
TDRAM: Tag-enhanced DRAM for Efficient

Caching

Maryam Babaie1, Ayaz Akram1, Wendy Elsasser2, Brent Haukness2, Michael Miller2,

Taeksang Song2, Thomas Vogelsang2, Steven Woo2, Jason Lowe-Power1

1Department of Computer Science, University of California, Davis
2Rambus Labs, Rambus Inc.

Abstract—As SRAM-based caches are hitting a scaling wall,
manufacturers are integrating DRAM-based caches into system
designs to continue increasing cache sizes. While DRAM caches
can improve the performance of memory systems, existing DRAM
cache designs suffer from high miss penalties, wasted data move-
ment, and interference between misses and demand requests. In
this paper, we propose TDRAM, a novel DRAM microarchitec-
ture tailored for caching. TDRAM enhances HBM3 by adding a
set of small low-latency mats to store tags and metadata on the
same die as the data mats. These mats enable fast parallel tag
and data access, on-DRAM-die tag comparison, and conditional
data response based on comparison result (reducing wasted
data transfers) akin to SRAM caches mechanism. TDRAM
further optimizes the hit and miss latencies by performing
opportunistic early tag probing. Moreover, TDRAM introduces
a flush buffer to store conflicting dirty data on write misses,
eliminating turnaround delays on data bus. We evaluate TDRAM
using a full-system simulator and a set of HPC workloads with
large memory footprints showing TDRAM provides at least
2.6× faster tag check, 1.2× speedup, and 21% less energy
consumption, compared to the state-of-the-art commercial and
research designs.

I. INTRODUCTION

Today’s computers, equipped with significant processing

capabilities and memory capacities, aim to fulfill the re-

quirements of high-performance computing (HPC) tasks such

as machine learning and artificial intelligence. To find the

right balance between performance and capacity, manufac-

turers have embraced heterogeneous memory systems. These

systems combine high-performance memories like HBM with

high-capacity memories with lower performance. The intro-

duction of interconnect technologies like Compute Express

Link (CXL) is increasing memory heterogeneity with local and

remote memory pools. Intel’s Sapphire Rapids CPU demon-

strates this strategy by employing on-package HBM DRAMs

as cache [25], [61]. This approach effectively boosts cache

capacities and tackles the scaling limitations encountered

by SRAM [5]. The expanded cache capacity and enhanced

bandwidth provided by HBM DRAMs offer the potential for

improved data locality, without programmers intervention.

This work is licensed under the Creative Commons Attribution 4.0
International (CC-BY-SA 4.0) license. Authors reserve their rights
to disseminate the work on their personal and corporate websites
with the appropriate attribution.

However, the potential benefits of DRAM caches have not

borne fruit. Previous studies of DRAM caches have shown

that using standard DRAM devices as a cache can slow

down applications with large memory footprints and high miss

rates [38], [59]. The current designs of DRAM caches, such

as those in Intel’s Cascade Lake DRAM cache [8], [38], store

tag and metadata together with the cache line data in the same

DRAM. Storing tags and data together reduces hit time for

read demands [58], but significantly increases miss penalties

since a separate DRAM read is necessary to retrieve tag and

metadata for hit/miss and status information, causing con-

tention with demand reads. Also, all write requests, including

those hitting on the cache, require a DRAM read to fetch

tag and data to ensure dirty data is not overwritten, further

exacerbating the contention and causing expensive turnaround

bubbles on the data bus [19]. These extra accesses for read-

misses and write demands increase: (i) latency for demand

misses, (ii) contention in the read buffer which extends the

queue occupancy time, and (iii) wasted data movement and

energy consumption.

Today’s applications that require large capacity memories

have high miss rates in DRAM caches which cause these is-

sues to significantly affect the workload’s performance. SRAM

caches cannot scale to the capacities required by today’s ap-

plications, and thus it becomes imperative to enhance existing

DRAM cache designs to address these challenges.

In this work, we introduce TDRAM (Tag-enhanced

DRAM), a DRAM microarchitecture specifically tailored for

caching purposes.1 TDRAM enhances HBM3 by adding a set

of small low-latency mats to store tags and metadata on the

same die as the data mats. These mats enable faster access than

the data mats through the reduction of wordline and bitline

lengths. The additional on-die storage is sufficiently large to

accommodate the tag and metadata for all DRAM cache lines;

thus, the tag store scales with the data capacity. By placing

the tags in separate mats on-die, TDRAM enables rapid on-

die tag checking which reduces the latency for demand misses,

mitigates contention on the DRAM read queue, and decreases

wasted data transfers (and thus energy).

1In the recent past, it was uneconomical for DRAM manufacturers to
modify the core DRAM microarchitecture. However, specialty DRAMs are
becoming increasingly common (e.g., Samsung’s Aquabolt [4], Micron’s
Automata Processor [67] and RLDRAM [11]).

1

ar
X

iv
:2

4
0
4
.1

4
6
1
7
v
1

[c

s.
A

R
]

 2
2
 A

p
r

2
0
2
4

TDRAM extends HBM3’s interface in three ways: (1) It

adds a unidirectional hit-miss (HM) bus to its interface to

transfer the tag check result and metadata to the controller. (2)

It adds two new commands to the HBM3’s protocol: ActRd and

ActWr, which access both tag and data mats in lockstep. These

commands check the tag for the block and only send data to

the controller when it is needed. (3) We add a flush buffer to

store conflicting dirty data from write misses which eliminates

costly turnaround delays on the data bus and immediate cache

line data transfer to the controller for write requests. The

overhead of this new design compared to HBM3 is 192 pins

(out of 1,972 existing pins, a 10% increase) and 8.24% total

die area.

TDRAM further improves performance by implementing

early tag probing, which opportunistically performs tag checks

(without data access) in otherwise unused command and HM

bus slots. Tag probing returns early hit-miss and status indi-

cation of a demand access, allowing certain operations (e.g.,

main memory access for read demand misses) to start earlier.

Early tag probing also reduces request queue occupancy time

by removing misses from the queue early, allowing other

demands to proceed with fewer stalls.

TDRAM is orthogonal to many prior works that focus on

improving DRAM caching performance by adding predictors,

prefetchers, tag caches, modifying coherence protocols, bypass

policies, and other application-specific mechanisms [23], [24],

[28], [36], [68]. TDRAM is designed in a way that all of these

techniques can be applied on top of it to further improve its

performance. Overall, TDRAM enables a perfectly scalable

HBM-based cache with a cohesive caching paradigm akin to

processors’ SRAM-based caches. Thus, TDRAM focuses on

optimizing the core and fundamental DRAM cache operations

by eliminating inefficiencies in existing designs.

We have extensively modeled TDRAM in the gem5 simula-

tor [51], for a detailed full-system cycle-level timing analysis.

Our evaluations using scientific and graph analytics appli-

cations with large memory footprints, have shown TDRAM

provides 2.6× faster tag check and 1.2× speedup and at least

21% less energy consumption, compared to the commercial

and research designs such as Intel’s Cascade Lake and Alloy.

In this paper, we make the following contributions:

Microarchitecture

• We propose a new HBM3-based DRAM microarchitecture,

TDRAM, designed for caching with on-DRAM-die tag

management, to enable perfectly scalable DRAM caching

where the tag storage scales with data capacity.

• We extend the HBM3 interface with a unidirectional Hit-

Miss bus to transfer tag check results and metadata from

DRAM to the controller, decoupling them from data transfer.

• We add a flush buffer to hold conflicting dirty data from

write misses which eliminates both costly turnaround delays

on the data bus and immediate cache line data transfer to

the controller for write requests. TDRAM opportunistically

sends them to the controller when data bus is idle or in

read-state.

Protocol

• We integrate two new commands to HBM3’s protocol, ActRd

and ActWr, which enable parallel independent access to both

tag and data banks. The protocol selectively streamlines

data to the controller only when necessary based on tag

comparison, reducing bandwidth bloat.

• We propose opportunistic early tag check mechanism in

unused HM and command bus slots, to minimize queueing

delay for tag check, reducing buffer contention and opti-

mizing miss latencies. This mechanisms does not access

data banks. If this tag check results in miss, then TDRAM

initiates backing store access immediately, if necessary; and

avoids future cache line data access, if not necessary.

Evaluation

• We demonstrate DRAM caching using existing designs

cause slowdown while TDRAM provides 1.11× speedup.

• We show TDRAM reduces energy consumption by 21%,

since its conditional data response to the controller removes

wasted data transfers.

• We analyze performance of DRAM caching in disaggregated

systems with remote main memories and show TDRAM

provides 1.14× speedup compared to the state-of-the-art

commercial DRAM cache, for low miss ratio applications.

II. BACKGROUND AND MOTIVATION

A. HBM3 Architecture

This section provides an overview of HBM DRAMs as the

basis of TDRAM. HBM provides the highest bandwidth and

capacity of any single DRAM package in mass production.

HBM3 DRAMs stack multiple DRAM die into a single

package, and can support up to 64 GiB capacity using 12 to

16-high stacks [47]. These devices provide up to 1024 GiB/s

of bandwidth when running at 8 Gbps across 16 independent

channels with 64b data (DQ) and 10b Row command (R) and

8b Column command (C) buses. Each DQ channel can be split

into two 32-bit pseudo-channels (PCs) that share the same R

and C buses, with each PC providing 32B access granular-

ity [9], [14]–[16]. Each channel includes 38 additional signals

for clocks, strobes, ECC, redundancy, and other functions.

The wires connecting the high pin count interface between

the DRAM and host (1024 DQs, 288 command/address (CA)

buses, and more than 650 pins for additional channel and

global functions), are implemented in technologies such as

TSMC’s InFO or silicon (e.g., a silicon interposer) to support

the high pin and trace densities required for this technology.

HBM DRAMs are hierarchically organized, storing data bits

in arrays of capacitors. DRAM bit cells are grouped into rows

or pages, with multiple rows aggregated into mats, and mats

organized into 2D structures called banks. Decoded row and

column addresses identify bits within a bank. Multiple banks

form a bank group that share some resources. Back-to-back

accesses to the same bank group require longer latencies to

allow these shared resources to free up, while accesses to

different bank groups enable lower latencies.

2

set, tag comparisons can be performed in parallel if each way

has its own comparator. A signal from the matching way is sent

to the internal control logic to select the proper column in the

data mats. Implementations without on-die tag comparators

send all tags in the set back to the controller, incurring

additional latency and energy, and the controller subsequently

sends a request for the proper column to the DRAM, again

incurring additional latency and energy consumption [48].

5) Tag Mats Timing Values: TDRAM architecture mini-

mizes the tags access latencies using small low-latency mats

as discussed in §III-B2. In our evaluation, we use timing

parameters for the tag mats that are loosely based on RL-

DRAM technology. We choose to base our timings on public

datasheets as the timing parameters for RLDRAM are close

to the proprietary analysis we conducted. Through discussions

with DRAM designers, we validated the internal timing values.

Table III shows a list of timing values we used. The RLDRAM

spec values (e.g., tRL=15ns and tRC=8ns) match, or are

more optimistic than, our values (e.g., tRCD TAG+tHM=15ns

and tRC TAG=12ns). Furthermore, these values and internal

TDRAM timings were also correlated with prior work analyz-

ing the use of smaller mats [64].

Additionally, tHM int = tCCD L+tHM detect (which is

a fast equal comparison). Address comparisons are already

done in DRAMs today to quickly determine if every row

or column address that the DRAM receives is a repaired

row or column. We set tHM detect to 0.5ns (one 2GHz

clock cycle) for the fast equal comparison based on dis-

cussions with expert DRAM designers. The use of tHM int

depends on tRCD since a read operation cannot occur un-

til tRCD is met. In our design, tRCD = 12ns which is

longer than tRCD TAG+tHM int=10ns, effectively hiding the

tag access and hit/miss detection latency. tHM int was also

correlated with prior work [64], which breaks ACT-to-data

delay into: 47%-sensing, 26%-address-decode, 20%-MUXing

(transfer+rate-conversion), and 7%-IO. The column decode is

done in parallel to sensing (tRCD) with our ActRd/ActWr

commands. Finally, the I/O delay is not relevant to internal

timing. Only a portion of the MUXing delay, the delay to

move data out of the IOSA, is relevant to internal timing,

and this delay is optimized with smaller mats to achieve

tHM int=2.5ns, including HM detect logic.

To ensure dirty data is not overwritten in the SA,

tRL CORE (used in write operations as illustrated in Fig-

ure 7) needs to be less than or equal to intRD-to-

WR data Delay+tBURST/2=9ns. We performed our evalua-

tion using tRL CORE=tCCD L=2ns.

6) Tag Storage Area Overhead: A 64 GiB direct-mapped

DRAM cache can support 1 petabyte address space using a

14-bit tag. We assume 3B of tag and metadata for each 64B

cache line. Tags are stored only in one bank group of the

pair (the even-numbered bank groups), and the result of the

tag comparison is communicated to the other (odd-numbered)

bank group through an internal bus.

We estimate the die size impact of tag storage, control logic,

and on-die comparison as follows. HBM3 DRAMs store an

TABLE II: TDRAM’s cache operations on different accesses.

Cache Access CMD DQ Activity HM Bus Later Actions

Read hit to clean

A
ct

R
d

Hit Data Hit None
Read hit to dirty Hit Data Hit None
Read to invalid None Miss Read main mem & fill
Read miss to clean None Miss Read main mem & fill

Read miss to dirty Dirty Data Miss, Dirty Tag
Read main mem & fill
Writeback dirty data

Write to invalid

A
ct

W
r

Wr Data Miss None
Write miss to clean Wr Data Miss None
Write miss to dirty Wr data Miss, Dirty Tag Dirty data to flush buffer
Write hit to clean Wr Data Hit None
Write hit to dirty Wr Data Hit None

additional 6B of information (2B metadata and 4B parity) for

every 32B of data (i.e., total column size is 38B) across 19

mats as shown by Park et al. [57]. The HBM3 die photo shows

that banks (including mats, BLSAs, and Sub-WL drivers)

occupy about 66% of die area. The remaining 34% of die area

includes shared resources like through silicon vias (TSVs),

IOSAs, per-bank group ECC, and column decoders.

For the tag mats, we use four smaller tag mats per data

mat to reduce the row cycle time by reducing the bit line

and word line lengths. Son et al. show that the overhead of

changing the aspect ratio by a factor of 4 is 19% [64]; however,

we estimate a more pessimistic 24.3% when we scale by 1/2

in each dimension, based on our discussions with DRAM

designers. Additionally, we only need tag mats in the even

banks, reducing our overall area overhead. Thus, even banks

require 24.3% additional area for the tags and the data banks

occupy 66% of the die. So the overall impact on die size

is 24.3% × 0.5 (only even banks) × 0.66 (area for banks)

= 8.02%. We also add additional area for wire routing (for

example, to route Hit/Miss signals from the even bank to the

odd bank), resulting in our estimate of 8.24% die area impact.

7) Tag Storage Power Overhead: On-die tag storage and

tag checking increase the power of TDRAM over standard

HBM3 DRAMs. However, TDRAM provides power benefits

at the system level, as (i) tags are not communicated back

to the controller to perform the tag check, and (ii) the

protocol minimizes data movement amplification, reducing the

number of commands and cache line packets sent between the

TDRAM and the controller. In the HBM2 generation, 62.6%

of the power is spent moving data between the DRAM and

the controller [12]. Avoiding data transfers associated with the

tag and cache-lines, which are potentially not needed if the

tag comparison result is a read miss clean for example, can be

beneficial for overall memory system power. §V-C provides

an extensive power analysis of TDRAM.

C. Protocol

TDRAM’s command protocol is similar to traditional

DRAM protocols, with modifications to minimize access la-

tency of tags and bandwidth bloat. TDRAM provides new

combined ActRd and ActWr commands that activate a row and

read/write a column at both tag and data banks with an auto-

precharge for close-page policy. These combined commands

include the row and column addresses, bank group, bank, and

tag address needed to determine cache hit/miss. Internal state

machines in TDRAM handle sequencing and timing of the

7

[2] “Aurora supercomputer.” [Online]. Available: https://wccftech.com/intel-
unveils-aurora-supercomputer-specifications-21248-xeon-cpus-63744-
gpus-for-over-2-exaflops/

[3] “Direct rdram.” [Online]. Available: https://datasheetspdf.com/pdf-
file/623377/HynixSemiconductor/HY5R288HC745/1/

[4] “Hbm aquabolt: New potential breakthrough memory.” [Online]. Avail-
able: https://semiconductor.samsung.com/us/dram/hbm/hbm2-aquabolt/

[5] “Iedm 2022: Did we just witness the death of sram?” [Online].
Available: https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-
witness-the-death-of-sram/

[6] “Intel. rldram ii and rldram 3 features.” [Online]. Avail-
able: https://www.intel.com/content/www/us/en/docs/programmable/
710283/17-0/rldram-ii-and-rldram-3-features.html

[7] “Intel xeon platinum 8468h.” [Online]. Available: https://www.
itcreations.com/product/140851

[8] “Intel’s cascade lake: 2nd generation intel® xeon® scalable processors.”
[Online]. Available: https://www.intel.com/content/www/us/en/products/
platforms/details/cascade-lake.html

[9] “Jedec. high bandwidth memory dram (hbm3), jedec standard jesd238,
jan 2022.” [Online]. Available: https://www.jedec.org/standards-
documents/docs/jesd238a

[10] “Micron. async/page/burst cellularram® 1.0 memory
mt45w2mw16bgb.” [Online]. Available: https://www.digchip.com/
datasheets/parts/datasheet/301/MT45W2MW16BGB-701 IT-pdf.php

[11] “Micron rldram 3 specifications.” [Online]. Avail-
able: https://media-www.micron.com/-/media/client/global/documents/
products/data-sheet/dram/1,-d-,125gb x18 x36 rldram3.pdf

[12] “Power consumption in hbm.” [Online]. Available: https:
//semiengineering.com/where-power-is-spent-in-hbm/

[13] “Rambus inc. hbm3 controller.” [Online]. Available: https://www.
rambus.com/interface-ip/hbm/hbm3-controller/

[14] “Rambus inc. hbm3: Everything you need to know.” [Online].
Available: https://www.rambus.com/blogs/hbm3-everything-you-need-
to-know/,Oct2023.

[15] “Samsung. hbm3 icebolt: Powering the next frontier.” [On-
line]. Available: https://www.semiconductor.samsung.com/us/dram/hbm/
hbm3-icebolt/

[16] “Synopsys. what is high bandwidth memory 3 (hbm3)?”
[Online]. Available: https://www.synopsys.com/glossary/what-is-high-
bandwitdth-memory-3.html

[17] “[tech day 2022] dram solutions to advance data intelligence.”
[Online]. Available: https://semiconductor.samsung.com/news-events/
tech-blog/dram-solutions-to-advance-data-intelligence/

[18] A. R. Alameldeen and D. A. Wood, “Ipc considered harmful for
multiprocessor workloads,” IEEE Micro, vol. 26, no. 4, pp. 8–17, 2006.

[19] M. Arafa, B. Fahim, S. Kottapalli, A. Kumar, L. P. Looi, S. Mandava,
A. Rudoff, I. M. Steiner, B. Valentine, G. Vedaraman, and S. Vora,
“Cascade lake: Next generation intel xeon scalable processor,” IEEE

Micro, vol. 39, no. 2, pp. 29–36, 2019.

[20] M. Babaie, A. Akram, and J. Lowe-Power, “Enabling design space
exploration of dram caches for emerging memory systems,” in 2023

IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS). IEEE, 2023, pp. 340–342.

[21] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” The International

Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[22] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[23] P. Behnam and M. N. Bojnordi, “Adaptively reduced dram caching
for energy-efficient high bandwidth memory,” IEEE Transactions on

Computers, vol. 71, no. 10, pp. 2675–2686, 2022.

[24] P. Behnam, A. P. Chowdhury, and M. N. Bojnordi, “R-cache: A highly
set-associative in-package cache using memristive arrays,” in 2018 IEEE

36th International Conference on Computer Design (ICCD). IEEE,
2018, pp. 423–430.

[25] A. Biswas and S. Kottapalli, “Next-Gen Intel Xeon CPU - Sapphire
Rapids,” in Hot Chips 33, 2021.

[26] M. N. Bojnordi and F. Nasrullah, “Retagger: An efficient controller for
dram cache architectures,” in Proceedings of the 56th Annual Design

Automation Conference 2019, 2019, pp. 1–6.

[27] C. C. Chou, A. Jaleel, and M. K. Qureshi, “Cameo: A two-level memory
organization with capacity of main memory and flexibility of hardware-

managed cache,” in 2014 47th Annual IEEE/ACM International Sympo-

sium on Microarchitecture. IEEE, 2014, pp. 1–12.

[28] C. Chou, A. Jaleel, and M. K. Qureshi, “Bear: Techniques for mitigating
bandwidth bloat in gigascale dram caches,” ACM SIGARCH Computer

Architecture News, vol. 43, no. 3S, pp. 198–210, 2015.

[29] L. Eeckhout, “Computer architecture performance evaluation methods,”
Synthesis Lectures on Computer Architecture, vol. 5, no. 1, pp. 1–145,
2010.

[30] M. El-Nacouzi, I. Atta, M. Papadopoulou, J. Zebchuk, N. E. Jerger, and
A. Moshovos, “A dual grain hit-miss detector for large die-stacked dram
caches,” in 2013 Design, Automation & Test in Europe Conference &

Exhibition (DATE). IEEE, 2013, pp. 89–92.

[31] W. Elsasser and N. Nikoleris, “Memory controller updates for new
DRAM technologies, NVM interfaces and flexible memory topologies,”
in 3rd gem5 Users’ Workshop with ISCA 2020, 2020.

[32] B. Gao, H.-W. Tee, A. Sanaee, S. B. Jun, and D. Jevdjic, “Os-level
implications of using dram caches in memory disaggregation,” in 2022

IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS). IEEE, 2022, pp. 153–155.

[33] M. Ghosh and H.-H. S. Lee, “Smart refresh: An enhanced memory
controller design for reducing energy in conventional and 3d die-
stacked drams,” in 40th Annual IEEE/ACM international symposium on

microarchitecture (MICRO 2007). IEEE, 2007, pp. 134–145.

[34] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan, “Bi-
modal dram cache: Improving hit rate, hit latency and bandwidth,” in
2014 47th Annual IEEE/ACM International Symposium on Microarchi-

tecture. IEEE, 2014, pp. 38–50.

[35] F. Hameed, L. Bauer, and J. Henkel, “Simultaneously optimizing dram
cache hit latency and miss rate via novel set mapping policies,” in 2013

International Conference on Compilers, Architecture and Synthesis for

Embedded Systems (CASES). IEEE, 2013, pp. 1–10.

[36] F. Hameed, A. A. Khan, and J. Castrillon, “Improving the performance
of block-based dram caches via tag-data decoupling,” IEEE Transactions

on Computers, vol. 70, no. 11, pp. 1914–1927, 2020.

[37] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. N. Udipi,
“Simulating dram controllers for future system architecture exploration,”
in 2014 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS). IEEE, 2014, pp. 201–210.

[38] M. Hildebrand, J. T. Angeles, J. Lowe-Power, and V. Akella, “A case
against hardware managed dram caches for nvram based systems,”
in 2021 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS). IEEE, 2021, pp. 194–204.

[39] J. Hong, S. Cho, G. Park, W. Yang, Y.-H. Gong, and G. Kim,
“Bandwidth-effective dram cache for gpu s with storage-class memory,”
in 2024 IEEE International Symposium on High-Performance Computer

Architecture (HPCA). IEEE, 2024, pp. 139–155.

[40] C.-C. Huang and V. Nagarajan, “Atcache: Reducing dram cache latency
via a small sram tag cache,” in Proceedings of the 23rd international

conference on Parallel architectures and compilation, 2014, pp. 51–60.

[41] K. Inoue, S. Hashiguchi, S. Ueno, N. Fukumoto, and K. Murakami, “3d
implemented sram/dram hybrid cache architecture for high-performance
and low power consumption,” in 2011 IEEE 54th International Midwest

Symposium on Circuits and Systems (MWSCAS). IEEE, 2011, pp. 1–4.

[42] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A
scalable and effective die-stacked dram cache,” in 2014 47th Annual

IEEE/ACM International Symposium on Microarchitecture. IEEE,
2014, pp. 25–37.

[43] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for
servers: Hit ratio, latency, or bandwidth? have it all with footprint cache,”
ACM SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 404–
415, 2013.

[44] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for ex-
ploiting subarray-level parallelism (salp) in dram,” in 2012 39th Annual

International Symposium on Computer Architecture (ISCA), 2012, pp.
368–379.

[45] Y. Kim, H. Kim, and W. J. Song, “Nomad: Enabling non-blocking os-
managed dram cache via tag-data decoupling,” in 2023 IEEE Interna-

tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2023, pp. 193–205.

[46] J. B. Kotra, H. Zhang, A. R. Alameldeen, C. Wilkerson, and M. T.
Kandemir, “Chameleon: A dynamically reconfigurable heterogeneous
memory system,” in 2018 51st Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO). IEEE, 2018, pp. 533–545.

14

[47] J. Lee and et al., “A 48-gb 16-high 1280-gb/s hbm3e dram with all-
around power tsv and a 6-phase rdqs scheme for tsv area optimization,”
International Solid State Circuits Conference (ISSCC) 2024.

[48] G. Loh and M. D. Hill, “Supporting very large dram caches with
compound-access scheduling and missmap,” IEEE Micro, vol. 32, no. 3,
pp. 70–78, 2012.

[49] G. H. Loh, N. Jayasena, K. Mcgrath, M. O’Connor, S. Reinhardt, and
J. Chung, “Challenges in heterogeneous die-stacked and off-chip mem-
ory systems,” in 3rd Workshop on SoCs, Heterogeneous Architectures

and Workloads, vol. 20, 2012, p. 12.

[50] J. Lowe-Power, On Heterogeneous Compute and Memory Systems. The
University of Wisconsin-Madison, 2017.

[51] J. Lowe-Power et al., “The gem5 simulator: Version 20.0+,” 2020.

[52] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Balasubramonian,
R. Iyer, S. Makineni, and D. Newell, “Optimizing communication
and capacity in a 3d stacked reconfigurable cache hierarchy,” in 2009

IEEE 15th International Symposium on High Performance Computer

Architecture. IEEE, 2009, pp. 262–274.

[53] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and
G. H. Loh, “Heterogeneous memory architectures: A hw/sw approach
for mixing die-stacked and off-package memories,” in 2015 IEEE 21st

International Symposium on High Performance Computer Architecture

(HPCA). IEEE, 2015, pp. 126–136.

[54] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
efficient and scalable hybrid memories using fine-granularity dram cache
management,” IEEE Computer Architecture Letters, vol. 11, no. 2, pp.
61–64, 2012.

[55] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W.
Keckler, and W. J. Dally, “Fine-grained dram: Energy-efficient dram
for extreme bandwidth systems,” in Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitecture, 2017, pp.
41–54.

[56] K. H. Park, S. K. Park, H. Seok, W. Hwang, D.-J. Shin, J. H. Choi,
and K.-W. Park, “Efficient memory management of a hierarchical and a
hybrid main memory for mn-mate platform,” in Proceedings of the 2012

International Workshop on Programming Models and Applications for

Multicores and Manycores, 2012, pp. 83–92.

[57] M.-J. Park, J. Lee, K. Cho, J. Park, J. Moon, S.-H. Lee, T.-K. Kim,
S. Oh, S. Choi, Y. Choi et al., “A 192-gb 12-high 896-gb/s hbm3 dram
with a tsv auto-calibration scheme and machine-learning-based layout
optimization,” IEEE Journal of Solid-State Circuits, vol. 58, no. 1, pp.
256–269, 2022.

[58] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in archi-
tecting dram caches: Outperforming impractical sram-tags with a simple
and practical design,” in 2012 45th Annual IEEE/ACM International

Symposium on Microarchitecture. IEEE, 2012, pp. 235–246.

[59] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter, “Hemem:
Scalable tiered memory management for big data applications and
real nvm,” in Proceedings of the ACM SIGOPS 28th Symposium on

Operating Systems Principles, 2021, pp. 392–407.

[60] A. Sabu, H. Patil, W. Heirman, and T. E. Carlson, “Looppoint:
Checkpoint-driven sampled simulation for multi-threaded applications,”
in 2022 IEEE International Symposium on High-Performance Computer

Architecture (HPCA). IEEE, 2022, pp. 604–618.

[61] D. D. Sharma, “System on a package innovations with universal chiplet
interconnect express (ucie) interconnect,” IEEE Micro, vol. 43, no. 2,
pp. 76–85, 2023.

[62] J. Sim, G. H. Loh, V. Sridharan, and M. O’Connor, “Resilient die-stacked
dram caches,” ACM SIGARCH Computer Architecture News, vol. 41,
no. 3, pp. 416–427, 2013.

[63] A. Sodani, R. Gramunt, J. Corbal, H.-s. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights Landing: Second-
Generation Intel Xeon Phi Product,” IEEE Micro, vol. 36, no. 2, pp.
34–46, mar 2016. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7453080

[64] Y. H. Son, O. Seongil, Y. Ro, J. W. Lee, and J. H. Ahn, “Reducing
memory access latency with asymmetric dram bank organizations,” in
Proceedings of the 40th annual international symposium on computer

architecture, 2013, pp. 380–391.

[65] T. Stocksdale, M.-T. Chang, H. Zheng, and F. Mueller, “Architecting
hbm as a high bandwidth, high capacity, self-managed last-level cache,”
in Proceedings of the 2nd Joint International Workshop on Parallel Data

Storage & Data Intensive Scalable Computing Systems, 2017, pp. 31–36.

[66] H. Sun, J. Liu, R. Anigundi, N. Zheng, J. Lu, R. Ken, and T. Zhang,
“Design of 3d dram and its application in 3d integrated multi-core
computing systems,” IEEE Design and Test of Computers, pp. 36–47,
2009.

[67] K. Wang, K. Angstadt, C. Bo, N. Brunelle, E. Sadredini, T. Tracy,
J. Wadden, M. Stan, and K. Skadron, “An overview of micron’s automata
processor,” in 2016 International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS), 2016, pp. 1–3.
[68] K.-H. Yang, H.-J. Tsai, C.-Y. Li, P. Jendra, M.-F. Chang, and T.-F. Chen,

“etag: Tag-comparison in memory to achieve direct data access based on
edram to improve energy efficiency of dram cache,” IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 64, no. 4, pp. 858–868,
2016.

[69] S. Yin, J. Li, L. Liu, S. Wei, and Y. Guo, “Cooperatively managing
dynamic writeback and insertion policies in a last-level dram cache,” in
2015 Design, Automation & Test in Europe Conference & Exhibition

(DATE). IEEE, 2015, pp. 187–192.
[70] V. Young, C. Chou, A. Jaleel, and M. Qureshi, “Accord: Enabling

associativity for gigascale dram caches by coordinating way-install
and way-prediction,” in 2018 ACM/IEEE 45th Annual International

Symposium on Computer Architecture (ISCA). IEEE, 2018, pp. 328–
339.

[71] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-efficient dram caching via software/hardware cooperation,”
in Proceedings of the 50th Annual IEEE/ACM International Symposium

on Microarchitecture, 2017, pp. 1–14.
[72] L. Zhao, R. Iyer, R. Illikkal, and D. Newell, “Exploring dram cache

architectures for cmp server platforms,” in 2007 25th International

Conference on Computer Design. IEEE, 2007, pp. 55–62.

15

	Introduction
	Background and Motivation
	HBM3 Architecture
	Tag Management in Existing DRAM Caches
	Opportunities to Improve DRAM Cache Designs
	DRAM Cache's Increased Hit Latency
	DRAM Cache's Increased Miss Latency
	Increased Bandwidth Bloat and Energy Consumption

	Tag-enhanced DRAM Design
	TDRAM's Interface
	TDRAM's Internal Architecture
	Data Storage and Access Granularity
	On-Die Tag Storage
	Metadata Access and Tag Comparison
	Direct-Mapped & Set-Associative TDRAM
	Tag Mats Timing Values
	Tag Storage Area Overhead
	Tag Storage Power Overhead

	Protocol
	Read Operations
	Write Operations

	Early Tag Probing Optimization
	Probing Mechanism
	Selection Policy

	Evaluation Methodology
	Modeled System for Evaluation
	Benchmarks
	Methodology for Experiments

	Results and Discussion
	Impact of Optimizing Tag Check Mechanism
	Overall Performance
	TDRAM's Energy Improvement
	Flush Buffer Size Sensitivity Analysis
	Link Latency Case Study
	Set-Associative TDRAM

	Related Work
	References

