Check for
Updates

Action-Item-Driven Summarization of Long Meeting Transcripts

Logan Golia
Rice University
USA
Isg3@rice.edu

ABSTRACT

The increased prevalence of online meetings has significantly en-
hanced the practicality of a model that can automatically generate
the summary of a given meeting. This paper introduces a novel
and effective approach to automate the generation of meeting sum-
maries. Current approaches to this problem generate general and
basic summaries, considering the meeting simply as a long dialogue.
However, our novel algorithms can generate abstractive meeting
summaries that are driven by the action items contained in the meet-
ing transcript. This is done by recursively generating summaries
and employing our action-item extraction algorithm for each sec-
tion of the meeting in parallel. All of these sectional summaries
are then combined and summarized together to create a coherent
and action-item-driven summary. In addition, this paper introduces
three novel methods for dividing up long transcripts into topic-
based sections to improve the time efficiency of our algorithm, as
well as to resolve the issue of large language models (LLMs) forget-
ting long-term dependencies. Our pipeline achieved a BERTScore
of 64.98 across the AMI corpus, which is an approximately 4.98%
increase from the current state-of-the-art result produced by a
fine-tuned BART (Bidirectional and Auto-Regressive Transformers)
model.!

CCS CONCEPTS

« Information systems — Summarization; - Computing method-
ologies — Natural language processing; Natural language gen-
eration; Information extraction.

KEYWORDS

neural networks, text summarization, topic segmentation, action
item extraction

ACM Reference Format:

Logan Golia and Jugal Kalita. 2023. Action-Item-Driven Summarization of
Long Meeting Transcripts. In 2023 7th International Conference on Natural
Language Processing and Information Retrieval (NLPIR 2023), December 15-17,
2023, Seoul, Republic of Korea. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3639233.3639253

!https://github.com/logangolia/meeting-summarization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NLPIR 2023, December 15-17, 2023, Seoul, Republic of Korea

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0922-7/23/12...$15.00
https://doi.org/10.1145/3639233.3639253

91

Jugal Kalita
University of Colorado, Colorado Springs
USA
jkalita@uccs.edu

1 INTRODUCTION

As a result of the COVID-19 pandemic, many professional meetings
and conversations have been conducted online; this also means
that the transcripts of these meeting have become readily avail-
able. Minutes are accepted official records of what transpired in a
meeting, and so designated personnel usually conduct the tedious
process of generating meeting minutes. However, with the help of
large language models (LLMs), we can automate this process and
still generate factual and informative summaries.

There are two main approaches to text summarization: extractive
and abstractive. Extractive summarization techniques locate the
most important phrases and sentences from the input transcript and
concatenate them to form a concise summary. However, the sum-
maries generated by these techniques are usually awkward to read
because of the forceful concatenation of unrelated sentences [11].
Abstractive summarization techniques focus more on understand-
ing the overall meaning of a transcript and then generating a concise
summary based on the entire text. Unlike extractive summarization,
abstractive summarization generates new words and phrases that
were not found in the input transcript, rather than simply extract-
ing the important phrases [18]. Abstractive summarization is more
challenging, but as expected, it leads to better summaries [9]. As a
result, meeting summarization has begun to head in this direction,
and this study utilizes abstractive summarization techniques as
well.

Current approaches to automating the creation of meeting min-
utes treat summarizing a meeting the same way they would summa-
rize a dialogue [7]. However, we argue that meeting summarization
is fundamentally different from dialogue summarization. Unlike a
dialogue, useful meeting minutes have additional features that are
often not included in the automated summary of the meeting: action
items, main topics, tension levels, decisions made, etc. In this study,
we focus on incorporating action items into the machine-generated
summaries.

LLMs today still struggle to capture long-term dependencies in
texts, and as a result, they are not very good at generating sum-
maries for long transcripts [4]. The time and space complexities of
these transformer-based models increase quadratically with respect
to the input size [23], and new LLMs still have strict input token
limits [26]. Most solutions to these problems employ linear segmen-
tation, where the long texts are broken up into equal subsections
based on token numbers, but the problem with this approach is that
we inevitably interrupt ideas in the text. We build upon previous
work in topic segmentation to divide the text into topical chunks
before summarizing.

In summary, current solutions to the problem of automatically
generating meeting minutes given the transcript of the meeting
produce general and vague summaries. In addition, there is a lack of
effective topic segmentation methods for meeting summarization.

https://doi.org/10.1145/3639233.3639253
https://doi.org/10.1145/3639233.3639253
https://github.com/logangolia/meeting-summarization
https://doi.org/10.1145/3639233.3639253
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639233.3639253&domain=pdf&date_stamp=2024-03-05

NLPIR 2023, December 15-17, 2023, Seoul, Republic of Korea

This study outlines a novel method of utilizing topic segmenta-
tion and recursive summarization to generate action-item-driven
abstractive summaries of long meeting transcripts.

Our main contributions are threefold:

1) We develop three novel topic segmentation algorithms, in
which the best outperforms the summarization performance pro-
vided by linear segmentation by 1.36% in terms of the BERTScore
metric;

2) We develop our own effective action-item extraction algo-
rithm;

3) Our novel parallel and recursive meeting summarization al-
gorithm properly generates action-item-driven summaries and im-
proves upon the performance of current state-of-the-art models by
approximately 4.98% in terms of the BERTScore metric.

2 RELATED WORK

In this section, we discuss previous methods employed in meeting
summarization and provide motivation for our novel techniques.

2.1 Recursive Summarization

One way in which meeting summarization differs from dialogue
summarization is that meeting transcripts are generally long, and
as explained earlier, transformer-based models struggle with larger
input sizes. As a result, it has been proven effective to divide long
documents into multiple parts, summarize each component, and
then combine the summaries back together in a recursive approach.
The recursive algorithm described in this paper is inspired by the
method proposed by Wu et al. [24], which was used to summarize
long books. The methods proposed by Shinde et al. [20] and Yam-
aguchi et al. [25] are not truly recursive because after they combine
the sectional summaries back together, the final summary is never
fed back into the summarization model. Instead, they perform ar-
gument mining on the resulting chunk of the combined summaries.
We propose a truly recursive approach and achieve state-of-the-art
results with this technique.

2.2 BART Model for Meeting Summarization

While there do exist more powerful dialogue summarization models
such as DialogLM [29] and Summ®" [28], we use the BART (Bidi-
rectional and Auto-Regressive Transformers) model [12] due to
its speed and high performance in long document summarization
tasks [11]. In addition, there has been previous research in assessing
different topic segmentation methods on the BART model, so this
allows us to evaluate our techniques.

2.3 AMI Dataset

The AMI dataset is a large meeting corpus consisting of 137 scenario-
driven meetings and their corresponding summaries [15]. Even
though the scenarios are artificial, the way in which the actors
choose how to interact with each other is spontaneous. The realistic
meeting conversations combined with the fact that there are 137
different long meeting transcripts makes the AMI corpus an ideal
dataset on which to test our techniques on.

92

2.4 Current Segmentation Techniques

There are several techniques to divide meeting transcripts into
multiple parts, but none have actually been able to improve sum-
marization results when compared to the simplest technique, linear
segmentation. Linear segmentation is the process of dividing the
meeting transcript into parts solely based on token number, includ-
ing a preset number of tokens in each chunk. The state-of-the-art
results on summarizing the AMI corpus using the BART model
are achieved through this technique by Shinde et al. [20]. Shinde
et al. [20] attempted to use two additional topic segmentation tech-
niques, Depth-Scoring [21] and TextTiling [10], but neither were
able to improve upon the results obtained by linear segmentation.
Yamaguchi et al. [25] also introduces a novel technique for topic
segmentation using a Longformer+LSTM model to predict whether
a sentence is the start of a new topic, in the middle of a topic, or
outside of a particular topic. However, their summarization results
were significantly lower than those achieved by Shinde et al. [20].
We propose three novel segmentation techniques that outperform
linear segmentation.

2.5 Evaluation Metrics

ROUGE’s F1 scores are the most popular metrics in evaluating
machine-generated summaries [13]. However, ROUGE scores have
many flaws since they focus solely on the lexical overlap between
the machine-generated summaries and the human reference sum-
maries rather than their semantic similarity [5]. As a result, BERTScore,
which measures the semantic similarity between the machine-
generated summaries and the reference summaries has been grow-
ing in popularity [18]. We employ the BERTScore metric as well,
since it has been shown to achieve higher correlations with hu-
man judgment on the quality of a machine-generated summary
compared to ROUGE [27].

3 APPROACH

In this section, we dive deeper into our recursive algorithm for
generating action-item-driven meeting summaries. We also explore
the lower-level techniques that were necessary to improve state-of-
the-art results and provide motivation for these design decisions
along the way.

3.1 Divide-and-conquer

As described in our "Introduction” and "Related Works" sections, the
first step to summarizing long meeting transcripts is to break them
up, so we can summarize each chunk. We propose three simple but
effective topic segmentation techniques that were able to generate
more truthful and concise summaries when compared to linear
segmentation.

3.1.1 Chunked Linear Segmentation. When we ran our model us-
ing linear segmentation (splitting the text based on a preset token
number across all chunks), we noticed that points were often mis-
understood and repeated because we were creating separate chunks
in the middle of a speaker’s formulation of one idea; let us call each
speaker’s contiguous dialogue a "turn" Thus, we first employed a
simple technique inspired by linear segmentation where we maxi-
mize the number of tokens in each chunk, adding turns until we

Action-Item-Driven Summarization of Long Meeting Transcripts

reach a preset token number, whilst ensuring that no speaker’s turn
is interrupted.

3.1.2 Simple Cosine Segmentation. The second technique we cre-
ated is based upon chunked linear segmentation, but also upon
the cosine similarity of the MPNet embeddings, a state-of-the-art
sentence embedding model [22], for each turn. For each turn, we
compute its MPNet embedding and calculate its cosine similarity
with the MPNet embedding of the previous turn. If the cosine simi-
larity of the embeddings is greater than 0, we simply add this turn to
the current chunk. If the cosine similarity of the embeddings is less
than or equal to 0, we define the current turn to be the beginning
of a new topic and start a new chunk.

We choose a similarity threshold of 0 to signify the start of a
new topic after experimenting with different values and manually
inspecting the quality of the resulting summaries, as well as eval-
uating the resulting summaries with the ROUGE and BERTScore
metrics. This value of 0 also makes sense in theory because it means
that the two consecutive turns are more semantically dissimilar
than they are similar. This leads to better results because we do
not want to split the transcript into too many topics, and instead
favor large topics; we generally want to keep as much text intact
as possible, so the summarization model has enough context to
generate a quality summary. This is also why topic segmentation
for summarization is very different from typical topic segmentation
because we do not want to create chunks at every little topic change.
In fact, when we increased our similarity threshold from 0 to just
0.2, our BERTScores and ROUGE-L scores both decreased by > 1%
which is very significant for summarization tasks.

It is also important to note that when splitting based on some
cosine similarity threshold, there is a risk that no new chunks
will be created for over 1024 consecutive tokens, which is the max
input token limit for the BART model [17]. Therefore, as we move
through the turns and add them to the existing chunk, we check
to ensure that adding the current turn will not make the current
chunk greater than 1024 tokens. If this does happen, we create a
new chunk/topic beginning with this turn, regardless of this turn’s
cosine similarity with the previous turn.

3.1.3 Complex Cosine Segmentation. We noticed a recurring prob-
lem when inspecting the topic chunks that were being created by
the previous method. Sometimes a person would utter something
meaningless, and that would compose their entire turn (e.g. "Bob:
Ummm"). As a result, this turn would often have a very low cosine
similarity with the previous turn, and a new topic/chunk would be
created. The simplest solution to this problem would be to remove
all redundant and meaningless utterances in the pre-processing
stage. The problem with this approach is that even if we somehow
managed to hard code the regular expressions in order to remove
all of the "meaningless" turns, there are still lots of cases where
a speaker will say something completely unrelated to the current
topic (e.g. "Bob: Let us go grab ice cream after this"), but then they
will resume talking about the original topic. In this case, we would
not want to create a new topic. In order to achieve this, we take
the same approach used in "simple cosine segmentation”, except
we recalculate the MPNet embedding of the entire current chunk
before comparing its cosine similarity to the MPNet embedding
of the following turn. This mitigates the effect of "meaningless”

93

NLPIR 2023, December 15-17, 2023, Seoul, Republic of Korea

turns, particularly consecutive "meaningless” turns, since they will
have less impact on the MPNet embedding of the chunk we are
comparing the next turn to. Please refer to Algorithm 1 for further
details.

3.2 Generating the General Sectional
Suammries

Once we have divided the original text into chunks, the next step
is to generate a general abstractive summary for each chunk. Our
approach to solve this problem involves fine-tuning Meta’s BART
model [12], a pre-trained large language model, on dialogue datasets
to generate general summaries of a meeting. We elect to use a BART
model since its bidirectional encoder and auto-regressive decoder
have been shown to better understand the full semantics of a text
and generate coherent summaries [12]. Specifically, we used a BART
model fine-tuned on the XSUM [16] and SAMSUM [8] datasets to
generate the general summaries for each chunk. These are widely
used dialogue datasets for training dialogue summarization models
[6]. They are also the same datasets on which Shinde et al. [20]
fine-tuned their model, so we can better compare our results.

In addition, we noticed that since each general sectional sum-
mary is independent of one another, they can be generated in par-
allel. To the best of our knowledge, we are the first to incorporate
parallelism in the divide-and-conquer summarization algorithm as
seen in Algorithm 3.

3.3 Action-Item Extraction

Another very important component of any good meeting summary
is what each participant has accomplished and what they need
to accomplish before the next meeting; so for each chunk of text,
we need to extract the action items. Although recording action
items is an important part of many meeting summaries, the issue
has been ignored in prior work. This problem was first introduced
by Cohen et al. [2], but little progress has been made since. To
solve this, we use a public dataset? from a GitHub repository that
contains 2750 dialogue statements as well as corresponding labels
for whether a statement contains action items or not. We then fine-
tune a BertForSequenceClassification? model (a BERT model [3]
with a linear layer on top for classification) on this dataset to classify
the action items in the original meeting transcript. This training
method proved effective with a classification accuracy of 95.4%
on the test dataset. However, this process alone is not enough to
extract the key action items from a text. This method alone identifies
which sentences contain action items, but it does not extract the
underlying ideas. For example, a sentence identified as an action
item can be "you need to do that before the next meeting" This is
indeed an action item, but it doesn’t actually contain any useful
information; there are too many pronouns and not enough context.
In the next sections, we discuss existing methods to solve this
problem, explain their limitations, and present our own technique.

3.3.1 Coreference Resolution. We first employed widely used state-
of-the-art methods and models for coreference resolution to convert

Zhttps://github.com/kiransarv/actionitemdetection/blob/master/dataset
Shttps://huggingface.co/docs/transformers/v4.31.0/en/model_doc/bert#transformers.
BertForSequenceClassification

https://github.com/kiransarv/actionitemdetection/blob/master/dataset
https://huggingface.co/docs/transformers/v4.31.0/en/model_doc/bert#transformers.BertForSequenceClassification
https://huggingface.co/docs/transformers/v4.31.0/en/model_doc/bert#transformers.BertForSequenceClassification

NLPIR 2023, December 15-17, 2023, Seoul, Republic of Korea

Algorithm 1 Complex Cosine Segmentation(string text, int similarityThreshold, int maxTokens)

1: turns < text split by speaker

2: model « sentence embedding model

3: tokenizer <« tokenizer used by summarization model

4: processedChunks « list with the first sentence from turns
s: for i in range(1, len(turns)) do

6: curChunkEmbedding < model.encode(processedChunks[—1])

nextSpeakerEmbedding < model.encode(turns[i])

7
8: similarity « cosineSimilarity(curChunkEmbedding, nextSpeaker Embedding)
9

newChunk « processedChunks[—1] + turns|[i]

> Iterate through the turns

> Compute similarity

10: newNumTokens < tokenLen(tokenizer(newChunk))

11: if similarity > similarityThreshold and newNumTokens < maxTokens then

12: processedChunks[—1] < newChunk > Add turn to the current chunk
13: else

14: append turns[i] to processedChunks > Start a new chunk
15: end if

16: end for

17: return processedChunks

> A list of topic-based chunks of text

the sentences that were classified as action items into more context-
rich statements. We employed libraries such as Stanford CoreNLP
[1] and NeuralCoref* (an extension of the spaCy library), but were
not satisfied by the results. Not only were the pronouns not always
resolved for larger text inputs, but we realized that coreference res-
olution alone was not enough. Even if the pronouns were resolved,
this was often not enough context to completely understand the
sentence containing the action item. For example, the sentence "you
need to do that before the next meeting" may be converted to "Jake
needs to fix the website before the next meeting” after coreference
resolution. This is better, but it is still not enough information for
Jake to read this sentence in the meeting minutes and understand
what needs to be done.

3.3.2 Context Resolution. In this paper, we develop a technique to
solve this lack-of-context problem which we call "neighborhood
summarization." Once we find a sentence that has been identified as
an action item, we find its "neighborhood." We define a sentence’s
neighborhood as the three sentences before the sentence, the sen-
tence itself, and the two sentences after the sentence. We use all six
of these sentences as inputs into the same BART summarization
model that we used to generate the sectional summaries, and we are
left with a rephrased version of the sentence containing the action
item. We believe the reason this technique works so well is because
the reference summaries in the dialogue datasets that our BART
model is fine-tuned on are naturally action-item driven, to some
extent. To use the same example, this neighborhood summarization
technique can convert a sentence that has been identified as an
action item, "you need to do that before the next meeting’", into a
context-rich rephrasing, "Jake needs to fix the menu button on the
website because our users are complaining that it does not work
half the time."

We choose three sentences before and two sentences after for
our neighborhood after experimenting with different values and
inspecting the quality of the resulting summaries ourselves. Any
smaller of a neighborhood, and we found that there was not enough

4https://github.com/huggingface/neuralcoref

94

context in the resulting summary. Any larger of a neighborhood,
and the summary often did not revolve around the action item
and instead addressed other parts of the input text that were not
relevant for this particular action-item extraction task. It makes
sense that we would need more sentences before the action item
than after it since most pronoun references and necessary context
would be provided before a sentence that depends on it. However,
since this is a dialogue summarization task, and there are many
anomalies when people speak, sentences after the action item are
still necessary to include in the neighborhood in the event that
additional pronoun references or context comes after. Note that
there are edge cases, for example when an action item is located at
the very beginning or end of a chunk, so please see Algorithm 2
for more details.

We append the action items with context from a given chunk
to the end of the general summary for this same chunk. This way,
we keep the summaries and action items that are derived from the
same pieces of text together. Then we pass this entire text (summary
+ action items) into the same BART summarizer. We found that
this technique helps condense the summary as well as improve the
coherence of the resulting summary for each chunk.

3.4 Combining Summaries and the Recursive
Case

Now that we have generated summaries for each chunk, containing
information regarding both the general summary and the action
items, we will generate an abstractive summary again based on all of
the sectional summaries combined together in a recursive approach.
If we append the sectional summaries together, and the number
of tokens in this entire chunk of text is less than 1024, we pass
this entire chunk of summaries into the same BART summarizer
again; in essence, we are summarizing the summaries. However, if
this entire chunk of summaries contains more than 1024 tokens,
then we fall into the recursive case where we pass this entire chunk
of summaries back into the entire function as if it is a meeting
transcript. We explored other techniques to fluidly combine the

https://github.com/huggingface/neuralcoref

Action-Item-Driven Summarization of Long Meeting Transcripts

NLPIR 2023, December 15-17, 2023, Seoul, Republic of Korea

Algorithm 2 Action-Item Extraction(string text)

1: model « action item classifier

2: tokenizer < BERT tokenizer

3. actions < empty string

4: sentences « text split by sentence

5. for index, sentence in enumerate(sentences) do

6: inputs « tokenizer(sentence)

7: predictedClass « model(inputs)

8: if predictedClass = 1 then

9: neighborhood «— empty string

10: startIndex < max(0, index — 3)

11 endIndex «— min(len(sentences), index + 3)
12: for neighborldx in range(startIndex, endIndex) do
13: neighborhood += sentences|neighborldx|
14: end for

15: actions += generalSum(neighborhood)

16: end if

17: end for

8: return actions

=

> Iterate through the sentences

> Class 1 indicates sentence is an action item

> Summarize the neighborhood

> A string containing the context-rich action items found in text

summaries together, but we found that using the BART summarizer
achieved the best results. For example, we attempted to use an
existing RoOBERTa model [14] that was fine-tuned on a sentence
fusion dataset known as DiscoFuse [19]. However, this technique
did not prove effective because the resulting summaries were often
very long and contained repetitions. We tried solving this prob-
lem by tuning the BART summarizer model to generate shorter
sectional summaries, so the resulting chunk of all the summaries
appended together would be shorter, but the sentence fusion mod-
els still did not prove effective in generating grammatically correct
and coherent final summaries. This is a very challenging task if
approached from a sentence fusion perspective, howerver, we ap-
proached this problem as simply another summarization task; the
fine-tuned BART summarizer proved very effective at this task by
removing repetitions between the sectional summaries and gener-
ating very informative, coherent, and concise summaries as seen in
our results table.

4 RESULTS AND ANALYSIS

We first generated meeting summaries without including our action-
item extraction technique in order to evaluate our three topic seg-
mentation techniques and recursive algorithm. We evaluate within
our own techniques as well as compare to the current state-of-the-
art on the AMI dataset using the BART summarizer [20]. Then we
compare our summaries with and without action items and show
that our action-item-driven summaries contain additional valuable
information.

4.1 Topic Segmentation Performance

We evaluate our topic segmentation methods by keeping our recur-
sive algorithm constant and only varying the topic segmentation
method. We see in Table 1 that all three of our novel topic segmen-
tation methods outperformed linear segmentation with respect to
both the BERTScore and ROUGE metrics. Most notably, with respect
to the BERTScore metric, our methods, simple cosine segmentation,

95

complex cosine segmentation, and chunked linear segmentation,
outperform linear segmentation by 0.50% 1.07% and 1.36%, respec-
tively for the generated summaries without action items. For the
summaries with action items, the improvements over linear seg-
mentation with respect to the BERTScore metric, were 0.38% 1.11%
and 1.22%, respectively.

The complex cosine segmentation technique outperformed the
simple cosine segmentation technique by 0.57% and 0.73% in terms
of the BERTScore metric for the summaries without and with ac-
tion items, respectively. This was expected because the former was
less sensitive to "meaningless" turns as explained in the "Complex
Cosine Segmentation" subsection. However, chunked linear seg-
mentation, which does not rely on sentence embeddings and cosine
similarity, outperformed all.

4.2 Recursive Algorithm Performance

We also compare the results of our recursive algorithm to the
method proposed by Shinde et al. [20]. When we both use linear
segmentation and the same fine-tuned BART models, but different
"recursive" algorithms, our action-item-driven model outperforms
the model presented by Shinde et al. [20] by approximately 4.98% in
terms of the BERTScore metric. With regard to our general summa-
rization model (without action items), this model still outperformed
that presented by Shinde et al. [20] by approximately 4.77%. This
means that, regardless of whether or not we include action items,
the summaries our model generates are more similar to those of the
human reference summaries in terms of their semantic meanings.

The model by Shinde et al. [20] does outperform our model in
terms of the ROUGE scores, which measure lexical overlap, but this
is expected since we use a truly recursive algorithm that results
in the input text and the corresponding sectional summaries be-
ing passed into the BART summarizer more times. This would, of
course, decrease the lexical overlap between our machine-generated
summaries and the human reference summaries. However, it seems

NLPIR 2023, December 15-17, 2023, Seoul, Republic of Korea

Algorithm 3 Action-Item-Driven Summary(string text, bool first, int maxTokens)

WO NN NN DN DN DN DN DN e e e e e e e e e
I N A R R T A A AT LT~ > ool =4

R A A

: tokenizer « tokenizer used by summarization model
. if first = True then

chunks « topicalChunksBySpeaker(text)
else

chunks « topicalChunksBySentence(text)
end if

: chunkSums « array with size of len(chunks)
: for all index € range(0,len(chunks)) do

part « chunks[index]

genSum «— generalSum(part)

if first = True then
actions < actionltemExtraction(chunk)
combined < genSum + actions
combinedNumTokens « tokenLen(tokenizer(genSum + actions))
if combinedNumTokens > maxTokens then

combined « truncateText(combined)

end if
chunkSum « generalSum(combined)
chunkSums|index] « chunkSum

else
chunkSums|index] < genSum

end if

. end for

: concatSums « concatenate(chunkSums)

: summaryNumTokens < tokenLen(tokenizer(concatSums))
. if summaryNumTokens > maxTokens then

return actionltemDrivenSummary(concatSums, False, maxTokens)

: else

return generalSum(concatSums)

: end if

> Split text into topic-based chunks

> Summarize each chunk in parallel

> Extract action items

> Theoretically possible but never true in our testing

> Concatenate summaries after parallel loop completes

> Recursive call

> The action-item-driven summary of text

Topic Segmentation | Metric — BERTScore R-1 R-2 R-L
General Summaries (Without Action Items)

Linear Segmentation (Baseline Technique) 63.41 38.14 8.61 19.46
Chunked Linear Segmentation 64.77 38.93 9.27 19.63
Simple Cosine Segmentation 63.91 3849 8.61 19.46
Complex Cosine Segmentation 64.48 38.92 9.24 1947
Action-Item-Driven Summaries

Linear Segmentation (Baseline Technique) 63.76 35.11 8.04 18.99
Chunked Linear Segmentation 64.98 36.27 831 19.62
Simple Cosine Segmentation 64.14 3530 812 19.24
Complex Cosine Segmentation 64.87 36.21 8.32 19.61
Shinde et al., (2022) 60 45.2 13.3 -

Table 1: BERTScore and ROUGE evaluation scores for our machine-generated summaries across 4 different topic segmentation
methods on the AMI corpus. This is done separately for both the general summaries (without action items) and the action-
item-driven summaries. We also include the scores achieved by the current state-of-the-art model [20].

that our summaries better match the semantic meaning of the hu-
man reference summaries, which was shown to be more important
for human judgement by Zhang et al. [27].

96

4.3 Action-Item-Driven Summary Performance

As seen in Table 1, our action-item-driven summaries achieve
slightly higher BERTScores than our general summaries (without

Action-Item-Driven Summarization of Long Meeting Transcripts

NLPIR 2023, December 15-17, 2023, Seoul, Republic of Korea

General Summary (Without Action Items)

Action-Item-Driven Summary

Marketing Expert, Product Manager, and Industrial Designer are hav-
ing a conceptual design meeting after lunch. They talk about the most
important aspect for remote controls as people want a fancy look and
feel. They discuss batteries, the design of the LCD display on the LCD
screen, how to distinguish where people have to press the button when
they have a flip-top, and how to incorporate voice recognition into the
remote control. They agree on keeping the control buttons standard-
ized and checking the financial feasibility. They decide to start with the
black and white one and go for a whistle if financially voice recognition
is not feasible. The product will have a logo on it just like everything
else in a year’s time if they get feedback from design fairs. Product
manager will go through the end of the end meeting. Marketing Expert
shares some information about a remote control that fits into the palm
of the hand, made of plastic, with a rubberised cover, and the design is
based on the input from the previous meeting.

Marketing Expert, Product Manager, and Industrial Designer are hav-
ing a conceptual design meeting after lunch. They talk about properties,
materials, user-interface and trend-watching. Marketing Expert says
the fashion update which relates to very personal preferences among
their subject group. There’s no rechargeable option for the remote con-
trol, so they’re going to look into battery options. Industrial Designer
and Marketing Expert are talking about the size of the batteries they
need to take into consideration. Marketing Expert thinks using the
standard batteries and the solar charging will detract from the attrac-
tiveness of the whole feature. Marketing Expert thinks the buttons on
the remote should have lights behind the buttons. Marketing Expert
wants to make the basic mold out of plastic but have a rubber cover.
Marketing experts are going to market to guys as much as to women.
Marketing Expert shares with Industrial Designer some information
about the design of the LCD display on the LCD screen. Industrial
Designer and Marketing Expert are discussing how to incorporate
voice recognition into the remote control. Industrial Designer tells
Product Manager they need to get double A or triple A batteries. Sarah
and Marketing Expert are talking about the design of a remote control
with a rubberised cover. Industrial Designer tells Marketing Expert
they can go for a whistle if voice recognition is not feasible. Product
Manager will wrap up the end-of-meeting message.

Table 2: Comparison between machine-generated General (Without Action Items) and Action-Item-Driven Summaries when
both methods employ chunked linear segmentation. The additions in the action-item-driven summary are underlined. AMI

Meeting ID: ES2004c

action items), but we consider this difference negligible (0.21% in-
crease in BERTScore when both use chunked linear segmentation).
However, we suspect that the reason for this small difference is
that the human reference summaries in the AMI dataset appear to
be more action-item-driven that those in the XSUM and SAMSUM
datasets which we used to fine-tune our BART model.

The ROUGE scores for our action-item-driven summaries were
notably lower than those achieved by our general summaries. For ex-
ample, when both techniques employ chunked linear segmentation,
the ROUGE-1 scores for our general summaries were 1.66% higher
than those for our action-item-driven summaries. This makes sense
since, in the action-item-driven summaries, we are deliberately
adding words and phrases (action items) that are not included in
the human reference summaries; thus, our precision score decreases.
However, the slight increase in our BERTScores suggests that we
are still capturing the semantic meaning of the reference summaries
well.

Table 2 shows example outputs from our general model and our
action-item-driven model when both algorithms employ chunked
linear segmentation. We underline the additions in the action-item-
driven summary and show that our action-item-driven model prop-
erly includes relevant action items from the meeting. Consider the
following sentence from the action driven summary: "There’s no
rechargeable option for the remote control, so they’re going to
look into battery options." This action item is not included in either
the general summary or the human reference summary, but it is a
relevant and informative action item that adds value to the meeting
summary. We also see that this action item is coherent and rich

97

with context. This example and the other sentences underlined in
Table 2 serve as evidence that our action-item extraction technique
utilizing neighborhood summarization is quite effective.

5 FUTURE RESEARCH

In this study, we focused on generating action-item-driven sum-
maries, but there are additional components of a good meeting
summary. As noted in our "Introduction” section, decisions made,
main topics, tension levels, etc. would also be very informative
aspects of a meeting summary. While incorporating these elements
into a meeting summary may lower our automated evaluation
scores, this does not necessarily mean that the resulting meeting
summary would be less useful for human readers. We hope to ex-
plore current approaches and develop new algorithms to extract
these ideas from a meeting transcript and then incorporate them
into a meeting summary.

While all three of our novel topic segmentation techniques out-
performed linear segmentation, our best performance came from
chunked linear segmentation, which did not involve calculating any
embeddings or cosine similarities. However, the fact that chunked
linear segmentation outperformed linear segmentation suggests
that we can generate better summaries by minimizing the num-
ber of interrupted ideas in the meeting transcript. Thus, we hope
to develop a more advanced topic segmentation method that will
lead to better generated summaries and outperform chunked linear
segmentation.

Finally, action-item extraction has not been explored in depth and
has both a lack of techniques as well as metrics for evaluating these

NLPIR 2023, December 15-17, 2023, Seoul, Republic of Korea

techniques. Thus, we hope to dive deeper into this issue and produce
more advanced techniques for accomplishing the two above goals.
Nevertheless, our neighborhood summarization algorithm proved
very effective in action-item extraction, and we hope to test its
performance on other tasks involving context resolution as well
(e.g. extracting decisions made from a meeting).

6 CONCLUSION

This study explores a novel method for automatically generating
meeting summaries by treating this problem as a fundamentally
different one from that of generating dialogue summaries. Action
items drive this recursively-generated, abstractive summary of the
meeting that achieves approximately 4.98% higher BERTScores
across the AMI corpus than the previous state-of-the-art using the
BART summarizer. We introduce novel topic segmentation and
action-item extraction algorithms that all improve and add value to
the resulting summaries. The recursive approach presented in this
paper for generating summaries for different parts and aspects of
the meeting transcript can be expanded upon to improve meeting
summarization, as well as be generalized and applied to summariz-
ing other genres of text in the future.

REFERENCES

[1] Kevin Clark and Christopher D. Manning. 2016. Improving Coreference Reso-
lution by Learning Entity-Level Distributed Representations. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, Berlin, Germany,
643-653. https://doi.org/10.18653/v1/P16-1061

Amir Cohen, Amir Kantor, Sagi Hilleli, and Eyal Kolman. 2021. Automatic
Rephrasing of Transcripts-based Action Items. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021. Association for Computational
Linguistics, Online, 2862-2873. https://doi.org/10.18653/v1/2021 .findings-acl.253
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
Zican Dong, Tianyi Tang, Lunyi Li, and Wayne Xin Zhao. 2023. A Survey
on Long Text Modeling with Transformers. http://arxiv.org/abs/2302.14502
arXiv:2302.14502 [cs].

Alexander R. Fabbri, Wojciech Kryscinski, Bryan McCann, Caiming Xiong,
Richard Socher, and Dragomir Radev. 2021. SummEval: Re-evaluating Summa-
rization Evaluation. Transactions of the Association for Computational Linguistics
9 (April 2021), 391-409. https://doi.org/10.1162/tacl_a_00373

Xiachong Feng, Xiaocheng Feng, and Bing Qin. 2022. A Survey on Dialogue
Summarization: Recent Advances and New Frontiers. http://arxiv.org/abs/2107.
03175 arXiv:2107.03175 [cs].

Mohammed Farooq Abdulla FM, Pawankumar S, Guruprasath M, and Jayaprakash
J. 2022. Automation of Minutes of Meeting (MoM) using Natural Language
Processing (NLP). In 2022 International Conference on Communication, Computing
and Internet of Things (IC3I0T). 1-6. https://doi.org/10.1109/IC310T53935.2022.
9767933

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. 2019.
SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summa-
rization. In Proceedings of the 2nd Workshop on New Frontiers in Summarization.
70-79. https://doi.org/10.18653/v1/D19-5409 arXiv:1911.12237 [cs].

Som Gupta and S. K Gupta. 2019. Abstractive summarization: An overview of
the state of the art. Expert Systems with Applications 121 (May 2019), 49-65.
https://doi.org/10.1016/j.eswa.2018.12.011

Marti A Hearst. 1997. TextTiling: Segmenting Text into Multi-paragraph Subtopic
Passages. Computational Linguistics 23, 1 (1997).

Huan Yee Koh, Jiaxin Ju, Ming Liu, and Shirui Pan. 2023. An Empirical Survey on
Long Document Summarization: Datasets, Models, and Metrics. Comput. Surveys
55, 8 (Aug. 2023), 1-35. https://doi.org/10.1145/3545176

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational
Linguistics, Online, 7871-7880. https://doi.org/10.18653/v1/2020.acl-main.703
Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
(2004).

(2]

(3]
(4]

(5]

(6]

(71

(13

98

[14

[15]

[16

=
=

(18

[19

[20

[21

[22

[23

[24]

[25]

™
S

[27

[28

[29

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. http://arxiv.org/abs/1907.11692
arXiv:1907.11692 [cs].

Tain Mccowan, J Carletta, Wessel Kraaij, Simone Ashby, S Bourban, M Flynn,
M Guillemot, Thomas Hain, J Kadlec, V Karaiskos, M Kronenthal, Guillaume
Lathoud, Mike Lincoln, Agnes Lisowska Masson, Wilfried Post, Dennis Reidsma,
and P Wellner. 2005. The AMI meeting corpus. Int’l. Conf. on Methods and
Techniques in Behavioral Research (01 2005).

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018. Don’t Give Me the
Details, Just the Summary! Topic-Aware Convolutional Neural Networks for
Extreme Summarization. http://arxiv.org/abs/1808.08745 arXiv:1808.08745 [cs].
Ishmael Obonyo, Silvia Casola, and Horacio Saggion. 2022. Exploring the limits of
a base BART for multi-document summarization in the medical domain. (2022).

Virgile Rennard, Guokan Shang, Julie Hunter, and Michalis Vazirgiannis. 2023.
Abstractive Meeting Summarization: A Survey. http://arxiv.org/abs/2208.04163
arXiv:2208.04163 [cs].

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn. 2020. Leveraging Pre-
trained Checkpoints for Sequence Generation Tasks. Transactions of the Associ-
ation for Computational Linguistics 8 (Dec. 2020), 264-280. https://doi.org/10.
1162/tacl_a_00313 arXiv:1907.12461 [cs].

Kartik Shinde, Tirthankar Ghosal, Muskaan Singh, and Ondr ~ej Bojar. 2022.
Automatic Minuting: A Pipeline Method for Generating Minutes from Multi-
Party Meeting Transcripts. (2022).

Alessandro Solbiati, Kevin Heffernan, Georgios Damaskinos, Shivani Pod-
dar, Shubham Modi, and Jacques Cali. 2021. Unsupervised Topic Segmenta-
tion of Meetings with BERT Embeddings. http://arxiv.org/abs/2106.12978
arXiv:2106.12978 [cs].

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. MPNet: Masked
and Permuted Pre-training for Language Understanding. http://arxiv.org/abs/
2004.09297 arXiv:2004.09297 [cs].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. http://arxiv.org/abs/1706.03762 arXiv:1706.03762 [cs].

Jeff Wu, Long Ouyang, Daniel M. Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike,
and Paul Christiano. 2021. Recursively Summarizing Books with Human Feed-
back. http://arxiv.org/abs/2109.10862

Atsuki Yamaguchi, Gaku Morio, Hiroaki Ozaki, Ken-ichi Yokote, and Kenji Naga-
matsu. 2021. Team Hitachi @ AutoMin 2021: Reference-free Automatic Minuting
Pipeline with Argument Structure Construction over Topic-based Summarization.
http://arxiv.org/abs/2112.02741

Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and Wei Cheng. 2023. Ex-
ploring the Limits of ChatGPT for Query or Aspect-based Text Summarization.
http://arxiv.org/abs/2302.08081 arXiv:2302.08081 [cs].

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.
2020. BERTScore: Evaluating Text Generation with BERT. http://arxiv.org/abs/
1904.09675 arXiv:1904.09675 [cs].

Yusen Zhang, Ansong Ni, Ziming Mao, Chen Henry Wu, Chenguang Zhu, Budha-
ditya Deb, Ahmed H. Awadallah, Dragomir Radev, and Rui Zhang. 2022. Summ"N:
A Multi-Stage Summarization Framework for Long Input Dialogues and Docu-
ments. http://arxiv.org/abs/2110.10150 arXiv:2110.10150 [cs].

Ming Zhong, Yang Liu, Yichong Xu, Chenguang Zhu, and Michael Zeng. 2022. Di-
alogLM: Pre-trained Model for Long Dialogue Understanding and Summarization.
http://arxiv.org/abs/2109.02492

https://doi.org/10.18653/v1/P16-1061
https://doi.org/10.18653/v1/2021.findings-acl.253
http://arxiv.org/abs/2302.14502
https://doi.org/10.1162/tacl_a_00373
http://arxiv.org/abs/2107.03175
http://arxiv.org/abs/2107.03175
https://doi.org/10.1109/IC3IOT53935.2022.9767933
https://doi.org/10.1109/IC3IOT53935.2022.9767933
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.1016/j.eswa.2018.12.011
https://doi.org/10.1145/3545176
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1808.08745
http://arxiv.org/abs/2208.04163
https://doi.org/10.1162/tacl_a_00313
https://doi.org/10.1162/tacl_a_00313
http://arxiv.org/abs/2106.12978
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2109.10862
http://arxiv.org/abs/2112.02741
http://arxiv.org/abs/2302.08081
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/2110.10150
http://arxiv.org/abs/2109.02492

	Abstract
	1 Introduction
	2 Related Work
	2.1 Recursive Summarization
	2.2 BART Model for Meeting Summarization
	2.3 AMI Dataset
	2.4 Current Segmentation Techniques
	2.5 Evaluation Metrics

	3 Approach
	3.1 Divide-and-conquer
	3.2 Generating the General Sectional Suammries
	3.3 Action-Item Extraction
	3.4 Combining Summaries and the Recursive Case

	4 Results and Analysis
	4.1 Topic Segmentation Performance
	4.2 Recursive Algorithm Performance
	4.3 Action-Item-Driven Summary Performance

	5 Future Research
	6 Conclusion
	References

