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Set-coloring Ramsey numbers via codes

David Conlon∗ Jacob Fox† Xiaoyu He‡ Dhruv Mubayi§ Andrew Suk¶

Jacques Verstraëte‖

Abstract

For positive integers n, r, s with r > s, the set-coloring Ramsey number R(n; r, s) is the minimum N
such that if every edge of the complete graph KN receives a set of s colors from a palette of r colors,
then there is guaranteed to be a monochromatic clique on n vertices, that is, a subset of n vertices where
all of the edges between them receive a common color. In particular, the case s = 1 corresponds to the
classical multicolor Ramsey number. We prove general upper and lower bounds on R(n; r, s) which imply
that R(n; r, s) = 2Θ(nr) if s/r is bounded away from 0 and 1. The upper bound extends an old result
of Erdős and Szemerédi, who treated the case s = r − 1, while the lower bound exploits a connection to
error-correcting codes. We also study the analogous problem for hypergraphs.

1 Introduction

The Ramsey number R(n; r) is the minimum N such that every r-coloring of the edges of the complete graph
KN on N vertices contains a monochromatic clique on n vertices. The study of Ramsey numbers goes back
more than a century, their first appearance arguably being in the work of Schur [17] from 1916 on Fermat’s
Last Theorem modulo a prime.

In the two-color case, classical results of Erdős [6] and Erdős–Szekeres [9] show that 2n/2 ≤ R(n; 2) ≤ 4n.
Despite concerted efforts, only lower-order improvements to these bounds have been made [4, 15, 19] over
the last seventy-five years and the exponential constants in the lower and upper bounds remain unchanged.

For more colors, the best known bounds are of the form

2cnr ≤ R(n; r) ≤ 2c
′nr log r (1.1)

for positive constants c, c′. Here the upper bound again follows from the method of Erdős and Szekeres [9],
while the lower bound was obtained by Lefmann [13] through repeated application of the product inequality
R(n; r1 + r2)− 1 ≥ (R(n; r1)− 1) (R(n; r2)− 1). For r ≥ 3, the exponential constant c in (1.1) was recently
improved by Conlon and Ferber [5] through improving the bound for small r and then applying Lefmann’s
product inequality, with further improvements subsequently made by Wigderson [21] and by Sawin [16].

In this paper, we consider a natural generalization of the Ramsey problem where each edge is assigned a set
of s colors, instead of just one. Formally, for any positive integers n, r, s with r > s, the set-coloring Ramsey
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number R(n; r, s) is the minimum positive integer N such that in every edge-coloring χ : E(KN ) →
([r]
s

)

there is a monochromatic n-clique, i.e., a set of n vertices v1, . . . , vn such that
⋂

i<j χ(vivj) ̸= ∅. In words,
the set-coloring Ramsey number R(n; r, s) is the minimum N such that if every edge of KN receives a set
of s colors from a palette of r colors, then there is guaranteed to be a monochromatic clique on n vertices,
that is, a copy of Kn whose edges all share a common color. As a shorthand, it will be convenient for us to
refer to such a set-coloring χ as an (r, s)-coloring of KN .

The set-coloring Ramsey number and its special cases have been studied by many researchers for over
half a century (see [1, 2, 3, 7, 10, 14, 22, 23]). Indeed, note that when s = 1, R(n; r, 1) = R(n; r) is just
the classical Ramsey number. At the other extreme, when s = r − 1, the problem was originally studied by
Erdős, Hajnal and Rado [7] in 1965. Several years later, in 1972, Erdős and Szemerédi [10] proved that there
are positive constants c, c′ such that

2cn/r ≤ R(n; r, r − 1) ≤ 2c
′n log r/r. (1.2)

Comparing (1.1) and (1.2), we see that at both s = 1 and s = r − 1, the lower and upper bounds are off by
a factor of log r in the exponent. Improving on the gap in either of these cases would be a major advance.

In contrast, our main result, Theorem 1.1 below, allows us to determine the order of R(n; r, s) up to an
absolute constant in the exponent when s/r is bounded away from 0 and 1. More precisely, we have that
R(n; r, s) = 2Θ(nr) whenever εr < s < (1− ε)r for a fixed ε > 0. Somewhat surprisingly, this bound is of the
same order as Lefmann’s lower bound (1.1) for the s = 1 case, even though each edge now receives, say, half
of the r colors, instead of just one.

An upper bound for R(n; r, s) was proved in [23] by extending the Erdős–Szekeres [9] argument for s = 1
to general s. For instance, a simple bound that can be deduced by this method is

R(n; r, s) ≤
r

r − s

(r

s

)(n−2)r+1
. (1.3)

However, if s is close to r, the upper bound (1.3) is not very good. Indeed, if s = r− 1, the Erdős–Szemerédi
upper bound given in (1.2) is considerably better. Here, we extend the Erdős–Szemerédi argument to prove
a better upper bound for general s. Both our upper and lower bounds are encapsulated in the following
theorem.

Theorem 1.1. There exist constants c, c′ > 0 such that, for any integers n, r, s with n ≥ 3 and r > s ≥ 1,

ar · 2cnmax((r−s)r−1,(r−s)3r−2) ≤ R(n; r, s) ≤ 2c
′n(r−s)2r−1 log( r

min(s,r−s) ),

where ar is a constant depending only on r.

In particular, setting s = 1 or r − 1, we see that this result simultaneously generalizes the earlier results
(1.1) and (1.2). Moreover, if εr < s < (1 − ε)r, then we obtain R(n; r, s) = 2Θ(nr), as claimed above. In
general, the lower bound for log2 R(n; r, s)/((r − s)2r−1n) is at least a constant unless s is close to r, when
it can be as small as r−1/2, while the upper bound is at most a constant unless s is close to 1 or r, when it
can be as large as log r.

The lower bound construction in Theorem 1.1, which might be considered the main novelty of the paper,
uses a product coloring together with the classical Gilbert–Varshamov lower bound on the size of the largest
error-correcting code over a q-ary alphabet.

Theorem 1.1 will be proved over the next two sections, beginning with this lower bound. In addition to
this result, in Section 4, we study R(n; r, s) when n is fixed and the color parameters r and s grow, showing
that in this regime the problem is again tightly connected to error-correcting codes. Then, in Section 5, we
study the natural hypergraph extension of R(n; r, s). We conclude with some problems and further remarks.
For the sake of clarity of presentation, we sometimes omit floor and ceiling signs when they are not essential.
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2 The lower bound in Theorem 1.1

The goal of this section is to prove the lower bound in Theorem 1.1. We will need some notation pertaining
to error-correcting codes. Let Aq(m, d) be the maximum size of a code C ⊂ [q]m of length m in which any
two codewords have Hamming distance at least d, i.e., they differ in at least d coordinates. Such a code is
called a q-ary code of length m and distance d. A basic fact from coding theory is that, for d odd, Aq(m, d)
is the size of the largest q-ary code of length m that corrects for (d−1)/2 errors. We deduce the lower bound
in Theorem 1.1 from Theorem 2.1 below, which connects set-coloring Ramsey numbers to error-correcting
codes.

Like Lefmann’s product construction for R(n; r), we construct an (r, s)-coloring with no monochromatic
Kn by taking a product of (a, b)-colorings with no monochromatic Kn, where a and b are much smaller than
r and s. We assign an edge between two vertices in this product the union of the set of colors on the edges in
the coordinates where they differ. However, some edges may receive too few colors, so, instead of using the
entire product set, we pass to an induced subgraph whose vertex set is an appropriate error-correcting code.
Since any two points in the code differ in many coordinates, this guarantees that there are many colors on
each edge.

Theorem 2.1. Let a, b, d,m be positive integers with b < a and d < m and let r = ma and s = db. Then,
for q = R(n; a, b)− 1,

R(n; r, s) > Aq(m, d).

Proof. Consider an (a, b)-coloring χ : E(Kq) →
([a]

b

)

with no monochromatic Kn. Such a coloring exists by
the choice of q = R(n; a, b)− 1. From χ, we obtain a product set-coloring φ of the complete graph on [q]m as
follows. The palette consists of the r colors in [a]× [m] and an edge (x1, . . . , xm) ∼ (y1, . . . , ym) is assigned
the set

⋃

i,xi ̸=yi
(χ(xi, yi) × {i}). Note that φ is not yet an (r, s)-coloring, because the number of colors on

each edge can vary.
Also observe that in φ, each edge gets a subset of the r colors and there is no monochromatic Kn. For a

given edge (u, v), the number of colors |φ(u, v)| is exactly b times the Hamming distance between u and v.
However, we would like for each edge to receive exactly s colors. The edges that receive more than s colors
are easy to deal with, as we can simply take arbitrary subsets of their sets of colors of size s. The more
substantial issue is that some edges might receive fewer than s colors. In order to avoid this problem, we
pick a code C ⊂ [q]m of maximum size and distance d (so each edge between these vertices receives at least
db = s colors). By definition, such a code has size Aq(m, d). Since each edge of the induced subgraph on C
receives at least db = s colors and there is no monochromatic Kn, this completes the proof.

The Gilbert–Varshamov bound, due independently to Gilbert [11] and Varshamov [20], states that
Aq(m, d) ≥ qm/B(d − 1), where B(d − 1) denotes the volume of a Hamming ball of radius d − 1 in [q]m.
The exact formula for B(d − 1) is slightly unwieldy, so we will content ourselves with the simple estimate
B(d− 1) ≤ (mq)d. Together with the Gilbert–Varshamov bound, this gives Aq(m, d) ≥ m−dqm−d.

With this estimate in hand, we are ready to prove the lower bound in Theorem 1.1.

Proof of the lower bound in Theorem 1.1. It suffices to show that, for n sufficiently large in terms of r and
s,

R(n; r, s) ≥ 2cnmax((r−s)r−1,(r−s)3r−2)

or, equivalently, that

R(n; r, s) ≥
{

2cn(r−s)/r if r − s ≤ 8
√
r

2cn(r−s)3/r2 if r − s > 8
√
r.

Here 8 is an arbitrary constant we chose for convenience.
As shown in [22, Theorem 4], an application of the first moment method gives

R(n; a, b) ≥ (a/b)(n−1)/2 (n!/a)1/n ≥ 2n(a−b)/3b, (2.1)
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where the last inequality holds provided b ≥ a/2 and n! ≥ a and uses n ≥ 3 and 1 + x ≥ 2x for 0 ≤ x ≤ 1
with x = (a − b)/b. When s > r − 8

√
r, we can apply (2.1) directly with a = r and b = s to get

R(n; r, s) ≥ 2n(r−s)/3s ≥ 2n(r−s)/6r, as desired.
Suppose now that s ≤ r − 8

√
r and let a = ⌊ 16r

r−s⌋ ≤ r−s
4 and b = a − 1. If we choose the largest

r′ ≤ r which is a multiple of a and the smallest s′ ≥ s which is a multiple of b = a − 1, then we can apply
Theorem 2.1 with m = r′/a and d = s′/b to conclude that

R(n; r, s) ≥ R(n; r′, s′) > Aq(m, d) ≥ m−dqm−d =
( a

r′

)
s′

b

(R(n; a, b)− 1)
r′

a
− s′

b .

But, since s ≤ s′ + a,

r′

a
− s′

b
=

r′

a
− s′

a− 1
≥ r′

a
− s′

a

(

1 +
2

a

)

=
r′ − s′

a
− 2s′

a2
≥ r′ − s′ − 2

a
− 2s

a2
≥ r − s

2a
− 2s

a2
≥ (r − s)2

64r
.

Hence, since R(n; a, a− 1) ≥ 2n/6a ≥ 2n(r−s)/96r,

R(n; r, s) ≥
( a

r′

)
s′

b

(R(n; a, a− 1)− 1)(r−s)2/64r ≥ 2cn(r−s)3/r2

for some c > 0, as required.

3 The upper bound in Theorem 1.1

We now prove the upper bound on R(n; r, s) claimed in Theorem 1.1. Observe that (1.3) gives the claimed
bound for s ≤ 9r/10, so we may assume that s > 9r/10. The desired bound then follows from the next
result.

Theorem 3.1. For any positive integers r, s with s > 9r/10,

R(n; r, s) ≤
(

r

r − s

)500n(r−s)2/r

.

Proof. Let N =
(

r
r−s

)500n(r−s)2/r
and suppose, for the sake of contradiction, that the edges of KN are each

colored with s colors from [r] such that there is no monochromatic Kn. We will describe a process, at each
step of which some of the colors are turned on and the rest are turned off. We begin with all colors turned
off. Once a color is turned on, it remains on. At each step j of the process, we will have a set of remaining
vertices Sj , chosen so that the sets S0 ⊃ S1 ⊃ · · · shrink at each step. We also define ωi(Sj) to be the clique
number of Sj in color i and keep track of the vector (ω1(Sj), . . . ,ωr(Sj)). To begin, we let S0 = V (KN ),
noting that ωi(S0) < n for each i. Assuming |Sj | > 10n, we next describe how we find Sj+1 ⊂ Sj .

Suppose there is a color i that is on in step j with the density of edges in color i within Sj more than
1/2. Then there is a vertex vj whose incident edges have density more than 1/2 in color i. In this case, we
let Sj+1 be the set of vertices that are adjacent to vertex vj in color i, so |Sj+1| ≥ |Sj |/2. Since we may add
vj to any clique in Sj+1 of color i to form a larger clique of color i in Sj , we find that ωi(Sj+1) ≤ ωi(Sj)− 1.

Otherwise, there is no color that is on at step j which has edge density more than 1/2. Letting ε = 1−s/r,
we then pick a color i that is off in step j such that the density of edges in color i is at least 1 − ε. Such a
color exists since ε < 1/10 and the average color density is s/r = 1 − ε. Let T ⊂ Sj be the set of vertices
with edge density at least 1− 2ε in color i, so |T | ≥ |Sj |/2. Pick a maximum monochromatic clique Q ⊂ T
in color i. As there is no monochromatic Kn, we have |Q| < n < |Sj |/10 ≤ |T |/5 and each vertex in Q has
at most 2ε|Sj| incident edges with vertices in Sj that do not contain color i. Hence, each vertex in Q has
degree in color i to T \Q at least |T |− 2ε|Sj |− |Q| ≥ (1− 5ε)|T \Q|. Therefore, the edge density in color i
from Q to T \Q is at least 1− 5ε.
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Let U ⊂ T \ Q consist of those vertices whose degree in color i is at least (1 − 10ε)|Q| to Q, so |U | ≥
(|T |− |Q|)/2 ≥ |T |/4. By the pigeonhole principle, there is a subset Q′ ⊂ Q with |Q′| ≤ 10ε|Q| and a subset
Sj+1 ⊂ U such that |Sj+1| ≥ |U |/

( |Q|
10ε|Q|

)

≥ ε10εn|U | ≥ 1
8ε

10εn|Sj | and each vertex in Sj+1 is such that its

set of non-neighbors in color i in Q is a subset of Q′. We can make a monochromatic clique of color i by
combining Q \Q′ and any monochromatic clique of color i from Sj+1. By the choice of Q, this implies that
ωi(Sj+1) ≤ 10ε|Q| < 10εn. We then turn color i on.

We next claim that at most 3(r−s) colors are ever on. Indeed, once 3(r−s) colors are on, no other color can
turn on, as otherwise the sum of the edge densities of the colors would be at most 1

2 (3(r−s))+((r − 3(r − s)) <
s. However, this contradicts the fact, which follows since each edge has exactly s colors on it, that the sum
of the edge densities of the colors on any subset is s.

At each step j in which a color i is turned on, we have |Sj | ≤ 8ε−10εn|Sj+1| and ωi(Sj+1) < 10εn, whereas
at each step j where we pass to a neighborhood of a color i that is already on, we have |Sj | ≤ 2|Sj+1| and
ωi(Sj+1) ≤ ωi(Sj) − 1. As at most 3(r − s) colors ever turn on in total, the latter type of step occurs at

most 3(r − s) · 10εn times. But, as |S0| = N ≥ 10n · 23(r−s)·10εn (8ε−10εn
)3(r−s)

, this is a contradiction.

4 More on set-coloring Ramsey numbers and codes

In this section, we explore another connection between set-coloring Ramsey numbers and error-correcting
codes. Up to this point, we have focused on bounding R(n; r, s) when r and s are fixed and n is large.
However, it is also interesting to look at the regime where n is fixed. For example, when n = 3 and s = 1,
R(3; r, 1) is simply the multicolor Ramsey number of a triangle.

We first observe that R(n; r, s) = n if (r − s)
(n
2

)

< r. Indeed, this is equivalent to r(
(n
2

)

− 1) < s
(n
2

)

, so,
since each edge receives s colors, some one of the r colors must appear on all

(n
2

)

edges. More generally, we
have the following simple result, which connects set-coloring Ramsey numbers and Turán numbers. Recall
that, for a graph H and a positive integer N , the Turán number ex(N,H) is the maximum number of edges
in an H-free graph on N vertices.

Proposition 4.1. If N,n and r > s are positive integers for which s
r > ex(N,Kn)/

(

N
2

)

, then R(n; r, s) ≤ N .

Proof. Indeed, suppose N < R(n; r, s), so there exists an (r, s)-coloring χ of KN with no monochromatic
Kn. We bound the number of pairs (e, i) ∈ E(KN )× [r] consisting of an edge e and a color i ∈ χ(e) on that
edge in two ways. First, as |χ(e)| = s for each e, the total number of such pairs is

(N
2

)

s. Second, as each
color class is Kn-free, there are at most ex(N,Kn) edges of each color, giving an upper bound of ex(N,Kn)r
on the number of pairs. Hence, ex(N,Kn)r ≥

(N
2

)

s, which implies the proposition.

As a simple consequence of this proposition, we see that if n ≥ 3 and ε > 0 are fixed and s
r ≥ 1− 1

n−1 +ε,
then R(n; r, s) is at most a constant depending only on n and ε. On the other hand, for n fixed and
s
r ≤ 1 − 1

n−1 − ε, we can use Theorem 4.2 below to show that R(n; r, s) grows at least exponentially in r.

Thus, for n fixed, there is a threshold for s/r at 1 − 1
n−1 where the set-coloring Ramsey number goes from

being absolutely bounded to growing exponentially in r.
Instead of looking at R(n; r, s) directly, it will be useful to consider the variant R′(n; r, s), defined to be

the minimum N such that in every (r, s)-coloring of KN there is a color i for which the edges in color i
form a graph with chromatic number at least n. We clearly have R(n; r, s) ≥ R′(n; r, s) and we believe that
this estimate should be close to an equality when s/r is close to the Turán density 1− 1

n−1 . Indeed, for the
special case where s = r− 1, this is confirmed in [1]. The following result now establishes a tight connection
between this variation of set-coloring Ramsey numbers and the size of error-correcting codes.

Theorem 4.2. For all positive integers n ≥ 2 and r > s, R′(n; r, s) = An−1(r, s)+1. That is, the maximum
N for which there exists an (r, s)-coloring of KN such that each color class is (n− 1)-partite is equal to the
maximum size of a q-ary code with q = n− 1 of length r and distance s.
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Proof. Consider a set-coloring of the edges of the complete graph on [q]r, where a pair of vertices have color
i on their edge if they differ in coordinate i. Note that each color class is q-partite. Consider the induced
subgraph on a code of size Aq(r, s) of distance s. Each edge in this coloring of the complete graph on Aq(r, s)
vertices receives a set of at least s colors from a set of r colors and each color class is q-partite. Therefore,
R′(q + 1; r, s) > Aq(r, s).

For the other direction, let N = R′(n; r, s) − 1. By definition, there exists an (r, s)-coloring of KN such
that each color class is (n − 1)-partite. For each color i, pick a partition V (KN ) = Vi,1 ∪ · · · ∪ Vi,n−1 of
the vertex set into n − 1 independent sets in color i. To each vertex v ∈ V (KN ), assign v the codeword
x(v) = (x1(v), . . . , xr(v)) ∈ [n− 1]r, where xi(v) = j if v ∈ Vi,j . Observe that no two vertices can have equal
codewords as they must differ in at least s coordinates and so the mapping x : V (KN ) → [n− 1]r is injective
and its image x(V (KN)) is an (n − 1)-ary code of length r with distance at least s. By the definition of
Aq(r, s), we find that R′(n; r, s)− 1 = N ≤ Aq(r, s), completing the proof.

If we pick two random elements of (n − 1)r, the expected number of coordinates in which they differ
is (1 − 1

n−1 )r. Standard tail estimates then imply that, for any fixed ε > 0, the probability two random

elements differ in fewer than (1 − 1
n−1 − ε)r coordinates is at most 2−cr, where c depends only on n and ε.

In particular, this implies that we can pick 2cr/2 elements of (n − 1)r such that the distance between any
pair is at least (1 − 1

n−1 − ε)r. That is, for s ≤ (1 − 1
n−1 − ε)r, An−1(r, s) ≥ 2cr/2, so, by Theorem 4.2, we

get the same lower bound for R′(n; r, s) and, hence, R(n; r, s) in this range, confirming our earlier claim.
Suppose now that we have a set V of N vertices, with N a multiple of n− 1, and there are r partitions

P1, . . . , Pr of V into n− 1 sets of equal size such that, for each pair u, v of distinct vertices, there are s of the
partitions Pi for which u and v are in different parts. In this situation, we can produce an (r, s)-coloring of
the edges of the complete graph on vertex set V , where a pair of distinct vertices u, v receives the set of colors
i for which u and v are in different parts in Pi. Note that, in this set-coloring, each color class forms a Turán
graph with n− 1 parts and so has the maximum possible number of edges for a Kn-free graph on N vertices.
If such partitions P1, . . . , Pr exist, it therefore follows that R(n; r, s) = R′(n; r, s) = An−1(r, s) + 1 = N + 1.

We can build such partitions P1, . . . , Pr using finite geometry, generalizing a construction of Alon, Erdős,
Gunderson and Molloy [1] for the s = r − 1 case. If Fq is the finite field of order q for some prime power q,
then the number of k-dimensional subspaces in the d-dimensional affine space Fd

q is given by the Gaussian
binomial coefficient (or q-binomial coefficient)

(

d

k

)

q

=
k−1
∏

i=0

(qd−i − 1)

(qk−i − 1)
.

If we set V = Fd
q and let S1, . . . , Sr be the set of all k-dimensional subspaces of Fd

q , so that r =
(d
k

)

q
, we can

define r partitions P1, . . . , Pr of V , where x, y ∈ V are in the same part in Pi if and only if y − x ∈ Si. As
there are qd−k distinct translates of Si, each corresponding to a part of Pi, we get that each Pi has qd−k

parts and, hence, we can set n = qd−k +1. Observe that each pair of distinct vertices is in the same number
of affine subspaces of dimension k. Since the probability that two distinct random vertices are in the same

part in Pi is
qk−1
qd−1 , it follows that there are s partitions for which they are in different parts, where

s =

(

1−
qk − 1

qd − 1

)

r.

Putting all this together, we have the following proposition.

Proposition 4.3. Let k < d be positive integers and q be a prime power. If n = qd−k + 1, r =
(d
k

)

q
and

s =
(

1− qk−1
qd−1

)

r, then

R(n; r, s) = R′(n; r, s) = An−1(r, s) + 1 = qd + 1.

While we expect that the bound R(n; r, s) ≥ R′(n; r, s) = An−1(r, s) + 1 is close to sharp for s/r close
to 1 − 1

n−1 , it can be far from the truth in general. Indeed, the bound is only polynomial in n, as, by the
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Singleton bound [18], An−1(r, s) ≤ (n − 1)r−s+1, but in some other regimes we know that the set-coloring
Ramsey number grows exponentially in n.

5 Hypergraph set coloring

One can also study the analogous problem for hypergraphs. Let us define K(k)
N to be the complete k-uniform

hypergraph on N vertices and an (r, s)-coloring of K(k)
N to be a function assignment χ : E(K(k)

N ) →
([r]
s

)

.
For positive integers n, k, r, s with n > k and r > s, the k-uniform set-coloring Ramsey number Rk(n; r, s)

is then the minimum positive integer N such that in every (r, s)-coloring of K(k)
N there is a monochromatic

n-clique, i.e., a set of n vertices such that all
(n
k

)

edges in this set include a common color. A simple variant
of an old result of Erdős and Rado [8] gives the following upper bound.

Theorem 5.1. For any positive integers n, k, r, s with n > k ≥ 3 and r > s,

Rk(n; r, s) ≤
(

r

s

)(Rk−1(n−1;r,s)

k−1 )
.

In the other direction, there is a standard technique, the stepping-up lemma (see, for example, [12]), that
allows one to take a bound for the r-color Ramsey number of graphs and lift it to a bound for the 2r-color
Ramsey number of 3-uniform hypergraphs. This technique also applies in the set-coloring context and gives
the following result. We include its proof as a warm-up.

Theorem 5.2. If R2(n; r, s) > N for some positive integers N,n, r, s, then R3(n+ 1; 2r, s) > 2N .

Proof. Suppose that we have an (r, s)-coloring χ of the complete graph on vertex set U = {0, 1, . . . , N − 1}
with no monochromatic n-clique. We will produce a (2r, s)-coloring φ of the complete 3-uniform hypergraph
on vertex set V = {0, 1, . . . , 2N − 1} with no monochromatic (n+ 1)-clique.

For v ∈ V , we write v =
∑N−1

i=0 v(i)2i, where v(i) ∈ {0, 1}. Then, for any u, v ∈ V with u ̸= v, let δ(u, v)
denote the largest i ∈ {0, 1, . . . , N − 1} such that u(i) ̸= v(i). It is easy to see that we have the following
properties:

Property I: For every triple u < v < w, δ(u, v) ̸= δ(v, w).
Property II: For v1 < · · · < vr, δ(v1, vr) = max1≤j≤r−1 δ(vj , vj+1).

Given a triple f = {u, v, w}, where u < v < w ∈ V , set φ(f) = χ(δ(u, v), δ(v, w)) ∈
([r]
s

)

if δ(u, v) < δ(v, w)

and set φ(f) = {x + r : x ∈ χ(δ(u, v), δ(v, w))} if δ(u, v) > δ(v, w). Hence, φ(f) ∈
([2r]

s

)

for every edge
f . For the sake of contradiction, suppose that there are vertices v1 < · · · < vn+1 ∈ V such that there
is a common color in the coloring φ on the triples spanned by these vertices. Let δi = δ(vi, vi+1). Since
{x : x ∈ χ(δi, δi+1) for some 1 ≤ i ≤ n} and {x + r : x ∈ χ(δi, δi+1) for some 1 ≤ i ≤ n} are disjoint,
the sequence {δi} must be monotone (i.e., δ1 < · · · < δn or δ1 > · · · > δn). By Properties I and II,
this easily implies that there is a common color in the coloring χ on the set {δ1, . . . , δn} ⊂ U , which is a
contradiction.

Together with Theorem 1.1, this implies that R3(n; r, s) is at least double exponential in n provided
r ≥ 2s+ 2. For k ≥ 3, it becomes a little easier to step-up from k-uniform to (k + 1)-uniform hypergraphs.
Following the stepping-up process described above, every (k + 1)-tuple {v1, . . . , vk+1} with v1 < v2 <
· · · < vk+1 and v1, . . . , vk+1 ∈ {0, 1, . . . , 2N − 1} has a corresponding k-tuple {δ1, . . . , δk} with δ1, . . . , δk ∈
{0, 1, . . . , N − 1}, where δi = δ(vi, vi+1). Because k ≥ 3, we can now distinguish between whether the
sequence {δi} is monotone or non-monotone. If {δi} is monotone, we assign the (k+1)-tuple {v1, . . . , vk+1}
the same color as the k-tuple {δ1, . . . , δk}. If {δi} is non-monotone, we distinguish between whether the first
non-monotone triple in the sequence {δi} is a local maximum or a local minimum (i.e., δi < δi+1 > δi+2

or δj > δj+1 < δj+2), in the first case giving the corresponding (k + 1)-tuple one particular fixed set of s
colors and in the second case a totally disjoint fixed set of s colors. In particular, both cannot occur in a
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monochromatic clique. For this to work, there must be at least 2s colors overall, that is, we need r ≥ 2s. A
careful analysis now gives the following result.

Theorem 5.3. Fix k ≥ 3. If 1 ≤ s ≤ r/2 and Rk(n; r, s) > N > 0 for some positive integers N,n, r, s, then
Rk+1(2n− 1; r, s) > 2N .

Thus, unlike for ordinary Ramsey numbers, where a double-exponential lower bound for R3(n; r, 1)
automatically implies a triple-exponential lower bound for R4(n; r, 1), it is not always the case that a double-
exponential lower bound for R3(n; r, s) implies a triple-exponential lower bound for R4(n; r, s). Instead,
Theorem 5.3 only says that we can apply the stepping-up method as long as s ≤ r/2. The next theorem
shows that, provided we are willing to pay a small price in the top exponent, we can actually go as far as
s ≤ 2r/3.

Theorem 5.4. If 1 ≤ s ≤ 2r/3 and R3(n; r, s) > N > 0 for some positive integers N,n, r, s, then
R4(2n2; r, s) > 2N .

Proof. Suppose we have an (r, s)-coloring χ of the complete 3-uniform hypergraph with vertex set U =
{0, 1, . . . , N − 1} with no monochromatic n-clique. We will produce an (r, s)-coloring φ of the complete
4-uniform hypergraph on vertex set V = {0, 1, . . . , 2N − 1} with no monochromatic 2n2-clique. Just as in

the proof of Theorem 5.2, for v ∈ V , we write v =
∑N−1

i=0 v(i)2i, where v(i) ∈ {0, 1}. For any u, v ∈ V with
u ̸= v, let δ(u, v) denote the largest i ∈ {0, 1, . . . , N − 1} such that u(i) ̸= v(i). Once again, Properties I and
II hold.

Choose three s-subsets A,B,C of [r] with the property that A∩B∩C = ∅. Since s ≤ 2r/3, this is possible.
We are now ready to define our coloring φ. Given a 4-tuple f = {v1, . . . , v4} with v1 < v2 < v3 < v4 ∈ V ,
let δi = δ(vi, vi+1) and color the edges as follows:

• If the sequence {δi} is monotone, then φ(f) = χ(δ1, δ2, δ3).

• If δ3 > δ1 > δ2 then φ(f) = A.

• If δ1 > δ3 > δ2 then φ(f) = B.

• If δ1 < δ2 > δ3 then φ(f) = C.

See Figure 5.1.

δ3 δ1 δ2
v1: 0 0 *
v2: 0 1 0
v3: 0 1 1
v4: 1 * *

(a) φ(f) = A

δ1 δ3 δ2
v1: 0 * *
v2: 1 0 0
v3: 1 0 1
v4: 1 1 *

(b) φ(f) = B

δ2 δ1 δ3
v1: 0 0 *
v2: 0 1 *
v3: 1 x 0
v4: 1 x 1

δ2 δ3 δ1

0 0 0

0 0 1

1 0 *

1 1 *

(c) φ(f) = C

Figure 5.1: Examples of v1 < · · · < v4 and δi = δ(vi, vi+1). Each vi is represented in binary with the
leftmost entry corresponding to the most significant bit. A ∗ indicates that the corresponding bit can be 0
or 1 independently of all other ∗’s.

Let v1 < · · · < v2n2 be vertices in V and suppose, for the sake of contradiction, that there is a common
color in the coloring φ on all the edges spanned by these vertices. Let δi = δ(vi, vi+1) and suppose that
δi0 = maxi δi. By Property II, δi0 = maxi,j δ(vi, vj). In other words, the maximum δ value is achieved by
two consecutive vertices.

Our main claim is that min{i0, 2n2 − i0} < n. To see this, suppose, for the sake of contradiction, that
i0 ≥ n and 2n2 − i0 ≥ n. If the sequence {δj}i0j=1 is monotone increasing, then, by Properties I and II, there
is no common color on the vertex set {v1, . . . , vn, . . . , vi0 , vi0+1} in the coloring φ as there is no common color
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on the vertex set {δ1, . . . , δn} in the coloring χ. A similar argument shows that {δj}2n
2−1

j=i0
is not monotone

decreasing. Consequently, there exist 1 ≤ j < i0 < k < 2n2 − 1 such that

δj > δj+1 < δi0 > δk < δk+1.

For f1 = {vj, vj+1, vk, vk+1}, the corresponding sequence of δ’s is

(δj , δ(vj+1, vk), δk).

Since δ(vj+1, vk) = δi0 by Property II, we have the inequalities δj < δ(vj+1, vk) > δk and, consequently,
φ(f1) = C. For f2 = {vj , vj+1, vj+2, vi0+1}, the corresponding sequence of δ’s is

(δj , δj+1, δ(vj+2, vi0+1)).

Since δ(vj+2, vi0+1) = δi0 , we have the inequalities δ(vj+2, vi0+1) > δj > δj+1 and, consequently, φ(f2) = A.
For f3 = {vi0 , vk, vk+1, vk+2}, the corresponding sequence of δ’s is (δi0 , δk, δk+1) and δi0 > δk+1 > δk yields
φ(f3) = B. Since f1, f2, f3 receive the color sets C,A,B, respectively, and A ∩ B ∩ C = ∅, we have a
contradiction.

We have shown that min{i0, 2n2−i0} < n. Color i0 black if i0 < n and white if 2n2−i0 < n. Assume that
i0 is black (a similar argument works if it is white). We now consider the vertex set {vi0+1, vi0+2, . . . , v2n2}
and define δi1 = maxi0<i≤2n2−1 δi and repeat the procedure just described to color i1 black or white. In
this way we obtain a sequence i0, i1, i2, . . . , ij , . . . , i2n, where ij is defined from a vertex subset of size
2n2 − (n − 1)j, together with a black/white coloring of the elements in the sequence. By the pigeonhole
principle, at least n + 1 of the ij ’s, say ij1 , ij2 , . . . , ijn+1 , have the same color. We consider the set
of vertices {vij1 , vij2 , . . . , vijn+1

}. By construction and Properties I and II, the corresponding sequence

δ(vij1 , vij2 ), . . . , δ(vijn , vijn+1
) is monotone and, in particular, consists of n distinct numbers. Consequently,

it has no common color among its triples in the coloring χ and, therefore, {vij1 , vij2 , . . . , vijn+1
} has no

common color among its 4-tuples in the coloring φ, a contradiction.

We note, in particular, that Theorem 5.4 implies that R4(n; 3, 2) is at least double exponential in
√
n.

Moreover, a double-exponential lower bound for R3(n; 3, 2), which remains an open problem, would imply a
triple-exponential lower bound for R4(n; 3, 2).

6 Concluding remarks

One curiosity of Theorem 1.1 is that though the upper and lower bounds agree up to a constant in the
exponent when s/r is bounded away from 0 and 1, they diverge when s = o(r) or r− s = o(r). Indeed, when
r − s = o(r), they can diverge significantly. For instance, we only have that

2cn/
√
r ≤ R(n; r, r −

√
r) ≤ 2c

′n log r

and it would be interesting to decide which of these bounds is closer to the truth. We leave this as an open
problem.

Problem 6.1. Improve the bounds for R(n; r, r −
√
r).

Regarding hypergraphs, Theorem 5.2 leaves open the problem of whether R3(n; r, s) is double exponential
when r ≤ 2s+ 1. We highlight the second case of interest (the first case, where r = 3 and s = 1, is already
notorious).

Problem 6.2. Show that R3(n; 5, 2) is double exponential in n.
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The case R3(n; 4, 2) also seems particularly interesting because of its connections to classical problems on
hypergraph Ramsey numbers. Indeed, for positive integers n, k, r, s, t, note that Rk(n; tr, ts) ≥ Rk(n; r, s),
since, given an (r, s)-coloring with no monochromatic Kn, we can replace each color by a set of t new
colors to find a (tr, ts)-coloring with no monochromatic Kn. In the other direction, we have Rk(n; r, s) ≤
Rk(n; r−1, s−1), since, given an (r, s)-coloring with no monochromatic Kn, we can produce an (r−1, s−1)-
coloring with the same property by deleting color r from each edge in which it appears and deleting an
arbitrary color from every other edge. Therefore,

R3(n, n) := R3(n; 2, 1) ≤ R3(n; 4, 2) ≤ R3(n; 3, 1) =: R3(n, n, n).

That is, the problem of determining R3(n; 4, 2) is intermediate between those of determining R3(n, n) and
R3(n, n, n), so progress on understanding the former function may shed some light on the latter ones.

It is possible to improve Theorems 5.3 and 5.4 further still for k ≥ 4, in that the necessary inequality
between s and r when stepping-up from k-uniform to (k + 1)-uniform hypergraphs can be improved to
s ≤ (1 − ck)r where ck tends to 0 as k tends to infinity. However, it remains the case that we cannot show
Rk+1(n; r, s) is at least exponential in Rk(n; r, s) for all choices of r and s. All of the difficulties are inherent
in the following general question.

Problem 6.3. Determine the tower height of Rk(n; r, r − 1) for all k ≥ 3 and r ≥ 2.

Since this problem, which includes the famous question of estimating R3(n, n) as a special case, is likely
to be very difficult, a simpler problem might be to show that there exists a bounded c, independent of r,
such that Rk(n; r, r − 1) has tower height at least k − c for all k ≥ 3 and r ≥ 2.
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