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Introduction 
Lithospheric diamonds and sublithospheric diamonds both contain evidence for the recycling of surficial 
components that have equilibrated at low temperatures in ocean floor hydrothermal systems. The known 
way to inject these materials into diamond-forming regions of the mantle is the oceanic lithosphere or “slab” 
subduction of plate tectonics. Both diamond types have thus formed by variants of slab subduction that may 
have differed in depth and style over geologic time. 
 
Sublithospheric diamonds 
In the current plate tectonic regime, thermal modeling, petrology, and seismology (Shirey et al. 2021) show 
that cold slabs avoid the devolatilization occurring with normal arc and wedge subduction and carry some 
of their volatiles into the deep upper mantle, mantle transition zone, and uppermost lower mantle. Crust 
near the slab surface devolatilizes by melting at these depths when it intersects its carbonated solidus 
(Shirey, et al. 2024; Thomson, et al. 2016; Walter, et al. 2022). Mantle that is deeper and colder towards 
the slab interior will devolatilize later because it has to heat up to melt or re-crystallize ‘dryer’ mineral 
assemblages (Shirey, et al. 2024; Shirey, et al. 2021; Walter, et al. 2022). Fluids in cracks and faults will 
become diamond-forming as they react with enclosing mantle rocks (Shirey, et al. 2021). Diamonds formed 
in this way will record deformation produced by mantle convection, trap mantle minerals reacting with 
diamond-forming fluids, and can become lodged beneath mantle keels by diapiric uprise (e.g. Timmerman, 
et al. 2023). Sublithospheric diamonds are the prime natural samples we have from modern deep mantle 
geodynamics.  
 
Comparison of lithospheric vs sublithospheric diamonds 
Lithospheric diamonds, stored in static ancient continental keels, lack the connection to the type of deep 
geodynamic regime that is evident from sublithospheric diamonds. A comparison between the two diamond 
types can lead to a geologic model for lithospheric diamond formation in the ancient past. Lithospheric 
diamonds are different from sublithospheric diamonds in critical ways: 1) much higher average N content 
including heavy d15N (Stachel, et al. 2022), 2) older ages extending into the Paleoarchean (Smit et al. 2022), 
3) inclusion assemblages indicating formation at lower pressure, 4) lack of certain internal deformation 
features, and 5)  having sulfide inclusions some with MIF S isotopic compositions (Farquhar, et al. 2002). 
 
Nitrogen in the slab 
Nitrogen content is critical to relating lithospheric diamonds to a lithospheric diamond subduction model. 
Nitrogen occurs in clays and sediments at the slab surface or uppermost crust (Bebout, et al. 2016). For 
sublithospheric diamonds derived from supercritical aqueous fluids/melts or carbonatitic liquids, their low 
nitrogen content occurs because they crystallized from low nitrogen fluids produced once nitrogen has been 
largely devolatilized (Bebout, et al. 2016; Li and Keppler 2014), from rocks deeper in the slab where 
nitrogen is scarce (e.g. Mikhail and Howell 2016), or from equilibration with a phase that has a high affinity 
for nitrogen (Rustioni, et al. 2024; Smith and Kopylova 2014). For lithospheric diamonds, the converse is 
true —their high nitrogen content is evidence that diamond-forming fluids are much richer in nitrogen. This 
basic fact leads to a clear constraint on Archean subduction and continental craton assembly.  
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Lithospheric diamonds —the most important continental growth indicator? 
To produce lithospheric diamonds with higher N content, their fluids would have to have been derived from  
the surface of warmer slabs, since this is where nitrogen resides. Such devolatilization from slab surfaces 
and of warmer slabs occurs shallower than 300 km and releases fluids into the mantle wedge when one 
exists. At these depths, under normal island arc or continental arc settings, the mantle wedge is too oxidizing 
to promote diamond crystallization. Furthermore, any magmas formed will be basalts unable to transport 
diamonds without dissolving them. To explain the high nitrogen content of most lithospheric diamonds, we 
propose a setting where subduction occurs against the dipping edge of a subcontinental mantle keel and that 
this condition is a requirement so that they can crystallize from nitrogen-rich fluids. This setting allows for 
mantle-wedge-free transfer of diamond-forming fluids from the subducting plate to the hanging wall of the 
reducing and nascent subcontinental mantle keel. Such settings have been proposed for the formation of 
Mesoarchean diamonds in the Kimberley Block of the Kaapvaal Craton (Shirey, et al. 2013) and the 
Phanerozoic fibrous diamonds of the Slave Craton (Weiss, et al. 2015) among others. The existence and 
location of high nitrogen, lithospheric diamonds thus become indicators of slab subduction directly against 
the continental mantle keel. As such, they are better fossils of Archean and Proterozoic mantle geodynamics 
than detrital zircons or TTGs which must be viewed through the lens of crustal differentiation.  
 
Implications for temporal changes in subduction and blueschist preservation 
A gradual temporal change from shallow, keel-adjacent, mantle-wedge-poor subduction that produced 
lithospheric diamonds starting in the Mesoarchean (e.g. Shirey and Richardson 2011) to cold and deep 
subduction that produced sublithospheric diamonds in the Paleozoic (Timmerman, et al. 2023) has recently 
been proposed to have started in the in the late Paleoproterozoic (e.g. Zhang, et al. 2024).  This temporal 
change is consistent with many geologic features that have been proposed for the Archean: an early stagnant 
lid and a buoyant Archean oceanic lithosphere (Foley 2018); shallow formation of the subcontinental 
lithospheric mantle (Stachel, et al. 1998); advective thickening of the cratonic keel (Jordan 1988; Pearson, 
et al. 2021); slab-imbrication accompanying lithospheric thickening (Timmerman, et al. 2022); the diamond 
endowment of portions of mantle keels; and the anomalously diamond-rich nature of ancient eclogites 
(Taylor, et al. 2000).  
 
More importantly, keel-adjacent, mantle-wedge-absent subduction that is part of the advective lithosphere 
thickening process would likely not preserve blueshists in the geologic record. The absence of blueschists 
greater than 1 Ga has been extensively promoted as the key indicator that subduction started late in Earth 
history (e.g. Stern 2018). Yet, the youth age of blueschists and paucity of > 1Ga blueschist occurrences 
could be explained by preservation bias.  Low T– high P terrains of the type that host blueschists are found 
today only at young, non-cratonic continent edges where the lithosphere is thin (Brown and Johnson 2019). 
The eclogite found in continental mantle keels, while likely minor (Schulze 1989) is wide-spread and 
generally thought to be ancient incorporated oceanic slab crust (Jacob 2004). But some of the eclogite could 
be the ancient blueschist from keel-adjacent, mantle-wedge-absent subduction that was incorporated during 
advective thickening of the lithosphere. Proterozoic to Archean cratonic lithosphere has been thickened 
substantially to >200 km in a time frame that roughly follows the ages (Brown & Johnson 2019) of crustal 
metamorphic terranes. Lithospheric diamonds then, are our best indicator that modern-style plate tectonics 
started on Earth at least in the Mesoarchean.   
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