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ABSTRACT: We study the form factor of the lowest component of the stress-tensor multiplet
away from the origin of the moduli space in the spontaneously broken, aka Coulomb, phase
of the maximally supersymmetric Yang-Mills theory for decay into three massive W-bosons.
The calculations are done at two-loop order by deriving and solving canonical differential
equations in the asymptotical limit of nearly vanishing W-masses. We confirm our previous
findings that infrared physics of ‘off-shell observables’ is governed by the octagon anomalous
dimension rather than the cusp. In addition, the form factor in question possesses a nontrivial
remainder function, which was found to be identical to the massless case, upon a proper
subtraction of infrared logarithms (and finite terms). However, the iterative structure of
the object is more intricate and is not simply related to the previous orders in coupling as
opposed to amplitudes/form factors at the origin of the moduli space.
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1 Introduction

The so-called Coulomb branch of the spontaneously broken maximally supersymmetric Yang-
Mills (sYM) theory [1] is a natural laboratory to study off-shell amplitudes and form factors
in four-dimensional gauge theories. Endowing some (or all) scalars of the model with vacuum
expectation values, one can adjust their values in a way as to yield matrix elements which
possess massive external states, i.e., W-bosons, Higgs-like scalars etc., but only massless
excitations propagating in quantum loops.

The N = 4 model away from the origin of the moduli space can naturally be obtained
from a generalized form of the dimensional reduction [2-4] akin to the original one used to
discover its Lagrangian in the first place from the ten-dimensional N' =1 sYM [5, 6], or the
six-dimensional N" = (1,1) sYM (see, e.g., [7]). Instead of setting the extra-dimensional, i.e.,
D > 4, components of momenta to zero, one can trade them in lieu of the scalars’ moduli,
i.e., vacuum averages of D > 4 components of the ten-dimensional gauge field. The 16
supercharges remain unbroken in this phase, but the supersymmetric algebra gets a central
extension with BPS charges induced by nonvanishing masses, and thus the theory shares
a gamut of properties of its conformal sibling. One-loop analyses demonstrated that the
Coulomb branch scattering amplitudes obey a no-triangle rule!, thus enjoying only boxes

!Bubbles and tadpoles are excluded form the get-go based on their poor ultraviolet properties.



in their integral expansion [3, 8] at a generic point of the moduli space, — a generalization
of the background-field gauge proof from Refs. [9, 10] applicable to off-shell massless am-
plitudes. Further, there are no rational terms as well [3, 11| and, therefore, integrands on
the Coulomb branch are cut-constructible [12]. Making use of this latter property, a proof
of the dual conformal invariance of massive loop integrals from a six-dimensional viewpoint
was elucidated in Refs. [7, 13]. Also correctness of the four-leg amplitudes at four-loop
order (including nonplanar contributions) [7] was demonstrated to expressions built using
solely four-dimensional momenta in the cuts [14] by lifting four-dimensional inner products
of momenta up to six dimensions.

The above higher-dimensional perspective provides a natural bridge between the dimen-
sionally regularized theory and its massive version to tame infrared divergences in scattering
amplitudes and form factors in a gauge invariant manner. Their explicit structure for the
four-gluon amplitude and the Sudakov form factor was deduced at up to three-loop level
[1, 15-17] by promoting massless integral bases constructed in four dimensions to involve
massive propagators only around graphs’ periphery. Infrared structure was shown to be in
accord with the well-known conformal phase of N' =4 sYM in D = 4 — 2¢ [18] (see Refs.
[19-21], for earlier QCD studies) for a minor difference in kinematically-independent contri-
butions and in compliance with a common wisdom that infrared properties of gauge theories
are encoded in the so-called cusp anomalous dimension [22, 23].

The situation drastically changes, however, when all internal propagators are left mass-
less, but the external legs are kept massive, or off-shell, as we will refer to them hereafter.
Four- [24] and five-leg [25] W-boson amplitudes as well as the two-W-boson Sudakov form
factor [26, 27] enjoyed the same recurrent feature in variance to the naive expectation: the in-
frared logarithms are governed by an exponent different from the cusp anomalous dimension.
Instead they exhibit dependence on the so-called octagon anomalous dimension which made
its debut in completely different circumstances: the light-cone limit of correlation functions
of infinitely heavy BPS operators [28, 29] and the near-origin asymptotics of the six-gluon
remainder function [30].

In the current paper, we continue our exploration of the Coulomb branch by addressing
a more involved quantity, the three—~W-boson form factor F3 of the lowest component of the
stress tensor multiplet

/d4$ e (p1, pa, pa| tr ¢75(2)[0) = (21)*6 (g — p1 — pa — p3) Fs . (1.1)

Here we explicitly extracted the energy-momentum conserving delta function. This is the
simplest ‘observable’ which possesses nontrivial remainder function after factoring out in-
frared divergences [31]. In the conformal phase of the theory, it was bootstrapped to a
staggering eight-loop order [32, 33] using techniques adopted from scattering amplitudes
[34]. Our goal will be much more modest: we will calculate its off-shell version at two loops.
The incentive for our analysis is multifold. First, we would like to confirm the octagon
anomalous dimension as the Sudakov exponent of ‘off-shell observables’. Second, we will



establish similarities/differences to the iterative structure of the form factor with increased
perturbative order compared to its conformal analogue. Third, given that the infrared log-
arithms are different in the on- and off-shell cases, will the remainder functions differ as
well?

Our subsequent presentation will be organized as follows. In the next section, we set up
our notations. Then, in Sect. 3, we perform the one-loop calculation, which is then followed
by two loops in Sect. 4. The only graph that was not touched upon in the existing literature
corresponds to the tri-pentagon. So we perform its calculation from scratch in Sect. 4.1. It
is then followed by all other contributing graphs. In Sect. 5, we add them up and use symbol
analysis to simplify the sum and uncover the structure of the form factor at two-loop order.
Finally, we conclude.

2 Setting up conventions

The form factor of three W-bosons contains an overall prefactor encoding polarization de-
pendence of the external states. We will not be interested in it in what follows and thus
introduce the ratio function

F3 = FS/FS,tree . (21)

F3 depends on three invariants s;; and the off-shellnesses of the W-legs, which will be taken
to have the same value p,

sy = (pi+p)s pi=—p (2.2)
These are linearly dependent, however,
S12 + So3 + S31 = q2 — 3# . (23)

Since the form factor is a homogeneous function of these kinematical variables, one can
set one scale to one, e.g., ¢> = —1 below. Equivalently this can be done by introducing
Mandelstam-like variables and the ‘mass parameter’ m

u=s12/q", v=su/q, w=su/q®, m=—u/q, (2.4)

and ignore the overall mass scale ¢?: F3 is dimensionless.
F3 admits perturbative series expansion in the gauge coupling ¢2,, accompanied at each
order by the number of colors N (in the planar limit), allowing us to introduce

92 gXQKMN
(4)?

which comes hand-in-hand with a measure of the dimensionally-regularized loop momentum

(dme™®)E | (2.5)

integrals,

dPy
2 E\E
(Hpre™) / PR (2.6)
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Figure 1. Graphs contributing to the one-loop form factor F?Sl).

in D =4 —2e. We will dwell on the necessity to deal with the space-time away from D = 4,
even though we already have an infrared regulator m, when it becomes indispensable at
two-loop order.

Thus, we have to the lowest two orders

Fy=1+¢F" +¢'F? 4+ .., (2.7)

where Féi) are given by linear combinations of one- and two-loop integrals for ¢ = 1,2,
respectively. Instead of using Feynman rules of the Coulomb phase of N' = 4 sYM in order to
find the latter, we will employ, as was advocated in the introduction, the connection between
the spontaneously broken phase in D = 4 and higher-dimensional theory with exact gauge
symmetry to recycle generalized unitarity analyses from Refs. [35, 36] and [31], to ascertain
integral families defining the one and two-loop integrands, respectively. All calculations will
be done in the limit m — 0, i.e., they will be valid up to power corrections in m.

3 One loop

Without further ado, let us start our analysis with the one-loop form factor. At this order,
F3(1) receives the following expansion in terms of the triangle Tri and box Box integrals

35, 36]

) 1
Fg(l) = Z]P)n |:(512 + 513)Tr1(p1,p2 —0—]93) + 5512823B0X(p17p27p3) ) (31)

shown in Fig. 1. In this equation, we introduced an operator P that shifts momentum indices
of any function to its right by one

Pfl] = Ji+1(mod 3),j+1(mod 3)... » (32)

modulo 3, which imposes periodicity. The Mandelstam-like variables then transform as
P(u,v,w) = (v,w,u). Both integrals in Eq. (3.1) can immediately be expressed in terms of



the Davydychev-Ussyukina function ®;(z,y) [37, 38|,

Z 1(=1)7log™ ™ () Tis ( — (pr) 1) = Lij (= (o)) (33)
f‘ (7 —O)N(20 —j)! A ’ '
where p and A are functions of x and y,

via

Tri(pl,pg +p3) = <I>1(m,v)/(1 — ’U)
Box(p1, p2, p3) = @1 (m?/(wv), m/(uv)) /(uv).

Their small-mass expansion yields the following expressions for the triangle and the box

logmlogv + 2Lis(1 — v)
1—w ’

21og® m — 2logmlog(uv) + log®(uv) + 2¢,

Tri(py, p2 + p3) = — (3.7)

BOX(p17p27p3) = - (38)

uv

where we used the condition (2.3), up to terms vanishing as a power of m. Adding all
contributions up, we find

Fél) = —log? m_ log? m_ log? mn
u v w
— logulogv — logvlogw — logwlogu

It is instructive to compare this results to the conformal case, calculated within dimensional
regularization (or rather reduction), [35],

1 2 \¢ 2 \¢ 2 \¢
e =)+ ()« (53]
— logulogv — logvlogw — logwlogu

9Liy(1 — u) — 2Liy(1 — v) — 2Lia(1 — w) +§¢2. (3.10)

We observe that the finite parts are identical in the two cases, except for the coefficient of
(2. When Eq. (3.10) expanded in the Laurent series, the coefficient of the double logarithms
of 2. /(u,v,w) are half of the off-shell case, as anticipated. This is the well-known doubling
phenomenon observed back in the early days of QED [39, 40] and well-understood by now
as a result of an extra, the so-called ultra-soft, region [41-43] of loop momentum producing
leading effects on par with other regimes present in both.
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Figure 2. Graphs contributing to the two-loop form factor F?EQ). The integrands, built from
product of propagators read off from these diagrams, are accompanied by numerators according to
Egs. (4.1)—(4.5).

4 Two loops

We now proceed to the two loop calculation. The integrands for the form factor Féz)

constructed in Ref. [31] using (generalized) unitarity cut technique. With a slight change

were

of the nomenclature compared to [31], the relevant graphs shown in Fig. 2 generate the
following integrals?

dPy dPys 8128

. 1 2 q*512523

TriPent(p1, pa, p3) = e / WD/Q/ imD/2 denom(a) (4'1)
dP0; [ dPly ¢*s12 + s3]

- - 4.2

riBox(py, pa + p3) =€ /iﬂp/z/mD/Z denomyy) .

2Here and below, we set the mass scale of dimensional regularization to one, p2, =1



Figure 3. World-sheet perspective of the three-leg form factor and the non-planar graph from
Fig. 2 (d) overlayed on it: it demonstrates why it produces contribution of leading order in color.

dDgl dD€2 512 531 by -pr — s34y - p2]
DBox(p1, pa, p3) = €* / D/ / D) denom, , (4.3)
dPey [ dPly s1a[5Sa3s31 — Sa3ly - py — s31 L2 - p1]
NB — p267E 4.4
ox(p1, P2, ps) = € / imD/2 / imD/2 denom ) o (44)
dPey [ dPly 3¢*(ses + s3]
) e 2 597|523 + S31
NTriBox(py + p2,p3) = e /iﬂD/Q / 772 denomy, (4.5)

where the denominator structure can readily be read off from the corresponding graphs. In
terms of these integrals, the two-loop form factor is given by the expression

2
P = > P {TriBOX(pl,pz + p3) + TriBox(ps, p1 + p2) + TriPent(p1, p2, ps)
n=0

+ DBox(p1, p2, p3) + DBox(ps, p2, p1) + NBox(p1, pa, p3)

+ NTriBox(p; + p2,ps) | - (4.6)

Notice that starting from this order, there are non-planar graphs which are leading order
in color, i.e., Fig. 2 (d) and (e). The reason for this is that the operator tr ¢?, is a singlet
with respect to the SU(V) and thus does not ‘participate’ in color traces. It becomes quite
obvious from the world-sheet perspective of the matrix element (1.1) demonstrated in Fig.
3 where the operator corresponds to the closed string state, while the W-bosons to the open
ones.

Out of all the contributions in Eq. (4.6), a truly new integral, which was not addressed
in existing literature, is the tri-pentagon, Fig. 2 (a). So we start with its analysis first in the
next section.



4.1 Tri-pentagon

Let us begin with the construction of the canonical basis for the tri-pentagon family, see
Fig. 2 (a), by routing the loop momenta ¢; and /5 according to the following definitions of

propagator denominators D; (i = 1,...,7) and irreducible scalar products Dg and Dy,
Dy=—0, Dy=—(l+p1)*, Dy=—(l+p+p)?, Dy = —(l +p1 +p2+p3)°,
Ds=—03, Dg=—(lo—0)*, Dy=—(lo+pi+p+p3)°, Ds=—(lr+p1)°,

Dy = —(ly + p1 +p2)?, (4.7)
such that

dPe, dDEQ

a — QQE’YE
alasazaqasagaragayg — /Lﬂ-D/Q Z7TD/2

D;al . (4.8)

The use of dimensionally regularized integrals is required for proper use of the integration-by-
part technique in order to work with vanishing surface loop integrals, which are at the heart
of the formalism [44]. An IBP reduction with the FIRE code [45-47] immediately reveals
49 initial Master Integrals (MIs), which are further reduced to 46 by finding equivalences
among them with the LiteRed software [48, 48], generating thus the primary basis

I= {GOO()lllOOOa G0010110007 GOlOOOllOOa G0100110007 G0010111007 G001011200a
C"Y001111000a GOOIIIQOOO) G0100111007 C10100112007 GOlOllOlOO; GOIOIHOOO:
G0101120007 GOHOOHOO7 CT10110012007 G0110110007 G011012000> G1001101007
G101001100a CTY1010012007 G1010101007 G1100011007 G1100012007 GllOOlOlOOa
C"Y001111100; G010111100, G0110111007 C10110112007 G0110121007 G0110122007
G0110211007 G0120111007 CT10210111007 G0111101007 G011111000; G0111120007
GlOlOlllOOa CTY10111()1007 GllOOlllOOa G1101101007 G'(1110011007 G111001200a

C"Y1110101007 G011111100, G1110111007 G111110100} . (49)

Next we turn to the derivation of differential equations for I making use of a FIRE
interface to LiteRed,

in the kinematical invariants ¢ = u, v, w, m. The goal is now to convert them to the canonical
form [49]

0J =cA;-J, eA;=T' M -T-T"'-5T, (4.11)

with some transformation matrix T'. In fact, what we need is an asymptotically canonical
basis, which captures all logarithmically enhanced and constant terms in m as m goes to



zero. This can easily be accomplished by keeping track of only singular power-like terms in
the ‘virtuality’ matrix

A, = —A° +0(m), (4.12)
m

as was explained at length in Ref. [50].

Splitting the basis elements of I into sectors, we form their linear combinations accom-
panied by unknown functions of the Mandelstam-like variables (u,v,w) and fix the former
by enforcing the e-form of the differential equations (4.11). Having fixed the diagonal blocks
in this manner, the off-diagonal ones can be constrained by using two available software
packages Canonica [51, 52| and Libra [53, 54]. To achieve this, one first transforms the
equations to the Fuchsian, i.e., dLog, form followed by factorization of the e-dependence
into an overall factor [53]. Canonica is solely based on built-in Mathematica commands
and fails to successfully solve corresponding systems of linear equations. Therefore, we used
two strategies in our analysis. One was based exclusively on Libra. However, having con-
structed canonical form of differential equations, we discovered that five of its elements did
not possess uniform transcendentality® (UT), namely, J;’s with indices i = 34,43,44, 45, 46.
So in our attempt to alleviate this problem, we deduced yet another form of the canonical
differential equations by the combined use of Canonica (to bring equations to the Fuchsian
form) and Libra (for the derivation of the e-form). Though, the basis found was slightly
different from the first one, nevertheless the very same five elements suffered from the very
same problem. Obviously, this was not in any way an obstruction in our subsequent steps
of solving theses ‘canonical’ equations rather it was merely a nuisance: instead of fixing a
set of integration constant of uniform transcendentality at each £"-order, we had to use a
sum of constants of increasing transcendental weight w; < n. The asymptotically canonical
basis, which we used in the explicit iterative solution of the differential equations, is

Jy=2(3m —u — v — w)Goo122000 » (4.13)
Jo = 2uGoo1022000 » (4.14)
Js = £20Go10002200 ; (4.15)
Jy = £>mGo10022000 » (4.16)
Js = (v + w)Goozo11100 » , (4.17)
Js = ”(u+v +w)((2e — 1)Gooro11200 + €Go02011100) - (4.18)
Jr = &%(2e — 1)mGoo2111000 , (4.19)
Js = € (v +w)Goo1112000 » (4.20)
Jo = *(u+ w)Gozo011100 » (4.21)
Jio = %(1 — 2¢)(u + v 4+ w)Goro011200 » (4.22)
Ji = %52(1 - 25)2G010110100, (4-23)

3We would like to thank Johannes Henn for instructive communications on this point.



J12 = 82(26 — 1)(38 — 1)G010111000, (424)
Jis = € (u 4 w)Goro112000 , (4.25)
Jig = €*(2e — 1)(3e — 1)Gor1001100 » (4.26)
J15 = €vGo11001200 » (4.27)
Jig = (2 — 1)(3e — 1)Gorr011000 (4.28)
Jir = e*uGo11012000 , (4.29)
1
Jig = %52(1 — 2¢)Ghoo110100 , (4.30)
Jlg = 82(28 — 1)(36 — 1)G101001100, (431)
Jao = £%(v + w)G1o1001200 , (4.32)
7
Jo1 = %52(1 — 2¢)*Gho1010100 5 (4.33)
Jaz = €%(1 — 2e)mGa10001100 - (4.34)
Jag = €”(u 4 w)G110001200 , (4.35)
7
Joy = %82(1 — 2¢)*G110010100 » (4.36)
Jas = €*(v +w)Goor111100 » (4.37)
Jag = €*(u + w)Goroi11100 » (4.38)
Jar = €*(u 4 v)Gorro11100 , (4.39)
1
Jog = 552 [ — vGo10002200 + MG 010022000 (4.40)
+ 2ev((u + v + w)Gorro11200 — 2Go11001200)] -
1
Jag = 582 [ — 20Go10002200 — 11MGo10022000 + 2€UUG011012100} ) (4.41)
2
€
J30 = v+ [ — wwGoigon2200 — m(u — 20 — 2w) Goro022000 (4.42)
+u [2 (6€2 —9e + 1) Gor1o01100 — 4evGor1001200 + mu(u + v + w)G011012200] ] )
1
J31 = 552 [UG010002200 + 12mGo10022000 + 2€u(u + v + w)G011021100] ’ (4.43)
1,
J32 = 15 [”UG010002200 + 5mGo10022000 (4.44)
+ 4[ (—652 +5e — 1) Go11001100 + €vGor1001200 + em(v + w)G012011100H ;
1
J33 = —182 [3vGo10002200 + 17MGo10022000 (4.45)
+4 (652 —de+ 1) Goro01100 — dem(u + w)G021011100] )
1
J3q = 562[ (14e* — 92 + 1) (2Go10110100 — 4G110010100) + 5evGotttio100] » (4.46)
J3s = (1 — 26)e®vGor1111000 » (4.47)
J3s = e uvGor112000 (4.48)

— 10 —
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Figure 4. Diagrammatic form of the integrals forming the element Js4 of the canonical basis
(4.13).

Jsr = &' (v +w)Gror011100 » (4.49)
J3s = —g53(25 = 1)(v +w)Gio1110100 » (4.50)
J39 = €*(u 4 w)Giio011100 , (4.51)
Jao = —g€3(2€ — 1)(u + w)G110110100 5 (4.52)
Jun = €°(1 — 2¢)uGh11001100 , (4.53)
Jaz = *uvGi1001200 (4.54)
Juz = %EQ [2 (1452 —9e + 1) (2G101010100 - 4G110010100) + 5€UG111010100} ) (4-55)
Jua = %52 [7€%v(v + w)Gornnoo + 26(7e — 1)vGornnonon (4.56)
+ 2(2e — 1)(7e — 1)(2Go10110100 — 4G110010100) ] 5
Jus = %52[ (1452 —9e + 1) (2G 101010100 — 4G110010100) (4.57)

+eu [2(78 — 1)G111010100 + 7e(u + ’w)annlooﬂ )
1
Jig = 562 [(2e — 1)(7e — 1)[2G 010110100 + 2G101010100 — 8G 110010100 (4.58)
+ 2¢(7e — 1) [vGorn110100 + uG111010000] — 7€(26 — 1) uvGrirnonoo] -

First, we solved the ‘virtuality’ differential equation, in the small-virtuality limit
J =mn . J, (4.59)

related to the ‘massless’” MIs J via the matrix exponent meAm, Next, we solved the m = 0
limit of the differential equations in Mandelstam-like variables via the Chen iterated integrals
on a piece-wise contour [55]

JO = P7 exp (5/ AO) J()(), (460)
[0,u]U[0,0]U[0,w]

with the differential of the A-matrices A = duA® + dvA? + dwA®. At each order of the
e-expansion, we found solutions in terms of multiple polylogarithms [56].

- 11 -



Finally, we had to fix the vector of the integration constants Jog at each order of the
g-expansion

JO() = Zepc(p) . (461)

p=>0

To accomplish this, we used two criteria: (i) the absence of spurious poles in the right-hand
sides of differential equations at the location of u+v, v+w and w+wu poles and (ii) numerical
integration with FIESTA [57] with subsequent use of the PSLQ algorithm [58]. However, these
considerations alone did no allow us to fully analytically determine all of the integration
constants. We needed further input. We found that all undetermined contributions are
reduced a set of unknowns which can be determined in turn by evaluating one of the elements
of the canonical basis explicitly. The element in question is Js4, which is given by a linear
combination of factorized products of bubbles and triangles, Eq. (4.46), as demonstrated in
Fig. 4. This can be easily calculated making use of the code MBcreate.m [59]. It yielded the
following expressions

- e T(1 — ¢)'T(g)?
G =v° : 4.62
010110100 = V(U + v + w) T(2 = 2:)2 ; (4.62)
e (1 —¢e)T(e
Gotrtioio0 =m0 Hu+v+w)™° ( J1E) (4.63)

I'(1—2¢)'(2 — 2¢)

x [m*T(—)T(e + 1) + v°I(1 — e)l'(e) (2m°T(—¢) + v° (1 — 26)T'(e)) | ,

e (1 — &) (e)?
T(2 - 2¢)2

Groo10100 = ™" “(u + v +w)~* (4.64)

Matching their expansions to the iterative solution, we found our final result. The expressions
are too lengthy to be displayed here in the body or appendices, so they are relegated to the
accompanying Mathematica notebook TriPentagonA2Z.nb, where an interested reader could
find as well all steps from-A-to-Z for the determination of their expressions starting with
necessary initial IBP reductions. The tri-pentagon (4.1) is then given by the integral

TriPent = wv(u + v + w)G111111100 5 (4.65)

which is not one of the elements of the above basis, but can be easily reduced to them by
means of an IBP reduction. The latter gives

2(1 = 7e)(u+v+w)

TriPent = €l4 —J3 — %L; — T+ w) [5J11 — J34]
_a ;Zg_;;} tw) [5J91 — Juz]
20(1 — 7e)(u? + 2uv + v? 4 3uw + Jvw + 2w?) 7
T(u+ w)(v + w) #
— Jaog + J36 + Jaz + Tt — Jus + §J46 : (4.66)
v+ w u—+w 7

- 12 —



Notice that some of the MIs in this expression do not possess UT individually, however, in
the sum TriPent is indeed UT. However, it is not a pure function: multiple polylogarithms
are accompanied by rational prefactors of the (u,v,w) variables.

Before we move on to the next graph, let us point out that there is an alternative way to
obtain the analytic result for the tri-pentagon (4.1), which bypasses the need for construction
of the MI basis. It is based on the famous triangle relation established in Ref. [44]. Namely,
by applying it to the left triangle subgraph in Fig. 2 (a), G111111100 can be recast in terms
of integrals corresponding to graphs with either the central propagator or one of the two
(adjacent) left ones shrunk into a point. The first of these contributions yields a factorized
diagram of a bubble with an attached triangle that can be calculated with, say, MBcreate.m
package [59]. While the second one reduces to the double box integrals evaluated in [50] for
the required kinematics.

4.2 Tri-box

The tri-box graph in Fig. 2 (b) is related to the Davydychev-Ussyukina function ®, given in
Eq. (3.3),

TriBox(p1, p2 + p3) = (u + w)Po(m,v) . (4.67)

Its small-m expansion immediately produces the sought after expression

. 1. u 1 Q“Q
TriB = |=L | 2 1 4.
riBox(p1, p2 + ps3) [2 12( _1> +4 0g" — — 2] og®m (4.68)
1-— 1—u)
{3L13 ( ) Li, ( ) logu — = log (1 —u)log> —— — (log —( v) logm
u— u
+ 6Liy4 — 3Li3 ¢ )+ = L12 ¢ log2 U
u—1 u—1
1 1—u 21
+ ZlogQ(l u log vy Cg log® u + 3¢ log(1 — u) log + EQ"

4.3 Double boxes and nonplanar tri-box

The non- and planar double boxes in the near—off-shell kinematics were calculated recently in
Ref. [50]. The asymptotically canonical bases for the families of graphs in Fig. 2 (¢) and (d)
consist of 62 and 97 elements, respectively. Thus, all we need to do in order to evaluate the
integrals in Eqs. (4.3) and (4.4) is to perform their IBP reduction to the canonical elements
constructed in [50]. This task is elementary making use of the FIRE code and we found

1
DBox = —— EJ54 + Y J55 - J59 - Jﬁl y (469)
2e4 w
and
1 [1585645 949 72337 4403017 7045 1153
NBox = — — | —— "7 _ 2~ _ -
OX=—77| 20176 M 5wt s P T e M T s T s
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Jus

21
J; —J,
88 T 55789 +

for the planar and non-planar graphs in Figs. 2 (¢) and (d), respectively. These are way
too lengthy to be presented in the explicit form in the body of the paper. Therefore, for
the reader’s convenience, we spell them out in the Mathematica notebook Integrals.nb
attached with this submission.

Finally, the nonplanar tri-box in Fig. (2) (e) is just one of the MIs in the nonplanar
doublebox basis, namely,

2(u+v+w)

NTriBox =
Hbox et (v 4+ w)

Jss - (4.71)
Of course, this graph was calculated in Ref. [60], where it was found into factorize after a
Fourier transform to the square of ®1:

1—u

NTriBox =

(@1 (m, u))?. (4.72)
We indeed confirmed our agreement with it on the constraint (2.3), u +v+w =1+ O(m).

This concludes our calculation of contributing two-loop graphs. All of the integrals reported
in this section are UT, however, none are pure.

5 Adding things up

Finally, we are in a position to add up all of the calculated integrals.
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5.1 Infrared exponentiation and general structure

As we alluded to in the introduction, we anticipate [25-27] that the infrared logarithms, i.e.,
log m, exponentiate such that the form factor takes the form

log F3 = _Locilg) [log2 <@> + log® <@> + log® (mﬂ + Fing (u,v,w; g) + O(m?), (5.1)
4 U v w
with T being the octagon anomalous dimension [28-30] and Fing being a finite part: it
depends only on scalar products of momenta of external states and the 't Hooft coupling
constant g. It also depends on the type of the operator insertion in (1.1) as well as helicities
of external states. Fing develops a perturbative expansion

Fing = g2f§1) + g4f§2) +.... (5.2)

The infrared exponent I'y¢ is known exactly to all orders in the coupling ¢ and is given by
[29]:

2
Foet(9) = —— log cosh (2mg) = dg” — 169" + ... (5.3)

Here, we expanded it to the first two orders, relevant for our current study. We would like
to point out the absence in Eq. (5.1) of linear powers in log m in contrast to the kinematical
regime considered in Refs. [1, 15-17|, where all external particles’ momenta were strictly
massless and states propagating in loops’ perimeters where taken massive?: there is no
analogue of the collinear anomalous dimension in the off-shell regime!

The expansion of log F3 in powers of g is given by
1
log Fy = g*FY + ¢ (F§2> - 5[@5”]2) .., (5.4)

and can be matched onto the expressions for Fél) and F§2) in terms of scalar integrals given
by (3.1) and (4.6), respectively. Focusing on the infrared divergent part first, we combine
the integrals computed above to find

log F3 o [—3¢% + 12¢g" + .. Jlog? m + [2g° — 8(ag” + . . .| log m log(uvw) (5.5)
in full agreement with our expectation (5.1).
Several comments are in order. Individual two-loop integrals in (4.6) contain log* m as

well log® m terms. They cancel, however, in the difference between Fng)

and the square of
one-loop form factor F3(1) in the O(g*) coefficient in (5.4). Individual two-loop integrals, i.e.,
coefficients accompanying the powers of log m, are, in general, expressed in terms of multiple

polylogarithms [56]. As can be seen in attached Mathematica notebook Integrals.nb, the

4The relation (5.1) is, strictly speaking, a conjecture supported by an array of explicit computations
[25-27] as well as a general intuition about IR properties of gauge theories [19-21].
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coefficients of log®m and logm in (5.5) are determined solely by ordinary logarithms. To
observe the cancellations of higher powers of the infrared logarithms as well as simplifications
of log” m and logm terms in (5.5) we used a combination of the symbol map [61, 62] along
with high-precision numerical computations offered by the GiNaC integrator [63] through
the interactive Ginsh environment of the PolyLogTools package [64]. As we emphasized in
earlier sections, individual two-loop integrals are not pure UT functions. They, however, do

neatly combine into a pure UT expression when collected together in F§2).

5.2 Finite part

Let us now move on to the finite part Fing. From Eq. (3.1) it is easy to see that at one loop
we have

£ (u, v, w) = — logulogv — log vlog w — log wlog u

The two-loop finite part f3(2) is given by the log m-free term of the O(g*) coefficient® in (5.4).
It is a complicated combination of multiple polylogarithms of weight 4. On the route to
simplify this expression, it is instructive to consider its symbol map first [62]. Using the
PolyLogTools, we found out that the symbol of f3(3) is given by

1—u 1—u
S[fég’)]:—2u®(1—u)®(1—u)®T+u®(1—u)®u® "
1—-v 1—w
—u®(1—u)®v®T—u®(1—u)®w®T
1—-wv 1—u
—u®v®(1—u)®T—u®v®(l—v)® ”
1—u 1—w
+u®v®w®7+u®v®w®7
1—w 1—-w
+tURUVRUWER® —— —uRQUWR (1 —u) ® ——
w w
1—u 1—v
+u®w®v®T+u®w®’U®
1—-w 1—u
+u®w®v®T—u®w®(1—w)®
+ cyclic permutations. (5.7)

This symbol is identical to the symbol of a local function of the following combination of
logarithms and classical polylogarithms:

) =30 () 13 () +3 (] o3 (- )

5Less 4(y (1og2 (u) + log?(v) + log? (w)) due to our definition of the divergent part which includes a finite
term as well.
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> ’ 1[< i log*(uvw)
) (Z Lig(1 — u;1)> +5 ( log? u) - (5.8)
i=1 i=1

with the J(z) function defined as

log®(—2). . log*(—2) . . log*(—2)
o Lin(z) - =g Lin(s) - = . (5.9)

Here for brevity of the presentation, we employed the set of variables u; = u, us = v and

J(2) = Liy(z) — log(—2)Li3(z) +

us = w. The Rgf) function was first uncovered in the computation of the finite part of
the three-gluon form factor in the conformal regime [31], i.e., at the origin of the moduli
space of N' = 4 sYM. However, numerical evaluations of féz) and RéQ) in several kinematical
points clearly indicate that they are different and the difference is not a constant. This is not
surprising given that the symbol map is blind to terms such as 7% x function(u, v, w). We have
constructed an ansatz of all possible terms® of the form 72 x {log(z;)log(z;), Lia(z;), 7%}
with rational coefficients plus Rg). The values of x; were taken from the following list

1 1 wv  vw wu}

1
{u,v,w,l—u,l—v,l—w,l——,l——,l———— _ (5.10)

Y b Y

u (% w w u (%

Evaluating numerically our ansatz and f3(2) in several kinematical points using the Ginsh
integrator allowed us to unambiguously fix these coefficients, and we arrived at

f§2) (u,v,w) = R:(f) (u,v,w) + 3¢, [log(u) log(v) + log(v) log(w) + log(w) log(u)]

3 3
. _ 63C4
1 2
_4@;&2 (1—% )4—9(2;105; ui—l—T. (5.11)
This concludes our calculation of the finite part at the two-loop order. We see that it is a

pure function of uniform transcendentality just as in the conformal case.

5.3 Iterative structure

In the massless case of scattering amplitudes, it became customary to split results according
to the so called BDS ansatz [18] and a finite remainder [65, 66]. The same decomposition
was established for the case of form factors as well [31]. Such a decomposition admits the
following generic from

FP = Z[FV] +4GEY +RY. (5.12)
In the massless case, ﬁél) was found to enjoy a very powerful feature, namely, it was deter-
mined at two loops to be merely given by the one-loop form factor [31]

1
g = F(2), (5.13)

6Taking into account cyclic symmetry as well as functional relations between Lis reduces the number of
terms in the ansatz quite significantly.

— 17 —



where the factor of 411 is introduced to accommodate the change from I'oe; to I'cysp of the
massless case. This is the well-known cross-order relation [18] encoding the iterative structure
of massless amplitudes. It was also confirmed on the Coulomb branch where the external
legs were kept massless [16].

Adopting the same nomenclature in the current ‘off-shell’ case, we find that ﬁ?fl) possesses
all of the building blocks of the one-loop form factor Fél) but is not directly related to it

except for the infrared-divergent terms. It has the form

fél) = 3log® m — 2log m log uvw (5.14)
3
+ 4—1[log2u+log2"0+logzw+logulogv+10gulogw+logvlogw}

of. Eq. (5.5), such that Fi"|q, = Fi"|aqy. With this convention, the ‘off-shell’ remainder
function R:(f) is related by a constant shift
63
R (u,v,w) = R (u, v, w) + % . (5.15)
to the one of the conformal case’, Rgf) [31]! Indeed, we could enforce the same iterative
structure of the ‘off-shell’ form factor as in the conformal case at the expense of changing
the remainder function Rg) .

6 Conclusion

With this paper, we continued our excursion into the land of the Coulomb branch away from
the origin in its moduli space. The object under our study was form factor of the lowest
component of the stress-tensor multiplet for three massive W-bosons. We were particularly
interested in the asymptotic region of their vanishing masses, m — 0. In this case, the
emerging infrared divergences are encoded by the logarithms of m, which replace inverse
powers of € in dimensional regularization. However, this is not to be confused with another
use of the Coulomb branch advocated in Ref. [1], as a means to make amplitudes and form
factors finite by giving vacuum expectation values to scalars propagating around quantum
loops perimeters. In the latter case, it was established that amplitudes and Sudakov form
factors echo the well-known infrared behavior of massless scattering amplitudes and form
factors with the infrared physics driven by the cusp anomalous dimension. In counter-
distinction, we find instead, that like in the case of scattering amplitudes of four- [24] and
five W-bosons [25] and the Sudakov form factor of two W-bosons [26, 27|, the infrared
logarithms are accompanied by a completely different function of the coupling, the octagon

"Note that the remainder function in Ref. [31] contains an additive constant —%(y, which we did not
include in our definition (5.8).
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anomalous dimension [28-30]. This reconfirms the role of the latter as the critical infrared
exponent of the off-shell kinematics.

Further, the form factor of three W-bosons possesses a nontrivial remainder function.
After a proper subtraction of infrared logarithms with judiciously-chosen finite parts, we
found it to be identical to the one in the massless case (up to a constant), i.e., the origin
of the moduli space. The structure of the collinear limit is however quite different in the
two cases. While the massless case inherits its iterative structure in terms of one-loop
amplitude/form factor, the case of massive W-bosons is trickier. In order to put it on a
firmer foundation, analysis of the five-W amplitude at generic values of Mandelstam-like
variables needs to be studied, as opposed to the symmetric point discussed in Ref. [25].

Last but certainly not least is the question of the dual description of scattering ampli-
tudes and form factors on the Coulomb branch. A proposal for an off-shell Wilson loop
was put forward in Ref. [67] starting from a higher-dimensional holonomy and dimensionally
reducing it down to four-dimensions. However, while the one-loop expectation value for four
sites was found to be in agreement with the amplitude of the W-bosons, starting from two
loops the two ‘observables’ started to deviate. The reason for this fact remains obscure.
The T-dual gauge theory was chosen to be the conformal NV = 4 sYM. Had it rather be
something else or one had to use a different variant of dimensional reduction? This question
will have to be readdressed in the future.
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