
CachedArrays: Optimizing Data Movement for

Heterogeneous Memory Systems

Mark Hildebrand

University of California, Davis

Email: hildebrandmw@gmail.com

Jason Lowe-Power

University of California, Davis

Email: jlowepower@ucdavis.edu

Venkatesh Akella

University of California, Davis

Email: akella@ucdavis.edu

Abstract—We propose a new framework called CachedArrays
and a set of APIs to address the data tiering problem in large scale
heterogeneous and disaggregated memory systems. The proposed
framework operates at a variable size object granularity and
allows the programmer to specify semantic hints about future
use of data via a Policy API, which are used by a Data Manager
to choose when and where to place a particular data object
using a data management API, thus bridging the semantic gap
between the programmer and the platform-specific hardware
details, and optimizing overall performance. We evaluate the
proposed framework on a real hardware platform with terabytes
of memory consisting of NVRAM and DRAM on large scale ML
training workloads such CNNs that exhibit different data access
and usage patterns. We show that CachedArrays outperforms
hardware caches, and can exploit many of the algorithmic-specific
optimizations of prior works.

I. INTRODUCTION

From the dawn of computing, memory has been a significant

bottleneck in our quest to improve performance. An idea

memory subsystem provides high bandwidth, low latency, low

cost per bit, and high-capacity. However, these competing

demands cannot be satisfied with a single memory tech-

nology. With the advent of emerging interconnect standards

like Compute Express Link (CXL) [1], system architects are

looking to satisfy these conflicting requirements by creating

a memory subsystem using multiple different technologies.

Heterogeneous memory naturally introduces the need for data

tiering [2], [3] or moving the data that is being accessed

by a program to a memory pool that suits the nature of

the memory access pattern. Traditionally hardware-managed

multilevel caches and operating system (OS) page migration

methods have been used to address this problem. However,

for emerging ML workloads with working sets in the range of

terabytes and complex, application-specific data use patterns,

these techniques are not effective.

Transparent hardware-managed caching can cause perfor-

mance degradation when the memory sizes are hundreds of

gigabytes or more [4], [5]. Implementations of hardware-

managed DRAM caches such as Intel’s Cascade Lake systems

are inefficient due to cache-line-level metadata tracking and

write amplification, which results in poor bandwidth utilization

that is particularly detrimental for heterogeneous systems

using phase change memory (PCM) based technologies such

as Intel’s Optane DC [6]. Moreover, these systems can benefit

from bespoke optimizations to make data movement more

efficient [6]. For example, SAGE [7] proposes new data

structure design and new algorithms for graph computations,

AutoTM [8] uses static analysis using ILP-based techniques to

optimize data movement for a certain class of ML applications

such as Convolutional Neural Networks (CNNs) For GPU

systems, vDNN [9] and its derivatives [10], [11], [12], [13]

exploit the unique characteristics of the backprop algorithm to

augment limited GPU memory with memory on the host.

These solutions are often ad hoc for a particular application,

and they often require significant rewrite of the applications.

To efficiently use memory and move data in a disaggregated

system, we need a framework which is easily modified for new

applications, algorithms, and platforms that defines exactly

what the programmer should specify and what the underlying

hardware can do. We believe such a framework requires a

separation of concerns between the application’s data ac-

cess, the policy used to direct the data movement, and the

underlying data movement mechanism. Thus, in this paper

we present CachedArrays as an example framework which

enables mostly automatic application hints for future data with

a customizable data movement policy, and an independent

data manager to handle data movement between different

memories. Furthermore, we believe that often one-size-does-

not-fit all, and the framework should operate at a program-

specific level of granularity (as opposed to the 64-byte cache

block) so that it is easier for the programmer to convey

semantic information and more efficient in terms of metadata

tracking. This renders the overall framework more transparent

to the programmer (more like hardware-managed caches),

and shields the programmer from low-level details of data

movement, mitigating the need for a significant application

rewrite while still realizing performance benefits.

We propose the design, implementation, and evaluation of

a framework called CachedArrays (see Figure 1) that realizes

these requirements. As described in Section III, CachedArrays

the architectural abstractions of a policy and a data manager.

The policy is constructed using the data management API

and using the semantic intent by the programmer conveyed

to via a policy API. We describe the requirements for a data

movement framework and the details of software architecture

of CachedArrays and an API suitable for implementing large

scale deep neural networks in Section III. In Section IV we

discuss the details of the implementation of CachedArrays

in Julia programming language. Since disaggregated memory

545

2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPS57955.2024.00055

TABLE I: Summary of related work in data management in heterogeneous memory systems.

Work Abstraction Layer Granularity Programmability Mechanism

Sage [7] Algorithm Data Structure Application Specific Manual Partitioning

vDNN [9], ZeRO-Offload [13] Application Tensor Application Specific Manual Partitioning

AutoTM [8], Sentinel [3],[14], DLRM [15] Compiler Tensor Transparent Profile Guided Optimization

Nimble [16], KLOC [17], Thermostat [18],
[19],[20], [21], [22],[23],[24],[25],[26] Operating System Page Transparent Virtual Memory

Memory Mode/2LM (in Intel NVRAM) Hardware Cache Block Transparent HW Managed Cache

Kona [27], täkō [28] Hardware Cache Block Transparent
SW Runtime based on

Cache Coherence

CachedArrays (This work) Application Variable Sized Object Transparent (with annotations) Type System/Runtime

systems with CXL are currently nascent, we instead evaluate

the proposed framework on heterogeneous memory machine

with both Optane Non-Volatile Random Access Memory

(NVRAM) and DRAM-based memories. We show that for

training Convolutional Neural Networks (CNNs) CachedAr-

rays improves performance 1.4× to 2.03× over baseline

hardware managed cache (called 2LM) on Intel’s platform.

Interestingly, we show that some of the proposed optimizations

(such as eager memory freeing) can improve the performance

of the hardware managed caches as well.

The main contributions of this work are as follows:

• We show that by separating the concerns of communi-

cating the application’s future data use pattern (hints/an-

notations), when and where to move data (policy), and

the underlying data movement mechanism (data manager)

leads to a performant and generic data management

system.

• We present CachedArrays, a concrete implementation of

these ideas in Julia, enabling applications with array-

like data structures to transparently take advantage of

heterogeneous memory with optional data usage hints.

Detailed evaluation of using CachedArrays on a real

heterogeneous memory (NVRAM+DRAM) platform on

training large deep learning models.

II. RELATED WORK

With the advent of heterogeneous memory platforms and

the growing memory footprint of ML workloads there has

been significant interest in understanding and optimizing data

movement [12], [29], [30], [31], [19], [32] at all levels across

the software/hardware stack. Table I summarizes works most

closely related to this paper.

Some prior works have proposed data structures and al-

gorithms specifically for DRAM/NVRAM memory systems

to overcome this challenge and show significant performance

improvements using their bespoke solutions [33], [8], [34],

[35], [36]. In our work, we look at the optimizations these

prior works have used and develop a general approach which

can be applied to many different applications.

There have been many works focused on optimizing deep

learning workloads in the CPU/GPU environments to over-

come the memory bottleneck issue for GPUs. vDNN [9],

ZeRO-Offload [13] and other related works in this line [11],

[12], [10], [37] exploited the algorithmic characteristics of

these workloads, such as backpropagation, to decide on data

placement and movement. These solutions call for deep algo-

rithmic changes, requiring the programmer to manually deter-

mine the reuse pattern and figure out a suitable data movement

scheme to actually change the algorithm, accordingly. Other

research works tried to take such decisions at the compiler

level including AutoTM [8] which used ILP to optimize

data movement and Sentinel [3] which used runtime profiling

information. However, these solutions suffer from scalability

and generalization if the workloads’ reuse patterns are sparse

or less straightforward to detect. Examples of such workloads

include Deep-Learning Recommendation Models (DLRMs)

which have sparsely accessed embedding tables. Hildebrand

et al. [15] show that DLRM workloads with sparse accesses

also benefit from software data movement policies, but the

policy must be flexible enough to adapt to the workload. The

CachedArrays framework addresses these shortcomings by

minimizing the required algorithmic changes by programmers

and enabling a specialized placement and movement policy

based on characteristics of the program and the reuse pattern.

Many works proposed intelligent data migration between

slow and fast memories in page granularity to perform data

tiering at the OS level, using runtime characteristics such as

reuse pattern and page hotness [22], [2], [38], [21], [23].

However, like hardware-based techniques, these works do not

take into account future information about the data use and

the semantic information from the application.

Finally, other works considered hardware/software redesign

for data management in memory systems including Kona

which removes the overhead of conventional virtual memory

from the critical path of tracking applications [27] and täkō

which enables application to be informed of the memory

access behavior and customize actions based on callbacks [28].

Both Kona and täkō provide hardware and software compo-

nents for better data management at the runtime. However,

none of them provide support for semantic information sharing

from application to the hardware, to form a suitable data

management policy. Täkō overlaps with what we introduce as

the data manager in Section III-C; however, täkō is reactionary

to the cache (e.g., its callbacks can be triggered on a miss or

an eviction) whereas CachedArrays is proactive and triggers

the evictions and insertions before the application accesses the

data. Finally, täkō has not been applied to massive 100 GiB

DRAM caches and has many of the same downsides as

hardware-managed DRAM caches.

546

III. CACHEDARRAYS DETAILS

In this section we discuss the requirements for a high-

performing data movement system which does not require

deep programmatic changes, the software architecture of our

CachedArrays design, and end with an example end-to-end de-

sign for data movement for training large-scale convolutional

neural networks.

A. Requirements for a Data Movement Framework

We observe the following optimizations are important for

high-performance data management on heterogeneous memory

platforms.

1) Initially allocate data only in one specific device (e.g.,

fast memory). Hardware caching potentially requires an

initial movement from backing memory to the cache,

which increases data movement.

2) Elide useless writebacks from one device to another

when the data is deallocated. Section V shows this opti-

mization significantly reduces NVRAM writes compared

to the hardware managed cache.

3) Move data at a large granularity instead of at the block-

level which more efficiently uses memory devices [6],

[4]. Section V shows that in CNN applications with a

simple policy, CachedArrays has higher average memory

bus utilization than the hardware managed cache.

4) Avoid polluting the fast memory with data which is

rarely referenced, retaining only relevant data in the

faster memory.

These optimizations are not possible with fully transparent

data management mechanisms such as NUMA and hardware

caching. Thus, to generalize access to these optimizations for

more applications, we need a data movement management

framework such that the semantic information from the ap-

plication can be used to drive the data movement without

requiring the application to directly interact with the data

movement mechanism.

Only the application (or runtime, compiler, programmer) has

the semantic information to know the future use of the data

which is required for the optimizations above. Specifically, we

have found the following semantic information to be the most

important to communicate from the application-level to the

data manager.

• “I am going to read this object”

• “I am going to write this object”

• “I am not going to access this object for a while”

• “I am never going to access this object again”

B. Data Management API Framework

Our main idea is to separate the three concerns of the

data management system: the application’s access to data, the

data movement mechanism (the data manager), and the data

movement policy. By separating these three components, we

enable the data movement to use semantic information from

the applications without requiring the application to directly

interact with the data movement mechanism. Figure 1 presents

Device 1 Device 2

DATA MANAGER

APPLICATION POLICY

Object 1

Region 1 - 1 Region 1 - 2
Region

3 - 2

Region

2 - 1

Object 3
Object

2

Data

Access

Data

Management API

Policy

API

Fig. 1: High level idea of a generic heterogeneous memory

management system.

a high-level overview of a generic heterogeneous memory

management system.

The data access from the application is separated from

the other components by a level of indirection (the object).

The semantic information about the data use is separated

from the other components via the policy API which the

application uses to communicate information about the data

use to the policy. Finally, the data movement mechanism is

separated from the other components via the data management

API. An expert programmer or language runtime designer can

implement a policy for data movement which directly interacts

with the data manager layer to move data without requiring

application changes due to object abstraction.

In the rest of this section, we will describe each component

of this system in detail.

C. Data Manager

The data manager exposes an API so that the policy can

direct the data movement. This data management API includes

functions to move data, allocate space, query the current state

of the system, and update the current state of the system. There

are many partial implementations of this API (e.g., täkō [28],

libmemkind, SMDK). However, they lack fundamental features

such as the ability to transparently move data between devices

and associate data on multiple devices with a single logical

object. Thus, we build CachedArrays from the ground up,

implementing allocators supporting these operations on top of

raw memory obtained either through a single large malloc or

a memory map from a direct access (DAX) file system.

Objects and Regions: One key observation in prior work

to enable the optimizations discussed in Section III-A is that

data movement should be done on the “object” level within a

program. The object level is where the programmer, compiler,

and runtime have specific knowledge of the semantics of the

data within their program which can be used to drive data

movement and placement considerations. For instance, the

programmer knows whether an array will be accessed sparsely

or densely, which can affect caching decisions. Examples

of “objects” include standard data structures (e.g., standard

547

containers like std::vector in C++) and tensors in CNN-

based workloads. In this paper, we focus on CNN-based

workloads with relatively large (> 100s of KiB) tensors which

are both densely and sparsely accessed.

To support moving objects between different memory pools

and construction of higher order constructs like two-level

caches we use the idea of regions. A region is a contiguous

slice of virtual memory that either holds the current data for

an object (which we call the primary region) or copies of the

data for an object (where we call each copy a secondary).

Two regions are said to be linked if they both are associated

with the same object. An object’s secondary regions may be

valid if the primary is clean and read only, or stale if the

primary has been updated and without propagating this change

to all its secondaries. Our initial prototype of CachedArrays

requires its underlying memory heaps to be preallocated from

the operating system prior to execution (i.e., no dynamic

memory allocation from the OS through system calls like

mmap). Dynamic memory could be added through growing

or shrinking the base heap on each device or though multiple

heaps per device that are mapped and freed as required.

CachedArrays inherently supports object reallocation which

mitigates fragmentation in either case.

Data Access: In our implementation of CachedArrays, we

focus on applications which use the kernel programming

model (i.e., most computation is done in kernels). The kernels

operate on objects by either reading an object, writing an ob-

ject, and allocating and freeing temporary objects. This model

fits well with deep learning frameworks (e.g., Tensorflow [39],

PyTorch [40], OneAPI [41], etc.) and many high-performance

computing applications.

Because of the kernel programming model, the extra level

of indirection for accessing the underlying data of objects can

be easily hidden. When the kernel is executed, the runtime

can replace the object reference with the current primary

region pointer. Unlike OS-based page tables and other “general

purpose” indirection tables, the indirection in CachedArrays

is essentially zero overhead since it happens once for a long-

running kernel. One limitation of our current implementation

is that an object’s primary cannot change during the execution

of a kernel. However, we have not observed any examples of

prior optimizations which allow for changing the data location

while it is actively being accessed.

Data management API: The data manager in CachedArrays

supports allocation and deallocation of regions, linking and

unlinking of regions, high-performance memory copying be-

tween regions, and reassignment of an object’s primary region.

There are three broad categories of functions: those working

on objects, those working on regions, and those working on de-

vices. The former consists of just two functions: getprimary,

to obtain the primary region for an object and setprimary, to

update an object’s primary region.

Functions in the second category include allocate and free

methods for each supported device, as well as a fast memory

copy (copyto) between and within devices. Regions can be

linked or unlinked using link and unlink respectively. Query

functions (sizeof, getlinked, and in) provide methods for

obtaining the size of a region, finding a linked region’s on

a specified device (if one exists), and querying the device to

which a region belongs. Regions can be marked and queried

as dirty or clean, which helps maintain consistency when an

object is associated with multiple regions. Finally, parent

provides a mechanism of going from a region to its object.

D. Data Movement Policy

The goal of the policy is to coordinate the assignment

of objects to regions to improve application performance.

The application provides hints to policy regarding how and

when objects are used. The policy reacts to this information

by using the data management API previously described to

manipulate the state of objects and regions. This separation

of data management from policy is important because (1)

it allows the application to influence data placement without

needing to understand the low-level details associated with the

data management API and (2) allows the policy to be tuned

on a per-application basis. In this section, we describe one

data movement policy interface which is well suited for very

large footprint CNN workloads running on a Cascade Lake

heterogeneous memory system with a large NVRAM (Intel

Optane DC) and smaller DRAM.

The policy we implement for this class of workloads ex-

poses the functions outlined in Table II. If the application

is aware that an object will be used in the near future (for

example, when it is about to execute a compute kernel), it

can notify the policy with will_use. More specific hints can

be provided with will_read or will_write if this is known.

This allows the policy to perform preemptive action on the

corresponding objects and track object usage. When an object

will not be used for some time, it can be marked as archived.

Finally, if the application knows that an object will never

be used again, it can use retire. Only improper use of

retire will affect the correctness of the application. All other

functions only influence performance of the application.

How the policy reacts to these hints is an implementation

detail of the policy. For example, the policy may respond to all

instances of will_use by prefetching the corresponding object

into fast memory. In order to drive these decisions, the policy

needs to be aware of the relevant characteristics of its memory

devices. For a DRAM/NVRAM system, these include:

• Writes to NVRAM are slow and low bandwidth.

• Reads to NVRAM are not much slower than DRAM.

• DRAM bandwidth is high.

• The capacity of NVRAM is large.

• The capacity of DRAM is constrained.

To understand why the policy must be aware of hardware char-

acteristics, we can consider the policy’s reaction to will_read

versus will_write. Because the read bandwidth of NVRAM

is relatively high while the write bandwidth is low, the policy

may choose to take no action in response to will_read but

move objects into DRAM if needed in response to will_write.

If the properties of the underlying memory change, the policy

may need to be modified.

548

TABLE II: The policy for CachedArrays exposes an object-

based API for applications to provide hints regarding memory

location and movement. These hints can either be placed

manually by the programmer or inserted by the compiler.

Operation Description

will_use/read/write Will read or write in the near future.

archive Will not be used for some time.

retire Will never use again.

1 function evict(policy, object)
2 x = DM.getprimary(object)
3 if DM.in(x, FAST)
4 y = DM.getlinked(x, SLOW)
5 sz = DM.sizeof(x)
6 allocated = false
7 if isnothing(y)
8 y = DM.allocate(SLOW, sz)
9 allocated = true

10 end
11 if DM.isdirty(x) || allocated
12 DM.copyto(y, x)
13 end
14 DM.setprimary(object, y)
15 if !allocated
16 DM.unlink(x, y)
17 end
18 DM.free(x)
19 end
20 end

Listing 1: An example of building an eviction function from
the CachedArrays data manager interface (prefixed by DM).

To understand how the policy interacts with the data man-

ager, we present the implementation of two kinds of operations

the policy may take: evicting and object from fast to slow

memory and prefetching an object from slow to fast memory.

These may be executed in response to the archived or the

will_use hints from the application, respectively. Note that

the policy maintains the following invariant: if an object has

a region in fast memory, then this region will be the primary

region for that object.

Listing 1 shows an example implementation of the evict

operation. If x is already linked with another region in slow

memory, only a simple copy and free of xfast is needed.

Otherwise, xslow needs to be allocated (see lines 4–10).

Lines 11–13 show a potential optimization: if we can track

whether or not x has been modified while in fast memory

then we may be able to elide the expensive copy operation.

Line 14 updates the object’s primary region y. If a linked

region existed in slow memory, x and y need to be unlinked

(line 16). This does not need to be performed if the slow region

was just allocated because the slow and fast regions were then

never linked to begin with. Finally, x is freed (line 18).

As a more complicated example, Listing 2 shows an im-

plementation of prefetch (e.g., in response to will_use). In

line 3, the primary region for the object is retrieved. Line 4

checks the device that region resides in: if the region is

already in fast memory, there is nothing to be done. Line 5

tries to allocate a similar sized region in fast memory. If the

operation fails (because fast memory is full) and the operation

is forced, then the policy will forcibly free memory from

the fast memory. This is done by selecting an initial region

1 function prefetch(
2 policy, object, force::Bool = false)
3 x = DM.getprimary(object)
4 if DM.in(x, SLOW)
5 sz = DM.sizeof(object)
6 y = DM.allocate(FAST, sz)
7 if isnothing(y) && force
8 start = find_region(policy)
9 DM.evictfrom(

10 FAST, start, sz
11) do region
12 evict(policy, DM.parent(region))
13 end
14 y = DM.allocate(FAST, sz)::Region
15 else
16 return
17 end
18 DM.copyto(y, x)
19 DM.link(x, y)
20 DM.setprimary(object, y)
21 end
22 return
23 end

Listing 2: Building a prefetching function out of the data
movement API.

start via some heuristic like LRU (line 8) and using the

function evictfrom (lines 9–11) though the data manager to

free a contiguous block of memory from the fast memory

pool of the appropriate size. The evictfrom function uses a

callback mechanism that allows the policy to use the previ-

ously described evict to preserve existing objects. Following

the eviction, the fast memory allocation is performed again

(line 12). Data is copied (line 16), the two regions are linked

as siblings (line 17) and the fast memory region is assigned

as the primary region (line 18).

We implement and evaluate multiple different policy imple-

mentations which take different actions for the same applica-

tion hints in Section V.

E. End-to-End Example

We use these APIs to implement an end-to-end example of

using our split policy-data management interface to optimize

data movement for very large-scale CNN training. Our un-

derlying system is a heterogeneous system with DRAM and

NVRAM. The important characteristics of the workload that

we can take advantage of are the following.

• Each iteration of training is broken into two phases: a

forward pass that computes the output of the network

and a backward pass that computes the gradients of the

model’s trainable parameters.

• During the forward pass many intermediate activations

are generated that are not consumed until the backward

pass.

• These activations are generally used and freed in a first-in

last-out manner.

During the forward pass, the convolution reads an input

activation tensor, weights, and bias and writes to an output

activation tensor. The backward pass kernels require these

intermediate activations, which thus must be kept in memory

until needed.

For each compute kernel, we call will_read on read-only

parameters and will_write on written parameters, providing

549

the policy with the opportunity to prefetch data. Following

kernel execution on the forward pass, archive is called on

the weights, bias, and previous activations. A reasonable policy

implementation will not eagerly evict data upon an archive

annotation and will instead prioritize the annotated objects for

future eviction if memory pressure is experienced. This means

that if the memory required to train the network fits entirely

in fast memory, then there is no down side to using archive.

Finally, retire is handled a little more carefully. For simple

linear networks like VGG, intermediate activations can be

retired on the backwards pass on a layer-by-layer basis. More

complicated networks like ResNet or DenseNet require more

precise annotations for which we leverage the Julia language,

though we could also leverage APIs in PyTorch or Tensorflow

to accomplish this task.

IV. IMPLEMENTATION AND EVALUATION METHODOLOGY

We implemented a software prototype of our data manager

in Julia [42], a high-level compiled language targeting techni-

cal computing. The main idea behind our implementation is to

create an array datatype called a CachedArray in Julia backed

by objects managed by the data manager. Policy hints take the

form of function calls that are forwarded from a CachedArray

to the manager’s policy, which then uses the data management

API to manipulate the regions backing the objects. We use

Julia’s ChainRules [43] package and the Zygote [44] automatic

differentiation framework to implement deep learning model

training. Semantic annotations are applied when compiling the

model with Zygote and therefore don’t necessarily require

modifications to the original source code. PyTorch 2.0 can

provide similar capabilities through the custom compilation

of compute graphs.

Next, we describe the general methodology used to evaluate

the performance of CachedArrays. Unless otherwise specified,

our case studies were performed as the sole user of a 2-socket

56 core (112 thread) Intel Xeon Platinum 8276L running

Ubuntu 21.10 with 192 GiB (6x32 GiB) DRAM and 1.5 TB

(6x256 GiB) Optane DC NVRAM per socket. Experiments

were conducted on a single socket, with one thread per core.

To implement deep learning primitives, we wrote a Julia

wrapper around Intel’s oneDNN [45] library. Memory for

kernel input and output tensors comes from the Julia side.

We investigate several different optimizations in the policy

to understand their relative impact. These include:

Memory Optimizations (M): We retire arrays as soon as

possible rather than relying solely on Julia’s garbage collector

(GC), fulfilling requirement 2 in Section III-A. By doing this,

we reduce the amount of data kept alive longer than necessary.

If this intermediate data is kept alive, then it must be written

to NVRAM if evicted to maintain correctness, resulting in

unnecessary slow NVRAM writes. Disabling this optimization

means we need to rely on the GC for resource management

which involves explicitly triggering collection when memory

pressure is detected.

Local Temporary Allocations (L): As discussed in Sec-

tion III-A (requirement 1), CachedArrays has been designed

TABLE III: Large and small CNN models used as benchmarks.

Small networks fit entirely in DRAM.

Large Networks Small Networks

Model Batchsize Footprint Model Batchsize

DenseNet 264 1536 526 GB DenseNet 264 504
ResNet 200 2048 529 GB ResNet 200 640
VGG 416 256 520 GB VGG 116 320

to support unlinked regions in fast memory. In combination

with memory optimizations, this is a potent tool for reducing

NVRAM traffic. Our policy can be modified to disable local

allocations, in which case a newly created array must first

be allocated in NVRAM and then copied into DRAM before

use. The purpose of disabling this optimization is to more di-

rectly compare with a naive 2LM implementation. Since 2LM

operates as a DRAM cache, each physical cache line must

ultimately have a copy in NVRAM. By effectively generating

a compulsory miss on first access with CachedArrays, we can

more closely model the behavior of 2LM.

Prefetching (P): We explore two different policy strategies

for responding to will_read annotations: one that always

prefetches into DRAM and one that never does. The rela-

tively high read bandwidth of NVRAM suggests that kernel

execution time may be less sensitive to the location of read-

only arguments. Further, prefetching requires making room in

DRAM for the prefetched arguments, which could result in

other arrays being evicted to NVRAM. By moving data at the

block granularity we fulfill requirement 3 in Section III-A.

The combination of optimizations and operating modes

investigated is as follows:

• 2LM: ∅ – 2LM with no memory optimizations.

• 2LM: M – 2LM with memory freeing optimizations.

• CA: ∅ – CachedArrays with no memory optimizations or

prefetching. All arrays begin in NVRAM and are moved

into DRAM before use, like in a true cache.

• CA: L – No memory optimization or data prefetching.

Unlike CA: ∅, arrays can be allocated in DRAM only.

• CA: LM – Memory optimizations but no data prefetch-

ing.

• CA: LMP – Memory optimizations and prefetching.

A. Large Networks: Comparison With 2LM

The Xeon server used to run these experiments can be

configured in two modes, allowing multiple different use cases

for NVRAM. The memory mode (2LM) configures NVRAM

as main memory with DRAM serving as a transparent, direct-

mapped hardware managed cache [4]. App direct allows

NVRAM to be used directly. In this mode, NVRAM can

either be configured as an extra NUMA node to be used

automatically by the OS, or mounted as a direct access (DAX)

file system. In the latter case, files memory mapped from the

NVRAM-based DAX file system are directly mapped into the

program’s address space with reads and writes sent directly to

the NVRAM devices. Our CachedArrays based policies uses

this last option.

To compare against 2LM, the overall memory footprint of

the models used for benchmarking must greatly exceed the

550

size of DRAM cache on a single socket which we accomplish

though a combination of deep networks and large batchsize.

For large traditional networks, we used ResNet 200 [46] and

DenseNet 264 [47], two networks with complex data flow. As

an extra comparison point, we implemented VGG 416 [9],

which is essentially a greatly extended VGG 16. A summary

is provided in Table III along with the approximate minimum

memory footprint required for a single iteration of training.

The batchsizes for the small networks were chosen such that

the memory requirement for training was between 170 GB and

180 GB: small enough to fit entirely in DRAM.

All runs in 2LM were conducted with a maximum memory

size of 1300 GB. When we run in app direct mode, CachedAr-

rays is configured with the same hardware limits of 180 GB

DRAM and 1300 GB NVRAM. After each training iteration

(forward + backward pass), the GC was invoked to clean up

all temporary memory, leaving only the model weights and

computed gradients. The local heap was then defragmented

before the next run to help keep behavior similar across

iterations (defragmentation overhead is negligible compared

to the iteration time). Each model was run for four iterations

and performance metrics were checked to ensure that behavior

for each iteration was consistent. Input data was randomly

generated using a normal distribution.

For each experiment, we used hardware performance coun-

ters to capture read and write traffic to DRAM and NVRAM.

For the 2LM based runs, the same hardware counters were

used to also capture DRAM cache statistics including cache

hits, clean cache misses, and dirty cache misses. All memory

heaps used by CachedArrays are pre-allocated before running

our experiments, ensuring that the OS assigns physical pages

to all virtual pages within the heap. This in itself provides a

large speedup over Julia’s default allocator. For large alloca-

tions, normal allocators typically memory map new memory

from the OS, which must be zero-initialized. Due to this

overhead, we use 2LM with the CachedArrays allocator as

the baseline.

B. Small Networks - Sensitivity Analysis

Since we control data movement from software, we can

vary the amount of DRAM available to CachedArrays to see

how our simple policy holds up as we decrease the DRAM

allowance. To that end, we use the small networks and batch

sizes provided in Table III. These are chosen such that the

memory footprint required for training is between 170 and

180 GB and thus can fit within the DRAM of a single socket

of our benchmark machine. We then vary the DRAM budget

from the full 180 GB down to 0 GB (NVRAM only). As for

the large benchmarks, we run each model for four iterations,

defragmenting heaps between iterations and checking that

variance between iterations was minimal. For this experiment,

we use VGG 116 instead of VGG 416 in order to maintain

a higher batch size. All of these runs were conducted in the

CA: LM mode as this performs well across all networks.

∅ ∅

0

100

200

300
291

171
216

178
131 143

(a) DenseNet 264

∅ ∅

0

200

400 361

227
264 244

169 176

(b) ResNet 200

∅ ∅

0

200

400

600
450

366

468
427

365 353

(c) VGG 416

Fig. 2: Average execution time for a single iteration of training

for the large networks, categorized by operating mode and

applied optimizations.

0 50 100 150 200 250 300 350
0

500

1,000

∅

Fig. 3: Resident heap memory through a single iteration of

ResNet training. The 2LM based experiments have a memory

heap which is implicitly managed by Intel’s DRAM cache.

V. RESULTS

Figure 2 shows the absolute runtime for a single iteration for

the large CNN benchmarks. First, we explore the performance

of 2LM: ∅ (hardware DRAM cache with no optimizations)

and 2LM: M (DRAM cache with memory optimizations).

For CachedArrays, CA: L (supporting local-only allocation)

is faster than CA: ∅, and applying memory optimizations

further improves performance. Prefetching hurts performance

for DenseNet and ResNet, but improves performance for VGG.

a) Why does semantic information improve performance

of the hardware DRAM cache?: Figure 2 shows that adding

the memory freeing optimizations improve the performance

for 2LM as well as CachedArrays. To understand why, we

investigate the physical addresses and cache behavior for

ResNet 200. Figure 3 shows the occupancy of the memory

heaps for a single iteration of ResNet under the two 2LM

operating regimes. These runs only have a single memory

heap that is implicitly managed by the hardware DRAM cache.

Without any memory optimizations (2LM: ∅), memory usage

551

∅

0

0.2

0.4

0.6

0.8

1

0.634

0.813

0.083 0.041

0.283

0.147

Fig. 4: DRAM cache tag statistics for a single training iteration

of ResNet 200.

∅ ∅

0

2

4

6

8 4
.8
8

4
.8
8

4
.7
6

4
.8
1

4
.1
9

4
.6
5

3
.8
4

2
.8
6

3
.4
5 1
.9
9

1
.9
9

2
.3
4

1
.8
7

0
.8
8

2
.1
3 0
.6
8

0
.5
2

0
.4
4

1
.4
2

0
.6
8

1
.0
4

1
.1
3

0
.3
5

0
.3
7

(a) DenseNet 264

∅ ∅

0

5

10

6
.5
3

6
.5
2

6
.0
6

5
.8

5
.5
9

6
.2
84
.4
9

3
.3
1

4
.0
4 2
.2
1

2
.3
2

2
.6
9

2
.2

1

2
.7
6

1
.2
8

0
.6
8

0
.3
7

1
.6
9

0
.8
2

1
.1

1
.2
1

0
.3
6

0
.3
7

(b) ResNet 200

∅ ∅

0

5

10

15

20 1
1
.3

1
1
.3

8
.4
5

8
.4
4

8
.9
3

1
0
.8
75
.8
3

4
.6
5

5
.4
1

3
.8
5

3
.8
5

4
.2

1
.9
9

0
.8

4
.7
1

3
.1
7

1
.9
5

0
.3
6

1
.5
3

0
.5
6

1
.0
5

1
.0
6

0
.3
4

0
.3
4

(c) VGG 416

Fig. 5: Amount of data moved for a single iteration training

for the large CNNs.

keeps increasing until the garbage collector is run (around time

220s) which causes the monotonically increasing behavior

of that curve. Note that both PyTorch and Tensorflow must

also run their own garbage collectors to free GPU memory.

In contrast, when the annotated run (2LM: M) begins its

backward pass, (around time 100s) it proactively frees memory

produced on the forward pass. This results in more reuse of the

physical pages backing that memory, leading to fewer cache

misses and less data movement.

Supporting this idea is Figure 4, which shows the average

DRAM cache hit, clean miss, and dirty miss rates for the

two 2LM runs. The annotated run has an 18% higher hit rate

and 50% lower dirty miss rate, both of which improve 2LM

performance [4]. By adding semantic information, we achieve

better utilization of the data movement mechanism.

b) Why does CachedArrays outperform 2LM?: To under-

stand the performance difference between 2LM and CachedAr-

rays, we first focus on the total amount of memory moved for

a single iteration of training. Figure 5 shows the total amount

of DRAM and NVRAM traffic for a single iteration of training

for two of our large networks, further broken into reads and

∅ ∅
0

0.1

0.2

0.3

0.063

0.047 0.085
0.06

0.036
0.025

0.179
0.254 0.222 0.192

0.273 0.299

(a) ResNet 200.

∅ ∅
0

0.1

0.2

0.3

0.046
0.022

0.072 0.058
0.037

0.012

0.223 0.256
0.174 0.169

0.206
0.25

(b) VGG 416.

Fig. 6: Average utilization of the DRAM bus.

writes. With no optimizations, CachedArrays is slower than

memory-optimized 2LM and in the case of VGG is even

slower than unoptimized 2LM. For DenseNet and ResNet, CA:

∅ generates similar read and write traffic to 2LM: ∅, though

with generally fewer NVRAM writes. The saving of NVRAM

writes occurs because even though memory optimizations are

not applied, we still run the garbage collector after every

iteration of training. In 2LM, this optimization does not help

because physical addresses used on the backwards pass are

dirty with respect to the DRAM cache.

Even though this still applies to VGG, CA: ∅ is still slower

than 2LM: ∅. This is where traffic shaping comes into play.

Prior work shows that large sequential accesses provide the

highest bandwidth for NVRAM [6], [4]. In 2LM, NVRAM

traffic is haphazard and results from conflict misses in the

DRAM cache. With CachedArrays, NVRAM traffic is the

result of explicit, well-shaped memory copies.

Figure 6 shows the average utilization of the memory bus

for a single iteration of training for ResNet 200 and VGG 416.

For ResNet, CA: ∅ achieves a higher average utilization than

2LM: ∅ while the situation is reversed for VGG. The memory

movement engine in CachedArrays is highly multi-threaded,

specifically targeting large memory sizes which works well

for ResNet because the large batch size of 2048 results in

large memory transfers. However, a much smaller batch size

of 256 is used for VGG, leading to smaller data transfers and

more parallelization overhead. However, bus utilization must

be considered in the context of overall memory moved. As op-

timizations are applied via CachedArrays, bus utilization tends

to increase and overall traffic generated tends to decrease, both

resulting in better performance.

Impact of Local Allocation: As shown in Figure 5, adding

the local allocation optimization to CachedArrays significantly

decreases the NVRAM read and DRAM write traffic due to the

elision of the initial memory copy. The performance difference

between these two is largely due to the decreased time spent

synchronously moving data.

Impact of Memory Optimizations: Memory optimizations

552

0 50 100 150
0

50

100

150

200

Fig. 7: Average runtime for a single training iteration for the

small DenseNet. Absolute wall clock time (blue) and time

without data movement (red). Runs with local allocation and

memory optimizations, but without prefetching enabled.

decrease memory pressure by freeing memory as soon as pos-

sible. This avoids many unnecessary writes to NVRAM, which

can be seen in Figure 5. In particular, observe the difference

in NVRAM reads and writes in Figure 5a between CA: L and

CA: LM for DenseNet. For CA: L, the number of NVRAM

writes exceeds the number of NVRAM reads, implying that

unnecessary data is being moved to NVRAM. This is the result

of intermediate allocations not being freed as soon as possible.

When applying memory optimizations (CA: LM), the number

of NVRAM writes for DenseNet drops from about 1100 GB

to about 350 GB, with NVRAM reads exceeding NVRAM

writes. The other networks experience similar decreases in

NVRAM writes when applying memory optimizations. The

local allocation and memory optimizations reduce the amount

of NVRAM writes down to a bare-minimum.

Impact of Prefetching: Enabling data prefetching harms

performance for DenseNet and ResNet. As can be seen in

Figure 5, prefetching decreases NVRAM read traffic and

increases DRAM read traffic because arrays are moved from

NVRAM to DRAM where there are referenced multiple times

to compute the backwards pass. However, some operations are

not sensitive to the bandwidth of their read-only arguments.

Hence, this prefetch wastes time and potentially evicts other

arrays. In the case of VGG, on the other hand, prefetching does

slightly improve performance since it significantly decreases

NVRAM read traffic by a factor of 5.4×. Thus, there is no

“one size fits all” approach to memory management.

In summary, full CachedArrays results in less DRAM and

NVRAM traffic overall, because it is aware that data freed

on the backwards pass is semantically dead, and thus does

not need to be written back to NVRAM. Hardware caches

do not have this semantic insight and thus must always

act conservatively. Furthermore, Figure 6 shows the average

DRAM bus utilization though out an iteration of training.

CachedArrays maintains a higher average utilization while

also moving less total data. CachedArrays both maintains

the memory semantics required to elide unnecessary dirty

writebacks and uses traffic shaping to achieve high bandwidth.

c) Sensitivity to DRAM capacity: The runtime for a

single iteration of training for the small DenseNet is shown

in Figure 7. Running with only NVRAM results in a 3–

4× performance penalty (other models show similar results).

However, with even a small amount DRAM, CachedArrays is

able to get most of that performance back.

Figure 7 also shows what the performance would be if

CachedArrays had perfectly asynchronous data movement (as

opposed to purely synchronous) and could overlap movement

with execution. Asynchronous data movement could be imple-

mented with a separate thread pool or with an accelerator [48].

For DenseNet and ResNet, this projected performance varies

only slightly as the DRAM budget decreases. VGG, on the

other hand, still experiences a slow-down due to more reads

being generated to NVRAM. These results are consistent with

the large network results where DenseNet and ResNet had

lower performance with prefetching unlike VGG. The kernels

composing VGG are more sensitive to read bandwidth.

d) Why is a small amount of DRAM enough?: Contrary

to the behavior of pure DRAM, DRAM to NVRAM copy

bandwidth actually decreases with increasing parallelism [6],

[4]. Furthermore, the copy kernel in CachedArrays uses non-

temporal stores to NVRAM, which are crucial for best per-

formance. OneDNN kernels are not optimized for writing to

NVRAM and thus the performance with all NVRAM is slow.

When a small amount of DRAM is used, the output parameters

of the computation kernels can be placed in DRAM and any

movement of data from DRAM to NVRAM goes through

code-paths optimized to get the best write performance out

of NVRAM. An interesting area for future research would be

to explore computation kernel implementations that specialize

based on the memory location of its arguments (much like

existing specialization via just-in-time compilation based on

the dimensions of the arguments).

VI. CachedArrays EXTENSIONS

In this section, we will discuss three directions for exten-

sions of CachedArrays: (1) supporting sparse data structures

and more complex deep learning workloads, (2) supporting

other heterogeneous memory devices, and (3) supporting ap-

plication frameworks beyond Julia. The approach taken by

CachedArrays is not limited to static computation graphs or

the well understood data use patterns of CNN workloads

like many previous works [9], [8]. The CachedArrays policy

responds to runtime annotations, and can apply to applications

exhibiting dynamic memory use such as Transformers, RNNs,

and Mixtures of Experts [49]. For example, Hildebrand et al.

applied a dynamic policy to a DLRM workload [50] and found

that flexibility in the data movement policy is required to meet

different memory access patterns as the locality of the data

changes based on user input [15]. Further, we could augment

the policy with real-time kernel performance information,

allowing the policy to explore and adapt its strategy.

Additionally, our framework is agnostic to the com-

pute/interconnect framework surrounding the memory. Thus,

CachedArrays applicable to other heterogeneous memory de-

vices such as local/remote memory (e.g., CXL) and CPU/GPU

memory. In this paper, we focused on a realistic platform avail-

able for experimentation, but the CachedArrays framework is

not limited to DRAM+NVRAM systems. In fact, the flexibility

enabled by separating the data movement policy from the

553

data movement mechanism means that when migrating an

application to a new heterogeneous memory platform, the user-

defined policy does not have to be modified. The only change

necessary is for the platform developer to provide the interface

needed to implement the policy.

Finally, while we implemented an initial prototype of

CachedArrays in Julia, the approach is not limited to Julia.

Frameworks such as PyTorch [40] and Tensorflow [51] have

very similar interfaces that can be exploited to implement

CachedArrays. For instance, PyTorch has a torch.Tensor

class that is very similar to Julia’s Array type and it supports

on-the-fly compiler transformations with torch.compile.

VII. CONCLUSIONS

In this paper, we presented CachedArrays, a framework for

managing data movement in heterogeneous memory systems.

CachedArrays is a software framework that allows the user

to define a data movement policy that is applied at runtime.

We implemented CachedArrays in Julia and evaluated it on a

DRAM+NVRAM system and found significant performance

improvements compared to the hardware-implemented cache.

Futhermore, although not evaluated in this paper, CachedAr-

rays can be extended to other heterogeneous memory systems,

frameworks beyond Julia, and applications beyond CNNs.

REFERENCES

[1] S. Van Doren, “Abstract - HOTI 2019: Compute express link,” in 2019

IEEE Symposium on High-Performance Interconnects (HOTI), 2019, pp.
18–18.

[2] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran,
J. Jackson, and K. Schwan, “Data tiering in heterogeneous memory
systems,” in Proceedings of the Eleventh European Conference on

Computer Systems, 2016, pp. 1–16.

[3] J. Ren, J. Luo, K. Wu, M. Zhang, H. Jeon, and D. Li, “Sentinel:
Efficient tensor migration and allocation on heterogeneous memory
systems for deep learning,” in 2021 IEEE International Symposium on

High-Performance Computer Architecture (HPCA). IEEE, 2021, pp.
598–611.

[4] M. Hildebrand, J. T. Angeles, J. Lowe-Power, and V. Akella, “A case
against hardware managed DRAM caches for NVRAM based systems,”
in 2021 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), 2021, pp. 194–204.

[5] J. T. Angeles, M. Hildebrand, V. Akella, and J. Lowe-Power, “Investi-
gating hardware caches for terabyte-scale NVDIMMs,” in Non-volatile

Memories Workshop (NVMW 2021), 2021.

[6] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the intel optane DC persistent memory
module,” CoRR, vol. abs/1903.05714, 2019. [Online]. Available:
http://arxiv.org/abs/1903.05714

[7] L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B.
Gibbons, and J. Shun, “Sage: Parallel semi-asymmetric graph algorithms
for NVRAMs,” Proc. VLDB Endow., vol. 13, no. 9, p. 1598–1613, May
2020. [Online]. Available: https://doi.org/10.14778/3397230.3397251

[8] M. Hildebrand, J. Khan, S. Trika, J. Lowe-Power, and V. Akella,
“Autotm: Automatic tensor movement in heterogeneous memory
systems using integer linear programming,” in Proceedings of the

Twenty-Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
875–890. [Online]. Available: https://doi.org/10.1145/3373376.3378465

[9] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vDNN: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in The 49th Annual IEEE/ACM International

Symposium on Microarchitecture, ser. MICRO-49. Piscataway, NJ,
USA: IEEE Press, 2016, pp. 18:1–18:13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3195638.3195660

[10] X. Chen, D. Z. Chen, and X. S. Hu, “moDNN: Memory optimal
DNN training on GPUs,” in 2018 Design, Automation Test in Europe

Conference Exhibition (DATE), March 2018, pp. 13–18.

[11] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in Proceedings

of the International Conference for High Performance Computing,

Networking, Storage and Analysis, ser. SC ’20. IEEE Press, 2020.

[12] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “DeepSpeed:
System optimizations enable training deep learning models with
over 100 billion parameters,” in Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery; Data

Mining, ser. KDD ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 3505–3506. [Online]. Available:
https://doi.org/10.1145/3394486.3406703

[13] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang, M. Zhang,
D. Li, and Y. He, “ZeRO-Offload: Democratizing Billion-Scale model
training,” in 2021 USENIX Annual Technical Conference (USENIX

ATC 21). USENIX Association, Jul. 2021, pp. 551–564. [Online].
Available: https://www.usenix.org/conference/atc21/presentation/ren-jie

[14] S.-F. Lin, Y.-J. Chen, H.-Y. Cheng, and C.-L. Yang, “Tensor movement
orchestration in multi-GPU training systems,” in 2023 IEEE Interna-

tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2023, pp. 1140–1152.

[15] M. Hildebrand, J. Lowe-Power, and V. Akella, “Efficient large
scale DLRM implementation on heterogeneous memory systems,” in
High Performance Computing: 38th International Conference, ISC

High Performance 2023, Hamburg, Germany, May 21–25, 2023,

Proceedings. Berlin, Heidelberg: Springer-Verlag, 2023, p. 42–61.
[Online]. Available: https://doi.org/10.1007/978-3-031-32041-5_3

[16] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble
page management for tiered memory systems,” in Proceedings of

the Twenty-Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS 2019,

Providence, RI, USA, April 13-17, 2019, 2019, pp. 331–345. [Online].
Available: https://doi.org/10.1145/3297858.3304024

[17] S. Kannan, Y. Ren, and A. Bhattacharjee, “KLOCs: kernel-level object
contexts for heterogeneous memory systems,” in Proceedings of the 26th

ACM International Conference on Architectural Support for Program-

ming Languages and Operating Systems, 2021, pp. 65–78.

[18] N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent
page management for two-tiered main memory,” in Proceedings of

the Twenty-Second International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS 2017,

Xi’an, China, April 8-12, 2017, 2017, pp. 631–644. [Online]. Available:
https://doi.org/10.1145/3037697.3037706

[19] S. Bergman, P. Faldu, B. Grot, L. Vilanova, and M. Silberstein, “Re-
considering os memory optimizations in the presence of disaggregated
memory,” in Proceedings of the 2022 ACM SIGPLAN International

Symposium on Memory Management, 2022, pp. 1–14.

[20] B. Peng, Y. Dong, J. Yao, F. Wu, and H. Guan, “Flexhm: A practical
system for heterogeneous memory with flexible and efficient perfor-
mance optimizations,” ACM Transactions on Architecture and Code

Optimization, vol. 20, no. 1, pp. 1–26, 2022.

[21] J. Kim, W. Choe, and J. Ahn, “Exploring the design space of page
management for multi-tiered memory systems,” in 2021 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 21), 2021, pp. 715–
728.

[22] T. D. Doudali, D. Zahka, and A. Gavrilovska, “Cori: Dancing to the right
beat of periodic data movements over hybrid memory systems,” in 2021

IEEE International Parallel and Distributed Processing Symposium

(IPDPS). IEEE, 2021, pp. 350–359.

[23] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter, “Hemem:
Scalable tiered memory management for big data applications and
real nvm,” in Proceedings of the ACM SIGOPS 28th Symposium on

Operating Systems Principles CD-ROM, 2021, pp. 392–407.

[24] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhat-
tacharya, C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan,
“TPP: Transparent page placement for CXL-enabled tiered-memory,” in

554

Proceedings of the 28th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Volume 3,
2023, pp. 742–755.

[25] H. Li, K. Liu, T. Liang, Z. Li, T. Lu, H. Yuan, Y. Xia, Y. Bao, M. Chen,
and Y. Shan, “HoPP: Hardware-software co-designed page prefetching
for disaggregated memory,” in 2023 IEEE International Symposium on

High-Performance Computer Architecture (HPCA). IEEE, 2023, pp.
1168–1181.

[26] S. Kumar, A. Prasad, S. R. Sarangi, and S. Subramoney, “Radiant:
efficient page table management for tiered memory systems,” in Pro-

ceedings of the 2021 ACM SIGPLAN International Symposium on

Memory Management, 2021, pp. 66–79.
[27] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu, and

A. Kolli, “Rethinking software runtimes for disaggregated memory,” in
Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, 2021, pp.
79–92.

[28] B. C. Schwedock, P. Yoovidhya, J. Seibert, and N. Beckmann, “täkō: a
polymorphic cache hierarchy for general-purpose optimization of data
movement.” in ISCA, 2022, pp. 42–58.

[29] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data
movement is all you need: A case study on optimizing transformers,”
Proceedings of Machine Learning and Systems, MLSys, vol. 3, pp. 711–
732, 2021.

[30] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in SC20:

International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE, 2020, pp. 1–16.
[31] O. Rausch, T. Ben-Nun, N. Dryden, A. Ivanov, S. Li, and T. Hoefler,

“A data-centric optimization framework for machine learning,” in Pro-

ceedings of the 36th ACM International Conference on Supercomputing,
2022, pp. 1–13.

[32] C. Giannoula, K. Huang, J. Tang, N. Koziris, G. Goumas, Z. Chishti,
and N. Vijaykumar, “DaeMon: Architectural support for efficient data
movement in fully disaggregated systems,” Proceedings of the ACM on

Measurement and Analysis of Computing Systems, vol. 7, no. 1, pp.
1–36, 2023.

[33] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool,
O. Schwartz, and H. V. Simhadri, “Write-avoiding algorithms,” in 2016

IEEE International Parallel and Distributed Processing Symposium

(IPDPS). IEEE, 2016, pp. 648–658.
[34] I. Oukid, D. Booss, A. Lespinasse, W. Lehner, T. Willhalm, and

G. Gomes, “Memory management techniques for large-scale persistent-
main-memory systems,” Proceedings of the VLDB Endowment, vol. 10,
no. 11, pp. 1166–1177, 2017.

[35] W. Pan, T. Xie, and X. Song, “Hart: A concurrent hash-assisted radix tree
for DRAM-PM hybrid memory systems,” in 2019 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2019,
pp. 921–931.

[36] Y. Shen and Z. Zou, “Efficient subgraph matching on non-volatile
memory,” in International Conference on Web Information Systems

Engineering. Springer, 2017, pp. 457–471.
[37] J. Jung, J. Kim, and J. Lee, “DeepUM: Tensor migration and prefetching

in unified memory,” in Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 2, 2023, pp. 207–221.

[38] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan, “Heteroos:
OS design for heterogeneous memory management in datacenter,” in
Proceedings of the 44th Annual International Symposium on Computer

Architecture, 2017, pp. 521–534.
[39] Tensorflow, https://www.tensorflow.org.
[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,

G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“PyTorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems

32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[41] oneAPI, https://www.oneapi.io.
[42] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh

approach to numerical computing,” SIAM review, vol. 59, no. 1, pp.
65–98, 2017. [Online]. Available: https://doi.org/10.1137/141000671

[43] F. Schäfer, M. Tarek, L. White, and C. Rackauckas, “AbstractDifferen-
tiation.jl: Backend-agnostic differentiable programming in Julia,” 2021.

[44] M. Innes, “Don’t unroll adjoint: Differentiating SSA-form programs,”
CoRR, vol. abs/1810.07951, 2018. [Online]. Available: http://arxiv.org/
abs/1810.07951

[45] oneDNN, https://github.com/oneapi-src/oneDNN.
[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[47] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017, pp. 2261–2269.
[48] A. Biswas, “Sapphire rapids,” in 2021 IEEE Hot Chips 33 Symposium

(HCS), 2021, pp. 1–22.
[49] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E.

Hinton, and J. Dean, “Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer,” CoRR, vol. abs/1701.06538,
2017. [Online]. Available: http://arxiv.org/abs/1701.06538

[50] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia,
L. Xiong, and M. Smelyanskiy, “Deep learning recommendation
model for personalization and recommendation systems,” CoRR, vol.
abs/1906.00091, 2019. [Online]. Available: http://arxiv.org/abs/1906.
00091

[51] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, 2016, pp. 265–283. [Online]. Available: https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/abadi

555

