2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

CachedArrays: Optimizing Data Movement for
Heterogeneous Memory Systems

Mark Hildebrand
University of California, Davis
Email: hildebrandmw @ gmail.com

Abstract—We propose a new framework called CachedArrays
and a set of APIs to address the data tiering problem in large scale
heterogeneous and disaggregated memory systems. The proposed
framework operates at a variable size object granularity and
allows the programmer to specify semantic hints about future
use of data via a Policy API, which are used by a Data Manager
to choose when and where to place a particular data object
using a data management API, thus bridging the semantic gap
between the programmer and the platform-specific hardware
details, and optimizing overall performance. We evaluate the
proposed framework on a real hardware platform with terabytes
of memory consisting of NVRAM and DRAM on large scale ML
training workloads such CNNs that exhibit different data access
and usage patterns. We show that CachedArrays outperforms
hardware caches, and can exploit many of the algorithmic-specific
optimizations of prior works.

I. INTRODUCTION

From the dawn of computing, memory has been a significant
bottleneck in our quest to improve performance. An idea
memory subsystem provides high bandwidth, low latency, low
cost per bit, and high-capacity. However, these competing
demands cannot be satisfied with a single memory tech-
nology. With the advent of emerging interconnect standards
like Compute Express Link (CXL) [1], system architects are
looking to satisfy these conflicting requirements by creating
a memory subsystem using multiple different technologies.
Heterogeneous memory naturally introduces the need for data
tiering [2], [3] or moving the data that is being accessed
by a program to a memory pool that suits the nature of
the memory access pattern. Traditionally hardware-managed
multilevel caches and operating system (OS) page migration
methods have been used to address this problem. However,
for emerging ML workloads with working sets in the range of
terabytes and complex, application-specific data use patterns,
these techniques are not effective.

Transparent hardware-managed caching can cause perfor-
mance degradation when the memory sizes are hundreds of
gigabytes or more [4], [5]. Implementations of hardware-
managed DRAM caches such as Intel’s Cascade Lake systems
are inefficient due to cache-line-level metadata tracking and
write amplification, which results in poor bandwidth utilization
that is particularly detrimental for heterogeneous systems
using phase change memory (PCM) based technologies such
as Intel’s Optane DC [6]. Moreover, these systems can benefit
from bespoke optimizations to make data movement more

1530-2075/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPS57955.2024.00055

Jason Lowe-Power
University of California, Davis
Email: jlowepower@ucdavis.edu

545

Venkatesh Akella
University of California, Davis
Email: akella@ucdavis.edu

efficient [6]. For example, SAGE [7] proposes new data
structure design and new algorithms for graph computations,
AutoTM [8] uses static analysis using ILP-based techniques to
optimize data movement for a certain class of ML applications
such as Convolutional Neural Networks (CNNs) For GPU
systems, VDNN [9] and its derivatives [10], [11], [12], [13]
exploit the unique characteristics of the backprop algorithm to
augment limited GPU memory with memory on the host.

These solutions are often ad hoc for a particular application,
and they often require significant rewrite of the applications.
To efficiently use memory and move data in a disaggregated
system, we need a framework which is easily modified for new
applications, algorithms, and platforms that defines exactly
what the programmer should specify and what the underlying
hardware can do. We believe such a framework requires a
separation of concerns between the application’s data ac-
cess, the policy used to direct the data movement, and the
underlying data movement mechanism. Thus, in this paper
we present CachedArrays as an example framework which
enables mostly automatic application hints for future data with
a customizable data movement policy, and an independent
data manager to handle data movement between different
memories. Furthermore, we believe that often one-size-does-
not-fit all, and the framework should operate at a program-
specific level of granularity (as opposed to the 64-byte cache
block) so that it is easier for the programmer to convey
semantic information and more efficient in terms of metadata
tracking. This renders the overall framework more transparent
to the programmer (more like hardware-managed caches),
and shields the programmer from low-level details of data
movement, mitigating the need for a significant application
rewrite while still realizing performance benefits.

We propose the design, implementation, and evaluation of
a framework called CachedArrays (see Figure 1) that realizes
these requirements. As described in Section III, CachedArrays
the architectural abstractions of a policy and a data manager.
The policy is constructed using the data management API
and using the semantic intent by the programmer conveyed
to via a policy API. We describe the requirements for a data
movement framework and the details of software architecture
of CachedArrays and an API suitable for implementing large
scale deep neural networks in Section III. In Section IV we
discuss the details of the implementation of CachedArrays
in Julia programming language. Since disaggregated memory

TABLE I: Summary of related work in data management in heterogeneous memory systems.

\ Work | Abstraction Layer | Granularity [Progr bility [Meck
Sage [7] Algorithm Data Structure Application Specific Manual Partitioning
vDNN [9], ZeRO-Offload [13] Application Tensor Application Specific Manual Partitioning
AutoTM [8], Sentinel [3],[14], DLRM [15] Compiler Tensor Transparent Profile Guided Optimization
Nimble [16], KLOC [17], Thermostat [18],
[191,[20], [21], [22],[23].[24],[25].,[26] Operating System Page Transparent Virtual Memory
Memory Mode/2LM (in Intel NVRAM) Hardware Cache Block Transparent HW Managed Cache
—_— o SW Runtime based on
Kona [27], tdko [28] Hardware Cache Block Transparent Cache Coherence
CachedArrays (This work) Application Variable Sized Object Transparent (with annotations) Type System/Runtime

systems with CXL are currently nascent, we instead evaluate
the proposed framework on heterogeneous memory machine
with both Optane Non-Volatile Random Access Memory
(NVRAM) and DRAM-based memories. We show that for
training Convolutional Neural Networks (CNNs) CachedAr-
rays improves performance 1.4x to 2.03x over baseline
hardware managed cache (called 2LM) on Intel’s platform.
Interestingly, we show that some of the proposed optimizations
(such as eager memory freeing) can improve the performance
of the hardware managed caches as well.
The main contributions of this work are as follows:

o We show that by separating the concerns of communi-
cating the application’s future data use pattern (hints/an-
notations), when and where to move data (policy), and
the underlying data movement mechanism (data manager)
leads to a performant and generic data management
system.

We present CachedArrays, a concrete implementation of
these ideas in Julia, enabling applications with array-
like data structures to transparently take advantage of
heterogeneous memory with optional data usage hints.
Detailed evaluation of using CachedArrays on a real
heterogeneous memory (NVRAM+DRAM) platform on
training large deep learning models.

II. RELATED WORK

With the advent of heterogeneous memory platforms and
the growing memory footprint of ML workloads there has
been significant interest in understanding and optimizing data
movement [12], [29], [30], [31], [19], [32] at all levels across
the software/hardware stack. Table I summarizes works most
closely related to this paper.

Some prior works have proposed data structures and al-
gorithms specifically for DRAM/NVRAM memory systems
to overcome this challenge and show significant performance
improvements using their bespoke solutions [33], [8], [34],
[35], [36]. In our work, we look at the optimizations these
prior works have used and develop a general approach which
can be applied to many different applications.

There have been many works focused on optimizing deep
learning workloads in the CPU/GPU environments to over-
come the memory bottleneck issue for GPUs. vDNN [9],
ZeRO-Offload [13] and other related works in this line [11],
[12], [10], [37] exploited the algorithmic characteristics of
these workloads, such as backpropagation, to decide on data

546

placement and movement. These solutions call for deep algo-
rithmic changes, requiring the programmer to manually deter-
mine the reuse pattern and figure out a suitable data movement
scheme to actually change the algorithm, accordingly. Other
research works tried to take such decisions at the compiler
level including AutoTM [8] which used ILP to optimize
data movement and Sentinel [3] which used runtime profiling
information. However, these solutions suffer from scalability
and generalization if the workloads’ reuse patterns are sparse
or less straightforward to detect. Examples of such workloads
include Deep-Learning Recommendation Models (DLRMs)
which have sparsely accessed embedding tables. Hildebrand
et al. [15] show that DLRM workloads with sparse accesses
also benefit from software data movement policies, but the
policy must be flexible enough to adapt to the workload. The
CachedArrays framework addresses these shortcomings by
minimizing the required algorithmic changes by programmers
and enabling a specialized placement and movement policy
based on characteristics of the program and the reuse pattern.

Many works proposed intelligent data migration between
slow and fast memories in page granularity to perform data
tiering at the OS level, using runtime characteristics such as
reuse pattern and page hotness [22], [2], [38], [21], [23].
However, like hardware-based techniques, these works do not
take into account future information about the data use and
the semantic information from the application.

Finally, other works considered hardware/software redesign
for data management in memory systems including Kona
which removes the overhead of conventional virtual memory
from the critical path of tracking applications [27] and tdko
which enables application to be informed of the memory
access behavior and customize actions based on callbacks [28].
Both Kona and tidkod provide hardware and software compo-
nents for better data management at the runtime. However,
none of them provide support for semantic information sharing
from application to the hardware, to form a suitable data
management policy. Téko overlaps with what we introduce as
the data manager in Section III-C; however, tiko is reactionary
to the cache (e.g., its callbacks can be triggered on a miss or
an eviction) whereas CachedArrays is proactive and triggers
the evictions and insertions before the application accesses the
data. Finally, tdko has not been applied to massive 100 GiB
DRAM caches and has many of the same downsides as
hardware-managed DRAM caches.

III. CACHEDARRAYS DETAILS

In this section we discuss the requirements for a high-
performing data movement system which does not require
deep programmatic changes, the software architecture of our
CachedArrays design, and end with an example end-to-end de-
sign for data movement for training large-scale convolutional
neural networks.

A. Requirements for a Data Movement Framework

We observe the following optimizations are important for
high-performance data management on heterogeneous memory
platforms.

1) Initially allocate data only in one specific device (e.g.,
fast memory). Hardware caching potentially requires an
initial movement from backing memory to the cache,
which increases data movement.

Elide useless writebacks from one device to another
when the data is deallocated. Section V shows this opti-
mization significantly reduces NVRAM writes compared
to the hardware managed cache.

Move data at a large granularity instead of at the block-
level which more efficiently uses memory devices [6],
[4]. Section V shows that in CNN applications with a
simple policy, CachedArrays has higher average memory
bus utilization than the hardware managed cache.
Avoid polluting the fast memory with data which is
rarely referenced, retaining only relevant data in the
faster memory.

2)

3)

4)

These optimizations are not possible with fully transparent
data management mechanisms such as NUMA and hardware
caching. Thus, to generalize access to these optimizations for
more applications, we need a data movement management
framework such that the semantic information from the ap-
plication can be used to drive the data movement without
requiring the application to directly interact with the data
movement mechanism.

Only the application (or runtime, compiler, programmer) has
the semantic information to know the future use of the data
which is required for the optimizations above. Specifically, we
have found the following semantic information to be the most
important to communicate from the application-level to the
data manager.

« “I am going to read this object”

o “I am going to write this object”

« “T am not going to access this object for a while”
o “I am never going to access this object again”

B. Data Management APl Framework

Our main idea is to separate the three concerns of the
data management system: the application’s access to data, the
data movement mechanism (the data manager), and the data
movement policy. By separating these three components, we
enable the data movement to use semantic information from
the applications without requiring the application to directly
interact with the data movement mechanism. Figure 1 presents

547

Policy
API

APPLICATION

Data

POLICY

Data
Management API

Access
DATA MANAGER

GRS

\ > J]

Device 2
I Region 1 -2]

Fig. 1: High level idea of a generic heterogeneous memory
management system.

Device 1

Reéion

Region1-1
egion Sog

a high-level overview of a generic heterogeneous memory
management system.

The data access from the application is separated from
the other components by a level of indirection (the object).
The semantic information about the data use is separated
from the other components via the policy API which the
application uses to communicate information about the data
use to the policy. Finally, the data movement mechanism is
separated from the other components via the data management
API. An expert programmer or language runtime designer can
implement a policy for data movement which directly interacts
with the data manager layer to move data without requiring
application changes due to object abstraction.

In the rest of this section, we will describe each component
of this system in detail.

C. Data Manager

The data manager exposes an API so that the policy can
direct the data movement. This data management API includes
functions to move data, allocate space, query the current state
of the system, and update the current state of the system. There
are many partial implementations of this API (e.g., tiko [28],
libmemkind, SMDK). However, they lack fundamental features
such as the ability to transparently move data between devices
and associate data on multiple devices with a single logical
object. Thus, we build CachedArrays from the ground up,
implementing allocators supporting these operations on top of
raw memory obtained either through a single large malloc or
a memory map from a direct access (DAX) file system.

Objects and Regions: One key observation in prior work
to enable the optimizations discussed in Section III-A is that
data movement should be done on the “object” level within a
program. The object level is where the programmer, compiler,
and runtime have specific knowledge of the semantics of the
data within their program which can be used to drive data
movement and placement considerations. For instance, the
programmer knows whether an array will be accessed sparsely
or densely, which can affect caching decisions. Examples
of “objects” include standard data structures (e.g., standard

containers like std::vector in C++) and tensors in CNN-
based workloads. In this paper, we focus on CNN-based
workloads with relatively large (> 100s of KiB) tensors which
are both densely and sparsely accessed.

To support moving objects between different memory pools
and construction of higher order constructs like two-level
caches we use the idea of regions. A region is a contiguous
slice of virtual memory that either holds the current data for
an object (which we call the primary region) or copies of the
data for an object (where we call each copy a secondary).
Two regions are said to be linked if they both are associated
with the same object. An object’s secondary regions may be
valid if the primary is clean and read only, or stale if the
primary has been updated and without propagating this change
to all its secondaries. Our initial prototype of CachedArrays
requires its underlying memory heaps to be preallocated from
the operating system prior to execution (i.e., no dynamic
memory allocation from the OS through system calls like
mmap). Dynamic memory could be added through growing
or shrinking the base heap on each device or though multiple
heaps per device that are mapped and freed as required.
CachedArrays inherently supports object reallocation which
mitigates fragmentation in either case.

Data Access: In our implementation of CachedArrays, we
focus on applications which use the kernel programming
model (i.e., most computation is done in kernels). The kernels
operate on objects by either reading an object, writing an ob-
ject, and allocating and freeing temporary objects. This model
fits well with deep learning frameworks (e.g., Tensorflow [39],
PyTorch [40], OneAPI [41], etc.) and many high-performance
computing applications.

Because of the kernel programming model, the extra level
of indirection for accessing the underlying data of objects can
be easily hidden. When the kernel is executed, the runtime
can replace the object reference with the current primary
region pointer. Unlike OS-based page tables and other “general
purpose” indirection tables, the indirection in CachedArrays
is essentially zero overhead since it happens once for a long-
running kernel. One limitation of our current implementation
is that an object’s primary cannot change during the execution
of a kernel. However, we have not observed any examples of
prior optimizations which allow for changing the data location
while it is actively being accessed.

Data management API: The data manager in CachedArrays
supports allocation and deallocation of regions, linking and
unlinking of regions, high-performance memory copying be-
tween regions, and reassignment of an object’s primary region.

There are three broad categories of functions: those working
on objects, those working on regions, and those working on de-
vices. The former consists of just two functions: getprimary,
to obtain the primary region for an object and setprimary, to
update an object’s primary region.

Functions in the second category include allocate and free
methods for each supported device, as well as a fast memory
copy (copyto) between and within devices. Regions can be
linked or unlinked using 1ink and unlink respectively. Query

548

functions (sizeof, getlinked, and in) provide methods for
obtaining the size of a region, finding a linked region’s on
a specified device (if one exists), and querying the device to
which a region belongs. Regions can be marked and queried
as dirty or clean, which helps maintain consistency when an
object is associated with multiple regions. Finally, parent
provides a mechanism of going from a region to its object.

D. Data Movement Policy

The goal of the policy is to coordinate the assignment
of objects to regions to improve application performance.
The application provides hints to policy regarding how and
when objects are used. The policy reacts to this information
by using the data management API previously described to
manipulate the state of objects and regions. This separation
of data management from policy is important because (1)
it allows the application to influence data placement without
needing to understand the low-level details associated with the
data management API and (2) allows the policy to be tuned
on a per-application basis. In this section, we describe one
data movement policy interface which is well suited for very
large footprint CNN workloads running on a Cascade Lake
heterogeneous memory system with a large NVRAM (Intel
Optane DC) and smaller DRAM.

The policy we implement for this class of workloads ex-
poses the functions outlined in Table II. If the application
is aware that an object will be used in the near future (for
example, when it is about to execute a compute kernel), it
can notify the policy with will use. More specific hints can
be provided with will read or will write if this is known.
This allows the policy to perform preemptive action on the
corresponding objects and track object usage. When an object
will not be used for some time, it can be marked as archived.
Finally, if the application knows that an object will never
be used again, it can use retire. Only improper use of
retire will affect the correctness of the application. All other
functions only influence performance of the application.

How the policy reacts to these hints is an implementation
detail of the policy. For example, the policy may respond to all
instances of will_use by prefetching the corresponding object
into fast memory. In order to drive these decisions, the policy
needs to be aware of the relevant characteristics of its memory
devices. For a DRAM/NVRAM system, these include:

o Writes to NVRAM are slow and low bandwidth.

¢ Reads to NVRAM are not much slower than DRAM.

« DRAM bandwidth is high.

o The capacity of NVRAM is large.

e The capacity of DRAM is constrained.

To understand why the policy must be aware of hardware char-
acteristics, we can consider the policy’s reaction to will_read
versus will_write. Because the read bandwidth of NVRAM
is relatively high while the write bandwidth is low, the policy
may choose to take no action in response to will read but
move objects into DRAM if needed in response to will write.
If the properties of the underlying memory change, the policy
may need to be modified.

TABLE II: The policy for CachedArrays exposes an object-
based API for applications to provide hints regarding memory
location and movement. These hints can either be placed
manually by the programmer or inserted by the compiler.

[Operation | Description |

Will read or write in the near future.
Will not be used for some time.
Will never use again.

will_use/read/write

archive

retire

function evict (policy, object)

1

2 x = DM.getprimary (object)

3 if DM.in(x, FAST)

4 y = DM.getlinked(x, SLOW)

5 sz = DM.sizeof (x)

6 allocated =

7 if isnothing(y)

8 y = DM.allocate (SLOW, sz)
9 allocated =

10 end

11 if DM.isdirty(x) || allocated
12 DM.copyto (y, Xx)

13 end

14 DM.setprimary (object, y)

15 if l!allocated

16 DM.unlink (x, vy)

17 end

18 DM. free (x)

19 end
20 end

Listing 1: An example of building an eviction function from
the CachedArrays data manager interface (prefixed by pm).

To understand how the policy interacts with the data man-
ager, we present the implementation of two kinds of operations
the policy may take: evicting and object from fast to slow
memory and prefetching an object from slow to fast memory.
These may be executed in response to the archived or the
will use hints from the application, respectively. Note that
the policy maintains the following invariant: if an object has
a region in fast memory, then this region will be the primary
region for that object.

Listing 1 shows an example implementation of the evict
operation. If x is already linked with another region in slow
memory, only a simple copy and free of xj,s is needed.
Otherwise, x0 needs to be allocated (see lines 4-10).
Lines 11-13 show a potential optimization: if we can track
whether or not x has been modified while in fast memory
then we may be able to elide the expensive copy operation.
Line 14 updates the object’s primary region y. If a linked
region existed in slow memory, x and y need to be unlinked
(line 16). This does not need to be performed if the slow region
was just allocated because the slow and fast regions were then
never linked to begin with. Finally, = is freed (line 18).

As a more complicated example, Listing 2 shows an im-
plementation of prefetch (e.g., in response to will_use). In
line 3, the primary region for the object is retrieved. Line 4
checks the device that region resides in: if the region is
already in fast memory, there is nothing to be done. Line 5
tries to allocate a similar sized region in fast memory. If the
operation fails (because fast memory is full) and the operation
is forced, then the policy will forcibly free memory from
the fast memory. This is done by selecting an initial region

549

function prefetch(

1

2 policy, object, force::Bool =)
3 x = DM.getprimary (object)

4 if DM.in (x, SLOW)

5 sz = DM.sizeof (object)

6 y = DM.allocate (FAST, sz)

7 if isnothing(y) && force

8 start = find_region (policy)

9 DM.evictfrom(

10 FAST, start, sz

11) do region

12 evict (policy, DM.parent (region))
13 end

14 y = DM.allocate (FAST, sz)::Region
15 else

16 return

17 end

18 DM.copyto(y, x)

19 DM.link (x, V)

20 DM.setprimary (object, vy)

21 end

22 return

23 end

Listing 2: Building a prefetching function out of the data
movement APIL

start via some heuristic like LRU (line 8) and using the
function evictfrom (lines 9-11) though the data manager to
free a contiguous block of memory from the fast memory
pool of the appropriate size. The evictfrom function uses a
callback mechanism that allows the policy to use the previ-
ously described evict to preserve existing objects. Following
the eviction, the fast memory allocation is performed again
(line 12). Data is copied (line 16), the two regions are linked
as siblings (line 17) and the fast memory region is assigned
as the primary region (line 18).

We implement and evaluate multiple different policy imple-
mentations which take different actions for the same applica-
tion hints in Section V.

E. End-to-End Example

We use these APIs to implement an end-to-end example of
using our split policy-data management interface to optimize
data movement for very large-scale CNN training. Our un-
derlying system is a heterogeneous system with DRAM and
NVRAM. The important characteristics of the workload that
we can take advantage of are the following.

« Each iteration of training is broken into two phases: a
forward pass that computes the output of the network
and a backward pass that computes the gradients of the
model’s trainable parameters.

o During the forward pass many intermediate activations
are generated that are not consumed until the backward
pass.

« These activations are generally used and freed in a first-in
last-out manner.

During the forward pass, the convolution reads an input
activation tensor, weights, and bias and writes to an output
activation tensor. The backward pass kernels require these
intermediate activations, which thus must be kept in memory
until needed.

For each compute kernel, we call will_read on read-only
parameters and will write on written parameters, providing

the policy with the opportunity to prefetch data. Following
kernel execution on the forward pass, archive is called on
the weights, bias, and previous activations. A reasonable policy
implementation will not eagerly evict data upon an archive
annotation and will instead prioritize the annotated objects for
future eviction if memory pressure is experienced. This means
that if the memory required to train the network fits entirely
in fast memory, then there is no down side to using archive.

Finally, retire is handled a little more carefully. For simple
linear networks like VGG, intermediate activations can be
retired on the backwards pass on a layer-by-layer basis. More
complicated networks like ResNet or DenseNet require more
precise annotations for which we leverage the Julia language,
though we could also leverage APIs in PyTorch or Tensorflow
to accomplish this task.

IV. IMPLEMENTATION AND EVALUATION METHODOLOGY

We implemented a software prototype of our data manager
in Julia [42], a high-level compiled language targeting techni-
cal computing. The main idea behind our implementation is to
create an array datatype called a cachedarray in Julia backed
by objects managed by the data manager. Policy hints take the
form of function calls that are forwarded from a cachedArray
to the manager’s policy, which then uses the data management
API to manipulate the regions backing the objects. We use
Julia’s ChainRules [43] package and the Zygote [44] automatic
differentiation framework to implement deep learning model
training. Semantic annotations are applied when compiling the
model with Zygote and therefore don’t necessarily require
modifications to the original source code. PyTorch 2.0 can
provide similar capabilities through the custom compilation
of compute graphs.

Next, we describe the general methodology used to evaluate
the performance of CachedArrays. Unless otherwise specified,
our case studies were performed as the sole user of a 2-socket
56 core (112 thread) Intel Xeon Platinum 8276L running
Ubuntu 21.10 with 192 GiB (6x32 GiB) DRAM and 1.5 TB
(6x256 GiB) Optane DC NVRAM per socket. Experiments
were conducted on a single socket, with one thread per core.

To implement deep learning primitives, we wrote a Julia
wrapper around Intel’s oneDNN [45] library. Memory for
kernel input and output tensors comes from the Julia side.

We investigate several different optimizations in the policy
to understand their relative impact. These include:

Memory Optimizations (M): We retire arrays as soon as
possible rather than relying solely on Julia’s garbage collector
(GC), fulfilling requirement 2 in Section III-A. By doing this,
we reduce the amount of data kept alive longer than necessary.
If this intermediate data is kept alive, then it must be written
to NVRAM if evicted to maintain correctness, resulting in
unnecessary slow NVRAM writes. Disabling this optimization
means we need to rely on the GC for resource management
which involves explicitly triggering collection when memory
pressure is detected.

Local Temporary Allocations (L): As discussed in Sec-
tion III-A (requirement 1), CachedArrays has been designed

550

TABLE III: Large and small CNN models used as benchmarks.
Small networks fit entirely in DRAM.

\ Large Networks I Small Networks |

\ Model | Batchsize [Footprint [| Model | Batchsize |
DenseNet 264 1536 526 GB DenseNet 264 504
ResNet 200 2048 529 GB ResNet 200 640
VGG 416 256 520 GB VGG 116 320

to support unlinked regions in fast memory. In combination
with memory optimizations, this is a potent tool for reducing
NVRAM traffic. Our policy can be modified to disable local
allocations, in which case a newly created array must first
be allocated in NVRAM and then copied into DRAM before
use. The purpose of disabling this optimization is to more di-
rectly compare with a naive 2LM implementation. Since 2LM
operates as a DRAM cache, each physical cache line must
ultimately have a copy in NVRAM. By effectively generating
a compulsory miss on first access with CachedArrays, we can
more closely model the behavior of 2LM.
Prefetching (P): We explore two different policy strategies
for responding to will_read annotations: one that always
prefetches into DRAM and one that never does. The rela-
tively high read bandwidth of NVRAM suggests that kernel
execution time may be less sensitive to the location of read-
only arguments. Further, prefetching requires making room in
DRAM for the prefetched arguments, which could result in
other arrays being evicted to NVRAM. By moving data at the
block granularity we fulfill requirement 3 in Section III-A.

The combination of optimizations and operating modes
investigated is as follows:

e 2LM: () — 2LM with no memory optimizations.
2LM: M - 2LM with memory freeing optimizations.
CA: () — CachedArrays with no memory optimizations or
prefetching. All arrays begin in NVRAM and are moved
into DRAM before use, like in a true cache.
CA: L — No memory optimization or data prefetching.
Unlike CA: (), arrays can be allocated in DRAM only.
CA: LM - Memory optimizations but no data prefetch-
ing.
e CA: LMP - Memory optimizations and prefetching.

A. Large Networks: Comparison With 2LM

The Xeon server used to run these experiments can be
configured in two modes, allowing multiple different use cases
for NVRAM. The memory mode (2LM) configures NVRAM
as main memory with DRAM serving as a transparent, direct-
mapped hardware managed cache [4]. App direct allows
NVRAM to be used directly. In this mode, NVRAM can
either be configured as an extra NUMA node to be used
automatically by the OS, or mounted as a direct access (DAX)
file system. In the latter case, files memory mapped from the
NVRAM-based DAX file system are directly mapped into the
program’s address space with reads and writes sent directly to
the NVRAM devices. Our CachedArrays based policies uses
this last option.

To compare against 2LM, the overall memory footprint of
the models used for benchmarking must greatly exceed the

size of DRAM cache on a single socket which we accomplish
though a combination of deep networks and large batchsize.
For large traditional networks, we used ResNet 200 [46] and
DenseNet 264 [47], two networks with complex data flow. As
an extra comparison point, we implemented VGG 416 [9],
which is essentially a greatly extended VGG 16. A summary
is provided in Table III along with the approximate minimum
memory footprint required for a single iteration of training.
The batchsizes for the small networks were chosen such that
the memory requirement for training was between 170 GB and
180 GB: small enough to fit entirely in DRAM.

All runs in 2LM were conducted with a maximum memory
size of 1300 GB. When we run in app direct mode, CachedAr-
rays is configured with the same hardware limits of 180 GB
DRAM and 1300 GB NVRAM. After each training iteration
(forward + backward pass), the GC was invoked to clean up
all temporary memory, leaving only the model weights and
computed gradients. The local heap was then defragmented
before the next run to help keep behavior similar across
iterations (defragmentation overhead is negligible compared
to the iteration time). Each model was run for four iterations
and performance metrics were checked to ensure that behavior
for each iteration was consistent. Input data was randomly
generated using a normal distribution.

For each experiment, we used hardware performance coun-
ters to capture read and write traffic to DRAM and NVRAM.
For the 2LLM based runs, the same hardware counters were
used to also capture DRAM cache statistics including cache
hits, clean cache misses, and dirty cache misses. All memory
heaps used by CachedArrays are pre-allocated before running
our experiments, ensuring that the OS assigns physical pages
to all virtual pages within the heap. This in itself provides a
large speedup over Julia’s default allocator. For large alloca-
tions, normal allocators typically memory map new memory
from the OS, which must be zero-initialized. Due to this
overhead, we use 2LM with the CachedArrays allocator as
the baseline.

B. Small Networks - Sensitivity Analysis

Since we control data movement from software, we can
vary the amount of DRAM available to CachedArrays to see
how our simple policy holds up as we decrease the DRAM
allowance. To that end, we use the small networks and batch
sizes provided in Table III. These are chosen such that the
memory footprint required for training is between 170 and
180 GB and thus can fit within the DRAM of a single socket
of our benchmark machine. We then vary the DRAM budget
from the full 180 GB down to 0 GB (NVRAM only). As for
the large benchmarks, we run each model for four iterations,
defragmenting heaps between iterations and checking that
variance between iterations was minimal. For this experiment,
we use VGG 116 instead of VGG 416 in order to maintain
a higher batch size. All of these runs were conducted in the
CA: LM mode as this performs well across all networks.

551

. 201
£z 300 216 e
£ g 200 Ll 131 143
2E 100
0
2LM: 0 2LM: M CA: 0 CA: L CA: LM CA: LMP
(a) DenseNet 264
= — 400 361 ‘
27 227 264 244 16
<
EE o0 169
=
0
2LM:) 2LM: M CA: 0 CA: L CA: LM CA: LMP
(b) ResNet 200
600
o 450 448 427
52 40 366 365 353
R
é ﬁ 200
0
2LM:) 2LM: M CA: D CA: L CA: LM CA: LMP
(¢c) VGG 416

Fig. 2: Average execution time for a single iteration of training
for the large networks, categorized by operating mode and
applied optimizations.

e 2LM: () = 2LM: M

)
O 1,000
z
%
v 500
S
ER [‘
= 0 50 100 150 200 250 300 350

Tteration Runtime (s)

Fig. 3: Resident heap memory through a single iteration of
ResNet training. The 2LLM based experiments have a memory
heap which is implicitly managed by Intel’s DRAM cache.

V. RESULTS

Figure 2 shows the absolute runtime for a single iteration for
the large CNN benchmarks. First, we explore the performance
of 2LM: () (hardware DRAM cache with no optimizations)
and 2LM: M (DRAM cache with memory optimizations).
For CachedArrays, CA: L (supporting local-only allocation)
is faster than CA: (), and applying memory optimizations
further improves performance. Prefetching hurts performance
for DenseNet and ResNet, but improves performance for VGG.

a) Why does semantic information improve performance
of the hardware DRAM cache?: Figure 2 shows that adding
the memory freeing optimizations improve the performance
for 2LM as well as CachedArrays. To understand why, we
investigate the physical addresses and cache behavior for
ResNet 200. Figure 3 shows the occupancy of the memory
heaps for a single iteration of ResNet under the two 2LM
operating regimes. These runs only have a single memory
heap that is implicitly managed by the hardware DRAM cache.
Without any memory optimizations (2LM: (), memory usage

D0Hits [0 Clean Misses[/0 Dirty Misses

—_

. 0.813
= 8081 (634
£ %06
g S
Lf* < 0.4 0.283
S 0.2 0.083 0.147
0 0.041 ’—‘
OLM:) 2LM: M

Fig. 4: DRAM cache tag statistics for a single training iteration
of ResNet 200.

‘ JIDRAM Read lEDRAM Write JONVRAM Read IENVRAM Write \

)

T 6l &y He = £ s

: 4 2 = =1 =Y = © — = »

= LN ~ oo <5 2ol oo Loo

S 2 3 1= RE o 55 £ &

) ’_“_| [l m —l P [
2LM: 0 2LM: M CA: 0 CA: L CA:LM CA:LMP

(a) DenseNet 264

=

210} = o & . o

ot oL o b e o 9

g g e =N EP g & [

E 5 []2 .= o QU Z e =re I

= HSS i~ HH“H M oo oo

2 -3 = 2 2 e e

N Cm RS = = 22 BEsE
2LM: 0 2LM: M CA:) CA: L CA:LM CA: LMP

(b) ResNet 200

g 2 -

=) - - =

= 15 = = g

ER “ < Z %

210 @ H“’: S u-' S, & -

=l Al & _ o == K= xo o vo o

s 5 8 S o 2 H“\‘o H“ﬁm &

g 0 P =2 N (N = SE
2LM: 0 2LM: M CA: CA: L CA:LM CA: LMP

(c) VGG 416

Fig. 5: Amount of data moved for a single iteration training
for the large CNNSs.

keeps increasing until the garbage collector is run (around time
220s) which causes the monotonically increasing behavior
of that curve. Note that both PyTorch and Tensorflow must
also run their own garbage collectors to free GPU memory.
In contrast, when the annotated run (2LM: M) begins its
backward pass, (around time 100s) it proactively frees memory
produced on the forward pass. This results in more reuse of the
physical pages backing that memory, leading to fewer cache
misses and less data movement.

Supporting this idea is Figure 4, which shows the average
DRAM cache hit, clean miss, and dirty miss rates for the
two 2LM runs. The annotated run has an 18% higher hit rate
and 50% lower dirty miss rate, both of which improve 2LM
performance [4]. By adding semantic information, we achieve
better utilization of the data movement mechanism.

b) Why does CachedArrays outperform 2LM?: To under-
stand the performance difference between 2LM and CachedAr-
rays, we first focus on the total amount of memory moved for
a single iteration of training. Figure 5 shows the total amount
of DRAM and NVRAM traffic for a single iteration of training
for two of our large networks, further broken into reads and

552

ODRAMIINVRAM

203 0.036 U0z
= 0.047) 1 0.085
=02 0.063 0.06
= 0.273 0.299
:é 0.1 0.179 25 0.222 0.192
)
OLM:) 2LM:M CA: ¢ CA:L CA:LM CA: LMP
(a) ResNet 200.
= 0.3
=} 0.022 4
= 0.046
go02 0.072 g8 03T
£ 0.256 0.25
:;n 0.1 |0:223 0174| |o.169| |0-206
)
OLM:) 2LM:M CA: ¢ CA:L CA:LM CA: LMP
(b) VGG 416.

Fig. 6: Average utilization of the DRAM bus.

writes. With no optimizations, CachedArrays is slower than
memory-optimized 2LM and in the case of VGG is even
slower than unoptimized 2LLM. For DenseNet and ResNet, CA:
() generates similar read and write traffic to 2LM: (), though
with generally fewer NVRAM writes. The saving of NVRAM
writes occurs because even though memory optimizations are
not applied, we still run the garbage collector after every
iteration of training. In 2LLM, this optimization does not help
because physical addresses used on the backwards pass are
dirty with respect to the DRAM cache.

Even though this still applies to VGG, CA: 0 is still slower
than 2LM: (). This is where traffic shaping comes into play.
Prior work shows that large sequential accesses provide the
highest bandwidth for NVRAM [6], [4]. In 2LM, NVRAM
traffic is haphazard and results from conflict misses in the
DRAM cache. With CachedArrays, NVRAM traffic is the
result of explicit, well-shaped memory copies.

Figure 6 shows the average utilization of the memory bus
for a single iteration of training for ResNet 200 and VGG 416.
For ResNet, CA: () achieves a higher average utilization than
2LM: () while the situation is reversed for VGG. The memory
movement engine in CachedArrays is highly multi-threaded,
specifically targeting large memory sizes which works well
for ResNet because the large batch size of 2048 results in
large memory transfers. However, a much smaller batch size
of 256 is used for VGG, leading to smaller data transfers and
more parallelization overhead. However, bus utilization must
be considered in the context of overall memory moved. As op-
timizations are applied via CachedArrays, bus utilization tends
to increase and overall traffic generated tends to decrease, both
resulting in better performance.

Impact of Local Allocation: As shown in Figure 5, adding
the local allocation optimization to CachedArrays significantly
decreases the NVRAM read and DRAM write traffic due to the
elision of the initial memory copy. The performance difference
between these two is largely due to the decreased time spent
synchronously moving data.

Impact of Memory Optimizations: Memory optimizations

- 200 —e— Including Movement Time

e 150 —m— Excluding Movement Time

£ 100

£ 90 .
0

50 100
DRAM Allowance (GB)
Fig. 7: Average runtime for a single training iteration for the
small DenseNet. Absolute wall clock time (blue) and time
without data movement (red). Runs with local allocation and
memory optimizations, but without prefetching enabled.

decrease memory pressure by freeing memory as soon as pos-
sible. This avoids many unnecessary writes to NVRAM, which
can be seen in Figure 5. In particular, observe the difference
in NVRAM reads and writes in Figure 5a between CA: L and
CA: LM for DenseNet. For CA: L, the number of NVRAM
writes exceeds the number of NVRAM reads, implying that
unnecessary data is being moved to NVRAM. This is the result
of intermediate allocations not being freed as soon as possible.
When applying memory optimizations (CA: LM), the number
of NVRAM writes for DenseNet drops from about 1100 GB
to about 350 GB, with NVRAM reads exceeding NVRAM
writes. The other networks experience similar decreases in
NVRAM writes when applying memory optimizations. The
local allocation and memory optimizations reduce the amount
of NVRAM writes down to a bare-minimum.

Impact of Prefetching: Enabling data prefetching harms
performance for DenseNet and ResNet. As can be seen in
Figure 5, prefetching decreases NVRAM read traffic and
increases DRAM read traffic because arrays are moved from
NVRAM to DRAM where there are referenced multiple times
to compute the backwards pass. However, some operations are
not sensitive to the bandwidth of their read-only arguments.
Hence, this prefetch wastes time and potentially evicts other
arrays. In the case of VGG, on the other hand, prefetching does
slightly improve performance since it significantly decreases
NVRAM read traffic by a factor of 5.4x. Thus, there is no
“one size fits all” approach to memory management.

In summary, full CachedArrays results in less DRAM and
NVRAM traffic overall, because it is aware that data freed
on the backwards pass is semantically dead, and thus does
not need to be written back to NVRAM. Hardware caches
do not have this semantic insight and thus must always
act conservatively. Furthermore, Figure 6 shows the average
DRAM bus utilization though out an iteration of training.
CachedArrays maintains a higher average utilization while
also moving less total data. CachedArrays both maintains
the memory semantics required to elide unnecessary dirty
writebacks and uses traffic shaping to achieve high bandwidth.

c) Sensitivity to DRAM capacity: The runtime for a
single iteration of training for the small DenseNet is shown
in Figure 7. Running with only NVRAM results in a 3—
4x performance penalty (other models show similar results).
However, with even a small amount DRAM, CachedArrays is

553

able to get most of that performance back.

Figure 7 also shows what the performance would be if
CachedArrays had perfectly asynchronous data movement (as
opposed to purely synchronous) and could overlap movement
with execution. Asynchronous data movement could be imple-
mented with a separate thread pool or with an accelerator [48].
For DenseNet and ResNet, this projected performance varies
only slightly as the DRAM budget decreases. VGG, on the
other hand, still experiences a slow-down due to more reads
being generated to NVRAM. These results are consistent with
the large network results where DenseNet and ResNet had
lower performance with prefetching unlike VGG. The kernels
composing VGG are more sensitive to read bandwidth.

d) Why is a small amount of DRAM enough?: Contrary
to the behavior of pure DRAM, DRAM to NVRAM copy
bandwidth actually decreases with increasing parallelism [6],
[4]. Furthermore, the copy kernel in CachedArrays uses non-
temporal stores to NVRAM, which are crucial for best per-
formance. OneDNN kernels are not optimized for writing to
NVRAM and thus the performance with all NVRAM is slow.
When a small amount of DRAM is used, the output parameters
of the computation kernels can be placed in DRAM and any
movement of data from DRAM to NVRAM goes through
code-paths optimized to get the best write performance out
of NVRAM. An interesting area for future research would be
to explore computation kernel implementations that specialize
based on the memory location of its arguments (much like
existing specialization via just-in-time compilation based on
the dimensions of the arguments).

VI. CachedArrays EXTENSIONS

In this section, we will discuss three directions for exten-
sions of CachedArrays: (1) supporting sparse data structures
and more complex deep learning workloads, (2) supporting
other heterogeneous memory devices, and (3) supporting ap-
plication frameworks beyond Julia. The approach taken by
CachedArrays is not limited to static computation graphs or
the well understood data use patterns of CNN workloads
like many previous works [9], [8]. The CachedArrays policy
responds to runtime annotations, and can apply to applications
exhibiting dynamic memory use such as Transformers, RNNs,
and Mixtures of Experts [49]. For example, Hildebrand et al.
applied a dynamic policy to a DLRM workload [50] and found
that flexibility in the data movement policy is required to meet
different memory access patterns as the locality of the data
changes based on user input [15]. Further, we could augment
the policy with real-time kernel performance information,
allowing the policy to explore and adapt its strategy.

Additionally, our framework is agnostic to the com-
pute/interconnect framework surrounding the memory. Thus,
CachedArrays applicable to other heterogeneous memory de-
vices such as local/remote memory (e.g., CXL) and CPU/GPU
memory. In this paper, we focused on a realistic platform avail-
able for experimentation, but the CachedArrays framework is
not limited to DRAM+NVRAM systems. In fact, the flexibility
enabled by separating the data movement policy from the

data movement mechanism means that when migrating an
application to a new heterogeneous memory platform, the user-
defined policy does not have to be modified. The only change
necessary is for the platform developer to provide the interface
needed to implement the policy.

Finally, while we implemented an initial prototype of
CachedArrays in Julia, the approach is not limited to Julia.
Frameworks such as PyTorch [40] and Tensorflow [51] have
very similar interfaces that can be exploited to implement
CachedArrays. For instance, PyTorch has a torch.Tensor
class that is very similar to Julia’s Array type and it supports
on-the-fly compiler transformations with torch.compile.

VII. CONCLUSIONS

In this paper, we presented CachedArrays, a framework for
managing data movement in heterogeneous memory systems.
CachedArrays is a software framework that allows the user
to define a data movement policy that is applied at runtime.
We implemented CachedArrays in Julia and evaluated it on a
DRAM+NVRAM system and found significant performance
improvements compared to the hardware-implemented cache.
Futhermore, although not evaluated in this paper, CachedAr-
rays can be extended to other heterogeneous memory systems,
frameworks beyond Julia, and applications beyond CNNss.

REFERENCES

[1] S. Van Doren, “Abstract - HOTI 2019: Compute express link,” in 2019
IEEE Symposium on High-Performance Interconnects (HOTI), 2019, pp.
18-18.

S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran,
J. Jackson, and K. Schwan, “Data tiering in heterogeneous memory
systems,” in Proceedings of the Eleventh European Conference on
Computer Systems, 2016, pp. 1-16.

J. Ren, J. Luo, K. Wu, M. Zhang, H. Jeon, and D. Li, “Sentinel:
Efficient tensor migration and allocation on heterogeneous memory
systems for deep learning,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 1EEE, 2021, pp.
598-611.

M. Hildebrand, J. T. Angeles, J. Lowe-Power, and V. Akella, “A case
against hardware managed DRAM caches for NVRAM based systems,”
in 2021 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2021, pp. 194-204.

J. T. Angeles, M. Hildebrand, V. Akella, and J. Lowe-Power, “Investi-
gating hardware caches for terabyte-scale NVDIMMS,” in Non-volatile
Memories Workshop (NVMW 2021), 2021.

J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the intel optane DC persistent memory
module,” CoRR, vol. abs/1903.05714, 2019. [Online]. Available:
http://arxiv.org/abs/1903.05714

L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B.
Gibbons, and J. Shun, “Sage: Parallel semi-asymmetric graph algorithms
for NVRAMSs,” Proc. VLDB Endow., vol. 13, no. 9, p. 1598-1613, May
2020. [Online]. Available: https://doi.org/10.14778/3397230.3397251
M. Hildebrand, J. Khan, S. Trika, J. Lowe-Power, and V. Akella,
“Autotm: Automatic tensor movement in heterogeneous memory
systems using integer linear programming,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
875-890. [Online]. Available: https://doi.org/10.1145/3373376.3378465

(2]

(3]

(4]

[5]

=

(71

[8

554

[9]

(12

[13]

[14]

[15]

(17]

(18]

(20]

(21]

[22]

(23]

(24]

M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vDNN: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-49. Piscataway, NJ,
USA: IEEE Press, 2016, pp. 18:1-18:13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3195638.3195660

X. Chen, D. Z. Chen, and X. S. Hu, “moDNN: Memory optimal
DNN training on GPUs,” in 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2018, pp. 13-18.

S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC *20. IEEE Press, 2020.

J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “DeepSpeed:
System optimizations enable training deep learning models with
over 100 billion parameters,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery;, Data
Mining, ser. KDD °20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 3505-3506. [Online]. Available:
https://doi.org/10.1145/3394486.3406703

J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang, M. Zhang,
D. Li, and Y. He, “ZeRO-Offload: Democratizing Billion-Scale model
training,” in 2021 USENIX Annual Technical Conference (USENIX
ATC 21). USENIX Association, Jul. 2021, pp. 551-564. [Online].
Available: https://www.usenix.org/conference/atc2 1/presentation/ren-jie
S.-F. Lin, Y.-J. Chen, H.-Y. Cheng, and C.-L. Yang, “Tensor movement
orchestration in multi-GPU training systems,” in 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2023, pp. 1140-1152.

M. Hildebrand, J. Lowe-Power, and V. Akella, “Efficient large
scale DLRM implementation on heterogeneous memory systems,” in
High Performance Computing: 38th International Conference, ISC
High Performance 2023, Hamburg, Germany, May 21-25, 2023,
Proceedings. Berlin, Heidelberg: Springer-Verlag, 2023, p. 42-61.
[Online]. Available: https://doi.org/10.1007/978-3-031-32041-5_3

Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble
page management for tiered memory systems,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2019,
Providence, RI, USA, April 13-17, 2019, 2019, pp. 331-345. [Online].
Available: https://doi.org/10.1145/3297858.3304024

S. Kannan, Y. Ren, and A. Bhattacharjee, “KLOCs: kernel-level object
contexts for heterogeneous memory systems,” in Proceedings of the 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2021, pp. 65-78.

N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent
page management for two-tiered main memory,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2017,
Xi’an, China, April 8-12, 2017, 2017, pp. 631-644. [Online]. Available:
https://doi.org/10.1145/3037697.3037706

S. Bergman, P. Faldu, B. Grot, L. Vilanova, and M. Silberstein, “Re-
considering os memory optimizations in the presence of disaggregated
memory,” in Proceedings of the 2022 ACM SIGPLAN International
Symposium on Memory Management, 2022, pp. 1-14.

B. Peng, Y. Dong, J. Yao, F. Wu, and H. Guan, “Flexhm: A practical
system for heterogeneous memory with flexible and efficient perfor-
mance optimizations,” ACM Transactions on Architecture and Code
Optimization, vol. 20, no. 1, pp. 1-26, 2022.

J. Kim, W. Choe, and J. Ahn, “Exploring the design space of page
management for multi-tiered memory systems,” in 202/ {USENIX}
Annual Technical Conference ({USENIX}{ATC} 21), 2021, pp. 715-
728.

T. D. Doudali, D. Zahka, and A. Gavrilovska, “Cori: Dancing to the right
beat of periodic data movements over hybrid memory systems,” in 2021
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 1EEE, 2021, pp. 350-359.

A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter, “Hemem:
Scalable tiered memory management for big data applications and
real nvm,” in Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles CD-ROM, 2021, pp. 392-407.

H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhat-
tacharya, C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan,
“TPP: Transparent page placement for CXL-enabled tiered-memory,” in

(25]

(27]

[30]

(31]

(32]

(33]

[34]

(35]

Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
2023, pp. 742-755.

H. Li, K. Liu, T. Liang, Z. Li, T. Lu, H. Yuan, Y. Xia, Y. Bao, M. Chen,
and Y. Shan, “HoPP: Hardware-software co-designed page prefetching
for disaggregated memory,” in 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 1EEE, 2023, pp.
1168-1181.

S. Kumar, A. Prasad, S. R. Sarangi, and S. Subramoney, “Radiant:
efficient page table management for tiered memory systems,” in Pro-
ceedings of the 2021 ACM SIGPLAN International Symposium on
Memory Management, 2021, pp. 66-79.

I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu, and
A. Kolli, “Rethinking software runtimes for disaggregated memory,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
79-92.

B. C. Schwedock, P. Yoovidhya, J. Seibert, and N. Beckmann, “tiko: a
polymorphic cache hierarchy for general-purpose optimization of data
movement.” in ISCA, 2022, pp. 42-58.

A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data
movement is all you need: A case study on optimizing transformers,”
Proceedings of Machine Learning and Systems, MLSys, vol. 3, pp. 711—
732, 2021.

S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1EEE, 2020, pp. 1-16.

O. Rausch, T. Ben-Nun, N. Dryden, A. Ivanov, S. Li, and T. Hoefler,
“A data-centric optimization framework for machine learning,” in Pro-
ceedings of the 36th ACM International Conference on Supercomputing,
2022, pp. 1-13.

C. Giannoula, K. Huang, J. Tang, N. Koziris, G. Goumas, Z. Chishti,
and N. Vijaykumar, “DaeMon: Architectural support for efficient data
movement in fully disaggregated systems,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 7, no. 1, pp.
1-36, 2023.

E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool,
O. Schwartz, and H. V. Simhadri, “Write-avoiding algorithms,” in 2016
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 1EEE, 2016, pp. 648—658.

I. Oukid, D. Booss, A. Lespinasse, W. Lehner, T. Willhalm, and
G. Gomes, “Memory management techniques for large-scale persistent-
main-memory systems,” Proceedings of the VLDB Endowment, vol. 10,
no. 11, pp. 1166-1177, 2017.

W. Pan, T. Xie, and X. Song, “Hart: A concurrent hash-assisted radix tree
for DRAM-PM hybrid memory systems,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 1EEE, 2019,
pp. 921-931.

Y. Shen and Z. Zou, “Efficient subgraph matching on non-volatile
memory,” in International Conference on Web Information Systems
Engineering. Springer, 2017, pp. 457-471.

J. Jung, J. Kim, and J. Lee, “DeepUM: Tensor migration and prefetching
in unified memory,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, 2023, pp. 207-221.

555

[38]

[39]
[40]

[41]
[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan, “Heteroos:
OS design for heterogeneous memory management in datacenter,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, 2017, pp. 521-534.

Tensorflow, https://www.tensorflow.org.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“PyTorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style- high- performance-deep-learning-library.

pdf

oneAPI, https://www.oneapi.io.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM review, vol. 59, no. 1, pp.
65-98, 2017. [Online]. Available: https://doi.org/10.1137/141000671

F. Schifer, M. Tarek, L. White, and C. Rackauckas, “AbstractDifferen-
tiation.jl: Backend-agnostic differentiable programming in Julia,” 2021.
M. Innes, “Don’t unroll adjoint: Differentiating SSA-form programs,”
CoRR, vol. abs/1810.07951, 2018. [Online]. Available: http://arxiv.org/
abs/1810.07951

oneDNN, https://github.com/oneapi-src/oneDNN.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 2261-2269.
A. Biswas, “Sapphire rapids,” in 2021 IEEE Hot Chips 33 Symposium
(HCS), 2021, pp. 1-22.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E.
Hinton, and J. Dean, “Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer,” CoRR, vol. abs/1701.06538,
2017. [Online]. Available: http://arxiv.org/abs/1701.06538

M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. lia,
L. Xiong, and M. Smelyanskiy, “Deep learning recommendation
model for personalization and recommendation systems,” CoRR, vol.
abs/1906.00091, 2019. [Online]. Available: http://arxiv.org/abs/1906.
00091

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, 2016, pp. 265-283. [Online]. Available: https://www.
usenix.org/conference/osdil6/technical-sessions/presentation/abadi

