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Abstract—The emergence of blockchain technology has re-
newed the interest in consensus-based data management systems
that are resilient to failures. To maximize the throughput of
these systems, we have recently seen several prototype consensus
solutions that optimize for throughput at the expense of overall
implementation complexity, high costs, and reliability. Due to
this, it remains unclear how these prototypes will perform in
real-world environments.

In this paper, we present SPOTLESS, a novel concurrent rota-
tional consensus protocol made practical. Central to SPOTLESS
is the combination of (1) a chained rotational consensus design
for replicating requests with a reduced message cost and low-
cost failure recovery that eliminates the traditional complex,
error-prone view-change protocol; (2) the novel Rapid View
Synchronization protocol that enables SPOTLESS to work in
more general network assumptions, without a need for a Global
Synchronization Time to synchronize view, and recover valid
earlier views with the aid of non-faulty replicas without the
need to rely on the primary; (3) a high-performance concurrent
consensus architecture in which independent instances of the
chained consensus operate concurrently to process requests with
high throughput, thereby avoiding the bottlenecks seen in other
rotational protocols.

Due to the concurrent consensus architecture, SPOTLESS
greatly outperforms traditional primary-backup consensus pro-
tocols such as PBFT (by up to 430%), NARWHAL-HS (by up
to 137%), and HOTSTUFF (by up to 3803%). Due to its reduced
message cost, SPOTLESS is even able to outperform RCC, a state-
of-the-art high-throughput concurrent consensus protocol, by up
to 23%. Furthermore, SPOTLESS is able to maintain a stable
and low latency and consistently high throughput even during
failures.

I. INTRODUCTION

The emergence of BITCOIN [1] and blockchain technology
has renewed the interest in consensus-based resilient data man-
agement systems (RDMSs) [2]-[7] that can provide resilience
to failures and can manage data between fully-independent
parties (federated data management). Due to these qualities,
there is widespread interest in RDMSs with applications in
finance, health care, 10T, agriculture, fraud-prevention, and
other industries [8]-[12].

Although BITCOIN builds on many pre-existing techniques,
the novel way in which BITCOIN used these techniques was a
major breakthrough for resilient systems, as BITCOIN showed
that resilient systems with thousands of participants can solve
large-scale problems [2], [13]. Furthermore, BITCOIN did
S0 in a permissionless way without requiring a known set
of participants and allowing participants to join and leave
the system at any time. The highly-flexible permissionless

design of blockchains such as BITCOIN and ETHEREUM [14]
is not suitable for high-performance RDMSs, however: their
abysmal transaction throughput, high operational costs, and
per-transaction costs make them unsuitable for typical data-
based applications [1], [2], [13]-[17]. Instead, data-based
applications often are deployed in an environment with a set
of identifiable participants (who may behave arbitrarily) due
to which they can use permissioned designs using primary-
backup consensus protocols [3], [18]-[22] such as the Practi-
cal Byzantine Fault Tolerance consensus protocol (PBFT) [3].

RDMSs with fine-tuned primary-backup consensus imple-
mentations can process hundreds-of-thousands client requests
per second [25]. Such high-throughput implementations come
with severe limitations, however. First, in primary-backup
consensus, a single replica (the primary) coordinates the
replication of requests. Due to this central role of the primary,
performance is usually bottlenecked by the network bandwidth
or computational resources available to that primary [23], [26],
[27]. Furthermore, the central role of the primary is detrimental
to scalability, due to which high throughput can only be
achieved on small-scale deployments. Finally, the techniques
necessary in primary-backup consensus to reach high through-
put (e.g., out-of-order processing [3], [25]) require complex
implementations that keep track of many partially-processed
rounds of consensus. When recovering from failures, this
normal-case complexity necessitates complex and costly (in
terms of message size and duration) view-change protocols
to figure out which of these partially-processed consensus
rounds can contribute to a consistent recovered state. Recently,
we have seen two significant developments to address these
limitations in isolation.

First, the introduction of concurrent consensus protocols
such as RCC [23], MIRBFT [26] and ISS [27] have sig-
nificantly improved the scalability and performance of high-
throughput consensus. These concurrent consensus protocols
do so by taking a primary-backup consensus protocol such
as PBFT as their basis and then run multiple instances
(each with a distinct primary, e.g., each non-faulty replica
is a primary of its own instance) at the same time, this
to remove any single-replica bottlenecks. On the one hand,
the concurrent consensus is able to eliminate bottlenecks,
improve scalability, and improve performance. On the other
hand, existing concurrent consensus protocols do so by further
increasing both the implementation complexity and the cost of
recovery. For example, RCC shuts down faulty primaries for



Environment Concurrent Chained  Threshold Communication Complexity
Protocol Safety Liveness Consensus Consensus Signatures Phases Messages (at primary) (per decision)
SPOTLESS Asynchronous Partial Synchrony yes yes no 6 c(3n?) ¢(3n) n?
PBFT [3] Asynchronous Partial Synchrony no no no 3 2n? 3n 2n?
RCC [23] Asynchronous Partial Synchrony yes no no 3 c(2n?) ¢(3n) 2n?
HOTSTUFF [24] Asynchronous Partial Synchrony no yes yes 8 8n 4n 2n

Fig. 1: Comparison of SPOTLESS with three state-of-the-art consensus protocols. Here, n is the number of replicas, ¢, 1 < ¢ < n,
is the number of concurrent instances, and the per decision cost is the amortized cost of a single consensus decision.

an exponentially increasing number of rounds after receiving
sufficient complaints.

Second, the introduction of the chained consensus protocol
HOTSTUFF [24] has provided a simplified and easier-to-
implement consensus protocol with low communication costs.
To achieve this, HOTSTUFF chains consecutive consensus
decisions, which allows HOTSTUFF to overlap communication
costs for consecutive consensus decisions and minimize the
cost of recovery. HOTSTUFF uses low-cost recovery to change
primaries after each consensus decision, thereby reducing the
impact of any malicious primaries. Finally, HOTSTUFF uses
threshold signatures [28] to make all communication phases
linear in cost. The commendable simplicity and low cost
of HOTSTUFF do come at the expense of performance and
resilience, however. First, the rotational design of HOTSTUFF,
which disables out-of-order processing, inherently bounds per-
formance by message delays and makes HOTSTUFF incapable
of fully utilizing computing and network resources, which
causes the low throughput of HOTSTUFF. The negative impact
of message delays is further compounded by the reliance on
threshold signatures, which incur additional rounds of com-
munication and have high computational costs. Furthermore,
the low-cost design of recovery in HOTSTUFF reduces the
resilience compared to PBFT, as HOTSTUFF relies on a black-
box Pacemaker for view synchronization, which is essential to
the liveness of rotational protocols [29], [30].

In this paper, we present SPOTLESS, the first practical
consensus protocol that combines simplicity with high per-
formance. SPOTLESS does so by combining a novel chained
rotational consensus design that is optimized toward simplic-
ity, resilience, low message complexity, and latency with a
high-performance concurrent consensus architecture. Central
to the chained rotational consensus design of SPOTLESS is
Rapid View Synchronization (RVS), which provides continu-
ous low-cost primary rotation to deal with malicious behavior.
RVS enables SPOTLESS to work in more general network
assumptions, without a need for a Global Synchronization Time
to synchronize view, and to recover valid earlier views with
the aid of non-faulty replicas without the need to rely on the
primary.

The rotational design of SPOTLESS eliminates the need for
the traditional complex and error-prone view-change proto-
cols found in PBFT and its variants: due to the rotational
design of SPOTLESS, only information on a single round
is used during recovery. In addition, RVS provides strong
view synchronization, resolving the liveness issues of previous
works. Furthermore, RVS does not require costly threshold
signatures and provides robust failure recovery steps even

when communication is unreliable. Finally, by combining
the chained rotational consensus design with a concurrent
consensus architecture, we remove the bottleneck of message
delays typically seen in rotational designs without having to
resort to highly-complex implementation techniques such as
out-of-order processing.

To evaluate the performance of SPOTLESS in practice, we
have implemented SPOTLESS in APACHE RESILIENTDB (In-
cubating), our high-performance resilient blockchain database
that serves as a testbed for future RDMS technology. Our
evaluation shows that SPOTLESS greatly outperforms exist-
ing consensus protocols such as PBFT [3] by up to 430%,
NARWHAL-HS [31] by up to 137%, and HOTSTUFF [19] by
up to 3803%. Furthermore, due to the low message complexity
of SPOTLESS, it is even able to outperform RCC [23] by
up to 23% in normal conditions while serving client requests
with lower latency in all cases. Finally, due to the robustness
of RVS, SPOTLESS is able to maintain a stable latency and
consistently high throughput even during failures.

Our contributions are as follows:

1) In Section III, we present the single-instance chained con-
sensus design of SPOTLESS that provides the consensus
replication using rapid view synchronization.

2) In Section IV, we provide the concurrent consensus
architecture employed by SPOTLESS to run multiple
instances of the chained consensus in parallel, due to
which SPOTLESS has highly-scalable throughput akin to
RCC.

3) In Section V, we empirically evaluate SPOTLESS in
APACHE RESILIENTDB and compare its performance
with state-of-the-art consensus protocols such as HOT-
STUFF [19], PBFT [3], RCC [23], and NARWHAL-
HS [31]. In our evaluation, we show the excellent prop-
erties of SPOTLESS, which is even able to achieve higher
throughput than the concurrent consensus protocol RCC,
while providing a low and stable latency in all cases.

In addition, we introduce the terminology and notation used
throughout this paper in Section II, discuss related work in
Section VI, and conclude on our findings in Section VIL
Finally, we have summarized the properties of SPOTLESS and
how they compare with other common and state-of-the-art
consensus protocols in Figure 1.

II. PRELIMINARIES

a) System: We model our system as a fixed set of replicas
R. We write n = |2R] to denote the number of replicas and we
write f to denote the number of faulty replicas. Each replica
R € R has a unique identifier id(R) with 0 < id(R) < n.



We assume n > 3f (a minimal requirement to provide
consensus in an asynchronous environment [25]), that non-
faulty replicas behave in accordance with the protocols they
are executing, and that faulty replicas can behave arbitrarily,
possibly coordinated and malicious ways. We do not make any
assumptions about clients: all clients can be malicious without
affecting SPOTLESS.

b) Consensus: SPOTLESS is a consensus protocol that
decides the sequence of client requests executed by all non-
faulty replicas in the system fR. To do so, SPOTLESS provides
three consensus guarantees [25], [32]:

1) Termination. If non-faulty replica R € R decides upon
an p-th client request, then all non-faulty replicas @ € R
will decide upon an p-th client request;

2) Non-Divergence. If non-faulty replicas R;, Ry € R make
p-th decisions 71 and s, respectively, then 7 = 75 (they
decide upon the same p-th client request).

3) Service. Whenever a non-faulty client ¢ requests exe-
cution of 7, then all non-faulty replicas will eventually
decide on a client request of c.

We note that we use SPOTLESS in a setting of a repli-
cated service that executes client requests. Hence, instead
of the abstract non-triviality guarantee typically associated
with consensus [25], SPOTLESS guarantees service. Adapting
SPOTLESS to settings where other versions of non-triviality
are required is straightforward.

c) Communication: As consensus cannot be solved in
asynchronous environments [4], we adopt the partial syn-
chrony model of PBFT [3]: we always guarantee non-
divergence (referred to as safery), while only guaranteeing
termination and service during periods of reliable communi-
cation with a bounded message delay (referred to as liveness).
We assume that periods of unreliable communication are
always followed by sufficiently-long periods of synchronous
communication for guaranteeing liveness.

d) Authentication: We assume authenticated communi-
cation, which is a minimal requirement to deal with malicious
behavior: faulty replicas are able to impersonate each other
but cannot impersonate non-faulty replicas. To enforce authen-
ticated communication, we use both message authentication
codes (MACs) and digital signatures (DSs) [33]. As the cheaper
MACs do not guarantee tamper-free message forwarding, we
only use MACs to authenticate messages that are not forwarded.
For other messages, we use DSs. We write (v), to denote a
value v signed by participant p (a client or a replica). Finally,
we write digest(v) to denote the message digest of a value v
constructed using the same secure cryptographic hash function
as the one used when signing v [33].

III. SPOTLESS DESIGN PRINCIPLES

SPOTLESS combines a chained consensus design with a
high-performance concurrent architecture. To maximize re-
silience in practical network environments in which commu-
nication can become unreliable and messages can get lost,
the chained consensus instances of SPOTLESS use Rapid View

Synchronization (RV S) to assure that each instance can always
recover and resume consensus.

Our presentation of individual SPOTLESS instance is bro-
ken up into five parts. Each chained consensus instance of
SPOTLESS operates in views v < 0,1,2,3,.... First, in
Section III-A, we show the two steps in every view. Second,
in Section III-B, we present the normal-case replication steps
and the three-phase commit algorithm used by each chained
consensus instance. Third, in Section III-C, we formalize the
guarantees provided by the normal-case replication steps and
prove the safety of SPOTLESS. Then, in Section III-D, we
present the design of RVS. RVS bootstraps the guarantees
provided by the normal-case replication toward providing per-
instance consensus. Next, in Section III-E, we describe how
SPOTLESS assures per-instance consensus in an asynchronous
environment and formally prove the liveness of SPOTLESS.

A. Steps in Every View: Propose and Synch Primitives

View v is coordinated by the replica P € R with id(P) =
v mod n. We say that P is the primary of view v and all
other replicas act as backups. In view v, primary P will
be able to propose the next client request 7 upon which
the system aims to achieve consensus. To do so, the system
proceeds in two steps i.e. Propose and Synch. First, the primary
inspects the existing chain and decides from which proposal
it extends a new proposal, then the primary picks a valid
client request 7, wraps and broadcasts a new proposal and
broadcasts. Second, the backup replicas decide whether to
vote for the new proposal and broadcast their decisions, where
the new proposal is conditionally prepared by a replica if it
receives n—f concurring votes. Now, we explain the two steps
in detail below.

First, primary P inspects the results of the preceding views
to determine the highest extendable proposal I’ past view v—1,
such that P believes that at least n — f replicas will vote
for a new proposal extending P’. We will explore how P’
is chosen in Section III-C. Then, primary P picks a client
request 7 from some client ¢ that it has not yet proposed
and proposes 7 by broadcasting a PROPOSE message of the
form P := PROPOSE(v, 7, cert (') to all backups, in which
cert(PP’) is a certificate for the preceding proposal P’ that
P chooses. The certificate is either a list of n — f digital
signatures, and we will explain how certificates are used in
Section III-C. To assure that 7 cannot be forged by the primary,
we assume that all client requests are digitally signed by the
client c. To assure that the authenticity of [P can be established
and that P can be forwarded, the primary P will digitally sign
the message P.

Second, the backups establish whether the primary P cor-
rectly proposed a unique proposal to them. Specifically, the
backups will exchange SYNC messages between them via
which they can determine whether PP is the only proposal that
can collect enough endorsements to generate a certificate in
the current view (necessary to provide non-divergence) and
to ensure that enough non-faulty replicas received the same
well-formed proposal P to assure that P can be recovered in



Primary R, determines proposal to extend
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Fig. 2: A schematic representation of the normal-case replica-
tion protocol in a chained consensus instance of SPOTLESS in
three consecutive views v — 1 (primary Ri), v (primary Ry),
and v + 1 (primary Rg3). P’ refers to the highest extendable
proposal.

any future view (independent of any malicious behavior). To
do so, each backup R € R performs the following steps upon
receiving message P := PROPOSE(v, T, cert(P')) with digital
signature (P')p:

1) R checks whether (P')p is a valid digital signature;

2) R checks whether 7 is a valid client request,

3) R checks whether view v is the current view; and

4) R checks whether cert(IP’) is valid if R has not condi-

tionally prepared .

Only if the proposal P passes all these checks, the replica
R will consider P to be well-formed. In this case, backup
R records P. If P is the first acceptable proposal R re-
ceives in view v (we detail the conditions of acceptable
proposals in Section III-C), R will broadcast the message
msg = SYNC(v,claim(P),CP), in which claim(P) :=
(v, digest(P), (P)») is a claim that P is the well-formed
proposal that backup R received in view v, and CP is a set
of pairs in the form of (view, digest) for the proposals that 12
has conditionally prepared. We will explore the details of CP
in Section III-C.

Otherwise, if backup R determines a failure in view v
(R did not receive any valid proposals in view v while it
should have received one), then R will end up broadcasting
the message msg := SYNC(v, claim(@), CP) to all backup
replicas, claiming to have not received any valid proposals in
view v.

To assure that the authenticity of msgr can be established
without verifying digital signatures and that msp can be
forwarded, the replica R will include both a message authenti-
cation code and the digital signature (msg) g. To reduce com-
putational costs, the message authentication codes of SYNC
messages are always verified, whereas digital signatures are
only verified in cases where recovery is necessary, we refer to
Section III-D for the exact verification rules.

B. Chained Three-Phase Commit Algorithm in Normal Case

SPOTLESS adopts a three-phase commit algorithm. Each
phase takes one view, and SPOTLESS rotates the primary
view by view, to eliminate complex failure detection and
recovery. A successful first phase of SPOTLESS establishes a
conditional prepare that ensures non-divergence of proposals

within the view; a successful second phase of SPOTLESS
establishes a conditional commit; and a successful third phase
achieves a commit that ensures the preservation of proposals
across views. We explain the conditions to establish these three
proposal states (i.e., conditional prepare, conditional commit,
and commit) later in Definition III.2. In Figure 2, we have
visualized three consecutive operations of a chained rotational
consensus instance in views v — 1, v, and v + 1 with respect
to a proposal P and in Figure 3, we present the pseudo-code
of the normal-case operations of the chained consensus.

The normal-case replication protocol of SPOTLESS only
establishes a minimal guarantee on the overall state of the
system that can be proven with a straightforward quorum-
based argument [25]:

Theorem IIl.1. Consider view v of the normal-case repli-
cation of a chained consensus instance of SPOTLESS and
consider two replicas Ri, Ry € R. If n > 3f and replica
R;, i € {1,2}, receives a set of authenticated messages
{SYNC(v, claim(P; )) | @ € Q;} from a set Q; C R
of |Qi| = n — £ replicas, and all claim(P; q), ¢ € {1,2},
represent proposal P;, then P; = Ps.

C. Rules Guaranteeing Safety

Beside the minimal guarantee in Theorem III.1, SPOTLESS
ensures the safety of the system via a set of rules that non-
faulty replicas must follow. In the meantime, the rules play
an important role in helping restore liveness while ensuring
safety. Before exploring the rules, we first introduce the
necessary terminology.

Definition IIL.2. Let PP := PROPOSE(v, T, cert(P')) be a well-
formed proposal in view v. We say that P’ is the preceding
proposal of P. For any two proposals P; and P, we say that
Py precedes P if Py is the preceding proposal of Py or if
there exists a proposal P* such that P; precedes P* and P* is
the preceding proposal of P,. Let precedes(P) be the set of
all proposals that precede P.

We say that a replica records P if it determines that P is
well-formed (Line 17 in Figure 3) and say that it accepts P if
it broadcasts SYNC messages with claim(PP).

We say that a replica conditionally prepares P if the
replica received P and, during view v, the replica receives
n — f concurring votes for P, ie. a set of messages
{SYNC(v, claim(Pg),CP) | Q € Q} with Pg = P from
aset Q C R of [Q = n — f replicas. We say that a
replica conditionally commits P if, in a future view w > v,
the replica conditionally prepares a proposal of the form
P’ := PROPOSE(w, 7/, cert(P)) that extends P. We say that a
replica locks IP if IP is the highest proposal that it conditionally
commits, denoted by Pjock. Also, we say that a replica commits
P if, in a future view u > v, the replica conditionally prepares
a proposal of the form P” := PROPOSE(u, 7", cert(P’)) that
extends P, with v = w+ 1 = v + 2. We say that two
proposals are conflicting if the preceding proposals of these
two proposals are disjoint.



1: Let P € R be the replica with v = id(?) mod n (the primary).

2: function ACCEPTABLE(P := PROPOSE(v, T, cert(P’))) do
3:  Let Pk := PROPOSE(Viock, Tiock, cert(PP*)) be the highest
proposal that this replica conditionally committed.
4:  return R conditionally prepared proposal P’ and either
v’ < Viock 0F Piock € ({P'} U precedes(P')).

5: function HIGHESTEXTENDABLE() do
6 for v from CurrentView down to O do
7: if P conditionally prepared proposal P’ of view v then
8: if P has a valid cert(P’") then
9: return P’ cert(P).
0 else if P receives SYNC(v;, claim();, CP;) from
n — f replicas R; with claim(P') € CP; then
11: return P’ claim(P’).

Primary role (running at the primary P of view v) :
12: P, cc := HIGHESTEXTENDABLE().
13: Awaits receipt of a valid client request (7))c.
14: Broadcasts PROPOSE(v, T, cc) to all replicas.

Backup role (running at each replica R € R) :
15: event R receives a well-formed proposal P do
16:  if R has not sent SYNC message in view v and
ACCEPTABLE(P) then
17: Broadcasts SYNC(v, claim(P), CP) to all replicas.

18: event R determines a failure in view v do
19:  Broadcasts SYNC(v, claim(@), CP) to all replicas.

20: event R receives SYNC(v, claim(IP), CP) from
n — f replicas do
21:  Conditionally prepares P.

22: event R receives SYNC(v', claim(), CP) messages with
v' > v and claim(P) € CP from f + 1 replicas do
23:  Conditionally prepares P.

24: event R receives SYNC(v, claim(PP), CP) from
f + 1 replicas do
25:  if R has not sent SYNC message in view v then

26: Broadcasts SYNC(v, claim(IP), CP) to all replicas.
27:  if R does not know P then
28: Send AsSK(v,claim(PP)) to the £ + 1 replicas.

29: event R receives ASK(v, claim(P)) from R’ and
R has recorded P do
30: Send Pto R

Fig. 3: The replication protocol in a SPOTLESS instance.

The proposal states conditionally committed and committed
are analogous to the proposal states prepared and committed
in traditional non-chained protocols such as PBFT [3]. In
Figure 2, we show how a proposal establishes the three states
in the normal case. Using this terminology, we can specify
the safety guarantee that individual SPOTLESS instances will
maintain on the system: no two conflicting proposals P; and
P; can be both committed, each by a non-faulty replica, which
we will prove in Theorem II1.4.

To guarantee safety, central to the design principle are the
rules that non-faulty replicas follow when deciding whether to
extend, accept, or conditionally prepare a proposal.

The primary P can construct a certificate for proposal P
after P recorded P and received n — f SYNC messages with
valid signatures for P, i.e.

S = {SyNc(v — 1,claim(Pg),CP) | Q € Q}

with Po = P and a valid signature from a set Q C R of
|Q| = n — f replicas. The set S will be used to construct the
certificate. Even if R fails to receive sufficient SYNC messages
to conditionally prepare P in view v — 1, R will conditionally
prepare P if it receives a valid certificate cert(PP).

Each SYNC message includes CIP that consists of the views
and digests of the sender’s Pjcx and all conditionally prepared
proposals with a higher view than the view vk of proposal

]Plock:
CP := {vp, digest(P) | P is conditionally preparedAvioex < vp}.

R conditionally prepares P if it receives a set S’of SYNC
messages from f + 1 replicas claiming to have conditionally
prepared P, which implies at least one non-faulty replicas have
conditionally prepared P after receiving n—f concurring votes,
where

S = {SYNC(wQ/,claim(PQ/),CPQ/) | Q/ S Q,}

with wg > v, P € CPg/, and Q' C R with |Q'| =f + L.
A non-faulty primary of view v considers a proposal P’ to
be extendable if either of the following conditions is met:

El P has a valid certificate for IP';
E2 P has received a set of SYNC messages from n — f
replicas that claim to have conditionally prepared I, i.e.

{SYNC(wQ,claim(]P’Q),(ClP’Q) | Qe Q}

with wg<v and P’ € CPg and Q C R with |Q| = n—f.

The primary P backtracks to earlier views to find the
highest extendable proposal P’ and then sets the preced-
ing proposal to P'. If P satisfies El, then P broadcasts
P := PROPOSE(wv, T, cert(P’)). Otherwise, P broadcasts P :=
PROPOSE(v, 7, claim(PP")).

When receiving a well-formed new proposal of the form
P := PROPOSE(v, T, cert(P’)) or PROPOSE(v, T, claim(P")),
a replica R determines whether to accept P based on the
following rules:

A1 Validity Rule: R has conditionally prepared P'.

A2 Safety Rule: P’ extends R’s locked proposal Py, i.e.
Piock € ({P'} U precedes(P')).

A3 Liveness Rule: P’ has a higher view than Pjoc.

If A1 holds and either A2 or A3 holds, then R broadcasts
SYNC(v, claim(P), CP). Otherwise, R keeps waiting for a
proposal satisfying the acceptance requirement until its timer
expires.

Due to unreliable communication or faulty behavior, non-
faulty replica R may fail to receive any acceptable proposal
from primary P, but receive a set M’ consisting of f + 1
SYNC messages with the same claim(P), formally, R receives

M’ = {SYNC(v, claim(Pg ), CPgn ) | QM € 9™}



with Poue = P from a set Q™ C R of Q7 = f + 1
replicas. For easier restoration of liveness, SPOTLESS allows
R to broadcast SYNC(v, claim(P), CP) if R considers P as
acceptable.

In such a case, R is unaware of the full information of P and
needs to catch up. To do so, R sends a := ASK(v, claim(P))
to the f + 1 replicas in Q™. After a good replica R’ € Q™
receives a, the replica R’ will forward IP to R if it has recorded
a well-formed PP. To reduce the overhead of this mechanism
in practical implementations, replicas can choose to first send
ASK messages to replicas they already trust (e.g., based on
previous behavior).

Based on the design principles above, we can prove the
safety property of SPOTLESS step by step:

Lemma IIL.3. If a non-faulty replica R conditionally prepares
P = PROPOSE(v, 7, cert(P’)), then for each proposal P* €
precedes(P) that precedes P, at least n — 2f > f + 1 non-
faulty replicas have conditionally prepared P* and sent SYNC
messages with P* € CP.

We refer to our technical report [34] for the complete proofs
of the results presented in this paper. Using Lemma II1.3, we
are able to prove safety:

Theorem IIL.4. No two non-faulty replicas can commit con-
ficting proposals P; and PP;.

Theorem II.4 proves SPOTLESS can ensure safety if we
have three-consecutive-view requirement’ for committing a
proposal.

D. Bootstraping Liveness with Rapid View Synchronization

Rapid View Synchronization (RVS) bootstraps the guaran-
tees provided by normal-case replication toward providing
consensus. RVS does so by dealing with asynchronous com-
munication and by strengthening the guarantees on proposals
of preceding views. In specific, the main services provided by
RVS are a best-effort and quick view synchronization to assure
that replicas end up in the same views whenever communi-
caiton is sufficiently reliable and low-cost state recovery to
enable cheap primary rotation to deal with failures of previous
primaries.

To enable Rapid View Synchronization, for each view v, a
replica must go through three states one by one:

ST1 Recording: waiting for a well-formed P that satisfies Al
and either A2 or A3 until state timer tr expires;

ST2 Syncing: waiting for a set of SYNC messages with view
v from a set Q C R with |QQ| = n — f replicas;

ST3 Certifying: waiting for a set of messages

S = {SYNC(v, claim(Pga), CP) | Q* € Q*}

with the same claimed proposal P4 from a set Q¥ CR
of [Q%| = n — f replicas until timer state 4 expires.

2We refer to our technical report [34] for the necessity of the three-
consecutive-view requirement (over a two-consecutive-view requirement) for
SPOTLESS

Note that there is no timer for Syncing (ST2) and receiving
sufficient SYNC messages is the only way to proceed to
Certifying (ST3) of the same view. Some replicas may fall
behind due to unreliable communication, failing to receive
sufficient SYNC messages while other replicas have reached
higher views. To quickly synchronize views, a replica R in
view v is allowed to proceed to Syncing (ST2) of view w
directly after receiving a set of messages D with views higher
than or equal to w:

D = {SYNC(v/, claim(Pgp ), CPgq) | QP € 27}

with v/ > w > v from a set Q° C R of [Q®| =+ 1
replicas. Receiving such f + 1 messages implies that one non-
faulty replica has moved to view w after receiving n—f SYNC
messages of view w — 1, then R can skip to view w directly
knowing that at least the majority of non-faulty replicas have
observed the higher view w — 1. To catch up, replica R
broadcasts message S, = SYNC(u, claim(@), CPP, T) for each
view u,v < u < w, in which Y is a flag that asks replicas
that receive S, to retransmit the SYNC messages to R they
broadcast in view u. With such a design, in SPOTLESS, as
long as network remains synchronous, replicas falling behind
are capable of catching up actively and immediately, while in
previous rotational work such as HOTSTUFF, view synchro-
nization is assumed by relying on the black-box Pacemaker.
In Figure 4, we present the pseudo-code of the Rapid View
Synchronization part of SPOTLESS. We have the following:

Lemma IILS. Assume reliable communication. If replica R
conditionally prepares proposal P by receiving f + 1 SYNC
messages with claim(IP) € CP, then eventually R will record
and conditionally prepare all proposals in precedes(PP).

Using Lemma IIL.5, we can prove:

Theorem IIL.6. Let P, be the highest proposal that any
replica conditionally committed. All non-faulty replicas will
eventually record and conditionally prepare all proposals in
precedes(Py,), when communication becomes synchronous for
sufficiently long.

From Theorem II.6 we know that all non-faulty replicas
will learn the same conditionally committed chain. However,
the replicas may not execute several proposals on the chain
until they learn full information of the proposal via the ASK-
recovery mechanism detailed in Section III-C.

E. Mechanism Guaranteeing Liveness

In some cases, replica R cannot make any progress unless

it receives some specific messages from other replicas:

1) R cannot switch from Syncing (ST2) to Certifying (ST3)
unless it receives n — f SYNC messages of its current
view.

2) R cannot catch up to learn a path from a conditionally
prepared proposal to the genesis proposal unless at least
f 4 1 other replicas reply to its SYNC messages with flag
T, which requires the receivers to retransmit the SYNC
messages that they broadcast before.



Backup role (running at each replica R € %R in view v) :
1: event R enters view v do
2: state := recording (ST1).
3: Set timer tg.

4: event R receives an acceptable proposal [P or tr expires do
5:  Broadcast SYNC(v, claim(PP), CP).
6:  state := Syncing (ST2).

7: event R receives n — f SYNC messages of view v do
8:  state := Certifying (ST3).
9: Sets timer 74.

10: event R receives n — f SYNC(v, claim(P), CPP) of the same P
or t4 expires do
11:  Enters view v + 1.

12: event R receives f + 1 SYNC messages with views higher than
or equal to w, w > v do

13: Let v be the current view of R.
14: for each view u,v < u < w do
15: Broadcasts SYNC(u, claim(&), CP, T).

Fig. 4: Rapid View Synchronization in instance.

3) R cannot record a proposal it did not receive from the
primary, unless any replica replies to its ASK message by
forwarding the corresponding PROPOSE message.

However, due to unreliable communication, R may fail to
receive messages, e.g., replies to SYNC messages with flag
T or replies to ASK messages. To deal with this case, R
will periodically retransmit the messages until it receives the
necessary replies.

In an asynchronous environment, one cannot reliably dis-
tinguish between communication failure (e.g., due to long
and unpredictable message delays) and replica failure. Hence,
consensus protocols such as HOTSTUFF [19] and many oth-
ers [35], [36] simply assume to be operating after a Global
Synchronization Time, at which point all communication is
bound by some message delay such that all replicas can always
reliably determine in which view they operate [19]. Such
a design is inflexible in the presence of true asynchronous
communication, however.

Instead, SPOTLESS instances use our Rapid View Synchro-
nization mechanism to allow replicas to figure out in which
view they should operate. To adapt to fluctuations in message
delays, SPOTLESS will adjust the timeout interval used by
individual replicas to detect replica failures. As message delays
in typical deployments do not often change drastically, we
choose to not use a traditional exponential backoff mecha-
nism [25], but instead to adjust the timeout interval of replicas
R in a more moderate way. For consecutive timeouts of the
same timer in consecutive views, we only increase the timeout
interval by a constant ¢ (after each consecutive view). If a
replica receives an expected message for which the timeout
interval was A before 0.5A, then the replica reduces the
timeout by half. We have the following technical result.

Lemma IIL7. Let v be the highest view reached by a
non-faulty replica after communication enters a period of
synchronous communication. Non-faulty primary P, with
v+ 2 < w is capable of finding a proposal P’ such that all
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Fig. 5: Primary rotation in SPOTLESS with four replicas and
four instances. The circles in the form of P; ,, on the arrow of
R, represent that R, is the primary of instance Z; in view v,
where r = (i + v) mod n.

non-faulty replicas will accept a proposal P extending from
P, P := PROPOSE(w, T, claim(P’)).

As a direct consequence, we have the following corollary.

Corollary IIL.8. Let v be the highest view reached by a
non-faulty replica after communication enters a period of
synchronous communication. If all non-faulty replicas have
internal timers that are higher than the current maximum
message delay, then the proposals of any non-faulty primary
P during view w, w > v + 2, will be conditionally prepared
after view w by all non-faulty replicas.

Corollary IIL.8 is at the basis of proving termination: con-
sensus decisions are eventually made when communication is
synchronous.

Theorem IIL.9. All non-faulty replicas will eventually commit
new proposals after communication enters a sufficiently-long
period of synchronous communication.

IV. CONCURRENT CONSENSUS

The main benefit of chained consensus, as used by SPOT-
LESS and HOTSTUFF [19], is that a single proposal represents
the entire chain of preceding proposals. This greatly reduces
the message complexity of view-changes when compared to
traditional non-chained consensus protocols such as PBFT [3].

Unfortunately, chained consensus requires that consecutive
consensus decisions are made one-at-a-time, thereby prevent-
ing the usage of out-of-order processing to maximize through-
put. This makes HOTSTUFF and individual chained consensus
instances of SPOTLESS significantly slower than traditional
consensus protocols such as PBFT in practical deployments:
primaries in PBFT can use out-of-order processing to propose
client requests for future views while waiting on the current
consensus round to finish, thereby maximizing the utilization
of the network bandwidth available at the primary independent
of any message delays (which dominate the time it takes to
finish a single consensus round).

As an alternative to out-of-order processing, SPOTLESS will
adopt concurrent consensus [23], [26]. By running multiple
concurrent instances, SPOTLESS is able to effectively utilize
all network bandwidth and computational resources available:
when one SPOTLESS instance is waiting for a proposal to be
processed (e.g., waiting for SYNC messages), other SPOTLESS
instances use the available network bandwidth and computa-
tional resources to propose additional requests. We refer to
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Fig. 6: Total ordering of the twelve proposals of Figure 5 made
among four concurrent instances in three consecutive views.

our technical report [34] for an in-depth theoretical analysis
of the benefits of concurrent processing in SpotLess. Below
we illustrate the concurrent instances in SPOTLESS.

In SPOTLESS, the system runs m, 1 < m < n, SPOTLESS
instances concurrently. Instances do not interfere with each
other. Each instance independently deals with any malicious
behavior. To enforce that each instance is coordinated by a
distinct primary, the primary of Z; in view v is predetermined:
id(P;») = (i + v) mod n. Figure 5 shows how SPOTLESS
assigns and rotates primary in each SPOTLESS instance. As
all instances rotate over all primaries, all instances are equally
affected by malicious behavior. When given the choice, non-
faulty replicas will prioritize instances that are in older views
over other instances. Due to primary rotation and this instance
prioritization, the view of all instances will remain roughly-
in-sync.

Each SPOTLESS instance determines a local order of pro-
posals. All committed proposals on the chains are totally
ordered and then executed. We order the committed proposals
among different instances by their view and instance identifier.
We order all proposals from low view to high view and
from instance Z; to instance Z,,_1. Figure 6 shows the fotal
ordering in SPOTLESS. Finally, each replica executes the
committed proposals in order and informs the clients of the
outcome of their requested transactions.

As individual SPOTLESS instances provide consensus and
combining consensus decisions of instances is deterministic,
we conclude

Theorem IV.1. All instances of SPOTLESS will eventu-
ally commit new proposals after communication enters a
sufficiently-long period of synchronous communication.

V. EVALUATION

Previously, we detailed and analyzed the design of SPOT-
LESs, showing several theoretical advantages when com-
pared to its peers. Next, to show the practical advantages
of SPOTLESS, we will experimentally evaluate its perfor-
mance, both in the normal case and during Byzantine fail-
ures. In our evaluation, we compare the performance of
SPOTLESS in APACHE RESILIENTDB (Incubating), our high-
performance open-source blockchain database', with the well-
known primary-backup consensus protocols PBFT [3], HOT-
STUFF [19], NARWHAL-HS [31], and our PBFT-based concur-
rent consensus paradigm RCC [23]. We focus on answering
the following questions:

Ithe evaluation is based on release v3.0: https:/github.com/resilientdb/
resilientdb/releases/tag/v3.0

Q1 Scalability: does SPOTLESS deliver on the promises to
provide better scalability than other consensus protocols?
Latency: does SPOTLESS provide low client latency while
providing high throughput? What factors affect them?
What is the impact of batching client transactions on the
performance of SPOTLESS?

How does SPOTLESS perform under Byzantine failures?
How does concurrent consensus improve performance?

Q2
Q3

Q4
Q5

To study the practical performance of SPOTLESS and other
consensus protocols, we implemented SPOTLESS and other
protocols in APACHE RESILIENTDB. We refer to the technical
report [34] for a description of APACHE RESILIENTDB and
how it aids in implementing high-performance consensus. To
generate experimental workloads, we used the Yahoo Cloud
Serving Benchmark [37] provided by the Blockbench macro
benchmarks [38]. In the generated workload, each client
transaction queries a YCSB table with half a million active
records and 90% of the transactions write and modify records.
Before the experiments, each replica is initialized with an
identical copy of the YCSB table. We perform all experiments
on Oracle Cloud, using up to 128 machines for replicas and
32 machines for clients. Each replica and client is deployed
on a e3-machine with a 16-core AMD EPYC 7742 processor,
running at 3.4 GHz, and with 32 GB memory.

A. The Consensus Protocols

We evaluate the performance of SPOTLESS by comparing
it with a representative selection of four efficient practical
consensus protocols implemented in APACHE RESILIENTDB:

PBFT [3] and RCC [23]. We use an optimized out-of-order
implementation of PBFT that uses message authentication
codes. RCC turns PBFT into a concurrent consensus protocol.

HOTSTUFF [19] uses threshold signatures to minimize
communication. Since existing threshold signature algorithms
are expensive and quickly become the bottleneck, we use a list
of n—f secp256k1 digital signatures to represent a threshold
signature, which improves our throughput. In our experiments,
we implement the pipelined CHAINED HOTSTUFF.

NARWHAL-HS [31] separates the replication of transactions
and ordering transactions, enabling concurrent transaction dis-
semination. We simulate the communication complexity and
computational overhead of NARWHAL-HS by running HOT-
STUFF and requring replicas to broadcast messages consisting
of a client batch and 2f 4 1 digital signatures.

We run the concurrent protocols RCC and SPOTLESS with
n instances unless stated otherwise.

B. Experiments

To be able to answer Questions Q1-Q5, we perform fifteen
experiments in which we measure the performance of SPOT-
LESS and other consensus protocols. We measure throughput
as the number of transactions that are executed per second and
latency as the average duration between the client sending a
transaction and the client receiving a response. Unless stated
otherwise, all replicas are non-faulty. We run each experiment
for 130s (except the seventh experiment): the first 10s are
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Fig. 7: Performance of SPOTLESS and other protocols. The
number of replicas is 128 except in (a).

warm-up, and measurement results are collected over the next
120 s. We average our results over three runs.

In the scalability experiment, we measure throughput as a
function of the number of replicas. We vary the number of
replicas between n = 4 and n = 128 and we use a batch size
of 100 txn/batch. The results are in Figure 7(a).

In the batching experiment, we measure the throughput
as a function of the number of replicas. We use n = 128
replicas and we vary batch size between 10 txn/batch and
400 txn/batch. The results are in Figure 7(b).

In the throughput-latency experiment, we measure the la-
tency as a function of the throughput. We use n = 128
replicas, set the batch size to 100 txn/batch, and we vary
the speed by which each primary receives client requests to
affect throughput and latency. The results are in Figure 7(c).

In the transaction-size experiment, we measure the through-
put of SPOTLESS as a function of the individual YCSB
transaction size. We use n = 128 replicas and vary the
transaction size from 48B to 1600 B. The results are in
Figure 7(d).

In the all-throughput-failures experiment, we measure the
throughput as a function of the number of malicious replicas
that do not participate in consensus. We use n = 128 replicas,
and we vary the number of faulty replicas between 0 and 10 or
between 0 and f. We make the faulty replicas non-responsive
at the same time point and measure throughput afterward for
120s. We set the timeout length in SPOTLESS, HOTSTUFF,
and NARWHAL-HS based on the calculated average view
duration and set the timeout length in RCC and PBFT based
on the average client latency. The results are in Figure 7(e)
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Fig. 9: System throughput-latency of SPOTLESS and RCC in
the presence of failures (128 replicas).

and (f).

In the SPOTLESS-throughput-failures experiment, we fur-
ther measure the throughput of SPOTLESS as a function of
the number of replicas and the number of malicious replicas
that do not participate in consensus. We vary the number
of replicas between n € {32,64,96,128} and we perform
two measurements for each n. We vary the number of faulty
replicas between 0 and 10 or between O and f. Based on
the calculated average view duration, we have set the timeout
length in SPOTLESS appropriately. The results are in Figure 8.

In the throughput-latency-failure experiment, we measure
the latency of SPOTLESS and RCC as a function of throughput
in the presence of malicious replicas. As in the throughput-
latency experiment, we use n = 128 replicas. In this experi-
ment, we set the number of faulty, non-responsive, replicas to
be 1 or f, however. We only count the latency of proposals
that are sent to non-faulty replicas. The results are in Figure 9.

In the parallel transaction processing experiment, we mea-
sure the performance of SPOTLESS and RCC as a function
of the amount of concurrent (both protocols) and out-of-order
(RCC) processing. To do so, we measure the throughput and
latency of SPOTLESS and RCC as a function of the number
of client batches that each primary receives. We use n = 128
replicas and we vary the number of client batches between 12
and 200. The results are in Figure 10.

In the throughput-Byzantine experiment, we measure the
throughput of SPOTLESS in the presence of attacks as a
function of the number of Byzantine replicas. We consider
four types of attacks:

A1l faulty replicas are non-responsive;

A2 faulty replicas act malicious when they are the primary by
keeping f non-faulty replicas in the dark (by not sending
proposals to them);

A3 faulty replicas act malicious by sending conflicting con-
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Fig. 10: Throughput and latency of SPOTLESS and RCC as a
function of the amount of parallel transaction processing (128
replicas).

curring votes in an attempt to cause divergence: they send
one message to f non-faulty replicas and a different one
to the other non-faulty replicas; and

A4 faulty replicas act malicious by refusing to participate in
the consensus of proposals from non-faulty primaries, this
in an attempt to subvert non-faulty primaries (and make
them look faulty).

For comparison, we include RCC. The victims of these
attacks are the replicas that are kept in the dark (A2), receive
a proposal that is received by not more than f non-faulty
replicas (A3), or are not responded to (A4). The throughput
of RCC is not influenced by A2, A3, and A4 as long as
the number of victims is not greater than f. Hence, we only
include the normal-case (failure-free) throughput of RCC and
the throughput during Al for comparison. We use n = 128
replicas and we vary the number of malicious replicas between
0 and 10 or between 0 and f. The results are in Figure 11.

In the real-time-throughput-failure experiment, we measure
the real-time throughput of SPOTLESS and RCC after making
malicious replicas non-responsive as a function of time. We
use n = 128 replicas, and we set the number of faulty replicas
to 1 or f. We run the experiments for 140s, record throughput
every 5 seconds, and have the failures happen at the 10th
second. The results can be found in Figure 12.

In the concurrent-consensus experiment, we measure the
throughput of SPOTLESS and RCC as a function of the num-
ber of replicas and concurrent instances. We use n € {32, 128}
replicas and we vary the number of concurrent instances
between 1 and n. The results can be found in Figure 13.

In the computing-power-impact experiment, we measure the
throughput of SPOTLESS and other protocols as a function of
the number of CPU cores in each replica. We use n = 128
replicas and we vary the number of CPU cores between 4 and
32. The results can be found in Figure 14(a).

In the network-bandwidth-impact experiment, we measure
the throughput of SPOTLESS and other protocols as a func-
tion of the bandwidth. We use n = 128 replicas and vary
the bandwidth between 500 Mbit/s and 4000 Mbit/s using
FireQOS [39], a program that helps configure traffic shaping
on Linux. The results can be found in Figure 14(b).

In the global-regions experiment, we measure the through-
put of SPOTLESS and other protocols as a function of the
number of regions. We use n = 128 replicas and vary the
number of regions between 1 and 4. For each run, the 128
replicas are uniformly distributed in the regions Oregon, North
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Fig. 11: Performance of SPOTLESS and RCC during Byzan-
tine failures (128 replicas, four attack scenarios for SPOT-
LESS). Note: SPL is the abbreviation for SPOTLESS here.

Virginia, London, and Zurich. The results can be found in
Figure 14(c) and (d).

In the non-concurrent-failure experiment, we measure the
throughput of single-instance SPOTLESS and HOTSTUFF as a
function of the number of faulty replicas. We use n = 128
replicas and vary the number of malicious replicas between 0
and f. The results can be found in Figure 15.

C. Experiment Analysis

The experimental results presented in the previous sections
allows us to answer the research questions Q1-Q5. First, we
observe that increasing the batch size, increases the perfor-
mance of all consensus protocols, thereby answering Q3 as
expected. Since the gains brought by increased the batch size
are small after 100 txn/batch, we used 100 txn/batch in all
other experiments.

SPOTLESS outperforms all other protocols in failure-free
conditions (Q1, Q2). As Figure 1 shows, the amortized mes-
sage complexity per decision is n? for SPOTLESS, while it is
2n? for RCC. Hence, as SPOTLESS has fewer messages to
process, SPOTLESS can even outperform RCC by up to 23%.
Due to a message buffer mechanism implemented in APACHE
RESILIENTDB, which put messages in a buffer and send them
together to better utilize network bandwidth, SPOTLESS and
RCC require sufficient batches of client requests to fill the
system pipeline. Otherwise, the two protocols may get stalled
since no messages are sent and processed. When the pipeline
is full, the latency of both SPOTLESS and RCC in APACHE
RESILIENTDB is dominated by the maximum throughput,
as Figure 7(c), 9, and 10 show. The higher throughput is,
the shorter a client request waits to be proposed and then
the lower latency is. Thus, even though SPOTLESS needs
more communication phases than RCC to commit a proposal,
SPOTLESS has a lower latency by up to 32% than RCC.
Also, SPOTLESS outperforms NARWHAL-HS because, for
each committed block, SPOTLESS verifies O(n) MACs while
NARWHAL-HS verifies O(n) digital signatures.

By introducing concurrent processing, SPOTLESS is able
to outperform HOTSTUFF, the other chained consensus pro-
tocol, by up to 3803%. In this situation, the performance
of HOTSTUFF is bottlenecked by the message delay due to
the lack of out-of-order processing. From Figure 7(d) we
conclude that RCC and SPOTLESS are able to sustain high
throughput even if we increase the transaction size to 1600 B
per YCSB transaction, whereas the throughput of PBFT and
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Fig. 12: Throughput timeline of SPOTLESS and RCC after

injecting failures.

HOTSTUFF decreases greatly. This is easily explained: the
concurrent design of RCC and SPOTLESS load-balances the
primary task to all replicas, whereas in PBFT and HOTSTUFF
the performance is bottlenecked by the bandwidth available to
the single proposing primary.

As Figure 8 shows, non-responsive faulty replicas negatively
affect the performance of SPOTLESS in all cases (Q4): indeed,
non-responsive faulty replicas do not perform their primary
role, due to which the non-faulty replicas can only wait until
their timers expire to switch out these faulty primaries. The
larger the number of replicas, the smaller the relative influence
of faulty replicas on performance. For example, when there are
f faulty replicas, the throughput of SPOTLESS128 decreases
by 41% while that of SPOTLESS32 decreases by 54%. Due
to concurrent consensus, a larger number of replicas implies
more SPOTLESS instances with non-faulty primaries that
utilize CPU resources while waiting for the instances with
non-responsive primaries.

From Figure 7, 9, and 10, we also know that SPOTLESS
shows great resilience to non-responsive faulty replicas when
compared with other protocols (Q4). In a deployment with
128 replicas, the first 120s after failures happen, SPOTLESS
shows a gain in throughput over other protocols and a lower
latency (Q1, Q2) despite the number of faulty replicas.

Thanks to the ASK-recovery mechanism and Rapid View
Synchronization, described in Section III, SPOTLESS shows
strong resilience to Byzantine attacks, as we can observe from
the results in Figure 11. No matter the type of attack, the
victims can quickly detect the failure and catch up by receiving
f + 1 SYNC messages from other non-faulty replicas and
sending ASK messages. When facing non-responsive faulty
replicas, the two mechanisms are useless, however, as timing
out instances is the only way to advance view in this case.

The results of Figure 12 show obvious fluctuations in the
real-time throughput of RCC after injecting failures. This is
due to the usage of an exponential back-off penalty algo-
rithm to ignore instances with faulty primaries. Eventually,
the throughput of RCC gradually recovers to the original
level and then keeps stable. This is the best case for RCC,
however, as all f failures happen at the same time. If the
failures appear one by one, RCC will suffer from these low-
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throughput fluctuations (the yellow columns in Figure 12)
during each failure. In contrast, SPOTLESS presents a more
stable throughput timeline after failures happen (Q4).

Figure 13 shows that SPOTLESS benefits more from con-
current consensus than RCC, especially when there are many
instances. (Q5). When there are 32 or fewer instances, RCC
outperforms SPOTLESS because RCC enables out-of-order
processing in individual instances, which is not supported by
the chained design of SPOTLESS instances. As the number of
concurrent instances increases, the throughput of RCC reaches
a message processing bottleneck when there are 16 instances
and then remains stable, whereas the throughput of SPOTLESS
can increase further due to the lower message complexity and
reaches its peak value when there are n instances, higher than
RCC by up to 23%.

The performance of consensus is significantly influenced by
computing and network resources. First, Figure 14(a) shows
that the performance of all protocols decreases when compute
power is restrictd (fewer CPU cores in each replica). Second,
Figure 14(b) shows that decreasing the network bandwidth
negatively impacts the performance of all protocols. We note
that NARWHAL-HS is barely affected, however, as it is limited
by computing resources as it has to verify n — f digital
signatures per block. Similarly, Figure 14(c) and (d), show that
increasing the number of regions, which not only decreases
network bandwidth but also increases latency, negatively im-
pacts the performance of all protocols. In all cases, SPOTLESS
maintains a higher performance than RCC. Finally, the com-
parison between Figure 14(c) and (d), shows that that large
batch sizes can partially mitigate bandwidth bottlenecks.

Figure 15 shows that the presence of Byzantine failures has
similar negative effects on the performance of single-instance
SPOTLESS and HOTSTUFF. In all cases, the throughput of
single-instance SPOTLESS is higher than that of HOTSTUFF
due to the lower computation costs of verifying signatures in
SPOTLESS (as compared to dealing with the threshold signa-
tures used in HOTSTUFF). Hence, compared with HOTSTUFF,
replicas in SPOTLESS are able to respond more quickly,
lowering the per-round latency and increasing throughput.

Based on our findings, we conclude that SPOTLESS makes
full use of concurrent consensus (Q5), provides higher
throughput and better scalability than any other consensus
protocol (Q1), and does so with low latency (Q2). Moreover,
client batching does benefit the performance of SPOTLESS
(Q3). Finally, we conclude that SPOTLESS can efficiently deal
with failures (Q4) thanks to concurrent consensus, the ASK-
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recovery mechanism, and Rapid View Synchronization.

VI. RELATED WORK

There is abundant literature on consensus and primary-
backup consensus in specific (e.g., [18], [20], [26], [40]-[51]),
to reduce the communication cost and improve performance
and resilience of the consensus systems [35], [36], [52]-
[59]. In previous sections, we already discussed how SPOT-
LESS relates to PBFT [3], RCC [23], HOTSTUFF [24], and
NARWHAL-HS [31]. Next, we shall focus on other works that
deal with either improving throughput and scalability or with
simplifying consensus, the two strengths of SPOTLESS.

Leader-Less Consensus. Leader-less protocols such as
HONEYBADGER [60] and DUMBO [61] eliminate the limita-
tions of PBFT and other primary-backup consensus protocols
via a fully decentralized and fully asynchronous design. In
these protocols, all replicas have the same responsibilities,
due to which the cost of consensus is equally spread-out
over all replicas. These leader-less protocols claim to improve
resilience over PBFT in asynchronous environments. Due to
the high complexity of fully asynchronous consensus, their
practical performance is limited, however.

Sharding. Recently, there have been several approaches
toward scalability of RDMSs by sharding them, e.g., [62]-[66].
Although sharding has the potential to drastically improve
scalability for certain workloads, it does so at a high cost for
complex workloads. Furthermore, sharding impacts resilience,
as sharded systems put requirements on the number of failures
in each individual shard (instead of putting those requirements
on all replicas in the system). Finally, sharding is orthogonal
to consensus, as proposed sharded systems all require a high-
performance consensus protocol to run individual shards. For
this task, SPOTLESS is an excellent candidate.

Reducing Primary Costs. There are several approaches to-
ward reducing the cost for the primary to coordinate consensus
in PBFT-style primary-backup consensus protocols, thereby
reducing the limitations of primary-backup designs. Examples
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Fig. 15: Performance of single-instance SPOTLESS and HOT-
STUFF with failures.

include (1) protocols such as FASTBFT [67] and the geo-scale
aware GEOBFT [68] that use a hierarchical communication
architecture to offload the cost for a primary to propose client
requests to other replicas; (2) protocols such as NARWHAL-
HS [31] that use a gossip-based communication protocol to
replicate client requests, thereby sharply reducing the cost
for primaries to propose these requests; and (3) protocols
such as ALGORAND [69] that restrict consensus to a small
subset of the replicas in the system (whom then enforce their
decisions upon all other replicas), thereby reducing the cost
of the primary to coordinate consensus. Unfortunately, each
of these protocols introduces its own added complexity or
environmental restrictions to the design of consensus, e.g.,
FASTBFT requires trusted hardware, the design of GEOBFT
impacts resilience in a similar way as sharded designs do, and
ALGORAND relies on complex cryptographic primitives due
to which it can only guarantee to work with high probability.

VII. CONCLUSION

In this paper, we proposed SPOTLESS, a high-performance
robust consensus protocol. SPOTLESS combines the high
throughput of concurrent consensus architectures with the
reduced complexity provided by chained consensus. Fur-
thermore, SPOTLESS improves on the resilience of existing
chained consensus designs by introducing the Rapid View Syn-
chronization protocol, which guarantees a continuous low-cost
recovery path that is robust during unreliable communication
and does not require costly threshold signatures.

We have put the design of SPOTLESS to the test by imple-
menting it in APACHE RESILIENTDB, our high-performance
resilient fabric, and we compared SPOTLESS with existing
consensus protocols. Our experiment results show that the
performance of SPOTLESS is excellent: SPOTLESS greatly
outperforms traditional primary-backup consensus protocols
such as PBFT by up to 430%, NARWHAL-HS by up to
137%, and HOTSTUFF by up to 3803%. SPOTLESS is even
able to outperform RCC, a state-of-the-art high-throughput
concurrent consensus protocol, by up to 23% in optimal condi-
tions, while providing lower latency in all cases. Furthermore,
SPOTLESS can maintain a stable latency and consistently high
throughput, even during failures.
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