from scratch, initial optimization can be achieved by a proper of choice
of the order of seeding variables to be restored, as was already discussed in Ref. [21]: the rule
of thumb being to starting from a variable which requires less Thiele/balanced Newton BBSs
and gradually proceeding to the ones which need more. This is highly problem-specific indeed.
In this paper, all runs for our benchmark example were done for the optimal order of variable
reconstruction d → w → v → u from the get-go. Future improvements include developing a hybrid
technique of balancing and Zippel [34, 35] reconstruction methods, which are particularly suited
for sparse polynomials. The achieved performance gains open up possibilities to apply FIRE on
supercomputers to a number of cutting-edge physical problems including minimal and four-leg form
factors of the stress-tensor multiplet, and five- and six-leg scattering amplitudes on the Coulomb
branch of the maximally supersymmetric Yang-Mills theory at two loops, just to name a few.

Acknowledgments. A.B. is grateful to Ayush Saurabh and Gil Speyer for the initial introduction to
ASU’s Sol supercomputer and Vladimir A. Smirnov for useful discussions. The work of A.B. was
supported by the U.S. National Science Foundation under the grant No. PHY-2207138. The work
of A.S., in part of developing improved reconstruction algorithms, was supported by the Ministry of
Education and Science of the Russian Federation as part of the program of the Moscow Center for
Fundamental and Applied Mathematics under Agreement No. 075-15-2022-284. The work of A.S.
and V.V., in part of optimizing supercomputer algorithms, was supported by the Russian Science
Foundation under Agreement No. 21-71-30003.

The research was carried out using the equipment of the shared research facilities of HPC
computing resources at Lomonosov Moscow State University [30]. Performance benchmarking was
also performed at the Polus supercomputer [29].

REFERENCES
[1] K. G. Chetyrkin and F. V. Tkachov, “Integration by parts: The algorithm to calculate β-functions in 4

loops,” Nucl. Phys. B 192 (1981), 159-204 doi:10.1016/0550-3213(81)90199-1.
[2] A. V. Smirnov and A. V. Petukhov, “The Number of Master Integrals is Finite,” Lett. Math. Phys. 97

(2011), 37-44 doi:10.1007/s11005-010-0450-0 [arXiv:1004.4199 [hep-th]].
[3] S. Laporta, “High precision calculation of multiloop Feynman integrals by difference equations,” Int. J.

Mod. Phys. A 15 (2000), 5087-5159 doi:10.1142/S0217751X00002159 [arXiv:hep-ph/0102033 [hep-ph]].
[4] C. Anastasiou and A. Lazopoulos, “Automatic integral reduction for higher order perturbative

calculations,” JHEP 07 (2004), 046 doi:10.1088/1126-6708/2004/07/046 [arXiv:hep-ph/0404258 [hep-
ph]].

[5] A. V. Smirnov and M. Zeng, “FIRE 6.5: Feynman Integral Reduction with New Simplification Library,”
[arXiv:2311.02370 [hep-ph]].

[6] R. N. Lee, “Presenting LiteRed: a tool for the Loop InTEgrals REDuction,” [arXiv:1212.2685 [hep-ph]].
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