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ABSTRACT

A random m X n matrix S is an oblivious subspace embedding (OSE)
with parameters € > 0, § € (0,1/3) andd < m < n, if for any
d-dimensional subspace W C R”,

P (Vxew (1+6) x|l < ISxll < (1+e)llx]l) = 1-6.

It is known that the embedding dimension of an OSE must satisfy
m > d, and for any 6 > 0, a Gaussian embedding matrix with
m > (1+ 6)d is an OSE with € = Og(1). However, such optimal
embedding dimension is not known for other embeddings. Of partic-
ular interest are sparse OSEs, having s < m non-zeros per column
(Clarkson and Woodruff, STOC 2013), with applications to problems
such as least squares regression and low-rank approximation.

We show that, given any 6§ > 0, an m X n random matrix S
with m > (1 + 0)d consisting of randomly sparsified +1/+/s entries
and having s = O(log*(d)) non-zeros per column, is an oblivious
subspace embedding with € = Oy(1). Our result addresses the main
open question posed by Nelson and Nguyen (FOCS 2013), who
conjectured that sparse OSEs can achieve m = O(d) embedding
dimension, and it improves on m = O(dlog(d)) shown by Cohen
(SODA 2016). We use this to construct the first oblivious subspace
embedding with O(d) embedding dimension that can be applied
faster than current matrix multiplication time, and to obtain an
optimal single-pass algorithm for least squares regression.

We further extend our results to Leverage Score Sparsification
(LESS), which is a recently introduced non-oblivious embedding
technique. We use LESS to construct the first subspace embedding
with low distortion € = 0(1) and optimal embedding dimension m =
O(d/€?) that can be applied in current matrix multiplication time,
addressing a question posed by Cherapanamjeri, Silwal, Woodruff
and Zhou (SODA 2023).
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1 INTRODUCTION

Since their first introduction by Sarlds [35], subspace embeddings
have been used as a key dimensionality reduction technique in
designing fast approximate randomized algorithms for numerical
linear algebra problems, including least squares regression, [, re-
gression, low-rank approximation, and approximating leverage
scores, among others [9-11, 21, 29, 33, 38]; we refer to the surveys
[19, 22, 24, 28, 30, 39] for an overview. The subspace embedding
property can be viewed as an extension of the classical Johnson-
Lindenstrauss (JL) lemma [26], which provides a transformation
that reduces the dimensionality of a finite set of n-dimensional vec-
tors while preserving their pairwise distances (i.e., an embedding).
Here, instead of a finite set, we consider a d-dimensional subspace
of R, where d < n. One way to define such a transformation is
via an m X n random matrix S, where m < n is the embedding
dimension. Remarkably, when the embedding dimension m and the
distribution of S are chosen correctly, then matrix S can provide an
embedding for any d-dimensional subspace W with high probabil-
ity. Such a distribution of S is oblivious to the choice of the subspace.
Since any d-dimensional subspace of R" can be represented as the
range of an n X d matrix U with orthonormal columns, we arrive
at the following definition.

Definition 1.1. A random m X n matrix S is an (e, §)-subspace
embedding (SE) for an n X d matrix U with orthonormal columns,
where € > 0,5 € (0,1/3) andd < m < n, if

P (Y, cpa (1+6) Uxll < SUx]| < (1+€)|x]|) = 1-8.

If S is an (e, 8)-SE for all such U, then it is an (e, 8, d)-oblivious
subspace embedding (OSE).

The embedding dimension of any OSE must satisfy m > d, so
ideally we would like an embedding with m as close to d as possible,
while making sure that the distortion € is not too large. For many
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applications, a constant distortion, i.e., € = O(1), is sufficient, while
for some, one aims for low-distortion embeddings with e <« 1.

One of the most classical families of OSE distributions are Gauss-
ian matrices S with i.i.d. entries s; j ~ N(0,1/m). Thanks to clas-
sical results on the spectral distribution of Gaussian matrices [34]
combined with their rotational invariance, there is a sharp character-
ization of the distortion factor € for Gaussian subspace embeddings,
which implies that the embedding dimension can be arbitrarily
close to d, i.e., m = (1 + 0)d for any constant € > 0, while ensuring
the OSE property with € = O(1) and § = exp(—Q(d)), where the
big-O notation hides the dependence on 6. These guarantees have
been partly extended, although only with a sub-optimal constant
0 = O(1), to a broader class of random matrices that satisfy the
Johnson-Lindenstrauss property, including dense subgaussian em-
beddings such as matrices with i.i.d. random sign entries scaled by
1/4/m.

Dense Gaussian and subgaussian embeddings are too expen-
sive for many applications, due to the high cost of dense matrix
multiplication. One of the ways of addressing this, as proposed
by Clarkson and Woodruff [11], is to use very sparse random sign
matrices, where the sparsity is distributed uniformly so that there
are s < m non-zero entries per column of S (we refer to s as the
column-sparsity of S). Remarkably, choosing column-sparsity s = 1
(which is the minimum necessary sparsity for any OSE [29]) is
already sufficient to obtain a constant distortion OSE, but only if
we increase the embedding dimension to m = O(d?). On the other
hand, Nelson and Nguyen [31], along with follow up works [3],
showed that if we allow s = polylog(d), then we can get an OSE
with m = d polylog(d). This was later improved by Cohen [12] to
m = O(dlog(d)) with column-sparsity s = O(log(d)). Neverthe-
less, the embedding dimension of sparse OSEs remains sub-optimal,
not just by a constant, but by an O(log(d)) factor, due to a funda-
mental limitation of the matrix Chernoff analysis employed by [12].
Thus, we arrive at the central question of this work:

What is the optimal embedding dimension for sparse oblivious
subspace embeddings?

This question is essentially the main open question posed by
Nelson and Nguyen [31, Conjecture 14]: They conjectured that a
sparse random sign matrix with s = O(log(d)) non-zeros per col-
umn achieves a constant distortion OSE with embedding dimension
m = O(d), i.e., within a constant factor of the optimum. We go one
step further and ask whether a sparse OSE can recover the optimal
embedding dimension, i.e., m = (1 + 0)d for any 6 > 0, achieved
by Gaussian embeddings. Note that this version of the question is
open for any sparsity s and any distortion €, even including dense
random sign matrices (i.e., s = m).

1.1 Main results

In our main result, we show that embedding matrices with column-
sparsity s polylogarithmic in d can recover the optimal Gaussian
embedding dimension m = (1 + 0)d, while achieving constant
distortion €. The below result applies to several standard sparse
embedding constructions, including a construction considered by
Nelson and Nguyen (among others), where, we split each column
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of S into s sub-columns and sample a single non-zero entry in each
sub-column, assigning a random +1/+/s to each of those entries.

THEOREM 1.2 (SPARSE OSEs; INFORMAL THEOREM 3.3). Given
any constant 8 > 0, an m X n sparse embedding matrix S with
n>m> (1+8)d ands = O(log*(d)) non-zeros per column is an
oblivious subspace embedding with distortion € = O(1). Moreover,
given any e, 8, it suffices to use s = O(log*(d/5)/€®) to get an (e, 5)-
OSE withm = O((d +log 1/8)/€?%).

The embedding dimension of m = O(d/e?) exactly matches a
known lower bound of m = Q(d/€?), given by Nelson and Nguyen
[32]. To our knowledge, this result is the first to achieve the op-
timal embedding dimension for a sparse OSE with any sparsity
s = o(m), or indeed, for any OSE that can be applied faster than
dense d X d matrix multiplication, including recent efforts [7, 8]
(see Theorem 1.4 for our fast OSE algorithm).

A known lower bound on the level of sparsity achievable by
any oblivious subspace embedding is a single non-zero entry per
column (s = 1) of the embedding matrix S [29]. However, this
limit can be circumvented by non-oblivious sparse embeddings, i.e.,
when we have additional information about the orthonormal matrix
U € R"™ that represents the subspace. Of particular significance
is the distribution of the squared row norms of U (also known
as leverage scores), which encode the relative importance of the
rows of U in constructing a good embedding. Knowing accurate
approximations of the leverage scores lies at the core of many
subspace embedding techniques, including approximate leverage
score sampling [21, 23] and the Subsampled Randomized Hadamard
Transform [1, 37]. These approaches rely on the fact that simply
sub-sampling m = O(dlogd) rows of U proportionally to their
(approximate) leverage scores is a constant distortion subspace
embedding. This corresponds to the m X n embedding matrix S
having one non-zero entry per row (a.k.a. a sub-sampling matrix),
which is much sparser than any OSE since n > m. However, the
sub-sampling embeddings are bound to the sub-optimal O(d log d)
embedding dimension m, and it is not known when we can achieve
the optimal m = (1 + 6)d or even m = O(d). We address this in the
following result, showing that a non-oblivious sparse embedding
knowing leverage score estimates requires only polylogarithmic
in d row-sparsity (non-zeros per row). To do this, we construct
embedding matrices with a non-uniform sparsity pattern that favors
high-leverage rows, inspired by recently proposed Leverage Score
Sparsified embeddings [16-18].

THEOREM 1.3 (SPARSER NON-0BLIVIOUS SE; INFORMAL THEOREM
4.3). Consider a > 1 and any matrix U € R™4 such that UTU =
I. Given a-approximations of all squared row norms of U, we can
construct a (1+0)d x n subspace embedding for U having O(a log* d)
non-zeros per row and € O(1). Moreover, for any €,5, we can
construct an (e, 8)-SE for U with O(a log(d)/e*) non-zeros per row
and embedding dimension m = O((d + log 1/5)/€?).

Even though the above result focuses on non-oblivious em-
beddings, one of its key implications is a new guarantee for a
classical family of oblivious embeddings known as Fast Johnson-
Lindenstrauss Transforms (FJLT), introduced by Ailon and Chazelle
[1]. An FJLT is defined as S = ®HD, where ® is an m X n uniformly
sparsified embedding matrix, H is an n X n orthogonal matrix with
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Ref. “ Oblivious l Dimension m l Runtime

[7] o(d - pli(d)) - | O(nnz(A) + d?*)
[7] - O(dlog(d)/e?) - | O(nnz(A) +d® pli(d))
[8] - O(d) O(nnz(A) +d*Y)
[8] - O(dlog(d)/e?) - | O(nnz(A) +d®)
Thm. 1.4 o(d) O(nnz(A) +d*)
Thm. 1.6 - O(d/e?) O(nnz(A) +d®)

Table 1: Comparison of our results to recent prior works
towards obtaining fast subspace embeddings with optimal
embedding dimension. For clarity of presentation, we assume
that the distortion satisfies € = Q(d~¢) for a small constant
¢ > 0, and we use pll(d) to denote poly(loglogd). We use a
checkmark / to indicate which embeddings are oblivious,
and which of them achieve optimal dependence of dimension
m relative to the distortion e.

fast matrix-vector products (e.g., a Fourier or Walsh-Hadamard
matrix), and D is a diagonal matrix with random +1 entries. This
embedding is effectively a two-step procedure: first, we use HD to
randomly rotate the subspace defined by U, obtaining U = HDU
which has nearly-uniform leverage scores [37]; then we apply a
uniformly sparsified embedding ® to U, knowing that the uniform
distribution is a good approximation for the leverage scores of U.
Theorem 1.3 implies that an FJLT with O(log*(d)/e*) non-zeros
per row is an (¢, §,d)-OSE with the optimal embedding dimen-
sion m = O((d +log 1/5)/€?) (see Theorem 4.4 for details). To our
knowledge, this is the first optimal dimension OSE result for FJLT
matrices.

Yet, the application to FJLTs does not leverage the full potential
of Theorem 1.3, which is particularly useful for efficiently con-
structing optimal subspace embeddings when only coarse leverage
score estimates are available, which has arisen in recent works
on fast subspace embeddings [7, 8]. In the following section, we
use it to construct a new fast low-distortion SE (i.e., ¢ < 1) with
optimal embedding dimension, addressing a question posed by
Cherapanamjeri, Silwal, Woodruff and Zhou [8] (see Theorem 1.6
for details).

1.2 Fast subspace embeddings

Next, we illustrate how our main results can be used to construct
fast subspace embeddings with optimal embedding dimension. In
most applications, OSEs are used to perform dimensionality reduc-
tion on an n X d matrix A by constructing the smaller m X d matrix
SA. The subspace embedding condition ensures that ||SAx|| = ||Ax||
for all x € R? up to a multiplicative factor 1+¢, which has numerous
applications, including fast linear regression (see Section 1.3). The
key computational bottleneck here is the cost of computing SA. We
aim for input sparsity time, i.e., O(nnz(A)), where nnz(A) is the
number of non-zeros in A, possibly with an additional small poly-
nomial dependence on d. Our results for computing a fast subspace
embedding SA with optimal embedding dimension are summarized
in Table 1, alongside recent prior works.

In the following result, we build on Theorem 1.2 to provide
an input sparsity time algorithm for constructing a fast oblivious
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subspace embedding with constant distortion € = O(1), and optimal
embedding dimension m = O(d). This is the first optimal OSE
construction that is faster than current matrix multiplication time
o(d?®).

THEOREM 1.4 (FAST OBLIVIOUS SUBSPACE EMBEDDING). Given
d < nand anyy > 0, there is a distribution over m X n matrices S
where m = O(d), such that for any A € R"™?, with probability at
least 0.9:

1
SllAxil < lIsAx|| < 2lax]| - vxe RY,

and SA can be computed in O(y~! nnz(A) + d**Y polylog(d)) time.
Moreover, fory = Q(1), we can generate such a random matrix S
using only polylog(nd) many uniform random bits.

Remark 1.5. The problem of constructing an OSE using polylog(nd)
many random bits was also brought up by Nelson and Nguyen, who
obtained this with m = d polylog(d). To achieve it with m = O(d),
we introduce a new sparse construction, likely of independent
interest, where the non-zeros are distributed along the diagonals
instead of the columns of S.

The runtime of our method matches the best known non-oblivious
SE with m = O(d), recently obtained by [8], while at the same
time being much simpler to implement: their construction requires
solving a semidefinite program to achieve the optimal dimension,
while we simply combine several sparse matrix multiplication steps.
Moreover, thanks to its obliviousness, our embedding can be easily
adapted to streaming settings. For example, consider numerical lin-
ear algebra in the turnstile model [10], where we wish to maintain a
sketch of A while receiving a sequence of updates A; j « A; j+8. Us-
ing the construction from Theorem 1.4, we can maintain a constant-
distortion subspace embedding of A in the turnstile model with
optimal space of O(d? log(nd)) bits, while reducing the update time
exponentially, from O(d) (for a dense OSE matrix) to polylog(d)
time.

In the next result, we build on Theorem 1.3 to provide the first
subspace embedding with low distortion € = 0(1) and optimal
embedding dimension m = O(d/e?) that can be applied in cur-
rent matrix multiplication time. This addresses the question posed
by Cherapanamjeri, Silwal, Woodruff and Zhou [8], who gave a
current matrix multiplication time algorithm for a low-distortion
subspace embedding, but with a sub-optimal embedding dimension
m = O(dlog(d)/€?). We are able to improve upon this embedding
dimension by replacing leverage score sampling (used by [8]) with
our leverage score sparsified embedding construction, developed
as part of the proof of Theorem 1.3.

THEOREM 1.6 (FAST LOW-DISTORTION SUBSPACE EMBEDDING).
Given A € R™4 gnd e > 0, we can compute an m X d matrix
SA such that m = O(d/€?), and with probability at least 0.9:

(1+e) Y Ax| < |ISAx|| < (1+e)[|Ax]|  Vx € RY,
in time O(y~! nnz(A) + d + poly(1/€)d**Y polylog(d)) for any
O0<y<l

1.3 Applications to linear regression

Our fast subspace embeddings can be used to accelerate numerous
approximation algorithms in randomized numerical linear algebra,
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including for linear regression, low-rank approximation, rank com-
putation and more. Here, we illustrate this with the application to
linear regression tasks. In the following result, we use Theorem 1.4
to provide the first single pass algorithm for a relative error least
squares approximation with optimal both time and space complex-
ity.

THEOREM 1.7 (FAST LEAST SQUARES). Given an n X d matrix A
and an n X 1 vector b, specified with O(log nd)-bit numbers, consider
the task of finding x such that:

[|AX = b|l2 < (1+ €) min ||Ax — b]|2.
X

The following statements are true for this task:

(1) For e = ©(1), we can find X with a single pass over A and b in
O(nnz(A) +d®) time, using O(d? log(nd)) bits of space.

(2) For arbitrary € > 0, we can compute ¥ in O(y ! nnz(A) +
d® +d?*Y [€) time, using O(d? log(nd)) bits of space, for any
O<y<l1l

For part (1) of the claim, we note that the obtained space com-
plexity matches the lower bound Q(d? log(nd)) of Clarkson and
Woodruff [10]. Moreover, it is clear that solving a least squares
problem with any worst-case relative error guarantee requires at
least reading the entire matrix A and solving a d X d linear system,
which implies that the O(nnz(A) + d) time is also optimal. For
part (2) of the claim, we note that a similar time complexity for a
1 + € (non-single-pass) least squares approximation was shown by
[8], except they had an additional O(e™'d? polylog(d) log(1/€)).
We avoid that extra term, thereby obtaining the correct O(1/¢)
dependence on the relative error, by employing a carefully tuned
preconditioned mini-batch stochastic gradient descent with approx-
imate leverage score sampling. This approach is of independent
interest, as it is very different from that of [8], who computed
a sketch-and-solve estimate by running preconditioned gradient
descent on the sketch.

Finally, we point out that our fast low-distortion subspace em-
beddings (Theorem 1.6) can be used to construct reductions for
a wider class of constrained/regularized least squares problems,
which includes Lasso regression among others [3]. The following
result provides the first O(d/e?) x d such reduction for € = o(1) in
current matrix multiplication time.

THEOREM 1.8 (FAST REDUCTION FOR CONSTRAINED/REGULARIZED
LEAST SQUARES). Given A € R™d b e R" and e > 0, consider an
n X d linear regression task T (A, b, €) of finding X such that:

f(x) < (1+e¢) migf(x), where  f(x) = ||Ax — b||§ +g(x),

for some g : R — Rsg and a set C C R%. We can reduce this task
to solving an O(d/€%) x d instance T(A, b, 0.1€) in O(y~! nnz(A) +
d® + poly(1/€)d**Y polylog(d)) time.

1.4 Overview of techniques

One of the key ingredients in our analysis involves establishing
the universality of a class of random matrices, building on the
techniques of Brailovskaya and Van Handel [4], by characterizing
when the spectrum of a sum of independent random matrices is
close to that of a Gaussian random matrix whose entries have the
same mean and covariance. We adapt these techniques to a class of
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nearly-square random matrices that arise from applying an m X n
sparse random matrix S to an n X d isometric embedding matrix
U, showing high probability bounds for the Hausdorff distance
between the spectrum of SU and the spectrum of a corresponding
Gaussian random matrix.

A key limitation of the results of [4] is that they require full
independence between the random matrices in a sum (which cor-
respond to sub-matrices of the matrix S), unlike, for instance, the
analysis of Nelson and Nguyen [31] which uses a moment method
that only requires O(log(d))-wise independence. We address this
with the independent diagonals construction: we propose a distribu-
tion over m X n sparse random matrices S where the non-zeros are
densely packed into a small number of diagonals (see Figure 1) so
that, while the diagonals are fully independent, the entries within
a single diagonal only need to be 2-wise independent. As a conse-
quence, the resulting construction requires only n/m - polylog(n)
uniform random bits to generate, and we further improve that to
polylog(n) by combining it with the Nelson-Nguyen embedding.

Standard sparse embedding matrices are not very effective at
producing low-distortion subspace embeddings, i.e., with € = 0(1),
because their density (non-zeros per column) has to grow with 1/e,
so that their complexity is no longer input sparsity time. Prior work
has dealt with this problem by using a constant distortion subspace
embedding as a preconditioner for computing the leverage score
estimates Iy, ..., I, of the input matrix A [7], and then constructing
a subspace embedding in a non-oblivious way out of a sub-sample
of m = O(dlogd/e?) rows of A. This leverage score sampling
scheme is effectively equivalent to using an extremely sparse em-
bedding matrix S which has a single non-zero entry S; 1, ~ +1/VI;
in each row, with its index I; sampled according to the leverage
score distribution (}1/Z, ..., I,/Z), where Z = }}; l;. Unfortunately
due to the well-known coupon collector problem, such a sparse em-
bedding matrix cannot achieve the optimal embedding dimension
m = O(d/e?). We circumvent this issue by making the embedding
matrix S slightly denser, with a poly(1/¢€) polylog(d) non-zeros per
row, where ¢ is the approximation factor in the leverage score dis-
tribution (i.e., leverage score sparsification, see Figure 2). Unlike the
oblivious sparse embedding, here it is the row-density (instead of
column-density) that grows with 1/€, which means that the overall
algorithm can still run in input sparsity time. We note that our
algorithms use @ = O(d") approximation factor for the leverage
scores, where 0 < y < 1 is a parameter that can be chosen arbitrar-
ily. This parameter reflects a trade-off in the runtime complexity,
between the O(y~!(nnz(A) + d?)) cost of estimating the leverage
scores, and the density of the leverage score sparsified embedding.

To construct a least squares approximation with € = 0(1) (Theo-
rem 1.7 part 2), we use our constant distortion subspace embedding
to compute a preconditioner for matrix A. That preconditioner is
then used first to approximate the leverage scores, as well as to
compute a constant factor least squares approximation, and then
to improve the convergence rate of a gradient descent-type algo-
rithm. However, unlike prior works [7, 8, 40], which either use a
full gradient or a stochastic gradient based on a single row-sample,
we observe that the computationally optimal strategy is to use a
stochastic gradient based on a mini-batch of O(ad) rows, where
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a is the leverage score approximation factor. With the right se-
quence of decaying step sizes, this strategy leads to the optimal
balance between the cost of computing the gradient estimate and
the cost of preconditioning it, while retaining fast per-iteration
convergence rate, leading to the O(ad?/e) overall complexity of
stochastic gradient descent.

In what follows, we provide sketches for our main results about
embedding guarantees for oblivious and non-oblivious embeddings.
We direct the reader to the full version for the full proofs and
applications.

1.5 Related work

Our results follow a long line of work on matrix sketching tech-
niques, which have emerged as part of the broader area of ran-
domized linear algebra; see [19, 22, 24, 28, 30, 39] for comprehen-
sive overviews of the topic. These methods have proven pivotal in
speeding up fundamental linear algebra tasks such as least squares
regression [11, 33, 35], lp regression [6, 15, 29, 38], low-rank ap-
proximation [14, 27], linear programming [13], and more [25, 36].
Many of these results have also been studied in the streaming and
turnstile models [10].

Subspace embeddings are one of the key algorithmic tools in
many of the above randomized linear algebra algorithms. Using
sparse random matrices for this purpose was first proposed by Clark-
son and Woodruff [11], via the CountSketch which has a single
non-zero entry per column, and then further developed by several
other works [12, 29, 31] to allow multiple non-zeros per column as
well as refining the embedding guarantees. Non-uniformly sparsi-
fied embedding constructions have been studied recently, including
Leverage Score Sparsified embeddings [16-18, 20], although these
works use much denser matrices than we propose in this work, as
well as relying on somewhat different constructions. There have
also been recent efforts on achieving the optimal embedding di-
mension for subspace embeddings, including [5], who also rely
on sparse embeddings, but require additional assumptions on the
dimensions of the input matrix as well as its leverage score distri-
bution; and [7, 8], who do not rely on sparse embedding matrices,
and therefore do not address the conjecture of Nelson and Nguyen
(see Table 1 for a comparison).

2 PRELIMINARIES

Notation. The following notation and terminology will be used
in the paper. The notation [n] is used for the set {1,2,...,n}. All
matrices considered in this work are real valued and the space of
m X n matrices with real valued entries is denoted by My, xn(R).
The operator norm of a matrix X as || X|| and its condition number
by k(X). For clarity, the operator norm is also denoted by || X|lop
in some places where other norms appear. We shall denote the
spectrum of a matrix X, which is the set of all eigenvalues of X, by
spec(X). The standard probability measure is denoted by P, and
the symbol E means taking the expectation with respect to the
probability measure. The standard L, norm of a random variable
& is denoted by ||&||p, for 1 < p < co. Throughout the paper, the
symbols cy, ¢y, ..., and Const, Const’, ... denote absolute constants.
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Oblivious Subspace Embeddings. We define an oblivious subspace
embedding, i.e., an (e, §, d)-OSE, following Definition 1.1, to be a
random m X n matrix S such that for any n X d matrix U with
orthonormal columns (i.e., UTU = 1),

P (Y, cpa (1467 Hixll < ISUx]| < (1+6)llx]|) > 1-68. (2.1)

For computational efficiency, we usually consider sparse OSEs.
A standard construction for a sparse OSE involves i.i.d. rademacher
entries in each position, sparsified by multiplication with indepen-
dent Bernoulli random variables. More precisely, S has i.i.d. entries
si,j = 0,j&; j where 6;j are independent Bernoulli random vari-
ables taking value 1 with probability p,,, ,, 4 € (0,1] and &; j are ii.d.
random variables with P(&; ; = 1) = P(§;; = —1) = 1/2. Note that
this results in S having s = pm many non zero entries per column
and pn many non zero entries per row on average. We shall call
this the oblivious subspace embedding with independent entries
distribution.

Definition 2.1 (OSE-IID-ENT). A m X n random matrix S is called
an oblivious subspace embedding with independent entries (OSE-
IID-ENT) if S has ii.d. entries s;j = §; j&; j where & ; are inde-
pendent Bernoulli random variables taking value 1 with prob-
ability p,, .4 € (0,1] and & ; are iid. random variables with
P(5ij=1) =P =-1) =1/2.

Another example comes from a class of sparse sketching matrices
proposed by Nelson and Nguyen [31], called OSNAPs. They define
a sketching matrix S as an oblivious sparse norm-approximating
projection (OSNAP) if it satisfies the following properties -

1) sij = 5ij0ij/‘/§ where o are i.i.d. £1 random variables, and

6ij is an indicator random variable for the event S;; # 0.

(2) Vj € [n], X 6 j = s with probability 1, i.e. every column

has exactly s non-zero entries.

(3) Forany T C [m] x [n], EIL(; jye1Sij < (s/m)!T".

(4) The columns of S are i.i.d.

One example of an OSNAP can be constructed as follows when
s divides m. In this case, we divide each column of S into s many
blocks, with each block having % many rows. For each block, we
randomly and uniformly select one nonzero entry and set its value
to be +1 with probability 1/2. Note that the blocks in each column
are ii.d., and the columns of S are i.i.d. We then see that S/+/s
satisfies the properties of an OSNAP. For convenience, in this work
we will refer to this as the OSNAP distribution, and we will define
it using the parameter p = s/m instead of s. To define such a
distribution formally, we first define the one hot distribution.

Definition 2.2 (One Hot Distribution). Let M be an a X b random
matrix. Let y be a random variable taking values in [a] X [b] with
P(y = (i,j)) = (1/ab). Let ¢ be a Rademacher random variable
P(éE=-1)=P(¢=1) = %) M is said to have the one hot distri-
bution if M = &( > 1((i,j)y(V)Ei ;) where E; jisana X b
(i.j)elalx[b]

matrix with 1 in (i, j)** entry and 0 everywhere else.

Definition 2.3 (OSNAP-IND-COL). An m X n random matrix S
is called an oblivious sparse norm-approximating projection with
independent subcolumns distribution (OSNAP-IND-COL) with pa-
rameter p such that s = pm divides m, if each submatrix

S[(m/s) (i-1)+1:(m/s)i]x{j}
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of S for i € [s], j € [n] has the one hot distribution, and all these
submatrices are jointly independent.

Below we collect the existing subspace embedding results for
OSNAP matrices, which are relevant to this work.

LEMMA 2.4 (EXISTING SPARSE EMBEDDING GUARANTEES). The fol-
lowing are some of the known guarantees for OSNAP embedding
matrices:

o [11] showed that there is an OSNAP matrix S with
m = 0(e%d%)

rows and 1 non-zero per column (i.e., CountSketch) which is
an OSE with distortion €.
[12] showed that there is an OSNAP matrix S with

m=0(e2d™ logd)

rows and s = O(1/ye) non-zero entries per column which is an
OSE with distortion €. Note that setting y = 1/log(d), we get
m = O(e~%dlogd) and O(log(d)/€) non-zeros per column.
[31] showed that there is an OSNAP matrix using

O(log(d) log(nd))
uniform random bits with
m = 0(e2d™ log?(d))

and O(1/y>€) non-zero entries per column.

Non-oblivious subspace embeddings. Following Definition 1.1, we
say that an m X n random matrix S is a (non-oblivious) subspace
embedding for a given n X d matrix U with orthonormal columns
if it satisfies (2.1) for that matrix U. In this case, to obtain subspace
embedding guarantees with even sparser random matrices, we can
use the information about the subspace in the form of its leverage
scores. For i = 1,...,n, the ith leverage score of a d-dimensional
subspace of R” is the squared norm of the ith row of its orthonormal
basis matrix U, i.e., ||elTU||§ (this definition is in fact independent
of the choice of basis).

We note that in most applications (e.g., Theorem 1.6), subspace
embedding matrices are typically used to transform an arbitrary
n X d matrix A (not necessarily with orthonormal columns), con-
structing a smaller m X d matrix SA. In this case, we seek an em-
bedding for the subspace of vectors {z : z = Ax for x € R?}. Here,
the corresponding U matrix has columns that form an orthonormal
basis for the column-span of A. Thus, in practice we do not have
access to matrix U or its leverage scores. Instead, we may compute
leverage score approximations [21].

Definition 2.5 (Approximate Leverage Scores). For 1 > 1,2 > 1,

a tuple (ly,...,I) of numbers are (f;, f2)-approximate leverage
scores for U if, for 1 <i < n,
lel U = %
—5— <k and D0 < B llel UIP) = pad.
i=1 i=1

And in this case, we also say that they are a-approximations of
squared row norms of U with a = 1 2.
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Uniformizing leverage scores by preconditioning. Another way of
utilizing information about the leverage scores to get embedding
guarantees with sparser matrices is to precondition the matrix
U using the randomized Hadamard transform to uniformize the
row norms, resulting in (d/n,d/n, ...d/n) becoming approximate
leverage scores for the preconditioned matrix. To this end, we first
define the Walsh-Hadamard matrix.

Definition 2.6. The Walsh-Hadamard matrix Hyx of dimension
2k % 2% for k € N'U {0} is the matrix obtained using the recurrence
relation

Hy

Hp = [1], Hap = [Hn Hn ]

—-H,|
In what follows, we drop the subscript of Hyx when the dimen-
sion is clear.

Definition 2.7. The randomized Hadamard transform (RHT) of an
n X d matrix U is the product \/LHHDU, where D is arandom n X n
diagonal matrix whose entries are independent random signs, i.e.,
random variables uniformly distributed on {+1}. Here, by padding

U with zero rows if necessary, we may assume that n is a power of
2.

The key property of the randomized Hadamard transform that
we use is that it uniformizes the row norms of U with high proba-
bility. More precisely, we have,

LEMMA 2.8 (LEMMA 3.3, [37]). Let U be an n X d matrix with
orthonormal columns. Then, \/LEHDU is an n X d matrix with or-

thonormal columns, and, for § > 0

1 81 é
P| max ||e]T(—HDU)|| > \/§+\/M) <4
j=1,...n Vn n n

Universality. In this paragraph, we describe the random matrix
universality result of [4], which is central to our analysis of sparse
subspace embedding matrices. The object of study here is a random
matrix model given by

n
X = Zo + Z Z; (2.2)
i=1
where Zj is a symmetric deterministic d X d matrix and Z3, ..., Z,

are symmetric independent random matrices with E[Z;] = 0. We
shall compare the spectrum of X to the spectrum of a gaussian
model G that has the same mean and covariance structure as X.
More precisely, denoting by Cov(X) the d? x d? covariance matrix
of the entries of X,

Cov(X)j i1 = E[(X —EX)ij(X —EX)]
G is the d X d symmetric random matrix such that:
(1) {Gjj :1i,j € [d]} are jointly Gaussian
(2) E[G] = E[X] and Cov(G) = Cov(X).
The above two properties uniquely define the distribution of G. We
next define the notion of Hausdorff distance, which will be used in
the universality result below.
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Definition 2.9 (Hausdorff Distance). Let A,B C R". Then the
Hausdorff distance between A and B is given by,

dig(A,B) =inf{e > 0;A C B, and B C A,}
where A, (resp. B;) denotes the e-neighbourhood of A.

LEMMA 2.10 (THEOREM 2.4 [4]). Given the random matrix model
(2.2), define the following:

o(X) = [BI(X - EX)?]]12,
o(X)=  sup  E[l(o, (X —EX)w)’]?
[loll=llwll=1

and  R(X) = || max [|Ziloplco-
1<i<n
There is a universal constant C > 0 such that for anyt > 0,
P (dH(spec(X), spec(G)) > Ce(t)) <de”!,

where e(t) = o, (X)t? + R(X)3a(X)5 15 + R(X)t.

This result can be viewed as a sharper version of the Matrix
Bernstein inequality [37] for the concentration of sums of random
matrices. To see this, note that for the random matrix model (2.2),
Matrix Bernstein implies that:

E|IX|| s o(X)4/logd + R(X) log d,
which can be recovered by Lemma 2.10 (see Example 2.12 in [4]).

However, Lemma 2.10 together with Theorem 1.2 in [2] implies
that:

E(|IX]l) <C(a(X) +0(X)2a(X)/ (logd)*/*
+R(X)30(X)5 (logd)*® + R(X) log d)

where v(X) = ||Cov(X)|| is the norm of the covariance matrix
of the d? scalar entries. This result can be sharper than the Ma-
trix Bernstein inequality because when v(X) and R(X) are small
enough, then we will have E||X|| < o(X), which improves the
Matrix Bernstein inequality by removing the /log d factor.

Spectrum of Gaussian Matrices. To leverage the universality prop-
erties of the random matrix model, we shall rely on the following
result about the singular values of Gaussian matrices, which in
particular can be used to recover the optimal subspace embedding
guarantee for Gaussian sketches.

LEmMA 2.11 ((2.3), [34]). Let G be an m X n matrix whose entries
are independent standard normal variables. Then,

P(Vm = vVn —t < smin(G) < smax(G) < Vm+n+1)
>1—2¢"t/2
3 ANALYSIS OF OBLIVIOUS SPARSE
EMBEDDINGS

In this section, we state and provide a sketch of the proof of our
main OSE result, Theorem 3.3 (given as Theorem 1.2 in Section 1).
Before we get to the proof, however, we propose a new model for
sparse OSEs that is designed to exploit the strength of our proof in
dealing with the number of independent random bits required.

To illustrate the issue, consider that in the OSE-IID-ENT model
(Definiton 2.1), we need mn many random bits to determine the
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nonzero entries of the matrix S, even though the matrix will have
far fewer non-zero entries. Naturally, there are many known strate-
gies for improving this, including OSNAP-IND-COL (Definition 2.3)
and even more elaborate hashing constructions based on polyno-
mials over finite fields [31], which allow reducing the random bit
complexity to polylogarithmic in the dimensions. However, these
constructions do not provide sufficient independence needed in
the random matrix model (2.2) to apply the universality result of
Brailovskaya and Van Handel (Lemma 2.10). We address this with
the independent diagonals distribution family, defined shortly.

In order to use universality for establishing a subspace embed-
ding guarantee, we must analyze a symmetrized version of the
matrix SU, for an n X d orthogonal matrix U, with S being a sum
of sparse independent random matrices, say Y;’s. Naturally, to com-
pare the spectra of SU and an appropriate Gaussian model, the
matrix S cannot be too sparse. However, since the individual en-
tries of each Y; need not be independent, we can reduce the number
of independent summands in S by making each individual sum-
mand Y; denser. At the same time, we need to control ||Y;U]|, just
as we would when using the standard matrix Bernstein inequality.

Both these goals can be achieved by placing non-zero entries
along a diagonal of Y;. Placing +1 entries along a diagonal of a
matrix keeps its norm bounded by 1 whereas other arrangements
(say, along a row or column) do not. Moreover, these +1 entries
along the diagonal need not be independent, they can simply be
uncorrelated. As a result, an instance of Y; can be generated with
just O(1) random bits.

3.1 Independent Diagonals Construction

With this motivation, we define the independent diagonals distri-
bution formally (Figure 1 illustrates this construction).

Definition 3.1 (OSE-IND-DIAG). An m X n random matrix S is
called an oblivious subspace embedding with independent diago-
nals (OSE-IND-DIAG) with parameter p if it is constructed in the
following way. Assume that np is an integer. Let W = (w1, ..., wp,)
be a random vector whose components are +1 valued and uncorre-
lated, i.e. E[w;] = O,E[wiz] = 1,E[wiw;] = 0. We define y to be a
random variable uniformly distributed in [n]. Let y1, ..., ynp be iid.
copies of y. Let Wy, ..., Wy be i.i.d. copies of W. Let F;(x) be a func-
tion that transforms a m dimensional vector x to the m X n matrix
putting x on the jth diagonal, i.e. positions (1, j) through (m, j + m
mod n) with all other entries zero (See Fig 1 for an illustration). Let
S= X F Y (Wp).
le[np]

Universality results show that the properties of a general random
matrix are similar to the properties of a gaussian random matrix
with the same covariance profile. Therefore, to analyze the OSE
models, we need to first calculate the covariances between entries.

LEMMA 3.2 (VARIANCE AND UNCORRELATEDNESS). Letp = pmp €
(0,1] and S = {sij}ic[m),je[n] be a mXn random matrix distributed
according to the OSE-IID-ENT, OSNAP-IND-COL, or OSE-IND-DIAG
distributions. Then, E(s;;) = 0 and Var(s;j) = p foralli € [m], j €
[n], and Cov(si jy, siyj,) = 0 for any {i1, iz} C [m].{j1, 2} C [n]
and (i1, j1) # (iz, j2)

PRrOOF. (see the full version)
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Figure 1: Left: Structure of the random matrix Fy, (W;). Right:
Illustration of an embedding matrix S with independent diag-
onals with parameters d = 8, m = 10, and n = 30, showing how
the nonzero entries of S occur along diagonals. The number
of diagonals is controlled by the parameter p.

3.2 Proof of Theorem 1.2

We now state the main theorem of this section, which is the detailed
version of Theorem 1.2.

THEOREM 3.3 (ANALYSIS OF OSE BY UNIVERSALITY). Let S be an
m X n matrix distributed according to the OSE-IID-ENT, OSNAP-IND-
COL, or OSE-IND-DIAG distributions with parameter p. Let U be an
arbitrary n X d deterministic matrix such that UTU =I. Then, there
exist constants c3 3.1 and c3 3.2 such that for any e,§ > 0, we have

P(1—¢€ < smin((1/vpm)SU) < smax((1/4pm)SU) < 1+¢)
>1-6

whenm > c3.3.1 max(d, 10g(4/5))/€2 andpm > 03.3_2(log(d/5))4/€6.

Alternatively, given a fixed 0 < 3, there exist constants c3 33, c33.4
and c3 3.5 such that form > max{(1+ 0)d, c3.33 log(4/5))/6%} and
pm > c33.4(log(d/5))*/6°,

1
Vvpm

The proof of Theorem 3.3 follows by applying the universality
result 2.10 to an augmented and symmetrized version of SU. More
precisely, following [2, p.443], for a m X d matrix Y, we define the
augmented and symmetrized version of Y as

€3.3.5

P{x( 0

>1-6

SU) <

0dxa Oaxm YT aug(Y, )2
augsym(Y, 1) = Omxd Omxm  Omxm Omxd
, Y Omxm  Omxm 0mxd
aug(Y, )2 0gsm  Odsem Odsed

where
aug(Y,1) = (|EYTY| +42%) - 1d-EYTY

Then we set X = augsym(Y, 7).

There are two reasons for using the matrix augsym(SU, A). First,
using Lemma 3.2 requires symmetric matrices, so we need to sym-
metrize the matrix SU. Second, after symmetrization, we obtain the
matrix

(su)”

s

and the spectrum of this matrix the the union of spec(SU) and {0}.
By universality results, we can only claim that spec(SU) U {0} is
close to spec(4/pG) U{0}, which does not directly imply the desired
result that s, (SU) is close to smin (4/pG). Therefore, we need to
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introduce look at the perturbed matrix aug(SU, A1) to show that
Smin (SU) is not close to zero.

To use Lemma 2.10 we need to find out the corresponding guas-
sian model and bound the parameters 0(X}), 0%(X;) and R(X})
defined in Lemma 2.10.

By Lemma 3.2, we know that, in all of OSE-IID-ENT, OSNAP-
IND-COL, and OSE-IND-DIAG distributions, each entry of SU
has variance p and different entries have zero covariances. There-
fore, we know that the corresponding gaussian model for X is
augsym(4/pG, 1).

By the covariance structure of SU, we have E[UTSTS Ul = pm-1d,
and therefore

aug(SU, 1) =(|E(SU)T (SU)|| + 44%) - 1d—E(SU)T (SU)
=(pm+44%) - 1d—pm - 1d
=4)% . 1d

Similarly, we also have aug(+/pG, 1) = 4A% - Id.

We observe that 0(X) and 0. (X)) do not depend on the decom-
position of X as a sum of independent random matrices and can
be calculated explicitly using the covariance structure of X. Using
this idea, we derive the following lemma that bounds ¢(X}) and
0+(X3)-

LemMa 3.4 (COVARIANCE PARAMETERS). Let S = {sij}ie[m],je[n]
be amxn random matrix such thatE(s;j) = 0 and Var(s;j) = p forall
i € [m],j € [n], and Cov(sij,sg;) = 0 for any {i,k} C [m],{j,I} C
[n] and (i, j) # (k). Let 0™ : Loo(R) ® My(ppeq)(R) — R and
0 : Loo(R) ® My(meq) (R) — R be the functions defined in Lemma
2.10. Then for any A > 0, we have

o« (augsym(SU, 1)) < 24/p and o(augsym(SU, 1)) < v/pm

PrOOF. (see the full version)
O

ProoOF oF THEOREM 3.3 (SKETCH). Using Lemma 3.4 and Lemma
3.2, we have

o« (augsym(SU, 1)) < 24/p and o(augsym(SU, 1)) < +/pm

for all the three distributions.

R(X}) depends on the decomposition of X, as a sum of inde-
pendent random matrices, so we write the matrix SU as a sum of
independent random matrices in each of the three distributions as
follows.

For the OSE-IID-ENT distribution, we observe that

SU = Z si,j(eiejT)U = Z Si’j(eiujT)
LJ Lj
where u; is the jth row vector of the matrix U.

For the OSE-IND-DIAG distribution, we have SU = Zf:nl YU,
where Y; = Fy, (W) as in Definition 3.1.

For the OSNAP-IND-COL distribution, the sum is similar to the
OSE-IND-DIAG case. More precisely, for k € [s],] € [n], we define
Yk ; to be the m X n matrix such that

Ye0)ij = 1[(m/s) (i-1)+1:(m/s)i]x {5} (( 1)) Sij

In conclusion, we have R(augsym(SU, 1)) < 1 for all the three
distributions. (See the full version for details.)
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Using lemma 2.10 with ¢ = log(2d/d), we have
P(dp (spec(augsym(SU)), spec(augsym(ypG)))
> c1{(log(2d/5))) < 6/2
where
£(1) = o (X2 + R(X)30(X))5 15 + RO

for some constant c1. Without loss of generality, assume c; > 1.
Using lemma 2.11, we have

P \/p—m_ \/p_d_ \/m < Smin(\/LEG)
< s (VPO + Vi + VB Tog(4]3)| > 1- /2

Let & be the event

& ={vpm — \pd — \2plog(4/5)
< smin(VPG) < Smax < (VpG)vpm + \/p_d +/2p 10g(4/5)}

N {dy (spec(augsym(SU, 1)), spec(augsym(1/pG, 1)))
< e1¢(log(2d/8))}
Then, we have P(§) > 1 — § by the union bound. Assume
that the event & happens, then & implies that the spectrum of

augsym(SU, 1) and augsym(4/pG, 1) are close in the Hausdorff dis-
tance and also implies bounds on the extreme singular values of

BG.

Using the relationship between singular values of SU (resp. 4/pG)
and augsym(SU, 1) (resp. augsym(+/pG, 1)) (see full version for
details), we have,

Vpm — \/pd — \[2plog(4/8) — 51 < syin (SU)
< smax(SU) < vpm ++pd +\[2plog(4/5) + 51

Therefore, we derive that

P \/p—m_\/p_d_\/m—SASsmin(SU)
< smax(SU) < \/P_m+\/P_d+\/W+SA

>1-6

<

Now, we choose A = loeﬂpm This is possible when 0€VPm 2

c1¢(log(2d/5)), and we will simplify this condition later
Assuming that we can choose A = %E\/pm and

16d 32log(4/5)

m > max 5—2, 0

\2p log (4/3)
VP

}

£

we have < £ and ‘/% < £, and therefore we have

2 < Smm((l/\/P_m)SU)

< Smax((1/4/pm)SU) < 1+ Z + Z + g) >1-6

which is exactly what we want.
Then it suffices to translate the condition

1_106\/1% > c1¢(log(2d/6))
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APPROXIMATE LEVERAGE SCORES
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Figure 2: LESS-IND-ENT with decreasing leverage scores.
Since the probability of an entry being non-zero is propor-
tional to the corresponding leverage score, we see that the
matrix becomes sparser as we move in the direction of de-
creasing leverage scores. Since the scaling of entries is in-
versely proportional to the square root of the corresponding
leverage score, the magnitude of the non-zero entries be-
comes larger as we move to the right.

into the requirements for p, m, and d. To this end, we first calculate
that

{(t) = 2ypt? + (Npm)? 3123 44
by the earlier bounds for o(X), 0x(X) and R(X).
We claim that it is enough to require that,
(Vpm)*/* (log(2d/8))*/* < o ypm
C1
Equivalently, we just need
(80c1)° (log(2d/9))* _
6
(log(2d/8))*
£6

In fact, if pm > cp where ¢; = (80c1)®, we will

also have log(2d/d) < ﬁ\/ﬁ and 2(10g(2d/§))1/2 < 406 \pm,
which gives us ¢1{(log(2d/6)) < {5+/pm, and therefore we have
proved the first part of the theorem.

The proof the second part follows from similar calculation (see
the full version). o

4 ANALYSIS OF NON-OBLIVIOUS SPARSE
EMBEDDINGS

In the non-oblivious setting, we are looking to embed a specific
d-dimensional subspace of R" represented by a matrix U, and we
assume that we have access to (f1, f2)-approximate leverage scores
of U as defined in Section 2. Given access to this information, we
can modify the oblivious models of S to give more weight to certain
coordinates of the ambient space. We refer to this approach as
Leverage Score Sparsitication (LESS).

4.1 Leverage Score Sparsification

We propose two variants of a LESS embedding. First, we consider
an extension of the OSE-IND-ENT model (with i.i.d. entries) studied
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in Section 3, with the Bernoulli sparsifier for each entry of S being
non-zero with a probability proportional to the leverage score of
the corresponding component. However, we still want the variance
of each entry of S to be p, so the entries are appropriately scaled
copies of +1 (See Figure 2).

Definition 4.1 (LESS-IND-ENT). An m X n random matrix S is
called a leverage score sparsified embedding with independent
entries (LESS-IND-ENT) corresponding to (f1, f2)-approximate
leverage scores (ly, ..., I) with parameter p, if S has entries s; j =
‘/ﬁ di,j&i j where §; j are independent Bernoulli random variables
taking value 1 with probability p;; = f1ljp and &; j are i.i.d. random
variables with P(&; ; = 1) = P(&;; = —1) = 1/2.

In the next variant of a LESS embedding, we are able to reduce the
computational and random bit complexity for generating sparsity
by only generating as many non-zero entries as required. Here, the
i row of S is the sum of np many i.i.d. random matrices Z; 7 where
each Z;; is determined by choosing one entry from the n possible
entries of the i row and setting the remaining entries to 0. Here,
instead of choosing the positions uniformly at random, we choose
them proportionally to the corresponding leverage score.

Definition 4.2 (LESS-IND-ROWS). Assume that (f1p 2. ;) is an
integer. An m X n random matrix S is called a leverage score spar-
sified embedding with independent rows (LESS-IND-ROWS) cor-
responding to (f1, f2)-approximate leverage scores (I, ..., I) with
parameter p, if the i row of S is a sum of (f1p . [j) ii.d. copies
Zi1, Zi2, ..., of a random variable Z;, i.e.,

k=1
where Z; is defined as follows. Let y be a random variable taking
n
values in [n] with P(y = j) = [;/( X I). Let £ be a Rademacher
k=1

random variable, P(§ = —-1) =P({ =1) = % Then,

1
Zi=¢ Z 1y (V)——==Ei;
jetnl VAl
where E; j is an m X n matrix with 1 in the (i, j)th entry and 0

everywhere else.

4.2 Proof of Theorem 1.3

These modifications allow us to prove subspace embedding guaran-
tees for sparser matrices than in the oblivious case, thereby showing
Theorem 1.3. In particular, we show that with LESS it suffices to use
O(log*(d/8)) nonzero entries per row of S, instead of per column
of S, which is much sparser since S is a wide matrix.

THEOREM 4.3. Let U be an arbitrary n X d deterministic ma-
trix such that UTU = I with (By, f2)-approximate leverage scores
(l1, ..., In). There exist constants c4.3.1,¢4.3.2, €4.3.3, such that for any
0 < e < 1,0 <8 < 1, and any LESS-IND-ENT or LESS-IND-
ROWS random matrix S corresponding to (i, ..., I,) with embed-
ding dimension m > c4.3.1 max(d,log(4/6))/e* and parameter p >
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c4.3.2(log(d/8))*/(me®), we have
P (1 - ¢ < spin((1/4pm)SU) < smax((1/4/pm)SU) < 1+¢)
>1-6,
and if we choose m = c4 3.1 max(d, log(4/68))/e* and
p = ca3.2(log(d/8))*/(me®),

then we have the following high probability bound for the maximum
number of nonzero entries per row

P ig%c](card({j € [n]:sij#0})) < c4.3.3P1B2(log(d/8))*/e*
>1-6

Alternatively, given a fixed 0 < 3, there exist constants c43 4, 435,
c4.3.6 and c4 3.7 such that form > max{(1+0)d, cs3.4 log(4/5))/02}
and p > cy.3.5(log(d/5))*/(m6°),

1

N

>1-6

€4.3.6

P{x( 0

SU) <

and if we choose m = max{(1 + 0)d, c43.4log(4/5))/6%} and p =
c4.3.5(log(d/8))*/(m8°), then we have the following high probability
bound for the maximum number of nonzero entries per row

P ifen[%](card({j € [n] : sij # 0})) < ca37p1B2(log(d/8))*/6°
>1-6

PrROOF OF THEOREM 4.3 (SKETCH). Similarly to Lemma 3.4, we
can conclude that 0. (X) < 2+/p and o(augsym(SU)) < /pm.
For the IND-ENT case, since |s; ;| is bounded by —L—, we have
| l,]| Yy N

R(augsym(SU))

0 0 (eju jT)T 0
0 0 0 0

< max T

i,j ﬂl lj (el-uj ) 0 0 0

0 0 0 0 op

<1

And for the IND-POS case, we have
Z U = Z (Zp)ij(eius ")

i€[m],je[n]

Since this sum has only one nonzero term, we have
Zi U = max Zo)iillleiui T
|| k ||op ie[m],je[n]|( k)l,j||| iuj ||0p

Using this decomposition to augsym(SU) as well as the fact that
[(Zp)ijl < \/#_ we conclude

Pl
R(augsym(SU))
0 0 (el-ujT)T 0
0 0 0 0
ie[mI]I,ljz'ig[n], ( k)l’j (eiujT) 0 0 0
ke[pipm ¥ 1] 0 0 0 0

op
<1



Optimal Embedding Dimension for Sparse Subspace Embeddings

For both cases, since their matrix parameters 0% (X), o(X) and
R(X) are the same as in Theorem 3.3, following the proof for Theo-
rem 3.3, we conclude that there exist constants c1, c3,, such that for
any ¢ 6 > 0, we have

P(1-¢ < smin((1/vpm)SU) < smax((1/vpm)SU) < 1+¢) 21-6

when m > ¢ max(d,log(4/8))/e* and pm > co(log(d/5))*/e°.
The proof of the claim when m > (1 + 0)d also follows in the same
manner as Theorem 3.3.

Since p is just a parameter in the LESS models, we want to
know what the requirement pm > cz(log(d/8))*/e® (similarly
pm > c2(log(d/8))*/6®) means for the average number of nonzero
entries in each row. First, the average number of nonzero entries in
each row will be f1p 27:1 l; < p1P2pd for both cases, just by the
construction of these matrices. Next, we observe that the condition
pm > cy(log(d/8))*/e® is equivalent to

pd > callog(d/o))! /5 5)
4 <

ment pd > cz(log(d/é))4/£6%, it suffices to have
pd > c2(log(d/8))*/¢*

So the optimal choice of p leads to B fac2(log(d/8))*/e* many
nonzero entries in each row on average.

In the case when m > (1 + 8)d and pm > co(log(d/5))*/6°,
since we can only claim d/m < 1 in general, we need pd >
co(log(d/8))*/6° so the average number of nonzero entries in each
row would be 1 fz2co(log(d/5))*/6°.

The high probability bound for the number of nonzero entries
in each row follows from Bernstein’s Inequality. (see full version
for details.) O

Since m > d/ &%, we have 2. Therefore, to meet the require-

As an immediate corollary of Theorem 4.3 we give a new sub-
space embedding guarantee for the Fast Johnson-Lindenstrauss
Transform (FJLT). Recall that an FJLT preconditions the matrix
U with the Randomized Hadamard Transform (see Definition 2.7)
to transform it into another matrix V whose row norms can be
well controlled. In this way, we obtain approximate leverage scores
for V by construction rather than by estimation. Then, we can ap-
ply LESS-IND-ENT or LESS-IND-ROWS random matrices to the
preconditioned matrix V according to approximate leverage scores.

THEOREM 4.4 (ANALYSIS OF PRECONDITIONED SPARSE OSE). Let
U be an arbitrary nxd deterministic matrix such thatUT U = I. There
exist constants c4 4.1, C4.4.2, C4.4.3, Such that for any 0 < ¢ < 1, z—;’ <

& < 1, the following holds. Let S = @(#)HD where H and D are as in

definition 2.6 and 2.7, and ® has LESS-IND-ENT or LESS-IND-ROWS
distribution corresponding to uniform leverage scores (d/n, ...,d[n)
with embedding dimension m > c4.4.1 max(d, log(8/5))/e? and av-
erage number of nonzero entries per row > cq.4.2(log(2d/8))*/e*.
Then,

P(1-¢ < smin((1/ypm)SU) < smax((1/v/pm)SU) < 1+¢) > 1-6.

PrROOF OF THEOREM 4.4 (SKETCH). First, note that %HDU is an

n X d matrix with orthonormal columns. Let & denote the event
that the tuple (Iy = d/n,lp = d/n,...,I, = d/n) of numbers are

1116

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

(16, 1)-approximate leverage scores for the matrix %H DU. Clearly,

2yl <d. Since2n < e, we have log(2n/d) < d, and the claim
from Lemma 2.8 reads,

1 d [sd) &
2 T« —HDU)||0p = \/j ) P
jfi‘f‘ffn”ef (ﬁ Mop = Y

Thus, with probability greater than 1 —§/2, we have, for all j € [n],
.1 d 16d
lle] (ﬁHDU)HZ < (1+2V2)? (;) <—= 16l;.

So, the conditions for (d/n,d/n,...,d/n) to be (16, 1)-approximate
leverage scores for the matrix LnH DU are satisfied with probability

greater than 1 - §/2, ie.,

P(&) > 1-68/2.
LetV = \/LEH DU. Then the desired result follows by conditioning
on the random matrix V and applying Theorem 4.3. O
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