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Abstract

We give a polynomial-time algorithm for learning high-dimensional halfspaces
with margins in d-dimensional space to within desired Total Variation (TV) distance
when the ambient distribution is an unknown affine transformation of the d-fold
product of an (unknown) symmetric one-dimensional logconcave distribution, and
the halfspace is introduced by deleting at least an € fraction of the data in one
of the component distributions. Notably, our algorithm does not need labels and
establishes the unique (and efficient) identifiability of the hidden halfspace under
this distributional assumption. The sample and time complexity of the algorithm
are polynomial in the dimension and 1/e. The algorithm uses only the first two
moments of suitable re-weightings of the empirical distribution, which we call
contrastive moments; its analysis uses classical facts about generalized Dirichlet
polynomials and relies crucially on a new monotonicity property of the moment
ratio of truncations of logconcave distributions. Such algorithms, based only on
first and second moments were suggested in earlier work, but hitherto eluded
rigorous guarantees.

Prior work addressed the special case when the underlying distribution is Gaussian
via Non-Gaussian Component Analysis. We improve on this by providing polytime
guarantees based on TV distance, in place of existing moment-bound guarantees
that can be super-polynomial. Our work is also the first to go beyond Gaussians in
this setting.

1 Introduction

Suppose points in R are labeled according to a linear threshold function (a halfspace). Learning a
threshold function from labeled examples is the archetypal well-solved problem in learning theory, in
both the PAC and mistake-bound models; its study has led to efficient algorithms, a range of powerful
techniques and many interesting learning paradigms. While the sample complexity in general grows
with the dimension, when the halfspace has a margin, the complexity can instead be bounded in
terms of the reciprocal of the squared margin width [PCST99, SBS™00, AV06, LS11]. The problem
is also very interesting for special classes of distributions, e.g., when the underlying distribution
is logconcave, agnostic learning is possible [KKMSO08], and active learning needs fewer samples
compared to the general case [BBLO6].

The main motivation for our work is learning a halfspace with a margin with no labels, i.e.,
unsupervised learning of halfspaces. This is, of course, impossible in general — there could be
multiple halfspaces with margins consistent with the data — raising the question: Can there be
natural distributional assumptions that allow the unsupervised learning of halfspaces? For example,
suppose data is drawn from a Gaussian in R¢ with points in an unknown band removed, i.e., we
assume there exists a unit vector u € R? and an interval [a, b] so that the input distribution is the
Gaussian restricted to the set {z € R%|(u,z) < a or (u,z) > b}. Can the vector u be efficiently
learned? Such a distributional assumption ensures that the band normal to w is essentially unique,
leaving open the question of whether it can be efficiently learned.
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Such models have been considered in the literature, notably for Non-Gaussian Component Analysis
(NGCA) [BKST06, TV18], learning relevant subspaces [Blu94, VX11] and low-dimensional convex
concepts [Vem10] where data comes from a product distribution with all components being Gaussian
except for one (or a small number). It is assumed that the non-Gaussian component differs from
Gaussian in some low moment and the goal is to identify this component. Another related model
is Independent Component Analysis (ICA) where the input consists of samples from an affine
transformation of a product distribution and the goal is to identify the transformation itself [Com94,
Car98, GVX14, JKV23]. For this problem to be well-defined, it is important that at most one
component of the product distribution is Gaussian. No such assumption is needed for NGCA or the
more general problem we consider here.

Formally, we consider the following model and problem, illustrated in Figure 1.1.

Definition 1 (Affine Product Distribution with e-Margin). Let ¢ be a symmetric one-dimensional
isotropic logconcave density function. Let () be the d-fold product distribution obtained from g. Let ¢
be the isotropized density obtained after restricting g to R\ [a, b] where ¢((—o00, a]) > €,q([a,b]) > €
and ¢([b, 00)) > e. Let P be the product of one copy of § and d — 1 copies of ¢. Let P be obtained by
a full-rank affine transformation of P; we refer to P asan Affine Product Distribution with e-Margin.
Let u be the unit vector normal to the margin before transformation.
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mean respectively. the product distribution P. the normal vector u.

Figure 1.1: Affine Product Distribution with Margin.

With this model in hand, we have the following algorithmic problem.

Problem. Given input parameters €, > 0 and access to iid samples from ]3, an affine product
distribution with e-margin, the learning problem is to compute a unit vector « that approximates u
to within 7'V distance §. That is, the TV distance between the corresponding P and P is at most 9,
where P is the distribution with margin normal to .

In this formulation of the problem with a TV distance guarantee, if each side of the halfspace receives

a different label, then the probability that the output halfspace of the data disagrees with the true label
(up to swapping the labels) is at most 4.

A natural approach to identifying the halfspace is maximum margin clustering [XNLS04]: find a
partition of the data into two subsets s.t. the distance between the two subsets along some direction is
maximized. Unfortunately, this optimization problem is NP-hard, even to approximate.

There are at least two major difficulties we have to address. The first is the unknown affine
transformation, which we cannot hope to completely identify in general. The second is that, even if
we reversed the transformation, the halfspace normal is in an arbitrary direction in R? and would be
undetectable in almost all low-dimensional projections, i.e., we have a needle in a haystack problem.

1.1 Results and Techniques

We give an efficient algorithm for the unsupervised halfspace learning problem under any symmetric
product logconcave distribution. It consists of the following three high-level steps.

(1) Make the data isotropic (mean zero and covariance matrix identity).

(2) Re-weight data and compute the re-weighted mean [i; and the top eigenvector v of the
re-weighted covariance.

(3) Project data along the vectors [i;, v, and output the vector with the largest margin.



Although the algorithm is simple and intuitive, its analysis has to overcome substantial challenges.
Our main result is the following. The formal version (Theorem 7) is in the Appendix.

Theorem 1 (Main). There is an algorithm that can learn any affine product distribution with
e-margin to within TV distance 6 with time and sample complexity that are polynomial in d,1/e
and 1/6 with high probability.

To see the idea of the algorithm, we first consider the case when no affine transformation is applied.
In this case, we can detect the direction u by calculating the empirical mean and top eigenvector
of the empirical uncentered covariance matrix. If the margin [a, b] lies on one side of the origin,
the mean along u is nonzero while the mean in any other direction that is orthogonal to u is zero.
Thus the mean itself reveals the vector u. Otherwise, we can show that the second moment along
u is higher than along any other orthogonal direction. Thus, there is a positive gap between the
top two eigenvalues of the uncentered covariance matrix and the top eigenvector is u. In fact, the
algorithm applies more generally, to the product distribution created from one-dimensional bounded
isoperimetric distributions. A one-dimensional distribution p is isoperimetric if there exists a constant
1 > 0 such that for any x € R, p(z) > ¢ min{p([x, 00)), p((—o0, z])}. The theorem is stated as
follows. The formal version (Theorem 6), algorithm and proofs are included in the Appendix.

Theorem 2 (Isotropic Isoperimetric Distribution). There is an algorithm that can learn any
isotropic isoperimetric bounded product distribution with e-margin to within TV distance § with
time and sample complexity that are polynomial in d,1/e,1/6 with high probability.

In the general case, when an unknown affine transformation is applied, the algorithm first computes
the empirical mean and covariance of the sample and makes the empirical distribution isotropic. Then
we will consider two cases as illustrated in Figure 1.1a. If the unknown band is not centered around
the mean along u, we can expect the empirical mean to differ from the mean of the underlying product
distribution without the margin. Consequently, if we knew the latter, we can use the difference to
estimate u. However, in general, we do not have this information. Instead, we demonstrate that there
exists a re-weighting of the sample so that re-weighted empirical mean compared to the unweighted
empirical mean is a good estimate of u. In other words, with appropriate re-weighting, the mean
shifts along the normal direction to the unknown band. On the other hand, if the band is centered
along u, the mean shift will be zero. In this scenario, we will show that the maximum eigenvector of
a re-weighted covariance matrix is nearly parallel to u!

Our algorithm only uses first and second order moments, can be implemented efficiently, and is in
fact practical (see Section 5). The main challenges are (1) proving the existence of band-revealing
re-weightings and (b) showing that a polynomial-sized sample (and polynomial time) suffice.

To prove the main theorem, we will show that either the re-weighted mean induces a contrastive
gap (Lemma 1), or the eigenvalues of the re-weighted covariance matrix induce a contrastive gap
(Lemma 2). In the subsequent two lemmas, we adopt the notation from Definition 1. Here, P
represents a product distribution with e-margin defined by the interval [a, b] (before transformation).

Lemma 1 (Contrastive Mean). If |a + b| > 0, then for any two distinct nonzero a1, as € R, at least
one of the corresponding re-weighted means is nonzero, i.e.,
) -0

max (

Lemma 2 (Contrastive Covariance). If a + b = 0, then there exists an o < 0, such that (1) there
is a positive gap between the top two eigenvalues of the re-weighted uncentered covariance matrix

Y =FEz~p e““’””g(xx—r). That is, \1(X) > \o(2). (2) The top eigenvector of 3. is u.
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The proof of Lemma 1 uses Descartes’ rule of signs applied to a suitable potential function. To prove
Lemma 2, we develop a new monotonicity property of the moment ratio (defined as the ratio of the
variance of X2 and the squared mean of X?) for truncations of logconcave distributions. The moment
ratio is essentially the square of the coefficient of variation of X 2. An insight from the monotonicity
of the moment ratio is that for logconcave distributions with positive support, when the distribution is
restricted to an interval away from the origin, it needs a smaller sample size to estimate its second
moment accurately. We state the lemma as follows.



Lemma 3 (Monotonicity of Moment Ratio). Let q be a logconcave distribution in one dimension
with nonnegative support. For any t > 0, let q; be the distribution obtained by restricting q to [t, 00).
§ 2
Then the moment ratio of q, defined as mrq(t) := %, is strictly decreasing with t.
qat

To obtain polynomial guarantees, we will need quantitative estimates of the inequalities in the above
two lemmas. Establishing such quantitative bounds is the bulk of the technical contribution of this
paper. While our focus is on proving polynomial bounds, whose existence a priori is far from clear,
we did not optimize the polynomial bounds themselves; our experimental results suggest that in fact
the dependence on both d and 1/ might be linear!

1.2 Related Work

Efficient algorithms for supervised halfspace learning [Ros58, MP69], combined with the kernel
trick [CSTT00, HDO 98], serve as the foundation of much of learning theory. Halfspaces with
margin are also well-studied, due to their motivation from the brain, attribute-efficient learning [Val98,
Bl1u90], random projection based learning [AV06], and turn out to have sample complexity that grows
inverse polynomially with the margin, independent of the ambient dimension. When examples are
drawn from a unit Euclidean ball in R, and the halfspace has margin ~, then the sample complexity
grows as O(1/+?) regardless of the dimension. This leads to the question of whether labels are even
necessary, or the halfspace can be identified from unlabeled samples efficiently — the focus of the
present paper.

The model of unsupervised learning we study is similar to other classical models in the literature,
notably Independent Component Analysis where input data consists of iid samples from an unknown
affine transformation of a product distribution. There, the goal is to recover the affine transformation
under minimal assumptions. Known polynomial-time algorithms rely on directional moments, and
the assumption that component distributions differ from a Gaussian in some small moment. A
related relevant problem, Non-Gaussian Component Analysis (NGCA), aims to extract a hidden
non-Gaussian direction in a high-dimensional distribution. Here too, the main idea is the fact that
non-Gaussian component must have some finite moment different from that of a Gaussian. While
finite moment difference implies a TV distance lower bound, to get e-TV distance, one might need
to use k’th moments for k& = Q(log(1/¢)) even for logconcave densities. As the dependence on
the moment number is exponential (even for the sample complexity), this approach does not yield
polytime algorithms in terms of TV distance, the natural notion for classification.

The idea of applying Principal component analysis (PCA) to re-weighted samples was used in
[BVO08] to unravel a mixture of well-separated Gaussians. For a mixture of two general Gaussians
that are mean separated, after making the mixture isotropic, it was shown that either the mean or top
eigenvector of the covariance of a re-weighted sample reveals the vector of the mean differences. This
high-level approach was used for solving general ICA by estimating re-weighted higher moments
(tensors) [GVX14]. Higher moment re-weightings were also used by [VX11] to give an algorithm
for factoring a distribution and learning “subspace juntas", functions of an unknown low-dimensional
subspace, and by [TV18] to give a more efficient algorithm for the special case of NGCA. The
question of whether expensive higher moment algorithms could be replaced by re-weighted second
moments is natural and one variant was specifically suggested by [TV 18] for NGCA. Our work
validates this intuition with rigorous polynomial-time algorithms.

2 Algorithm

Our algorithm first makes the data to be isotropic using the sample mean and sample covariance. Then
we apply the weight w(y, ) = e?llv* o each isotropized sample y, and compute the re-weighted
mean and the top eigenvector of the re-weighted covariance matrix. Then for each candidate normal
vector, we project the data to it, and scan to find the maximum gap. The algorithm outputs the vector
with the maximal gap among all candidate vectors. We give the formal description in Algorithm 1.

3 Analysis

We demonstrate that Algorithm 1 operates within polynomial time and sample complexity. The
details regarding sample complexity are presented in Theorem 1. The time complexity is justified by



Algorithm 1 Unsupervised Halfspace Learning with Contrastive Moments
Input: Unlabeled data S = {z() ... 2"} c R, ¢, 6 > 0.

* (Isotropize) Compute the sample mean and covariance:

N
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Make the data isotropic: y() = $-1/2(z0) — f).
* (Re-weighted Moments) Set a1 = —c1€32/d, a0 = —coe*?/d and a3 = —cze®. Let

w(y,a) = eollyll®, Compute the re-weighted sample means fiq, , f4q, USING &1, a2 and the
re-weighted sample covariance using o3 as follows:

Z

flay; = NZ ) )y, fori e {1,2}and & = — Z (¥, ag)y) (J)

Compute the top eigenvector v of 3.

e (Max Margin) Calculate the max margin (i.e., maximum gap) of the one-dimensional
projections of the data along the vectors i, , fla,, v, and let @ be the vector among these
with the largest margin.

return .

the algorithm’s process: it calculates the re-weighted sample mean and the top eigenvector of the
re-weighted sample covariance matrix, both of which require polynomial time.

In our algorithm, we consider two cases depending on whether the removed band [a, b] is origin-
symmetric. If it is asymmetric, we will show that one of the re-weighted means with two as gives us
the correct direction by showing that the re-weighted mean along v has a gap from zero while the
re-weighted mean along all other orthogonal directions is zero. We state the positive gap quantitatively
in Lemma 4. Otherwise, if the band is symmetric, we will show a positive gap between the top two
eigenvalues of the re-weighted covariance matrix, and the top eigenvector corresponds to u. We
quantify the gap between the top two eigenvalues in Lemma 5. In the algorithm, since we know
neither the underlying distribution mean nor the location of the removed band, we have to compute
both re-weighted means and re-weighted covariance, and then get the correct direction among all
three candidate vectors by calculating the margin and finding the one with the largest margin.

Lemma 4 (Quantitative Gap of Contrastive Mean). Suppose that |a + b| > €. Then, for ay =
—c16%2/d, g = —co€*?/d, the re-weighted mean of P, denoted as ji., and i, satisfies
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€
max (’uTua1| , |u—|—ua2 |) > Tfor some constant C' > 0,
Yolu, v e, =0 fla, = 0.

Lemma 5 (Quantitative Spectral Gap of Contrastive Covariance). Suppose that |a + b| < €°. Choose
a3 = —cs€? for some constant cz > 0. Then, for an absolute constant C, the top two eigenvalues
A1 > A of the corresponding re-weighted covariance of P satisfy

)\1 - )\2 Z 063/\1.

4 Proofs
Recall that we are given data (1), ... (") drawn from the affine product distribution with e-
margin P. Algorithm 1 first makes the data isotropic. Denote (1), .- | y(™) as the corresponding

isotropicized data. Then each 37) is an independent and identically distributed variable drawn from
P=G®q®---q. Since we compute the re-weighted moments on 3) in the algorithm, we analyze
the moments of P directly.



Recall in Definition 1 that ¢ is the symmetric one-dimensional isotropic logconcave density function,
and ¢ is the density obtained by restricting ¢ to R\ [a, b] for some unknown a < b. Denote y1, 07 as
the mean and variance of . § is the density obtained after making ¢ isotropic, with support R\[a’, b'],
where ' = “ 214 b = b;%. We denote the standard basis of R? by {e1, - -+ ,eq}, and assume wlog
that e; = u is the (unknown) normal vector to the band. We write x; := (x, e;) as 2’s i-th coordinate.
We assume in our proof that || > |a|. If this condition is not met, we can redefine our interval by
setting a’ = —b and b’ = —a. The proof can then be applied considering the distribution is restricted
to{r € RY:u"z <a' oru’z > b} Foravector z € RY, we use ||z| to denote its [y norm. For a
matrix A € R™*", we denote its operator norm as || A||op.

Contrastive Mean. We can write the contrastive mean as a linear combination of exponential
functions of . By Descartes’ rule of signs, the number of zeros of this function is at most two. Since
a = 0 is one root and corresponds to mean zero, there is at most one nonzero root. And thus we have
that for any two distinct nonzero s, at least one of them achieves nonzero contrastive mean.
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Figure 4.1: Coefficient of e in F(«). In the proof of Lemma 1, by combining e terms, we flip
G(x) horizontally. For a’ > 0, the coefficient is negative when = € (a’,b’) and non-negative outside
the interval. For @’ < 0, it is negative when = € (—a’, ") and positive when x > V'.

Theorem 3 (Descartes’ Rule of Signs in the Integral Form). Let F(ar) = [ a(x)e®®” dx. Then the
number of roots of F(«) = 0 is at most the number of sign changes in a(x) for x > 0.
Proof of Lemma 1 (Contrastive Mean). |b| > |a| implies that 1y < 0. For any « > 0, we have
() = o19(zo1 + ) _ 019(=x01 + 1)
1— f: q(x)dz 11— ffq(x) dx

Since P is a product distribution, we have
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Then we rearrange F'(«) by combining e’ asin Figure 4.1.
If ' <0, we rewrite F'(«) as
b’ 00
F(a) = —/ x@(—x)eamz dx —|—/ x(4(z) — (j(—x))eo‘””2 dz
—a’ b

We treat F'(/) as the integral of a(z)e®® for z > —d’. Since §(z) — §(—z) > 0 for z > ¥, we have
a(z) > 0forx € [—a/,b') and a(z) < 0 for x > b'. In other words, for increasing z, the sign of
a(x) only changes once. By Theorem 3, F'(«) = 0 has at most one root.



If ' > 0, we arrange F'(«) in the same way and get

’ b’

Fla) = [ atila) = e’ o~ [
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Similarly, we treat F'(a) as the integral of a(z)e®®” for z > 0. For increasing =, the sign of a(z)

changes twice. By Descartes’ rule of signs, F'(«) = 0 has at most two roots. In addition, we know

F(0) = Ez1 = 0 by definition of P, which implies that & = 0 is one root of F'(«). So there is at
P

most one nonzero root of F'(«). In other words, for any two distinct nonzero «, cva, at least one of
F(aq), F(az) is nonzero. Consequently,
) -0,

max <

Proof Idea of Lemma 4 (Quantitative Gap of Contrastive Mean). To get a quantitative bound on the
contrastive mean, we follow the same idea of bounding the number of roots of F'(«/) as in Lemma 1.
By taking the derivative of F'(«), we can show that either F/(0) # 0 or F/(0) # 0. Then by Taylor
expansion, we can choose two distinct «’s (near zero) so that one of the corresponding contrastive
means is bounded away from zero.
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Moment Ratio and Contrastive Covariance. To prove Lemma 2, we develop a new monotonicity
property of the moment ratio of logconcave distributions. Moment ratio is specifically defined as
the ratio of the fourth moment to the square of the second moment of truncated versions of the
distribution. This measurement essentially reflects the uncentered kurtosis of the distribution. We will
prove the monotonicity of the moment ratio by reducing the case of general logconcave distributions
to exponential distributions.

Proof of Lemma 3 (Moment Ratio). We show the monotonicity of moment ratio by showing its
derivative with respect to ¢ is negative. Define M;,(t) = [, 2*q(x) dz. By calculation, the derivative
of moment ratio is proportional to —H (t), where H (t) is defined as follows:

H(t) = t* My (t) My (t) + My (t) My(t) — 26> Mo (t) My(t).
Let h(z) = Be~ 7" be an exponential function (3, > 0) such that
Mo(t) = No(t), Ma(t) = Na(t), where Ny (t) = /t " o5 h(z) d k € N.
Then we have - -
| ) =gy 0. [ a*n(o) - @) =0

By the logconcavity of ¢, the graph of & intersects with the graph of ¢ at exactly two points v’ < v,
where v > 0. Also we have h(x) < ¢(z) at the interval [u/, v] and h(z) > ¢(x) outside the interval.
Let v = max{0,v'}. So for z > 0, (z — u)(x — v) has the same sign as h(z) — ¢(z). Since ¢t > 0,
we have

/t T (@ — )@ — ) (h(x) - qlx) 20

Expanding the terms and we get

/ T (o) — a(@)) > (o 107 / 22 (h(x) - qle)) do — w2 / " (h(w) — () dz =0

This shows that N4 (¢) > M,(t). To show that H(¢) > 0, we consider two cases.
Firstly if My (t) — 2t% > 0, we have

H(t) = t*Mo(t) Mo(t) + My(t)(Ma(t) — 2t%) > 0.



Secondly if M(t) — 2t < 0, by calculation of the exponential function’s moments, we have
t1No (t) No(t) > — Ny (t)(No(t) — 2t2)

This implies that

H(t) = t* Mo (t) Ma(t) + My(t)(Ma(t) — 2t%) > (Ma(t) — 2t3)(My(t) — Ny(t)) >0
The equality holds if and only if M4(t) = N4(t) > 0. Then we have

H(t) = t*No(t)Na(t) + Ny(t)(No(t) — 2t) > 0.

Combining both cases, mr;(t) < 0,Vt > 0, which implies that the moment ratio of ¢ is strictly
decreasing with respect to . O

Proof Idea of Lemma 2 (Constrastive Covariance). View the spectral gap of the re-weighted
covariance, denoted as A1 (X) — A2(2), as a function S(«). By calculation, S(0) = 0 and S’(0) is
proportional to mr,(b) — mr,(0), which is negative by the monotonicity property of moment ratio.
Then we can prove the spectral gap for the chosen « using Taylor expansion.

Proof Idea of Lemma 5 (Quantitative Gap of Contrastive Covariance). We first prove the case when
a = —b, and then extend the result to the near-symmetric case when |a + b| < €> by comparing the
re-weighted second moments of two distributions created by restricting g to R\[a, b] and R\[—b, b]
respectively.

The following theorem enables us to bound the sample complexity to estimate the covariance matrix.

Lemma 6 (Covariance Estimation [SV 13]). Consider independent isotropic random vectors X; in
R s.t. for some C, 1 > 0, for every orthogonal projection P in R?,

P(|PX;|| > t) < Ct~*7" fort > Crank(P).
Let ¢ € (0,1). Then with the sample size N = O(de=2=2/"), we have
E[[% = 2llop < €][Xlop-

The following classical theorem will allow us to use the eigenvalue gap to identify the relevant vector.

Lemma 7 (Davis-Kahan [DK70]). Let S and T be symmetric matrices with the same dimensions. For
a fixed i, assume that the largest eigenvalue of S is well separated from the second largest eigenvalue
of S,1.e.36 > 0s.t. A\1(S) — \o(S) > 0. Then for the top eigenvectors of S and T, we have
sin 8(v1(S),v1(T)) < M

Proof Sketch of Main Theorem. We prove the theorem by considering whether the removed band
[a,b] is symmetric or not. If |a + b] > €5, by Lemma 4, for the chosen two as, at least one of
the contrastive means fi; along u direction is bounded away from zero (by poly(1/d, €)) and the
projection of the contrastive mean along any direction orthogonal to u is zero by symmetry. So by
Chebyshev’s Inequality, we will ensure that the angle between w and fi; is less than § with high
probability using O(poly(d,1/€,1/5)) samples. On the other hand, if |a + b| < €5, we rely on
the contrastive covariance. By Lemma 5, the top eigenvector v aligns with u while the top two
eigenvalues A1 > Ay satisfy A\; — Ay > poly(e). By Lemma 7, we can upper bound the angle
between u and v by the quotient of the operator norm of the difference of the contrastive covariance
and sample contrastive covariance and the spectral gap A\; — A2. The covariance matrix itself can
be estimated to desired accuracy efficiently with O(poly(d, 1/¢€,1/6)) samples by Lemma 6. This
ensures the closeness of u and top eigenvector v and hence a TV-distance guarantee. The formal
statement of the theorem and the proofs are included in the Appendix.

5 Experiments

While our primary goal is to establish polynomial bounds on the sample and time complexity, our
algorithms are natural and easy to implement. We study the efficiency and performance of Algorithm 1
on data drawn from affine product distributions with margin. Here we consider three special cases
of logconcave distribution: Gaussian, uniform in an interval and exponential. We include four
experiments. In all results, we measure the performance of the algorithm using the sin of the angle
between the true normal vector v and the predicted vector 4, i.e., sin 6(u, @), which bounds the TV
distance between the underlying distribution and the predicted one after isotropic transformation.
Experimental results strongly suggest that the sample complexity is a small polynomial, perhaps even
just nearly linear in both the dimension and the separation parameter €.



Overall Performance. Here we conduct the experiments based on a grid search of (a, b) pairs on
three special cases of logconcave distribution: Gaussian, uniform in an interval and exponential. We
measure the performance of (a, b) pairs, where for each pair of (a, b), we conduct five independent
trials. For Gaussian and exponential distribution, we choose —3 < a < b < 3 and for uniform
distribution, we choose —1.5 < a < b < 1.5. Here we set the dimension d = 10 and sample size
N = 1000000. For the parameters, we choose a1 = a3 = —0.1, g = —0.2. See Figure 5.1 as the
heatmap of sin 6(u, &) given different pairs of (a, b).

Although in Algorithm 1, we use extremely small values of the weight parameter «, our experiments
show that larger constant values also work empirically, leading to much smaller sample complexity.
This coincides with our qualitative lemmas (Lemma 1, Lemma 2).

The algorithm performs well as seen in the results, except when a and b are both close to the edge,
and thus there is almost no mass on one side of the band. Also, the uniform distribution is the
easiest to learn, while the exponential is the hardest among these three distributions. As shown in all
three plots, the algorithm performs the best when a and b are near symmetric with origin. In other
words, contrastive covariance has better sample complexity than contrastive mean when we fix other
hyperparameters. This coincides with our sample complexity bounds as in the proof of Theorem 1.
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Figure 5.1: The performance of Algorithm 1 with varying (a, b).

Performance of Contrastive Mean and Covariance. In this experiment, we fix a negative a as
the left endpoint of the removed band, and measure the performance of both contrastive mean and
contrastive covariance with respect to different margin right endpoint b. As shown in Figure 5.2,
contrastive mean performs well except when a + b is close to zero, while contrastive covariance
performs well only when a + b is close to zero. This coincides with our algorithm and analysis for
the two cases. In addition, our algorithm chooses the best normal vector among candidates from
both contrastive mean and covariance. So our algorithm achieves good performance (minimum of
contrastive mean and covariance curves).

Specifically, we choose a = —2,b € [—1.9, 4] for Gaussian and exponential cases, and a = —0.5,b €
[—0.4,0.9] for uniform case. We choose the dimension d = 10, the sample size N = 2000000. We
choose a1 = a3 = —0.1, ap = —0.2. We average the result with 50 independent trials.
1.0 1.0 1.0
-2 -1 0 é 2 3 4 -04 -02 0.0 O.Zb 0.4 0.6 0.8 -2 -1 o é 2 3 4
(a) Gaussian, a = —2. (b) Uniform, a = —0.5. (c) Exponential, a = —2.

Figure 5.2: The performance of Algorithm 1 for fixed a and varying b. The yellow lines show the
result computed using the top eigenvector of the contrastive covariance. The blue dotted lines show
the better of the two contrastive means.



Dimension Dependence. In this experiment, we show the relationship between the input dimension
d and the sample complexity. For fixed number size N = 1000000, we measure the performance of
our algorithm with different d. The result is averaged based on a grid search of (a, b) pairs, where for
each pair of (a,b), we conduct five independent trials. For Gaussian and exponential distributions,
we choose —3 < a < b < 3 and for uniform distribution, we choose —0.8 < a¢ < b < 0.8.

As shown Figure 5.3, the performance scales linearly with growing dimension d, suggesting a linear
relationship between the sample complexity and the input dimension.
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Figure 5.3: The performance of Algorithm 1 for fixed sample size NV and varying dimension d.

e-Dependence. To further understand the dependence on the separation parameter €, we plot the
performance versus 1/e in Figure 5.4. Here we calculate 1/¢ as 1/¢([a, b]), and the performance as
the median sin 0(u, @) for specific mass ¢([a, b]). As we can see the performance drops near linearly
with respect to 1/€, which indicates that the sample complexity is possibly linear in 1/ as well.
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Figure 5.4: The performance with respect to 1/e.

6 Discussion

We have proposed and analyzed an efficient algorithm to learn the symmetric product logconcave
distribution without labeled data. This is also connected to self-supervised learning. Specifically,
contrastive learning without data augmentation is closely related to the contrastive covariance part in
our algorithm.

The algorithm delivers more than the theoretical analysis. While our analysis focuses on specific
values of «, as demonstrated by the qualitative lemmas (Lemma 1, Lemma 2), any distinct pair
of nonzero « values should work for contrastive mean, and any bounded small « should work for
contrastive covariance. This flexibility ensures the applicability of the algorithm in various real-world
scenarios. Furthermore, our experimental results align with this claim.

The experiments reveals a linear relationship with the input dimension d, raising an open question
regarding the improvement of the sample complexity bound to be linear with respect to d (as well
as 1/€). Additionally, it might be possible to extend the algorithm’s application to more general
distributions.

Acknowledgements. This work was supported in part by NSF awards CCF-2007443 and CCF-
2134105 and an ARC fellowship.
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Appendix
A Preliminaries

A.1 Logconcave Distributions

Lemma 8 (Lemma 5.4, [LVO7]). Let X be a random point drawn from a one-dimensional logconcave
distribution. Then

1
P(X >EX) > -.
e

Lemma 9 (Lemma 5.5,[LVO7]). Let p : R — R be an isotropic logconcave density function. Then
we have

(a) Forall z, g(x) < 1.

(b) 9(0) = 1/8.
Lemma 10 (Lemma 5.6,[LV07]). Let X be a random point drawn from a logconcave density function
p: R — R.. Then for every c > 0,

P(p(X) < ¢) < ——

max, p(x)

Lemma 11 (Lemma 5.7, [LVO7]). Let X be a random variable drawn from a logconcave distribution
in R. Assume that EX?2 < 1. Then foranyt > 1, we have

P(X >t) <e'™?

Corollary 1. Let X be a random point drawn from an isotropic symmetric logconcave density
function p : R — R. Then we have fort > 0, we have

P(X > ) < 8p(t)

Proof. Since p(z) is symmetric, we know p(z) is monotonically decreasing for z > 0. Then we
apply Lemma 10 with ¢ = p(x), and get

P(z > 1) < B(p(X) < p(t)) < — 2

- ~ max, p(x)
On other hand, by Lemma 9, we have max, p(z) > p(0) > 1/8. So we have
P(X >t) < 8p(t).

O

Lemma 12 (Theorem 5.22, [LVO07]). For a random point X drawn from a logconcave distribution in
R then
EIX|* < (2k)*(E(|X])"

Lemma 13. Let X be a random point drawn from an isotropic symmetric logconcave density function
p: R — Ry. Then for any t > 3, we have

p(t) < p(0) - 27"/
Proof. First we claim that p(3) < p(0)/2. Otherwise,
° p
EX? > / 2*p(r)de > 25 >
0
This leads to the contradiction. Then for any ¢ > 3, from the logconcavity of p,

p(3) > p(0)'~ p(t)*
This implies that
p(t) < p(0)-27/3
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A.2 Descartes’ Rule of Signs
Descartes’ rule of signs is a well-known principle in algebra that offers a way to estimate the maximum
number of real roots for any polynomial. This classical theorem can be stated as follows:

Theorem 4 (Descartes’ Rule of Signs). For the generalized Dirichlet polynomial

n
F(z) =) a;e’*,p1 > py > -+ > py,
j=1

the number of roots of F(x) = 0 is at most the number of sign changes in the series {a1, a2, -+ ,an }-

In this section, we state and prove a variant of Descartes’ rule of signs in the integral form, which we
apply directly to prove Lemma 1. To begin with, we say a function f has a root of order & at point x
if

fl)=f'(w) == fEV(x) = 0and f®(z) #0.
We denote Z( f) as the number of roots of f, counted with their orders. Then we can show that the

number of roots of f is upper bounded by one plus the number of roots of f’ in Lemma 14. We use
Rolle’s Theorem in the proof of the lemma.

Theorem 5 (Rolle’s Theorem). Suppose that a function f is differentiable at all points of interval
[a,b] and f(a) = f(b). Then there is at least one point xy € (a,b) such that f'(x¢) = 0.

Lemma 14. Z(f) < Z(f') + 1.

Proof. Suppose f has aroot of order k. as z,.,1 < r < n. Then f’ has aroot of order k — 1 at z,..
These add up to

n

> (ke —1)=Z(f) —n

r=1

By Rolle’s Theorem, f’(x) also has at least n — 1 roots in the gaps between the points x,.. Together,
these two facts give

Z(f)zZ(f) —n+n-1=Z(f) - L
O

Theorem 3 (Descartes’ Rule of Signs in the Integral Form). Let F(a) = [;° a(x)eo“'”2 dx. Then the
number of roots of F'(«) = 0 is at most the number of sign changes in a(x) for x > 0.

Proof. We prove the theorem with induction on the number of sign changes of a(x). For the base case
when the number of sign changes of a(z) is zero, we assume wlog that a(x) > 0. Then F(a) > 0
and thus F'(«) has no root. Now we assume that the theorem holds when the number of sign changes
is t and we will show the ¢ + 1 case.

Let one of the sign changes of a(x) occurs at xg. Define

Fo(a) ::/ a(x)eo‘(ﬁ*xg) dz,
0

which has the same roots as F'(«). By taking derivative, we get

Fi(a) = /0 a(z)(2? — 22)e@ =70 dy.

Let b(z) = a(z) (2% — 22) be the new sequence. Then b(x) has one less sign changes than a(z). By
induction hypothesis, the number of roots of F{)(«) is upper bounded by the number of sign changes
of b(z). By Lemma 14, the number of roots of Fy is upper bounded by the number of sign changes
of a(z), thus leading to the induction step.

O
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B Warm-up: Isotropic Isoperimetric Distribution with ¢-Margin

As a warm-up, we consider the isotropic product distributions with e-margin. Notably, without
applying an unknown transformation on data, we can extend the logconcave distributions to
isoperimetric distributions. In this section, we will demonstrate how to retrieve the normal vector
u by calculating the empirical mean and top eigenvector of the empirical uncentered covariance
matrix. This technique is similar to Principal Component Analysis (PCA), but instead of computing
covariance matrix, we use the uncentered covariance matrix.

Definition 2. A distribution p with support R is ¢-isoperimetric if there exists ¢ > 0 such that for
any € R, we have p(z) > ¢ min{p([z, 00)), p((—o0, z])}.

Definition 3 (Isotropic Isoperimetric Distribution with e-Margin). Let q,...,gq be symmetric
one-dimensional isotropic i-isoperimetric density functions bounded by 7. Let Q@ = ¢1 ® - - - ® qq.
Let ¢ be the density obtained after restricting ¢; to R\[a, b] where ¢1((—00,a]) > €,¢1([a,b]) > €
and g ([b, 00)) > e. Let P be an arbitrary rotation of § ® g2 ® - - - ® q4. We refer P as an Isotropic
Isoperimetric Distribution with e-Margin. Let u be the unit vector normal to the margin.

Problem. Given input parameters ¢, > 0 and access to iid samples from P, an isotropic
isoperimetric distribution with e-margin, the learning problem is to compute a unit vector  that
approximates u to within TV distance . That is, the TV distance between the corresponding P and
P is at most 8, where P is the distribution with margin normal to .

B.1 Algorithm

Given data drawn from P, we compute the sample mean and the top eigenvector of the uncentered
covariance matrix. Then we compare the max margin along these two candidate normal vectors. This
gives an efficient algorithm for the problem with no re-weighting. We state the algorithm formally in
Algorithm 2.

Algorithm 2 Unsupervised Halfspace Learning from Isotropic Isoperimetric Data
Input: Unlabeled data {z("), .- 2} c R%. €6 > 0.

* Compute the sample mean and uncentered covariance matrix:

1 1
u—NjglmJ,Z—Njglxjxj

e Compute s top eigenvector v.

* Calculate the max margin (i.e., maximum gap) of the one-dimensional projections of the
data along the vectors i, v. Let @ be the vector among these two with a larger margin.

return the vector .

B.2 Analysis

We demonstrate that Algorithm 2 operates within polynomial time and sample complexity. The
details regarding sample complexity are presented in Theorem 2 (formal statement of Theorem 6).
The time complexity is justified by the algorithm’s process: it calculates the sample mean and the top
eigenvector of the sample covariance matrix, both of which require polynomial time.

Theorem 6 (Sample Complexity for Isotropic Isoperimetric Distribution). Algorithm 2 with N =

O(d26_65 ~2¢7YY samples learns the target isotropic isoperimetric distribution with e-margin to
within TV distance & with probability 1 — &.

The analytical approach is straightforward. Given that the component distributions are isotropic,
the empirical mean will reveal the band if the removed band [a, b] stays on one side of the origin.
Otherwise, when [a, b] spans across the origin, the variance along the component with the deleted band
will increase. Consequently, this component emerges as the top principal component. Intriguing, this
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property is “opposite" to the method used to identify low-dimensional convex concepts in [Vem10].
The latter relies on the Brascamp-Lieb inequality, where the variance of a restricted Gaussian is less
than that of the original Gaussian.

To prove Theorem 6, we aim to quantify either the mean gap or the spectral gap (gap between the top
two eigenvalues) of the uncentered covariance matrix. Specifically, Lemma 15 indicates that when
0 < a < b, the mean along the direction u significantly deviates from zero. Meanwhile, Lemma 16
demonstrates that when a < 0 < b, there’s a gap between the first and second eigenvalues of the
uncentered covariance matrix. Subsequently, we employ Lemma 6 [SV13] to determine the sample
complexity, and utilize the Davis-Kahan Theorem [DK70] (Lemma 7) to leverage the eigenvalue gap
in identifying the pertinent vector u. We leave the proof of the lemmas in Section B.3.

For any z € R, we denote x; as its i-th coordinate. We use ||z|| to denote its [ norm. For a
matrix A € R™*", we denote its operator norm as || A||op. We denote the standard basis of R? by
{e1, -+ ,eq}, and assume wlog that e; = wu is the (unknown) normal vector to the band. Denote
Y =E,.pxz' asthe uncentered covariance matrix of P, with eigenvalues A\; > Ao > -+ > Ay

Lemma 15 (Mean Gap). For 0 < a < band b — a > ce for constant ¢ > 0, we have
6263

1
Er<——varx < —.
T~§ 2 ’mwzj — 2e

Lemma 16 (Spectral Gap of Covariance). Ifa < 0 < band b > ce for constant ¢ > 0, then the first
and second eigenvalues of the uncentered covariance matrix X2 have the following gap

A — Ao > CedN for constant C > 0.

Furthermore, the top eigenvector corresponds to u.

Now we are ready to prove Theorem 6.

Proof of Theorem 6. We can proceed with the assumption that || > |a|. If this condition is not
met, we can redefine our interval by setting @’ = —b and b’ = —a. The proof can then be applied
considering the distribution is restricted to {z € R? : u'z < @’ oru' 2 > b'}. We will prove the
theorem by considering two cases: 0 < a <banda <0< b.

We first consider the case when 0 < a < b. Given that ¢; is bounded by T, it follows that b —a > ¢/7.
By Lemma 15, we know
€3 1

var r1 <

_£7

Ernn<-——=
z~P 2T27:1:~P

while for 7 > 2, we have
E z; =0, var x; = 1.
x~P

x~P
Given data (... (V) let i = % Z;V=1 2() be the sample mean. Then by Chebyshev’s
Inequality,
. ped 87 R Ye3d 1674d .
P — )< ——, Pl <— < ,2<i<d
(1 > 47_2) = Ny2eT’ (i < 47—2\/g) — Nt)2¢652 !
Let 0 < ¢ < 1. So we know with sample size N, = %,
X pet _ pRetE ¢ N Pe®d € &
Pl > ——-—) < <=, P < =< =
(:U’l 47_2) = 2d2 d? (:u’ 47_2\/g) = d d
Then we have
,[1'2
P(sin0(f1, e1) < 6) =P(—+— >1-6%)
S 2
=1
3 )
>P(u —— > ——F=,2 <d
>P(fn < =i > Vg SiS )
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Secondly, we consider the case where a < 0 < b. Given that b — a > ¢/7 and |b| > |a|, it results in
b > €/(27). By Lemma 16, the top two eigenvalues of 3, denoted as A; and Ag satisfies

A1 — Xy > O\ for some constant C' > 0
By Lemma 6, with sample size Ny = O(de; ?), with probability at least 1 — £,
1% = Xlop < €1[Xlop
By Lemma 7, we know for the top eigenvector v of 3 satisfies

2112 = lop _2aM 2
Ce3\; ~— Ce3\y (Ce
Choose ¢; = Ce3§/2, and we will get sinf(e;,v) < . The sample size we need is Ny =

O(de=%6=2). So with sample size N = max(Ny, No) = O(d?e55-2¢~1), Algorithm 2 can
recover e; within TV distance § with probability 1 — &.

sinf(ey,v) <

O]
B.3 Proofs
Lemma 15 (Mean Gap). For 0 < a < band b — a > ce for constant ¢ > 0, we have
peted 1
E z<-— ,varx < —.
r~g x~q 2¢
Proof. Since ¢ is ®y—isoperimetric, Vt € [a,b], g1 (t) > ¥ ftoo ¢1(z) dx > 1e. Then we have
b b 2,3
/ zq1(z) dx >1/)e/ vdr > < ve
By the definition of expectation, we have
| fR\[a,b} zqi () dx| | ff xq1(x) dx| c2e3
| E z| = = > —
=~ Jen @@ fp oy al@)ds =2
On the other hand, we can calculate the variance as follows.
22q1(z) dz 2 d
varr < E 2% = — fR\[%b] 1(00) < fo ailw)de = i
S T ) det [ qi(e) de 2 2
O]

Lemma 17 (Second Moment). For a, b satisfying a < 0 < b,b > ce for constant ¢ > 0, we have
]EAac2 > 1+ C€ for constant C' > 0.

Tr~q

Proof. By definition of §, we know its density on the support 2 € R\[a, b] is

Al N ¢1(z)
i(z) = =3 =
[t oa(x)de+ [ q(x)de
Then we calculate its second moment as follows.
o, o Pa(x)de+ [ 2%qu(2) da
E z° = 59 50
oy Jo () de+ [ qu(x) de
Define g(z) := [°(t> = 1)q1(t) dt,x > 0. Its derivative is ¢'(z) = (1 — 2?)q1(z). So we know
g(x) is monotonically increasing when = € [0, 1], and decreasing when = > 1. Since P; is symmetric

and isotropic, we know [~ q1(z) dz = [~ 2?q1 () dw = 1/2. So we have g(0) = 0. This derives
that g(x) > 0,Vx > 0. In other words, [~ 22qy(z) dz > [7 q1(z) da.
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For any = € [ce, M], we have g(z) > min(g(ce),g(M)). Here we let M > 0 such that
[ p(x) dz = €. Then we can lower bound g(ce) as follows.

glce) = g(0) + /OC6 g (z)dx = /006(1 —2%)q1(z) dx > ce(1 — *e?)qi(ce) > Pee®(1 — ?e?)

If M <1, we know |b| < M < 1. Then we have g(b) > g(ce).
If M > 1+ €, we can lower bound g(M) as

oo

g(M) > (M2 - 1) /M a(@)de > (1+ )2 = 1)e = & + 262

Similarly we will get g(b) > min(wce?(1 — c2€?), €3 + 2€2). Finally if 1 < M < 1 + ¢, there exists
M’ > 0 such that f]\]f ¢1(z) dz = €/2. Here M’ — M > ¢/2. Then we have

g(M') > (M” — 1)/ (@) dz > (1+¢/2)% —1)e/2 = /8 + /2

/

In this case, we have g(b) > min(g(e), g(M")) > min(1pce?(1 — c%€?), €3 /8 + €2 /2). Therefore, we
can lower bound the second moment of ¢ as follows.
e JEnE) e+ [ e @) de o)
o [ q(@)de + [ q(z) de

min(¢ce?(1 — c?e?), €3 /8 + €2/2)

ff‘; q1(z) dz + fboo q1(z) dx
>1 + min(yee’(1 — c?e?), €3 /8 + €2 /2)
>1+ Ce® where C' = min(¢c/2,1/8)

>1+

O

Lemma 16 (Spectral Gap of Covariance). Ifa < 0 < b and b > ce for constant c > 0, then the first
and second eigenvalues of the uncentered covariance matrix X2 have the following gap

A — Ao > Ce3\y for constant C > 0.

Furthermore, the top eigenvector corresponds to u.

Proof. We assume wlog that e; = u. Then the marginal distribution of P in e is ¢, while the marginal
distribution in e; is g; for any 2 < ¢ < d. Since g; is isotropic, forany 2 < i < d, E :1712 = 1. By
r~P

Lemma 17, we have E 22 > 1+ C'é® for constant C’ > 0. Let g(v) :== E “-%2 % Then we

vlv
z~P r~P

have g(e1) > 1+ C'e3, while g(e;) = 1,V¥2 < i < d. Then for any unit vector v = Zle Bie;
satisfying Z;i:l B? = 1, we have

d

g(v) = Zﬂ?g(ei) < g(e1)

i=1

Then we know the top eigenvalue of X is A; > 1+ Ce>. Furthermore, the top eigenvector corresponds
to e;. Similarly, the second eigenvalue of X is Ay = max,., 1, 9(v) = g(e;) = 1,2 < < d. This
implies that \; — Ao > Ce3)\; for constant C' > 0.

O
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C General Case: Affine Product Distribution with e-Margin

In this section, we first prove the main theorem in Section C.1 using the quantitative lemmas, and then
prove all the lemmas. We begin with proving the two qualitative lemmas (Lemma | and Lemma 2)
in Section C.2, and then prove the quantitative lemmas (Lemma 4 and Lemma 5) in the remaining
section. For the quantitative part, we first consider the asymmetric case where |a + b| > €°. In this
case, contrastive mean leads to recovering u, as elaborated in Section C.3. Secondly, we consider the
symmetric case characterized by a 4+ b = 0, addressed in Section C.4. We show that we can recover
u by calculating the top eigenvector of the re-weighted covariance matrix. Finally we extend the
result to near-symmetric case where |a + b| < € in Section C.5.

Recall that we are given data (1), ... (") drawn from the affine product distribution with e-
margin p. Algorithm 1 first makes the data isotropic. Denote (), - - | y(™) as the corresponding
isotropicized data. Then each 37) is an independent and identically distributed variable drawn from
P={®q®---q. Since we compute the re-weighted moments on %/) in the algorithm, we analyze
the moments of P directly.

Recall in Definition 1 that ¢ is the symmetric one-dimensional isotropic logconcave density function,
and § is the density obtained by restricting ¢ to R\ [a, b] for some unknown a < b. Denote p1, 0% as
the mean and variance of . § is the density obtained after making ¢ isotropic, with support R\[a’, b'],

where o’ = <Y = b;% The density ¢ on its support is

o1q(zoy + p1)
I° a(x)de + [ q(x) da

We denote the standard basis of R? by {e1,- -+, eq}, and assume wlog that e; = w is the (unknown)
normal vector to the band. We write x; := (z, ;) as «’s i-th coordinate. We assume in our proof
that [b| > |a|. If this condition is not met, we can redefine our interval by setting ' = —b and
b = —a. The proof can then be applied considering the distribution is restricted to {z € R? : "2 <
a’ oru'x > b'}. For a vector x € R?, we use ||z|| to denote its I norm. For a matrix A € R™*™,
we denote its operator norm as || A||op.

4(z) =

C.1 Proof of Theorem 1

Armed with two quantitative lemmas and the Davis-Kahan Theorem, we are now prepared to prove
the main theorem. We state the formal version of Theorem 1 as follows.
Theorem 7 (Sample Complexity for Affine Product Distribution with e-Margin). Algorithm [ with

N = O(d6e_3185_2§_1) samples learns the target affine product distribution with e-margin to
within TV distance & with probability 1 — &.

Proof. Firstly we consider the case when |a + b| > €. Denote o* = argmax, {|(tta1 )1, |(Has )1}
and flo = flo+. By Lemma 4, |(pq)1| > C1et%? /d?. Since for any negative o, for any 1 < i < d,

* 2
var(pa); < B 24152 < | o2 =1
y~P y~P

By Chebyshev’s Inequality, the re-weighted sample mean [i = % Zj\;l e lly? ”zy(j ) satisfies

. Cpet®? 4d* N C1e996 4d>d .
P < < sigr P(as] = < ,2<i<d.
(|M1| = 942 ) = N0126318 (l'u | 2d2\/a> NC12631852 t
Let the sample size N; = %12525 = O(CdSe318572¢71), and we have
1
_ 016159 g _ 0161595 g )
P _— 1-2=2 P(|ay 1-22<qi<d.
(> By > 1- 5 Bl < 2y > 1- S

So we have

~2
P(sinf(fi, e1) < 8) =P(—g— > 1 - 6%)
Zi:l i
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~ 016159 ~
>P(|ji1| > Y |fii| <

G o ci<a)
2d2\/d
>1-¢
This indicates that with probability 1 — &, the re-weighted mean can output the vector [ that is within
angle 4 to the vector e;.

Secondly, for the case when a and b are near-symmetric. Denote X as the re-weighted covariance
matrix with eigenvalues \; and Y as the empirical re-weighted covariance matrix with eigenvector
v. By Lemma 5, \; — Ay > Ca¢3)\;. By Lemma 6, with sample size Ny = O(de 66-2¢71), with
probability 1 — &,

1S~ Sllop < C2e*3]|S op/2
By Lemma 7,

2L~ Sl _ Cac'és

Coed )\ — O3\
So given N = max(Ny, Ny) = O(d®e318§—2¢~1), the algorithm learns the distribution P with
probability 1 — &.

sinf(ey,v) < =0

O

C.2 Proofs of Qualitative Bounds

We present proofs of two qualitative lemmas: the contrastive mean (Lemma 1) and the contrastive
covariance (Lemma 2). Their quantitative counterparts can be found in Section C.3 and Section C.5.
To establish the contrastive mean, we invoke Descartes’ Rule of Signs. For the proof concerning
contrastive covariance, we introduce a novel monotonicity property on the moment ratio, as described
in Lemma 3. We include the complete proof within this section.

a’'>0 a’'<o0
-5
VRS /N
\

/ \
N _ / N\
_‘/ \ q(x) _/’ \\ q(x)

Figure C.1: Coefficients of F'(«) ahead of ¢®” term in Lemma s proof. By combining o’ terms,
we flip ¢(x) horizontally. For a’ > 0, the coefficient is negative when = € (a’, b’) and non-negative
outside the interval. For a’ < 0, the it is negative when x € (—a’, b’) and positive when = > b'.

Contrastive Mean. We can write the contrastive mean as a linear combination of exponential
functions of . By Descartes’ rule of signs, the number of zeros of this function is at most two. Since
a = 0 is one root and corresponds to mean zero, there is at most one nonzero root. And thus we have
that for any two distinct nonzero s, at least one of them achieves nonzero contrastive mean.

Lemma 1 (Contrastive Mean). If |a + b| > 0, then for any two distinct nonzero ay, s € R, at least
one of the corresponding re-weighted means is nonzero, i.e.,
)>o.

nmx(
— §(—a).

2
B ecallel?y Ty
x~P

2
B emllel?y Ty
x~P

)

Proof. |b| > |a| implies that y; < 0. For any = > 0, we have
i(z) = o1g(xor + p1) > o1q(—wo1 + p1)
1-— f: qlx)dz 11— fabq(x) dzx
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Since P is a product distribution, we have

d

2 2 2

E ea”ﬂﬁH T = Eheawlxl'H E e*%i
=2

z~P T1~vg Tivg
We denote
F(a)= E iz, (C.1)

x~q
By calculation, we have

2

Fla) = / e xg(x) dx
R\[a’,b']

Then we rearrange F'(«) by combining e asin Figure C.1.

If ' <0, we rewrite F'(«) as

v S
Fla) = - / wi(—2)e® di + / 2((z) — d(—2))e™” de

—a’ b
We treat F'(«) as the integral of a(:v)emc2 forz > —a/. Since §(x) — §(—z) > 0 for z > b, we have
a(x) > 0forxz € [—d’,b') and a(z) < 0 for z > b'. In other words, for increasing z, the sign of
a(x) only changes once. By Theorem 3, F'(«) = 0 has at most one root.
If o’ > 0, we arrange F'(«) in the same way and get
’ b/

Fla) = [ atalw) = i-apes’ o - [

a

o0

ri(-a)e do+ [ (i) = i(-a)e da

’

Similarly, we treat F'(a) as the integral of a(z)e®®” for z > 0. For increasing =, the sign of a(z)

changes twice. By Descartes’ rule of signs, F'(«) = 0 has at most two roots. In addition, we know

F(0) = Ex1 = 0 by definition of P. So @ = 0 is one root of F(a) = 0. So there is at most one
P

nonzero root of F(a) = 0. In other words, for any two distinct nonzero o, a2, at least one of
F(an), F(a2) is nonzero. This implies that
) -0,

max (

Moment Ratio. To prove Lemma 2, we develop a new monotonicity property of the moment ratio
of logconcave distributions. Moment ratio is specifically defined as the ratio of the fourth moment
to the square of the second moment of truncated versions of the distribution. This measurement
essentially reflects the uncentered kurtosis of the distribution. The formal definition is detailed in
Definition 5.

Definition 4 (One-side t-restriction distribution). Let g be a distribution in one dimension with
nonnegative support. For any ¢ > 0, define ¢, as the one-side ¢-restriction distribution on ¢ obtained
by restricting g to [¢t, 00).

L2
E eozllall® 5
€rev

2
E eonllall® 5
xrrv

)

O

Definition S (Moment Ratio). Let g be a distribution in one dimension with nonnegative support.
For any ¢ > 0, define ¢’s moment ratio as a function of ¢, given by
varg, (X 2)

mry(t) = — oy Where g is the one-side {-restriction distribution on g.
(EQt X )

We will prove the monotonicity of the moment ratio (Lemma 3) by reducing general logconcave
distributions to exponential distributions. The monotonicity of the moment ratio for exponential
distribution is detailed in Lemma 18.

Lemma 18 (Monotonicity of Moment Ratio of Exponential Distribution). Define h(z) = e~ 7% x >
0,8,7 > 0. Denote Ny (t) = [, z*h(x) dz. Then for any t > 0, we have

t4No (t) No(t) 4+ No(t)Ny(t) — 26> No(t)Na(t) > 0.
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Proof. By calculation, we have

:/ Be " dx = ée*”’t
t Y
° . 1 1
Ny (t) = / Bre ¥ dx = éte‘"’t + —No(t) = (t + ) ée_"yt
t v Y v/
2 2 2
/ Brle ™" dr = 51&%*“ + =Ny (t) = <t2 + =i+ 2) B gt
Y v ")

3 3 6
0= [ srtemar=Eoets 2t = (04 2o s ow ) B
t Y 0 2 )

Ny(t) = / Bate™® dox = Bae—t + éNg(t) = <t4 + A + E152 + %t + 24) B e
¢ v gl v ooty

Then we can plug them and get

t4No (t) No(t) 4+ No(t)Ny(t) — 26> No(t) N4 (t)

2 2 2 2 2 4 12 24 24
:%e*w <t4 <t2 + =t + 2) + (—t2 + =t + 2) : <t4 + P+ S+ b+ 4)>
¥ Yoo v v v

8 3 6t2 12t 6
88 o ( +— ) >0

2 3y T E T a8

Next, we will prove the monotonicity of moment ratio for logconcave distributions.

Lemma 3 (Monotonicity of Moment Ratio). Let q be a logconcave distribution in one dimension

with nonnegative support. For any t > 0, let q; be the distribution obtained by restricting q to [t, 00).

2
Then the moment ratio of q, defined as mrq(t) := @”fiﬁjﬁ)ﬁ is strictly decreasing with t.
qat

Proof. Denote My(t) = [, #¥q(z) dz. By Definition 5,

> ztq(z) dz

X @ dw Mo(t) M
mr,(t) = varg (X°) [T a@y e . _1:M_1
(Eq X?)° (M) My(t)2
I a(e) da

Next we will show that mr/(¢) < 0, V¢ > 0. By taking the derivative,

mr'(t) = ;42((?) (t* Mo (t) Mo (t) + My(t) Mo (t) — 2> Mo (t) My(t))

Define H (t) = t* Mo (t) Ma(t) + My (t) Mo (t) — 2t2 Mo (t) My(t). We will show that H (t) > 0, Vt >
0. Clearly H(0) = M4(0)M>(0) > 0, So we only consider ¢ > 0 in the following proof.

Let A(z) = Be~7* be an exponential function (5, > 0) such that

My (t) = No(t), Ma(t) = Na(t), where Ni(t) = /00 a*h(z)dx, k € N,

Then we have - -
/t (h(x) - q(z)) dz = 0, / 2 (h(z) - q(2)) = 0

By the logconcavity of g, the graph of h intersects with the graph of ¢ at exactly two points v’ < v,
where v > 0. Also we have h(z) < g(x) at the interval [u/, v] and h(x) > ¢(z) outside the interval.
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Let u = max{0,u'}. So for z > 0, (z — u)(z — v) has the same sign as h(z) — ¢(z). Since t > 0,
we have

/ T (@ )@ — o) (hx) — qlx)) > 0

Expanding and we get

/t " i () — q(2) > (@2 + o) / 2 (h(z) — q()) dz — u*o? / " (h(2) — g(a))de = 0

This shows that Ny(t) > My(t). To show that H(¢) > 0, we consider two cases.
Firstly if My (t) — 2t% > 0, we have
H(t) = t*Mo(t) Mo (t) + My(t)(Ma(t) — 2t%) > 0.
Secondly if Ms(t) — 212 < 0, by calculation of the exponential function’s moments (Lemma 18), we

have
t4No () No(t) > —Ny(t)(No(t) — 2t2)

Then we have

H(t) =t* Mo (t) Ma(t) + My(t)(Mo(t) — 2t%)
(M

:t4N0(t)N2(t) + My(t)(Msy(t) — 2t2)
Ny (t)(Na(t) — 26%) + My(t)(My(t) — 2t°)
( 2(t) — 26%)(My(t) — Na(t))

>0
The equality holds if and only if M4(t) = N4(t). This implies that
H(t) = t*No(t) No(t) + Ny(t)(Na(t) — 2t%) > 0.

Combining both cases, mr’(¢t) < 0,Vt > 0, which implies that the moment ratio of ¢ is strictly
decreasing with respect to t. O

Contrastive Covariance. View the spectral gap of the re-weighted covariance, denoted as \; (f]) -

A2(X), as a function of «, which we denote as S(a). By calculation, S(0) = 0 and S'(0) is
proportional to mr(b) — mr(0), which is negative by the monotonicity property of moment ratio. Then
we can prove Lemma 2 using Taylor expansion.

Lemma 2 (Contrastive Covariance). If a + b = 0, then there exists an o < 0, such that (1) there
is a positive gap between the top two etgenvalues of the re-weighted uncentered covariance matrix

S = Eyp el (zaT). That is, M\ (2) > Ao (X). (2) The top eigenvector of ¥ is u.

Proof. Denote My (t) = [, #*q(z) dx. The variance o7 of g restricted to R\ [—b, b] is

g2y ep(@)de My (b)
! fboop(x) dx MO(b)

Since ¢ is isotropic, the density on the support R\[—b/c1,b/c1] is

(z) = o1q(xo1)
1 2 fboo q(x) dx
Let , 5 )
S(Oé) = et IE2 E e _ E et IE2 E et
z~q xr~q T~q ~qg

Since ¢ and § are both isotropic, S(0) = E z? — E 22 = 0. Then,

x~q T~q

My (b)Mo(b) M4 (0)My(0)

SO="3E0 )
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The last step is because the distribution g is isotropic. By Lemma 3, we know S’(0) = mr’(0) < 0.
On the other hand, Yoo < 0, S” () can be bounded.

, Mq(0) 0
§"(0) <3 mnEm T eaEm < PO

By Taylor expansion, we know there exists o < 0 such that

2
S(a) =S(0) + aS'(0) + %S”(O/) > 0, where o € [a, 0]

Then we have for 2 < j < d,

d—2
2 2 2
E el - 102 — 5(a) ( B e >0
x~P r~P T~q

For any v € RY, define ¢(v) as

2
ey Tz Ty

E
P vTv
Substituting v with e; and e;,2 < j < d, we have
2 2
d(e) = E ezl mid)(ej) = g el xf
x~P x~P

This implies that for 2 < j < d,

oer) = dle;) = E e*1lad = B eIIa3 >0

x~P

d
For any vector v = ) ., 7;€;, we have

1 R Y v20(e)
——— ;)2 ==L L
¢(v) Z?:l 22 € (; Vi®;) Zgzl 2 o(er)

This shows that the top eigenvalue of 3 is \;(X) = max, ¢(v) = ¢(e1). Similarly, Ao(X) =

MaXy. e, P(v) = ¢(ej),2 < j < d. Therefore, A1(X) > A2(X) and the top eigenvector is e,
which is essentially u. O

C.3 Quantitative Bounds for Contrastive Mean

We will prove Lemma 4 in this section. Here we consider the case when |a + b| > €5. We compute

. . 2 . . s
the contrastive mean of P given o < 0 as E e“* z using two different o’s.
x~P

Definition 6. We define F'(«) as re-weighted mean for the one-dimensional distribution §.

x~q

Flo)= B o= [ e aie)de (€2)
q R\[a’,b]

Since P is isotropic, F(0) = E x =0.

xr~q

To prove Lemma 4, we need to show that for given a1, avg, the maximum of | F'(av)|, | F'(c2)| exceeds
a certain positive threshold. We follow the same idea of bounding the number of roots of F'(«) as
in the qualitative lemma (Lemma 1). By taking the derivative of F'(«), we can show that either
F’(0) # 0 or F”’(0) # 0. Then by Taylor expansion, we can choose two distinct a’s (near zero) so
that one of the corresponding contrastive means is bounded away from zero.

In the process of proving the quantitative bounds, similar to our approach with qualitative bounds, we
must consider two distinct scenarios based on the sign of a’, as illustrated in Figure 4.1.

¢ In the case where o’ is negative, Lemma 20 asserts that the first derivative of F at zero,
F'(0), is always positive.
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 Conversely, when a’ is nonnegative, Lemma 23 reveals an essential characteristic of the
function F'(«): it’s not possible for both F’(0) and F(0) to be zero at the same time.

* Lemma 24 provides upper bounds for the derivatives of F'(«). These upper bounds are
crucial as they help in managing the extra terms that emerge during the Taylor expansion of
F(a).
* The section concludes with the proof of Lemma 4, which is the quantitative lemma for the
contrastive mean.
We start with Lemma 19 showing that |y | is away from zero provided that |a + b| is also different
from zero.
Lemma 19 (Lower Bound of |u1]). If |a + b| > €° for s > 2, then |u1| > €% /2e.

Proof. Firstly, let’s consider the case when a < 0. By Lemma 9, we know ¢(z) is upper bounded
by 1. Since |a + b| > €® and ¢ is logconcave, by Lemma 8, the mean of the density restricted ¢ in
[—a, b] satisfies ji[_, ) > 1/e. Then

ey [l a@)de 1 ! a(x) d
e

ol 1-— f: q(z) dz ffa q(z)dz+2 [,° q(z) do

By Lemma 11,
o0
ah) =2 [ glo)do
b

Since |a| < |b|, we have

b 9]
/ q(xz)dz > (b+a)q(b) > 2(b+ a)/ q(z) dz
—a b
So we have L2 ) )
+a €’ €’
lpa] > = > - - >
e2(b+a)+2 " el+e " 2e

Secondly, when a > 0, since b — a > ¢,

b
Wap] J, q(x dzx €. € €
| = []fb# > (a+ S
1-— fa q(z) dx €
O
Lemma 20 (Derivative of F'(0) when @’ < 0). If |a + b > € for s > 2 and a’ < 0, then
F/(O) > 633+3.5/2_

Proof. We rearrange F'(«) by combining terms with same e asin Figure 4.1, and get

b %)
Fla)=— / 2d(—2)e® di + / 2((z) - d(—2))e™” de

b’

_ A _ A /
Deﬁner(a:):{ G(=x z€l a’b}.Thenwehave

)
() — 4(=x) =€ V/,00)

Fla) = / ()6 da

By calculating the derivative of F'(«), we have

F'(a) :/ , 23r(z)e dx
oo 9 5 9 o) 5
:/ x(z? — b7 )r(z)e™™ do + b / xr(z)e* dz

—a’
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:/ 2(22 = b r(2)e™ dz + V2 F(a)

Since r(x) is nonnegative for > b’ and negative otherwise, then for any x > —a’, we have
2(z® = V2 )r(2)e®™ >0
Since F'(0) = 0, we have
00 ) b )
F'(0) :/ z(z? — b )r(x) do 2/ z(V” — 2%)§(—x) dx

—a’ —a’

By calculation,

b—pq 9
1 E h—
F'(0) Zbi/ "oz ( 'ul) — 2% | o1q(—z0o1 + p1) dx
1— fa q(z)de J-22 o1

1 /bml 2 2
> (@+ ) (b= )" = (@ + 1)) q(z) do
o3(1— f: q(x)dx) J- ' ( ! )
1 /b
> (o + ) (@ + B — & — 2pn)ql) dx
ot — [P qle)dz) S 1
1 b
> b—a2lnl [ @+ e do
o3 (1 — f: q(x)dx) —a
Choose ty € [—a, b] such that ff(; q(z) dx = j;l; q(z) dz. Since q(z) is bounded by 1 by Lemma 9,
we have .
x)dx
to+a=> f_aq; )

On the other hand, similar to the proof of Lemma 19, we have

b o0
/ Q(x) dr > 2(b + a)/b q(q;) dx > 9¢5t1

—a
So we have
b

b b
/ (z+ p)q(z) dz > / (o + a)a(x) do > (1o +a) / o(z) da

—a to —a
1 b ’
“1 ( / g(x) dx> > 2
By definition, we have
2
22q(z) dz E z
O’% < fR\[mb] ( ) < r~q 1

<
b = b = b
1— fa q(z) dx 1— fa q(z)de 1- fa q(x) dx
Applying Lemma 19, we know |u1| > €®/2e. Using these results to estimate F”(0), we get

F(0) >(1 /

a

635—&-3.5

65
d 05, - _2s+2 >
q(x)dz)™ e ¢ 5

Lemma 21. Ifa > pi, uy < 0, then we have f:—Qm zq(z)dz > || [, q(z) da.

Proof. Firstly we will show that f;ﬂl_a(x —p1)q(z) dx > 0. For z € [u1, al, we have (21 —x)? —
22 = 41 (p1 — ) > 0. Since g(x) is symmetric and uni-modal, we have q(2u1 — z) < q(z),Vz €
11, al.

/Za (x — p1)q(x) dv = /# (x — p1)g(x) dx + /a(q; — p1)q(z) dz

H1—a 2pu1—a M1
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_ / (= otz — )+ [ (o= )ate) de

- / (& — m)(g(@) — (2 — 2)) de
>0

And then, we have

(@ = m)a(e)dz =~ [ o(x) da

(— 00,201 —b]U[b—2p1,00)

/(—00»2u1—b]u[b—2u1,00)
=—2/ / q(x) dzx
b—2p1
Since p is the mean of the distribution §. We have

[ @ maerde=0
R\[a,b]

Then we know

2u1—a b—2u, [eS)
[ @ma@des [ - mae)de <o [ gw)ds
2#171) b b72y,1
Then we have
2u1—a b—2p4 0o
0z [ wem@de s [ @ pma@)de-2m [ g(o)ds
2u1—b b b—2p1
b—2p11 b—2p, b—2p, b—2p1
— [ Ce@de-m [ a@des [ sg@de - [ atoydo
a—2u1 a—2p1 b b
— 21 / q(x) dzx
b—2p1
b—2p, 'S b—2p, ')
— [ w@de-n [ a@des [ ag@)de - [ g ds
a—2p1 a—2p1 b b

This derives that

/ab zq(z) de > — /oo q(z) dx — /boo q(z) dz

—2p a—2p1

> —Ml/ q(z) dx
b

O

Lemma 22 (Second Derivative of F'(0) when a’ > 0). Ifa’ > 0, we define the following functions,
q(z) —g(—=x) =z €[0,a']U[V,00) o 2 2 2
r(x) = {—(Q()—SU) ( v e (1) JH(a) = ; z(z? —a”)(2® = V7 )r(x)e®™ da.

Then we have ) ) 5 o
F'(a) = H(a) + (/" + V) F'(a) + V" F(a).

Proof. We rearrange F'(«) by combining terms with same e asin Figure 4.1, and get

’ b’

Fla) = [ atita) = i-aes’ o - [

a

o0

si(-a)e do+ [ alifw) = d(-a)e da

’

By the definition of (), we naturally have



Then we can calculate its first and second derivative as follows.
Fa) = / x3r(x)e°‘m2 dz, F"(a)= / x‘r’r(:v)eo‘m2 dx

0 0

By the definition of H(«), we have
. 2 2 2 o 3 2 1272 * 2
H(a) = z°r(z)e®™ dx — (a'" +b'7) z°r(z)e®™ dx 4+ a'"b zr(xz)e™ dx
0 0 0
=F"(a) = (> + V) F'(a) + d*V*F(a)

O

Lemma 23 (First and Second Derivatives of F'(0) when o’ > 0). If |a + b| > €® for s > 2 and
a’ > 0, then we have either F'(0) < 7% or F"(0) > %ﬁ)r constants Cy,Cs > 0.

C1 €65«}»4,5

Proof. We prove the lemma by showing that H(0) > Tog" (170

. We calculate H(0) as follows.
H(0) = /0 h a2 — a*) (2 =V )r(z) do

> /j)/ w(2? — )V — 2%)§(—z) d

_ /b, 2(e? — a2 — o) 2AE 1) g,

a’ 1— [ q(z)dx
S @ ) (@ + )2 = (a = m)?) (0= p1)? = (2 + m)?) q(o) da
a1~ [7 q(x) dz)
(x4 ) (z+a)(z—a+2u)b+2)(b—x — 2u1)q(x) dz
o1 — [7 q(x) dx)

q(z) dz, by Lemma 21 and the bound of b, we know

b s s+1
€ /2e- ¢ €St
P /a—2u1 4@ dr 2 175 2 Fn(i/e)

b—2pu1
_Ja=2m

Denote p := f:—Zm

b . .
Choose 1 < to such that fiim q(x)dx = fttlz q(z)dz = [, q(x)da. Since g() is upper bounded
by 1 by Lemma 9, we have
t1—(a—2u1) > 5,b—t2 >

wIiD
WD

Using this, we can bound

/ 2(95 +p)(x+a)(z—a+2u1)(b+x)(b—x —2u1)q(z) dz

ty
Cl 665+4
In*(1/e)

Z\#1|2§§§§ > for some constant C; > 0

We have shown that oy < 1/4/1 — fab q(z) dz. Combining all results, we can compute H (0) as

b 6s+4 65+4.5
H(0)>4/1 —/ q(z) dx 0146 > 0164
. log™(1/6) ~ log"(1/e)

Given F'(0) = 0, by Lemma 22,

F"(0) = H(0) + (a'> + b*)F'(0)
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Since the distribution is symmetric, we know

b E |z E z2
ra@yas) E M VET

1= [lq(a)de — € T € ¢

|1 |

Soweknow 0 < a/ < b =b—2u1 < 2.5/, thus (a’* + b'*)2 < 25/(2¢2). Thus we have either

F'(0) < or F”(0) > Cae "7 for constants Cs, Cy > 0.

02665+6'5
log*(1/¢)

" TogT(1/€)

O
Lemma 24 (Upper Bound of F”s derivatives). For o < 0, the derivatives of I'(«) are bounded as

|F' ()| < Cy/é, |F" ()| < C5/€,|F" (a)| < Cg/e"  for constants Cy, Cs, Cs > 0.
Proof. Define My, = E |z|*. By Cauchy-Schwarz Inequality, M, < +/M;My = 1. By Lemma 12,
z~g

M, < (2k)*(My)F < (2k)F

Also we have proved that || < 1/e. By definition of F(«), we calculate its first derivative as
follows.

oo
P < [ gl - et

— 00

s/ (@)l — P do

— 00

< / 4@) (|2 — 3a® + 32| — 1) da

=Ms — 3y My + 3p3 My — i3
<Cy/ €3 for some constant Cy > 0

Similarly, we calculate its second and third derivatives as follows.

) < | " @)l -l do

<My — 5p My + 10p3 My — 1045 My + 5y My — i
<Cj5/€® for some constant C > 0
@< [ g@le -l de

=My — Tpy Mg + 2103 My — 3503 My + 3503 My — 213 My + TS My — 1]
<Cg/€e"  for some constant Cg > 0

Now we are ready to prove Lemma 4.
Lemma 4 (Quantitative Gap of Contrastive Mean). Suppose that |a + b| > €5. Then, for oy =

—c1682/d, g = —co€?? /d, the re-weighted mean of P, denoted as i, and ji,,, satisfies
159
max (’“Tﬂal‘ , \“Tuaz ’) > Tfor some constant C' > 0,

Volu, v e, =V o, = 0.

Proof of Lemma 4. For any 2 < k < d, for any «, by symmetry of g, the contrastive mean is

d—2
2 2 2 2
E ey, = | or'p. g oo .(]E 6am> —0

z~P T~q r~qg r~q
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. . 2
Next we will consider E e/l x1. For any x > 0, we have
z~P

(@) = 01q(zo1 + ) _ o19(=w01 + i)
1—f:q(x)dx - l—f:q(x) dx

Since P is a product distribution, we have

= i(-2)

d d—1
E eaHszxl = E Aeo‘ﬁxl . H E eamf = F(Oé) ( E eazz)

z~P x1~qG xr~q

We will consider two cases depending on whether a’ > 0. See Figure 4.1.

Firstly, if a’ < 0. We use a in this case. By Lemma 20, F'(0) > €'8/2. By Taylor expansion,
there exists ao < 19 < 0 such that

2
a
Flaz) = F(0) + a2 F'(0) + 2F" ().
By Lemma 24, we know F”' (1) < C5/€5. Since F(0) = 0, we know for ag = —co€e?/d,
o2
F(as) =azF'(0) + Z2F" (10)

<62642 (185 et O
- d 2 2d €5

661

for some constant C; > 0

C2636'5

Then we consider the case when o’ > 0. By Lemma 23, we have either F’(0) < ~Toci(/g OF

34.5 . .
F"(0) > S;fm' Here we consider three cases with respect to F’(0).

Case 1: F'(0) < —% We use s in this case. By Taylor expansion, there exists 1; such that

as < m1 < 0and
2
a
F(az) = F(0) + asF'(0) + 2 F" ()
By Lemma 24, we know |F"(n;)| < C5/€5. By choosing ap = —c2€*?/d,
o2
F(a1) =2 F'(0) + 72F”(771)
>CQ€42 < C2636'5 62642 C5>
- d

In*(1/e) 2d &
679

for some constant Cg > 0

36.5 N 77 . . .
Case 2: _l%ifﬁ < F'(0) < “5— with some constant ¢, > 0. We use ay in this case. By

Lemma 23, we know F”/(0) > C3e*®/In*(1/¢). Then there exists 1, satisfying cy < 772 < 0 and

/ a2 U a% "
Fla) = F(0) + azF'(0) + - F"(0) + Z2F" (na).

By Lemma 24, we know |F""(n2)| < Cg/€”. Thus by choosing cg = —coe?/d,

! a% i a% 1
F(Oég) :CkzF (0) =+ 7F (0) + FF (7]2)
>62642 _05677 . Co€l2 (Oyedts - 28t %
d d 2d n*(1/e)  6d% €T
C 119
> 9¢ for some constant Cq > 0

TR
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c 677

Case 3: F'(0) > . We use o in this case. Then there exists 73 satisfying a3 < 13 < 0 and
o2
F(an) = F(0) + an F'(0) + —-F" (13).
By Lemma 24, we know |F"(n3)| < Cs /€. For a; = —c1€52/d, we have
! a% 1
F(a1) =a1 F'(0) + 7}7 (n3)
1652 ( cs€’T c1e? C’5>

< 9
=7 PRV
- 0106159
< 2
Then we know for all cases, there exists a constant C’ = min(C7, Cs, Cy, C1g) such that
0/6159
a2

for some constant Cg > 0

max(|F(ea)l, |[F(az)]) >

d—1
Finally we will lower bound ( E eo‘f”2> as follows.

r~q

NG d—1 1\ 41
(IE eam> Z(E(1+ax2)) =(1+oz)d_12(1—d) >1/e
T~q T~q

Let C' = (' /e, and we will get

06159

masx([u | o) > =

C.4 Quantitative Bounds for Contrastive Covariance: Symmetric Case

Before addressing Lemma 5 which is applicable in the scenario where |a + b| < €°, we first
demonstrate that contrastive covariance works for the case where the removed band [a, b] is symmetric
around the origin. That is, a = —b. In such cases, we aim to establish that there’s a noticeable
difference between the top two eigenvalues (A; and \2) of the contrastive covariance matrix 3, stated
in Lemma 25. We will then extend the lemma to the near-symmetric scenario in Section C.5.

Lemma 25 (Quantitative Spectral Gap of Contrastive Covariance - Symmetric Case). Suppose
a+b=0. Choose ais = —c3€? for some constant c3 > 0. Then, for an absolute constant C, the top
two eigenvalues A1 > Ao of the corresponding re-weighted covariance of P satisfy

)\1 - )\2 2 C63>\1.

‘We recall the definition of moment ratio as in Definition 5.
varg, (XQ) Mo(t)M4

mry(t) = N2 2
(Eq, X?) M3(t)

For simplicity, in the remaining section, we’ll use mr(¢) as a shorthand notation for this moment
ratio. Just as in the proof of the qualitative bound in Section C.2, the difference between the first
and second eigenvalues (the spectral gap) of the re-weighted covariance matrix, denoted as A\; — Ao,
is proportional to the difference in the moment ratio of the distribution ¢ at 0 and b, denoted as
mr(0) — mr(b). To prove the quantitative result Lemma 25, our proof strategy involves several steps.

® _ 1, where My (t) = /OO z¥q(z) d.

* Proving monotonicity of Moment Ratio mr(¢). This property is stated in Lemma 3 and
its proof is presented in Section C.2. The proof involves reducing the case of general
logconcave distributions to that of exponential distributions.

* Establishing a positive spectral gap for small b. With Lemma 26, we focus on illustrating that
for values of b which are relatively small (less than a certain constant), there is a guaranteed
positive gap mr(0) — mr(b).
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* Generalizing to any b satisfying ffb q(x) dx > €in Lemma 29. The lemma will directly
imply the quantitative result lemma for the symmetric case (Lemma 25).

Having demonstrated the monotonicity of the moment ratio in Section C.2, we now begin by
illustrating the positive gap, denoted as mr(0) — mr(b), for small b in Lemma 26. The proof relies on
the properties of moments derived by the unimodality of the distribution (Lemma 27, Lemma 28).

Lemma 26 (Gap for small t). Fort > 0 such that f(f q(x) dz < 0.4, we have the following gap

fot q(x) dx.

mr(0) — mr(t) > 100

Proof. Denote fg q(z)dx = v, fot 22q(x) dv = w. Then we have
_ Mo(0)My(0) — Mo(t)Ma(t)

mr(0) — mr(t)

M3(0) M2 (t)
o[ Miy(t) (3 —v)Mu(t)
‘2/0 SR TS VA GRS VT O

(. My(t) 1
—2/0 x*q(z) dx + M2

Fix ¢(t) and v, we apply Lemma 27 and have

o= ()¢ (-3

Since ¢(x) is monotonically decreasing, for any = < ¢, g(x) > ¢(t). So we have the constraint that

v= /0 q(z)dx > tq(t)

Plug into the previous inequality and we get

(1)1 350) 2 (1) 10 120) - (1)

In addition, by fixing v and ¢, we apply Lemma 28 and get

vit?
w< —
- 3
So we know )
w V; B 202
L0 S - g 331
By calculation, we will get
2 2
1 i _1+2V29(§—u) -2(3-v) (2 -3v+27)

(3 —3v+22)°

() ()G ee))

=—v < — V) (—81/3 + 2402 — 30v + 9)

(1 + M&t))

Let T(v) = —8v3 + 2412 — 30v + 9, then we know its derivative is

T'(v) = —240° + 480 —30 = —24(v — 1) =6 < 0
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So T'(v) is monotonically decreasing. Since v < 0.4, we know
1
T(v) 2 T(0.4) > 03,5 —v > 0.1

Plugging in and we will get
1

(1 + Mf(t))
Finally by Cauchy-Schwarz Inequality, we have My (t) My (t) > M2(t).
My(t) v v

0) — mr(t) > 00y > 2 > 2
mr(0) —mr(t) 2572 00 2 S50nz0® = 100

4
g~ 1+20>5v-01-0.3> 00l

O
Lemma 27. Let t,7 > 0,0 < s < 1. Define P = {p(z) : [t,00) — [0, 1), logconcave ,p'(x) <
0, [~ p(z) dz = s,p(t) = r}. Then we have

. 002 2 S
do > st? (14 2).
gélg/t x“p(x)dx > s +rt

Proof. For any p € P, we denote M>(p) = [, x*p(x) dx. Define

U(.I') =T ]l:ne[t,t+s/r]
Clearly u € P. We will show that u(z) = argmin,.pMs(p). For any p € P, we have
[Zw@)de = [ p(x)de, u(t) = p(t) and p'(z) < 0. So we know the graph of u and p

intersects at points ¢ and ¢ + s/r, where u(z) > p(z) in the interval [¢,¢ + s/r] and u(z) < p(zx)
outside the interval. So we know

t+s/r S
/ u(z) — p(a)de = / p(x) —u(z)dz
t t+s/r
Since for any x € [t,t + s/r], any y € [t + s/7,00), we have x < y. So we have

Ma(u) — Ma(p) = t”s/r(u(x) s | f/ (p(z) — u(z))a? dz < 0
This shows that
min Ma(p) = Ma(u).
By calculating M (u), we have
ths/r s 52 53 s
;Iéi%lMg(p):Mg(u):/t mc2dx:7"(t2; +tr—2+ﬁ) > st? (1+E)

O

Lemma 28. Lett > 0,0 < s < 1. Define P = {p(x) : [0,t] — [0,1), logconcave, p'(x) <
0, fot p(x) dx = s}. Then we have

st?

¢
max/ ?p(z) de = —.
0 3

peEP

Proof. For any p € P, we denote Ms(p) = fot 2?p(x) dx. Define u(z) = £ - Ly¢jo,. Clearly,

u € P. Then for any p € P, because it is monotonically decreasing and fg p(x)dx = fot u(zx) dx,
the graphs of p and w intersect at point ! € [0, ¢]. Also p(z) > u(x) for z € [0,!] and p(x) < u(z)
for z € [1,t]. Since for any = € [0,(] and any y € [I, ], we have x < y. So we know

l t
Ma(p) — My (u) = / 2 (p() — u(z)) do — / 2 (u(z) - plx)) <0
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By calculating M (u), we have

t
M. = M = Z ==
tma Ma(p) = Mo (1) /Otx dr =511

O

Using Lemma 3 and Lemma 26, we will show the positive gap mr(0) — mr(b) for any b satisfying
ffb q(z) dz > € as in Lemma 29.

Lemma 29 (Gap for Log-concave Distribution). Ler 0 < € < 0.1, let b > 0 satisfying fob q(z)dx >
€/2. Then we have for mr(0) — mr(b) > €/200.

Proof. Let by such that fobo q(x) dr = €/2. By Lemma 26, we know

bo
qz)de e
_ bo) > 20 N s -
mr(0) = mr(bo) = T = 545

By Lemma 3, we know mr’(¢) < 0,Vt > 0. So for any b > 0 such that fobq(x) dz > €/2,
mr(b) < mr(ag). Therefore,

mr(0) — mr(b) > mr(0) — mr(by) > 200
O

Before moving on to the proof of the quantitative lemma, we will first present a helper lemma that
can be directly applied.

Lemma 30. Define

2 2 2 2
S(a):=FE e 2> E e*® — E e* 2> E e (C.3)
x~q T~q T~q T~q
For a given o = —ce® with s > 2 and a certain positive constant ¢, it can be established that

S(a) > Ce*tt, where C is a positive constant.

Proof. We show the lower bound of S(«/) using Taylor expansion.

Firstly, since ¢ and ¢ are both isotropic,

S0)=F 2> - E 22=0

xr~qG xr~q

Secondly, we will lower bound |.S”(0)| using the monotonicity of moment ratio. The variance o3 of ¢
restricted to R\[—b, b] is

o2 Jy @®p(x)dz _ My(b)
P p(e)de Mo(b)

Since ¢ is isotropic, the density on the support R\[—b/c1,b/01] is

() — o1q(zo1)
() 2 [,° q(z) dx

By calculation, we have

2 [ e“m2x201p(x01)daﬁ oo 2 [ ea””QUlp(xUl)dx 0
S(e) = fb/mzf‘” (@) d 2 [ e de - fb/gﬁf"o (@) d 2 [ ey de
yq(x)da 0 L q(z)dx 0
2 [ eV N2 (odq(y) dy [ . 2 [ eV /Tg(y)dy [ .
=—b = / e g(x) de — —— / e 22q(x) dx
f, a(x)dx 0 Jy a(x)dx 0
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=3 eV T y2q(y) dy - [77 e q(a) du — 2 [T eV 7ig(y) dy - [77 e 22q(x) dw
fboo q(z) dz

Then we can compute S’(0) as

!/ 2 1 o 4 * o 2 < 2
5'(0) T () da <0%/b Y q(y) dy /0 q(x)der/b y Q(y)dy-/o z2q(z) dw)
ooq?x) - <01%/b v2q(y) dy / z*q(z) d$+/b q(y) dy / z*q(z) dx)
b 0 0
My(b)Mo(b) My (0)Mo(0)
M3 (b) M3(0)

The last step is because the ¢ is isotropic. By Lemma 29, mr(0) — mr(b) > ¢/200. This indicates that
S’'(0) < —€/200

Next, we can upper bound S”(«) for any o < 0 as

2 1 & 2, 2 > 2
S"(a) =g —/ eV /71y5q(y dy~/ e q(x) dx
@ = p@)dz(a? b wdr [ o)

1 o0 2 2 4 o0 2 2

+— [ eV Tiytq(y) dy / e a?q(x) da
01 Jb 0
1 > ay?/o?, 2 > az? 4

——= | e/ Nyiqy)dy- | e atq(x)dx
01 Jb 0

- /b V17 () dy - / e%@q(x)dx)
0

2 ( My()Mi(0)
>~ sy (a0
> = 2 (M4(0) + Mo(0)Mg(0))

— Mo(b)
By Cauchy-Schwarz Inequality, M (0) < \/M2(0)My(0) = 1/2. By Lemma 12,
M;(0) < (2k)%(2M:(0))* /2 < (2k)% /2
Since My(b) > e, for some positive constant cge..,

c
9 () > —2<
(a) 2 -2

By Taylor expansion, we know for ag = —ce®; s > 2, ¢ = 1/(101¢se.), there exists o’ € [« 0] such
that for some constant C' > 0,
2 2 25
/ O s € C7€™" Csec s+1
= - > &
S(a) =5(0) + aS'(0) + 25(a)_0+ce 500 R > Ce

Now we are ready to prove the contrastive covariance lemma (Lemma 25).

Proof of Lemma 25. Define

2 2 2 2
S(Oé) — ]E eam m2 IE eax _ ]E eam .132 E eaz
x~q x~q T~q x~G

35



Then for2 < j <d,

2 2
E eollel’y2 - g collel ;2

z~P z~P
d—2
2 2 2 2 2
_ E eaxlx% E e*: - E eochx% E e E e™®
e1~G warg w2 w1rg z~q
E eaHIHQI%
~P
:S(Ck) Eaa:2 2 az?
E e**izy E e**2
xr1~q T2~q

Since a3 < 0, we have

2 2
]E €a3$11'% S E "L'% — 1’ ]E ea?,a:z S 1
z1~q T1~q T27~vq

By Lemma 30, a3 = c3e? implies that S(a3) > Ce3. So we have

E eaHIHQI% - F ealerQx? >0 E eal\w\|2ﬁ
x~P z~P x~P
Finally we will show that the first eigenvector corresponds to e;. For any v € R, define ¢(v) as
eoallzl®yT gz Ty
v
Then we know for 2 < 5 < d, ,
d(er) — ¢(e;) > Ce’g(er)

d
For any vector v = )., v;e;, we have

d
1 2
(b(’U) :diEBQBHxH (Z ’Yil‘i)2
> i i=1
1 d 2
:W D o viele) + 2B "y miay
i=17 \i=1 i
d
1 22 ) )
Tyl S 20(e) + 2 vy Bt Enrs Tk R eoa(me) ) e@en’y;
=17 \i=1 ij

d
2ot Vid(e:)
d
D1 i
<¢(e1)
This shows that the top eigenvalue of 3 is \; = max, ¢(v) = ¢(e1). In other word, the

top eigenvector is e;, which is essentially u. Similarly the second eigenvalue of ¥ is Ao =
MaXy:y e, P(V) = P(e;),2 < 7 < d. So we get

Al — Ao > 063)\1

C.5 Quantitative Bounds for Contrastive Covariance: Near-Symmetric Case

We have shown the result for symmetric case a + b = 0 in Section C.4. Here we will show that we can
extend the contrastive covariance lemma (Lemma 25) to the near-symmetric case, where |a + b| < €d.
In this section, we will present the proof of Lemma 5, which addresses the nearly symmetric case
quantitatively. The proof idea is to approximate the re-weighted covariance of the distribution with
margin [a, b], by comparing it to the same distribution truncated with the symmetric interval [—b, b].
This enables us to generalize the result from the symmetric scenario to the near-symmetric scenario.
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Recall that ¢ is the distribution obtained by restricting ¢ to the set R\ [a, b]. We denote 7 as the
distribution that is obtained by restricting ¢ to the set R\ [—b, b], and # as the isotropized distribution
of 7. Let 03 be the variance of 7.

To approximate the characteristics of § using those of 7, we undertake the subsequent steps.

» Assessing the mean. We illustrate that the mean of ¢ is adequately small in Lemma 31.

* Variance approximation. We approximate the variance of ¢ by using the variance of 7, as
elaborated in Lemma 32.

¢ Re-weighted second moment. We use the re-weighted second moment of 7 to approximate
the corresponding moment in §. The details are provided in Lemma 34.

* Re-weighted zeroth moment. We use the re-weighted zero moment of 7 to approximate the
corresponding moment in ¢, which is shown in Lemma 35.

Lemma 31. For an integer s > 1, if |a + b| < €511, then

(1) the mean of q,
(2) a <O.

1] < e In(1/e);

Proof. We first consider the case when a < 0. By Lemma 8, we have
b b
_ Jwra@)dr b fo alx) do _ bb+a)
1- f; q(z)dz [fa@)de+ [T q(z)de = 2

By the tail bound of logconcave distributions (Lemma 11),

|.U1\

1
o] <1+41In-
€

Then we have
(14 Inl)est?

2€

Next for a > 0, we can bound b by €5+1/2 because |b| > |a|. This implies that b — a < e5+1/2,
which leads to a contradiction that f; q(x) dx > e. Therefore, a can only be negative in this scenario.

O

1
e ] < <€’ ln(z)

Lemma 32. For |p1| < r withr < 1/6, we can bound the variance as follows.

2
g
2 < 2

< 52
1+26T_01_U2

Proof. By Lemma 31, we know a < 0. We can calculate the variance as

S ePqyde [ a%@)do+ [0 a%q(a) da
=~ ;N5 01 = s
@) de ' S a@)de + 5 [° qx) da

On one hand,

J° . 22q(x) da _ b2 [ q(x)dx _ S0 alz) dz
LS a2q(x)de — 02 [T q(x)de [ q(x) da

So we have
ffa :L’zq(a:) dx
ﬁ 71 + 2fb°° z2q(z) dz
o2 [Poa@)yde
P It s

On the other hand, since |p1| < 7, by Lemma 8,
J!, wa(w) do L), a(z)da

Tz "U'l‘ = 00 b 0o
f_a q(x)dr + 2fb q(z) dx f_a q(z)dx +2 fb q(x) dx
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So we have

I, a(x) da b
Oé _ L+ 2 [ q(z) dx < f_aq(x)dx <14 er <14 %r
U% 1 P x2q(x)dz 2fboo q(aj) dx — 1—er
+ 2 [ 22q(z) da

O

Lemma 33. The variance o3 is monotonically increasing with respect to b. Furthermore, o3 > 1.

Proof. By taking the derivative,

o O Ooxl"— OOmex
5 = ap ) @ [ P >o

So for b > 0, -
2o I 22q(x) dz _
2 fooo Q(x) dx

O
Lemma 34 (Approximation for Re-weighted Second Moment). For |a + b| < €°, by choosing
a = —ce?, then for some constant C' > 0, we have the following inequalities.
/ eV 17y2q(y) dy — C'e” < / e/ 2q(y) dy < / eV Ty2q(y)dy  (C4)
b b b

/ €a92/0§y2q(y) dy _ 0/65 < /

W) /ol 2000y dy < / eV 15y (y) dy + C'€
b - ’

(C.5)
Proof. By Lemma 31, we can bound || as
1
1] < efln= < €3
€

We begin by showing that [, ¥’ /73424 (y) dy is close to e v’ /71424(y) dy. By Lemma 32,

Since o < 0, ay?/o? < ay?/o3 for y > 0. This implies

> ay?/o?, 2 > ay?/oZ 2
e 1y q(y) dy < e 2y~q(y) dy.
b b

On the other hand,
> ay?®/oZ, 2 > ay?/o?, 2
e 2y q(y)dy — | e TiyTq(y) dy

b b
o0 2 2 o0 2 3 2

S/ eV /72y%q(y) dy —/ ey (IH2e€0/72024(y) dy
b b

:/ (1 o 626ay263/a§) eay2/a§y2q(y) dy
b

00 2 2.3
S/ 7e|a|§/ © e 1932 () dy
b 02

2¢|ale? O 2 o2
= |2| / eV /72yt q(y) dy

03 b

2¢e|aled [
S / yhaly) dy
0

03
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2e|a|e

< x8%/2

The last inequality is implied by Lemma 12. Furthermore, by Lemma 33, o3 > 1. So there exists a
constant ¢; > 0 such that

| ey —ad < [ e gy < [ e B a ©6)

This also applies for the integral from —a to co. To be specific,
o0 2 2 > 2 2 o 2 2
/ eV P q(y) dy — er® < / eV /7y q(y) dy < / eV Pq(y) dy.  (CT)

Next we will show that fboo ev’/ot y2q(y) dy and fboo ea(y*“1)2/"%y2q(y) dy are close to each other.
Since p; < 0, < 0, we derive that ay? > a(y — u1)?. This implies

o0 2 2 o0 2 2
/b eV /7Ty 2q(y) dy >/b W= /71y 2q(y) dy

On the other hand,
o0 2 2 o0 2 2

/ e /71y q(y) dy—/ e Ty 2q(y) dy
b b

< /°° (1 = e taluiomi/at) gor?/oty2q )y
b
(6%

<lawm] “1|/ V7 (y + | )yPa(y) dy

< o]
< y+\u1 yq(y) dy
1

5

<cge for some constant ¢g > 0

The last inequality is implied by Lemma 12 and Lemma 33 . Combining two inequalities, we get
> ay?®/o2, 2 5 > a(y—p)? /o2, 2 x ay?®/o2, 2
e Ny q(y)dy —cpe” < | MWy q(y)dy < [ e Ty Rq(y)dy  (C8)
b b b

Similarly, we will show the approximation inequality for f:x; e y+m)?/ Unyq(y) dy. We will

decompose the integral by the summation of the integral on [—a,61n(1/€)] and (61n(1/€), o)
respectively. For the first part of the integral,

61n(1/€) (yp1)2/o?. 2 61n(1/e) 2/62 2
/ erltm) /ory q(y)dy—/ e Ty2q(y) dy

—a

61n(1/€) apy
‘/ ozUZ/Uf (6 o%l (2ytp) _ 1) y2q(y) dy

K1/2 QK (o N 61n(1/€) QKL (9
S/ eayz/cr? (1 — e Qy+n )) y2q(y) dy +/ eayz/of (e o2 (2y+p1) o 1) yzq(y) dy

—p1/2

The first term can be bounded using e t>1—t.

—H1/2 2, 2 2L (2y+pa) ~#/2 a
/ e/ <1 —et T >y2q(y) dy S/ Ulél( 2y — p)ya(y) dy

1

HI/Q 2 2 8
é/ loo| | [“y*q(y) dy < €
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The second term can be bounded using the upper limit of the integral. For y < 61n(1/e),

LI
e o3 Qu+p) 1 < 24’ I’ (1/e) _ 1 < 40

Substituting into the second term, we get

61n(1/€) apy o0
/ /0 (e o7 Gutm) 1) y2q(y) dy < 40€° / y*q(y) dy = 20€°
—u1/2 ’

Combining both terms,

61n(1/€) (i) 0?2 61n(1/€) 202 o
/ e T T2 (y) dy — / e 1Ty q(y) dy

—a —a

< 21€° (C.9)

For the remaining part of the integral, we can bound using logconcave distribution’s upper bound as
in Lemma 13. For any ¢ > 3,

g(t) < q(0)-27"% <70
Then the following holds with some constant ¢§ > 0.
o0 [e ] 1
/ eayz/”?qu(y) dy < / yPe VP dy < (1+ 61n(7))e_61n(%) < e’ (C.10)
61n(1/€) 61n(1/€) €
Similarly, we get
/ W) /ot 200y gy < o e5 (C.11)
61n(1/€)
With Equations (C.9), (C.10), (C.11), we get

‘/ eo‘(“”l)z/”%qu(y) dy — / eo‘yz/"%y2q(y) dy’ < ¢3€” for constant c3 > 0 (C.12)
—a —a
Combining Equations (C.6), (C.7), (C.8), (C.12) , we have

o0 o0 o0
/ e 178120 (y) dy — (1 + €2)€° < / X =m)*/ 7820 () dy < / e’ 173424 (y) dy
b b b

/ eay2/ogy2q(y) dy — (Cl + 03)65 < /

oo
W)/ 7ty 20 () dy < / eV 17524(y) dy + cze
b —a b
By choosing C" = ¢;1 + ¢5 + ¢3, we prove the lemma.
O

Lemma 35 (Approximated for Re-weighted Zeroth Moment). By choosing o = —ce2, for some
constant C' > 0, we have the following inequalities.

/ 6ay2/”§q(y)dy70’e5§/ 6a(y*“1)2/"fq(y)dy§/ eV Rq(y)dy  (C.13)
b b b

/ e(’“yz/"gq(y) dy — C'é® < / eo‘(yﬂ“)z/”%q(y) dy < / eayz/”gq(y) dy + C'é® (C.14)
b —a b

The proof follows exactly from the proof of Lemma 34 by replacing y? with 1.

Now we are ready to prove Lemma 5.

Lemma 5 (Quantitative Spectral Gap of Contrastive Covariance). Suppose that |a + b| < €°. Choose
a3 = —cs€? for some constant cz > 0. Then, for an absolute constant C, the top two eigenvalues
A1 > Ao of the corresponding re-weighted covariance of P satisfy

)\1 — /\2 Z C€3>\1.
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Proof. By calculation, we have

00 2.2 2/ 2
p enatgr _ dbes @7 To2al@o)dr R e Ihyq(y) dy

Py fboo q(x) dx o3 fboo q(x) dx

(a—p1)/o 2 2 S 2 4
E ea;x?:f—oo Ve atorg(won + ) dx+f(b Ml)/ol e’ 2201 q(zoy + 1) da

z~g = q(x)dz + [, q(x) d
O ey 2q(y) dy + [T ea(y”“) /7 (y — p1)?q(y) dy
- o? (f: q(z)dz + [, q(x dm)
T el ey i )2q(y) dy + [, W)Y (y — 1) 2q(y) dy
ot (/% ale)do + [} q(x) dr)
IS ealwtr)® oty 2q(y) dy + [°° exwmm) /"1y aly) dy
o} (7 al@) dz + [} q() de)

our [ et o yq(y) dy — [ “(y’“l)z/“fyq(y) dy

o2 75 a(x)de + [ q(x) de
,U1 f_ a(y‘f‘ﬂl) /Ulq y) dy+ f ‘X(y_ﬂl) /01q<y) dy
o2 f q(x) derfb x)dx

The first term is close to E ¢” 22 while the second and third terms are close to zero. We first give

the bound on the absolut?:NV;lues of last two terms. Since o < 0,
‘/ e wtm)* /o8 ya(y) dy — /b e w=m)*/7% () dy

o o0
S/ Wi/t g (y) dy+/ W=7y (y) dy

S/myq(y)dy+/boquw)dy<1

Similarly, . .
/ e Wtm)*/o% g(4) dy +/ ew=m)*/o% g(y) dy < 1
By Lemma 32, Lemmaa34 and Lemma 35, we havz
e e Wm)*/o% 20 (y) dy + e ea(y—mf/ai"y2q(y) dy
o} (S atw) do + [;7 qlw) de)

2,7 eV 1o32q(y) dy + C'® 1 4 2ee?

- 2 [, qly)dy o3
[T e 7y q(y) dy C'éd 2ee3 2 [ eV 175120 (y) dy + C'P
o3 [, aly) dy 032 [Zqly)dy o3 2 [,% qly) dy

© _ay?/o2

1.7 ey /oay2q(y) dy .
5 oo + c1€
o3 [, aly) dy

By combining with the second and third terms, we conclude that for constants c3, cqy > 0,

for constant ¢; > 0

2 2 2
E e 22 —c3¢* < E e 2?2 < E e 22 + ¢u¢ (C.15)

T~T x~q T~T
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Similarly, we have

az? 4 az? az? 4
E e —ce < E e < E e™ +cqe (C.16)

T~T T~g T~

Then, we would like to compute the gap between first and second eigenvalues of the re-weighted
second moment of §. We denote @ as the product of ¢ and d — 1 fold of ¢q. For 2 < j < d,

d—2
2 2 2 2 2 2 2
E eaHmH I’% - E eaHxH l’? _ E eazla:% E 2 — | 604:1:21,3 E 0%t E e*®
z~Q z~Q z1~g T2~q z2~q z1~§ z~q

We define T'(«) as follows.

2 2 2 2
T(a)= E e*®iz? | e — E 232 E ™
z1~q z2~q T2~vq T1~q

Recall that S(«) is defined in Lemma 30.

2 2 2 2
Sa)= E e*az? E e*2— E %232 | %
T1~T Torvq Torvq T ~F

We calculate the difference between T'(«) and S(«) using Equation (C.15) and Equation (C.16).

S(a) = T(a)
2 2 2 2 2 2
— E e(,u“lx% - E ealle E eO%2 _ E e _ E eT1 E €a1’2(Eg
T ~T r1~§ T2~vq T1~T r1~q T2~q

§03€4 + C4€4

By Lemma 30, S(a) > C’€ for constant C’ > 0. So we know T'(a) > Ce® for C > 0. Then all
proof follows as same as the case when a + b = 0. We write out the proof for completeness.

For 2 < j <,

2 2
E eollel’y2 — g collel ;2

x~P z~P
d—2
2 2 2 2 2
—_ E eazlx% E eaIZ_ E eamQx% E eazl E eaz
T1~q Torvq To~qg x1~q x~q
E eaHIHQx%
_ x~P
_T(a) ax? .2 ax?
E e*izy E e*"2
xr1~q T2~q

Since a3 < 0, we have

2 2
E ez} < E af=1, E €™ <1

xT1~q z1~q z2~vq
Also we have shown that T'(c3) > Ce3. So we have

2 2 2
E e(’tHxH (IJ% — E 60‘”15“ .1‘? Z 063 E eO‘HJCH .’L‘%
x~P r~P x~P

Finally we will show that the first eigenvector corresponds to e;. For any v € R, define ¢(v) as

T T
ea3\|ac\|2v zz' v

Then we know for 2 < j < d,
per) — ¢(ej) > Ce’p(er)

For any vector v = Z?Zl vi€;, we have
1 2 o
$(v) == Ee* I (Y~ qizy)?
i i=1

42



vaé )+ 2E 1o N gy a2,
1 i#]

d
Z’Y(bez +2271'Y Eeag‘z’“#“ikEea3<m6>x1]E€ <$€>2xJ
i=1 i#]

This shows that the top eigenvalue of 3 is A\; = max, g(v) = g(e1). In other word, the top

eigenvector is e;. Similarly the second eigenvalue of X is Ay = max,.y e, (V) = ¢(e;),2 < j < d.
So we get
AL — A > O
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