2404.14617v1 [cs.AR] 22 Apr 2024

arxiv

TDRAM: Tag-enhanced DRAM for Efficient
Caching

Maryam Babaie', Ayaz Akram’, Wendy Elsasser?, Brent Haukness?, Michael Miller?,
Taeksang Song?, Thomas Vogelsang?, Steven Woo?, Jason Lowe-Power!

'Department of Computer Science, University of California, Davis
2Rambus Labs, Rambus Inc.

Abstract—As SRAM-based caches are hitting a scaling wall,
manufacturers are integrating DRAM-based caches into system
designs to continue increasing cache sizes. While DRAM caches
can improve the performance of memory systems, existing DRAM
cache designs suffer from high miss penalties, wasted data move-
ment, and interference between misses and demand requests. In
this paper, we propose TDRAM, a novel DRAM microarchitec-
ture tailored for caching. TDRAM enhances HBM3 by adding a
set of small low-latency mats to store tags and metadata on the
same die as the data mats. These mats enable fast parallel tag
and data access, on-DRAM-die tag comparison, and conditional
data response based on comparison result (reducing wasted
data transfers) akin to SRAM caches mechanism. TDRAM
further optimizes the hit and miss latencies by performing
opportunistic early tag probing. Moreover, TDRAM introduces
a flush buffer to store conflicting dirty data on write misses,
eliminating turnaround delays on data bus. We evaluate TDRAM
using a full-system simulator and a set of HPC workloads with
large memory footprints showing TDRAM provides at least
2.6x faster tag check, 1.2x speedup, and 21% less energy
consumption, compared to the state-of-the-art commercial and
research designs.

I. INTRODUCTION

Today’s computers, equipped with significant processing
capabilities and memory capacities, aim to fulfill the re-
quirements of high-performance computing (HPC) tasks such
as machine learning and artificial intelligence. To find the
right balance between performance and capacity, manufac-
turers have embraced heterogeneous memory systems. These
systems combine high-performance memories like HBM with
high-capacity memories with lower performance. The intro-
duction of interconnect technologies like Compute Express
Link (CXL) is increasing memory heterogeneity with local and
remote memory pools. Intel’s Sapphire Rapids CPU demon-
strates this strategy by employing on-package HBM DRAMs
as cache [25], [61]. This approach effectively boosts cache
capacities and tackles the scaling limitations encountered
by SRAM [5]. The expanded cache capacity and enhanced
bandwidth provided by HBM DRAMs offer the potential for
improved data locality, without programmers intervention.

This work is licensed under the Creative Commons Attribution 4.0
International (CC-BY-SA 4.0) license. Authors reserve their rights
to disseminate the work on their personal and corporate websites
with the appropriate attribution.

However, the potential benefits of DRAM caches have not
borne fruit. Previous studies of DRAM caches have shown
that using standard DRAM devices as a cache can slow
down applications with large memory footprints and high miss
rates [38], [59]. The current designs of DRAM caches, such
as those in Intel’s Cascade Lake DRAM cache [8], [38], store
tag and metadata together with the cache line data in the same
DRAM. Storing tags and data together reduces hit time for
read demands [58], but significantly increases miss penalties
since a separate DRAM read is necessary to retrieve tag and
metadata for hit/miss and status information, causing con-
tention with demand reads. Also, all write requests, including
those hitting on the cache, require a DRAM read to fetch
tag and data to ensure dirty data is not overwritten, further
exacerbating the contention and causing expensive turnaround
bubbles on the data bus [19]. These extra accesses for read-
misses and write demands increase: (i) latency for demand
misses, (ii) contention in the read buffer which extends the
queue occupancy time, and (iii) wasted data movement and
energy consumption.

Today’s applications that require large capacity memories
have high miss rates in DRAM caches which cause these is-
sues to significantly affect the workload’s performance. SRAM
caches cannot scale to the capacities required by today’s ap-
plications, and thus it becomes imperative to enhance existing
DRAM cache designs to address these challenges.

In this work, we introduce TDRAM (Tag-enhanced
DRAM), a DRAM microarchitecture specifically tailored for
caching purposes.! TDRAM enhances HBM3 by adding a set
of small low-latency mats to store tags and metadata on the
same die as the data mats. These mats enable faster access than
the data mats through the reduction of wordline and bitline
lengths. The additional on-die storage is sufficiently large to
accommodate the tag and metadata for all DRAM cache lines;
thus, the tag store scales with the data capacity. By placing
the tags in separate mats on-die, TDRAM enables rapid on-
die tag checking which reduces the latency for demand misses,
mitigates contention on the DRAM read queue, and decreases
wasted data transfers (and thus energy).

'In the recent past, it was uneconomical for DRAM manufacturers to
modify the core DRAM microarchitecture. However, specialty DRAMs are
becoming increasingly common (e.g., Samsung’s Aquabolt [4], Micron’s
Automata Processor [67] and RLDRAM [11]).

TDRAM extends HBM3’s interface in three ways: (1) It
adds a unidirectional hit-miss (HM) bus to its interface to
transfer the tag check result and metadata to the controller. (2)
It adds two new commands to the HBM3’s protocol: ActRd and
ActWr, which access both tag and data mats in lockstep. These
commands check the tag for the block and only send data to
the controller when it is needed. (3) We add a flush buffer to
store conflicting dirty data from write misses which eliminates
costly turnaround delays on the data bus and immediate cache
line data transfer to the controller for write requests. The
overhead of this new design compared to HBM3 is 192 pins
(out of 1,972 existing pins, a 10% increase) and 8.24% total
die area.

TDRAM further improves performance by implementing
early tag probing, which opportunistically performs tag checks
(without data access) in otherwise unused command and HM
bus slots. Tag probing returns early hit-miss and status indi-
cation of a demand access, allowing certain operations (e.g.,
main memory access for read demand misses) to start earlier.
Early tag probing also reduces request queue occupancy time
by removing misses from the queue early, allowing other
demands to proceed with fewer stalls.

TDRAM is orthogonal to many prior works that focus on
improving DRAM caching performance by adding predictors,
prefetchers, tag caches, modifying coherence protocols, bypass
policies, and other application-specific mechanisms [23], [24],
[28], [36], [68]. TDRAM is designed in a way that all of these
techniques can be applied on top of it to further improve its
performance. Overall, TDRAM enables a perfectly scalable
HBM-based cache with a cohesive caching paradigm akin to
processors’ SRAM-based caches. Thus, TDRAM focuses on
optimizing the core and fundamental DRAM cache operations
by eliminating inefficiencies in existing designs.

We have extensively modeled TDRAM in the gemS5 simula-
tor [51], for a detailed full-system cycle-level timing analysis.
Our evaluations using scientific and graph analytics appli-
cations with large memory footprints, have shown TDRAM
provides 2.6x faster tag check and 1.2x speedup and at least
21% less energy consumption, compared to the commercial
and research designs such as Intel’s Cascade Lake and Alloy.

In this paper, we make the following contributions:

Microarchitecture

« We propose a new HBM3-based DRAM microarchitecture,
TDRAM, designed for caching with on-DRAM-die tag
management, to enable perfectly scalable DRAM caching
where the tag storage scales with data capacity.

o We extend the HBM3 interface with a unidirectional Hit-
Miss bus to transfer tag check results and metadata from
DRAM to the controller, decoupling them from data transfer.

e« We add a flush buffer to hold conflicting dirty data from
write misses which eliminates both costly turnaround delays
on the data bus and immediate cache line data transfer to
the controller for write requests. TDRAM opportunistically
sends them to the controller when data bus is idle or in
read-state.

Protocol

o We integrate two new commands to HBM3’s protocol, ActRd
and ActWr, which enable parallel independent access to both
tag and data banks. The protocol selectively streamlines
data to the controller only when necessary based on tag
comparison, reducing bandwidth bloat.

o We propose opportunistic early tag check mechanism in
unused HM and command bus slots, to minimize queueing
delay for tag check, reducing buffer contention and opti-
mizing miss latencies. This mechanisms does not access
data banks. If this tag check results in miss, then TDRAM
initiates backing store access immediately, if necessary; and
avoids future cache line data access, if not necessary.

Evaluation

o« We demonstrate DRAM caching using existing designs
cause slowdown while TDRAM provides 1.11x speedup.

o« We show TDRAM reduces energy consumption by 21%,
since its conditional data response to the controller removes
wasted data transfers.

o We analyze performance of DRAM caching in disaggregated
systems with remote main memories and show TDRAM
provides 1.14x speedup compared to the state-of-the-art
commercial DRAM cache, for low miss ratio applications.

II. BACKGROUND AND MOTIVATION
A. HBM3 Architecture

This section provides an overview of HBM DRAMs as the
basis of TDRAM. HBM provides the highest bandwidth and
capacity of any single DRAM package in mass production.
HBM3 DRAMs stack multiple DRAM die into a single
package, and can support up to 64 GiB capacity using 12 to
16-high stacks [47]. These devices provide up to 1024 GiB/s
of bandwidth when running at 8 Gbps across 16 independent
channels with 64b data (DQ) and 10b Row command (R) and
8b Column command (C) buses. Each DQ channel can be split
into two 32-bit pseudo-channels (PCs) that share the same R
and C buses, with each PC providing 32B access granular-
ity [9], [14]-[16]. Each channel includes 38 additional signals
for clocks, strobes, ECC, redundancy, and other functions.
The wires connecting the high pin count interface between
the DRAM and host (1024 DQs, 288 command/address (CA)
buses, and more than 650 pins for additional channel and
global functions), are implemented in technologies such as
TSMC'’s InFO or silicon (e.g., a silicon interposer) to support
the high pin and trace densities required for this technology.

HBM DRAMs are hierarchically organized, storing data bits
in arrays of capacitors. DRAM bit cells are grouped into rows
or pages, with multiple rows aggregated into mats, and mats
organized into 2D structures called banks. Decoded row and
column addresses identify bits within a bank. Multiple banks
form a bank group that share some resources. Back-to-back
accesses to the same bank group require longer latencies to
allow these shared resources to free up, while accesses to
different bank groups enable lower latencies.

TABLE I: Comparison of TDRAM with related work. Tag storage can be on the processor die (e.g., in SRAM or eDRAM)
or off die (e.g., on DDR or HBM device). The tag check can occur before the off-die memory controller, within the memory
controller, or in the off-chip data storage. The area overhead on the processor die depends on the tag storage location. Some
designs require extra hardware (e.g., tag cache, prefetchers) or significant changes to the coherence protocol (Extra hardware
row). The tag capacity can either scale with the amount of data stored in the cache or not. Some designs require multiple (tag
and/or off-chip) device accesses to complete read and write hits. TDRAM has low are overhead, no extra hardware, scales tag
capacity with data capacity, and requires only one device access for read and write hits.

ng s_torage On the processor die Off the processor die
maintained on: Tag & data in the same row Tag & data in separate storage
Tag storage type SRAM eDRAM DRAM RRAM DRAM
33,41, 23,26-28,30,34,35,40,48, R-Cache
Examples [52,72] eTag[68] [49,53,54,56,58,62,66,69] [24] [36] TDRAM
Tag check Before MC * Before MC In MC In RRAM | In DRAM In DRAM
Processor die area High 2 High Low Low Low Low
No Extra HW v X X X X v
Tags scale with data X X v v v v
Low hit/miss latency v v X X X v
Notes: " MC: memory controller, 2 Some prior work propose 3D-based solutions.

A command decoder receives commands and addresses
from the memory controller over a CA bus. When data is read
from a DRAM, an activate command provides a row address
to move all bits in one row of a bank to sense amplifiers
(or sense amps). A separate read command provides a column
address to select a subset of the bits from the sense amps to be
returned across the DQ bus. Write commands work similarly,
providing data to be written into the DRAM.

B. Tag Management in Existing DRAM Caches

Numerous studies have investigated the management of tag
and metadata (referred to collectively as tag) in hardware-
managed DRAM caches and Table I compares some of these
prior works to TDRAM. Also, DRAM cache products, like
Intel’s Xeon series, offering gigabytes of DRAM cache, are
available in the market. In terms of storage size, a 64 GiB
block-based DRAM cache requires 3 GiB of storage for 3B
tag per 64B blocks. This is far beyond the cache sizes in high-
end CPUs by AMD (384 MiB in EPYC 9654P [1]) and Intel
(105 MiB in Xeon Platinum 8468H [7]) today. While SRAM
caches are hitting a scaling wall, tags-in-SRAM solutions
(e.g., on processor die) will add to the area overhead and
price [33], [41], [52], [72]. Moreover, solutions that put tags
on the processor die, e.g., eTag [68], severly limits scalability
of DRAM cache capacity by tying it to the tag capacity that
processor chip can provide. Where Aurora supercomputer [2]
offers over 64 GiB HBM per CPU, moving towards highly-
scalable HBM-based DRAM caches is the direction of future.

Previous studies suggest storing tags in the same cache line
that data resides [23], [26]-[28], [30], [34], [35], [40], [48],
[49], [53], [54], [56], [58], [62], [66], [69]. For instance, in
Alloy cache instead of accessing 64B block, 72B (plus 8B
ignored) must be accessed, causing misalignment in column
layout within DRAM rows and leaving unused bits that causes
scalability overhead. In Intel’s Xeon Series (e.g., Cascade
Lake), tags are stored in the unused bits of ECC in commodity
DRAM devices [38]. However, ECC bits are not designed for
this purpose. These designs depend on a DRAM read to access

tag which can create a serialization of tag and data access (e.g.,
in write-hits), increasing bandwidth bloat.

Some prior work proposed to store tags in separate storage
on DRAM die. R-Cache uses resistive RAM for tag stor-
age [24]. Since tag access is on the critical path (i.e., data
access in DRAM cache depends on the tag comparison result),
the tag read and update latencies must be minimized. Resistive
RAM cannot provide the required speed. Moreover, tag and
metadata are subject to frequent updates, which can wear out
resistive RAM quickly. Other works suggested DRAM-based
tag storage [36], [68]. These works optimize tag management
and data layout in DRAM rows for associative caches which
require multiple tag comparisons, and both activate tag and
data regions in parallel. However, they have to delay the start
of column operations till tag comparison logic finds the corre-
sponding column, which in fact internally ties the data access
to the tag access. Most importantly, they fall short in providing
an efficient mechanism to handle write misses to dirty cache
lines that necessitates a data read before write for correctness.
As a result, these solutions have to rely on either speculative
mechanisms (e.g., predictors and DRAM bypassing unit with
application-specific hardcoded designs [36]), or require deep
cache coherence protocol changes (e.g., for the LLC to send
clean writeback messages to the memory controller) [50].
Changes to the cache coherence protocol ties the designs of
coherence protocol, the memory controller, and the DRAM,
which we avoid in this work.

C. Opportunities to Improve DRAM Cache Designs

DRAM cache hit/miss latencies vary based on system
design, influenced by factors like tag storage and access
mechanisms. Tag check latency is always on the critical path
of servicing a memory demand. The prior designs storing tag
in the DRAM cache line [42], [58] or in the ECC bits of
DRAM (e.g., Intel’s Cascade Lake), must perform a DRAM
read that retrieves the cache line’s tag and data, simultaneously.
These designs aimed for parallelizing the tag and data access

Read-Miss-Clean Write-Miss-Clean I Read-Hit
I Read-Miss-Dirty I Write-Miss-Dirty Em Write-Hit

100
0 I| I | I
60
40
20
ol R R R e e s
$ %%

DRAM Cache miss-hit ratio (%)

& 6.C 6 O & 6(\ // S
.s:?oo % & NS X 5\9’?0‘ 0”)\90%
LLLLLL LLHHLHLH LLLLLL HLHHHHHH
GAPBS-22 NPB-C GAPBS-25 NPB-D

Fig. 1: The breakdown of hit and miss ratios of DRAM cache.
The letters show high or low miss ratio.

to improve hit latency. Through some experiments we show
their inefficiencies.

For the experiments we consider Intel’s Xeon Max se-
ries [25], rounded up to 64 cores and 64 GiB of HBM (1 GiB
per core, in DRAM cache mode). Using gemS5 simulator [51],
we modeled % of the target system. In this work, for the base-
line to represent existing designs storing tags in DRAM, we
choose Intel Xeon series DRAM cache (e.g., Cascade Lake),
recognized as the state-of-the-art real commercial product in
this domain which implements a direct-mapped insert-on-miss
cache [38]. We executed 28 HPC multithreaded workloads
from GAPBS [22] and NPB [21]. These workloads’ memory
footprints are 0.1-80 GiB, while the total DRAM cache size
remains at 8§ GiB. We conducted full-system simulation and
we employed LoopPoint technique [60] for precise control
over workloads execution phases. Notably, our experimental
setup differs from previous works, allowing us to uncover

pathological pathways not observed in prior studies. §IV
provides more details about our methodology.
1) DRAM Cache’s Increased Hit Latency: In DRAM

caches that use standard DRAM devices with tags stored in
the device, the cache hit latency almost equals the DRAM read
latency for LLC read misses. For LLC writebacks, i.e., evicting
dirty data from LLC, the hit latency involves a DRAM read
latency (to retrieve the tag) and then a DRAM write is issued
(for writing incoming data into the cache). Previous efforts
aimed to parallelize tag and data accesses for each memory
request [58]. However, this parallelization is compromised for
all LLC writebacks, even those hitting on the DRAM cache.
The reason is the controller must read the tag (in which the
data is also read) for tag comparison and it will not issue the
incoming data write into the cache until after DRAM read is
ready in the controller and tag check is done. Note that the
data read happens because in the commodity DRAMs the only
mechanism to fetch tag is to read the whole cache line data,
regardless of incoming write data size. In this case, the DRAM
read remains on the critical path of write demand and causes
access amplification (bandwidth bloat). Prior work reported
DRAM caches’ access amplification can reach to as high as
5 accesses [38]. Figure 1 illustrates the miss ratio percentage
of the DRAM cache and its breakdown in our experiments.
As shown in dark blue color, in the majority of workloads,
the number of LLC writebacks hitting on the DRAM cache is
significant, potentially affecting the hit latency of the DRAM

Cascade Lake . Alloy MainMem Only

>
[y 4
T2 60
A<
o3
£ 401
%m

o
2 © 204
5 |||I 11 |

c
ol tr -t

606,:‘; oo.o,q,%z‘o LGRS /(,o,o% % 606,& oo,o,%%fo G &S /(/),9% %

GAPBS-22 NPB-C GAPBS-25 NPB-D
Fig. 2: The average queueing delay of read demands in the read
buffer of controller, in Intel’s Cascade Lake and Alloy DRAM
caches, compared to the system having a main memory only
(no DRAM cache). This time marks the waiting time requests
spend in the buffer before accessing the memory.

cache.

2) DRAM Cache’s Increased Miss Latency: The pro-
cess time of a memory demand is sum of two components:
QueueingDelay+ M emoryAccess Latency. Memory access
latency is the time it takes since a read/write command is
issued for a demand, until the data is available on the DQ
bus. The queueing delay marks the waiting time requests
spend in a buffer before a read/write command is issued.
In current DRAM caches, all read and write requests (i.e.,
LLC’s read misses and writebacks) must undergo a DRAM
read to fetch the tag. The controller handles these DRAM
reads, including those for LLC writebacks, in the same read
buffer. This arrangement heightens contention in the buffer,
increasing queueing delay of all demands.

Figure 2 displays the average queueing delay of all DRAM
reads in state-of-the-art DRAM caches, compared to a system
solely equipped with main memory (no DRAM cache). As
depicted, the bars are significantly higher in the DRAM cache
system compared to system relying solely on main memory.
The main reason is that every read and write demand has
to start by reading a tag in DRAM cache, which increases
contention in the read buffer and bank conflicts when the tag
reads occur.

This extended delay directly impacts the tag check latency
for all read demands that miss in the DRAM cache, leading
to a delay in fetching the missing line from the main memory
where the response to LLC resides. In simpler terms, it
extends the miss latency of the DRAM cache. This latency
is crucial for LLC read misses, as their processing time in the
DRAM cache contributes to the miss penalty of LLC, which
is observed by the CPU. This directly influences the overall
system throughput. As Figure | shows, the number of read
misses (in dark/light green) in the DRAM cache is significant.

3) Increased Bandwidth Bloat and Energy Consumption:
The read data during tag access in the DRAM cache is only
beneficial for read demands hitting the cache or for demands
missing to a dirty cache line. In cases of read/write misses to a
clean line and write hits, the controller discards the read data
immediately after tag comparison, serving no purpose. In such
cases, existing DRAM cache designs introduce data move-
ment overheads by: (i) keeping DRAM’s command bus and
banks busy, and (ii) occupying data bus for unnecessary data
transfers. These extra communications between the DRAM

- Unuseful

Cascade Lake

66,0(,0,.4~ ‘o é,cb?/\p

. Alloy

=
o
o

DRAM Cache's
Bandwidth Breakdown (%)
o
o

o

GAPBS-22 NPB-C GAPBS-25 NPB-D

Fig. 3: Intel’s Cascade Lake commericial and Alloy DRAM
caches bandwidth, broken to useful and unuseful data move-
ment, normalized to total system bandwidth. In all read/write
misses to a clean line and write hits, after tag comparison
(which also retreives data) the controller immediately discards
the data (serving no purpose), shown as unuseful. Alloy has
a longer burst length than Cascade Lake, which increases the
unuseful data movement.

and the controller result in bandwidth bloat [28], wasting
energy. This waste exacerbates as the miss ratio rises. Figure 3
quantifies the relative amount of wasted data movement during
the tag check process. Notably, in many applications (e.g.,
ft,is, mg,ua) the wasted data movement is significant.
Moreover, in cases where the read data is a dirty line, it is
unnecessarily part of the critical path of servicing a demand.
A thoughtful design could put such accesses off the critical
path while ensuring correctness. Figure 1 illustrates that the
memory demands not using the read data in tag access (i.e.,
write-hits, read-miss-cleans, write-miss-cleans) are common.
Notably, write demands that miss to a dirty line in DRAM
cache are very rare, indicating an opportunity to eliminate data
reads in tag checks on write demands.
From this preliminary analysis, we have the following goals
when constructing a cache-optimized DRAM architecture:
1) Reduce the hit latency of DRAM cache by optimizing the
tag check mechanism and write-hits;
2) Reduce the miss latency of DRAM cache specifically for
reads by reducing tag check and queueing delays;
3) Reduce the wasted data movement on write-hits, read-miss-
cleans, and write-miss-cleans to save energy; and
4) Support write-miss-dirty (i.e., we cannot simply overwrite
on writes) for correctness not necessarily performance since
they are uncommon.

III. TAG-ENHANCED DRAM DESIGN

In this section, we describe the microarchitecture of
TDRAM, a new DRAM crafted to fulfill the requirements of
DRAM caching in contemporary server memory hierarchies.
TDRAM is designed in the same vein as other custom DRAMs
such as Samsung Aquabolt [4], Micron Automata Proces-
sor [67], and RLDRAM [11]. Given the slowdown in SRAM
scaling, industry is already integrating DRAMs as caches [19],
[25], [63] and announced future DRAM devices specialized
for caching [17]. TDRAM is a novel microarchitecture for
specialized DRAM devices in this track.

TDRAM adheres to three principles: (i) reducing hit and
miss latencies, (ii) minimizing bandwidth bloat and commu-
nications between cache and controller to save energy, and

(iii) easily scalable and providing high bandwidth. TDRAM
is based on HBM3 DRAM architecture (see §II-A).

The following sections describe the microarchitectural de-
tails of TDRAM. First, we explain the interface of TDRAM
that connects the device and the controller. Second, we elab-
orate on the internal structure of TDRAM that provides the
additional on-die tag storage and fast tag check mechanism
while maintaining the data access per usual HBM3. Third,
we demonstrate the protocol of TDRAM that supports new
combined commands to access both tag and data banks in lock-
step (true parallelization), providing conditional data response
based on the tag comparison result. Finally, we explain the
opportunistic behaviors of TDRAM on: (i) early tag probing,
and (ii) sending evicted dirty data on write misses to the
controller when data bus is idle.

A. TDRAM’s Interface

TDRAM leverages the HBM3 interface and introduces three
changes as shown in Figure 4A: (i) the R and C buses are
merged into a single CA bus (i.e., like DDR DRAMs), (ii)
each of the 32 PCs is converted to an independent channel
with its own 8b CA bus and 32b DQ bus, and (iii) a 4b
Hit-Miss (HM) bus is added to each channel. Converting PCs
to independent channels simplifies memory controller design,
as each PC already has its own memory controller [13] and
command/address arbitration for the shared R and C buses in
HBM3 can be removed. Each of the 32 channels has a 32b
DQ bus and an 8b CA bus over which both row commands
and column commands are sent. Data transfers are protected
by ECC and redundancy as is done in HBM3.

The CA bus runs at the same speed as the DQ bus and the
protocol is designed to leave enough CA bus bandwidth avail-
able for additional operations like early tag probing (§III-D).
The 4b HM bus is unidirectional, runs at the same speed as
the DQ bus, and TDRAM uses it to communicate back to the
host: the results of on-die tag comparisons (hit/miss), status
information (valid/invalid, dirty/clean, etc), and tag of dirty
data to be written back to the main memory. A 64 GiB direct-
mapped DRAM cache can support 1 petabyte address space
using a 14-bit tag. The HM bus runs at full data rate and
the data packets are much longer than the HM bus occupancy
for a single transaction. Thus, the tags and metadata can be
transferred over HM bus in a number of beats without BW
becoming an issue. Each channel has 22 additional signals
(clocks, strobes, ECC, etc.) and the DRAM has 52 additional
global signals (reset, IEEE1500, etc.) for a total of 2164
signals, an increase of 9.7% over HBM3. The Signal Counts
table in Figure 4A shows the details of TDRAM’s signals
overhead compared to HBM3. The HBM3 package has 320
unused bump sites in the area for address and data signals [9],
more than enough to accommodate the additional 192 signals
(2b CA + 4b HM = 6, per 32-bit channel) in TDRAM, allowing
TDRAM to use a similar package.

(A)

TDRAM Signal Counts

TDRAM Layer

TDRAM Bank
(Even Bank Groups Have Tags, Metadata)

HBM2E HBM3[TDRAM B Tags, Metadata Cache Lines
Ch | . gt """"":': — e — e ———— T e S il
DRAM Dajcn | 128 64 | 32 DRAM Layer e "k :
ayers CA/ch | 16 18 | 8 BG 1 P S| mat o Mat Mat | Mat ||
HM/ch - - 4 : t"' ol 5] H
e Other/ch| 70 38 | 22 a1 2 4 e 4 Al
HM Total/ch | 214 120 | 66 : : 9¢ ColDec, |iil—= ; S - —
CA Layer Global 20 52 52 : RO ECC i =2 _e =0
Total | 1732 1972 | 2164 ¢ [Tag Compare | ; 5 3|3 5 3l
Bank|+++[Bank| ' —H G ol [|& O [C N
: Mat--- ol it mat Mat [[[F]] Mat [} Mat]]:
' [=] '
(B) . . BG N-1 - i3] 16 16 16 16
Data Layout in Paired Banks [vat]-[vat] |2 b —
DRAM Layer - - At : | Column Decoder, 10 Sense Amp, ECC
BG 0 BG 1 1] | mad-foag —

L_|]||Bank|-+-[Bank

d
[

[Row Dec]

Mat Mat || Mat Mat
Col Dec, %
Bank|+++[Bank IOSA, ECC, |t g
= — Buffer Tag Compare | & [a}
; Col 0 Col 31, Cols 0-31 o Eﬂ ol 2
! Last 328 Last 328 [Cache 17:01 | 13:01 || 131:0) : T Mat Mat A Mat Mat
/ of Cache |+++| of Cache | Line le 3|
1 Line Line ECC Base Layer i LL|
S =]l Ll - N | | === || [T e fee
/ _ 1
CTO‘ ~ C? - F 60\3023 FCO‘;zla C::"SE l |BOGSA:\ Ba}gksGmuDA L5 Hit/Miss to Row Address 256
ag, ag, irst irst ache = ense Am
Status, |-++|Status,| of Cache |-++| of Cache | Line P Tag of y OddBankGroup Bi-directional
ECC ECC Line Line ECC Requested Dirty Tag, Hit/Miss, 10s for Data

Address Way (Set-assoc caches)

Fig. 4: TDRAM’s architecture and bank organization.

B. TDRAM'’s Internal Architecture

1) Data Storage and Access Granularity: TDRAM main-
tains the standard bank microarchitecture found in HBM3
devices for data storage. Since server CPUs from Intel and
AMD operate on 64B cache-lines, but HBM DRAMs are
designed to provide 32B granularity, TDRAM pairs banks in
different bank groups and staggers accesses to them to achieve
64B granularity at lower latencies. Figure 4B shows the layout
of these paired banks. The controller views the paired banks
as one logical bank and schedules accesses accordingly. To
simplify the management of paired banks, the controller issues
a single command (e.g., activate, read, etc.) and the logic on
the base die replicates it, staggering it in time across the bank
pair. Pairing banks across bank groups in this way simplifies
the controller management since the design eliminates the
back-to-back accesses to the same bank group.

2) On-Die Tag Storage: TDRAM stores tags and metadata
(refered collectively as tag), and their ECC in a separate
structure on the same die as the cache line data. TDRAM
uses a set of small low-latency mats to store tags to provide
fast access. The size of tag storage is much smaller than the
size of data storage (about %, i.e., 3B tag per each 64B
cache line). The smaller size allows these mats to have shorter
wordline and bitline lengths (than the data mats), similar to
the design of Reduced Latency DRAM (RLDRAM) [I11].
Latency improvements with scaled mats are discussed in [64].
Our design scales the tag mats by % in each direction,
reducing the wordline delay time and bitline charge sharing
completion time. Centralized decodoer and IOSA structures
further improve the latency. These low-latency mats allow
parallel tag and data lookup, with hit/miss being determined
before the data becomes available in the data mats. The special
mats are placed at the edge of each bank (Figure 4C).

As an alternative design, the reduced latency tag arrays can
also be implemented on a separate die within the TDRAM
stack. However, an advantage of placing tags on the same
die as the cache-line data is that tag storage scales with data
storage. For the remainder of this paper we assume the tags
are on the same die as the data.

3) Metadata Access and Tag Comparison: We add two
new DRAM commands to the HBM3 command set: activate-
read (ActRd) and activate-write (ActWr). When a ActRd or
ActWr command is issued to a bank, the tag mats are activated
in parallel with the data mats. To avoid sending tags and
metadata back to the controller, TDRAM uses on-die tag
comparators implemented in the IOSA area of the tag mats
to determine whether an access is a hit or a miss. Then, the
HM result is routed to the periphery of the chip for output
on the HM pins. The HM result is also sent to the column
decoders of the data mats where it is used to gate the column
decode logic using the same hardware as SALP [44]. If the
tag comparison results in a hit or in a miss to a dirty cache-
line for read demands, the data is transferred through the
DQ bus. If the tag comparison results in a miss to a clean
cache-line, the column decode does not happen and no data
is transferred on the DQ bus, saving energy. Furthermore, to
improve reliability, there are ECC bits for the tag which are
analyzed and corrected if needed by on-DRAM-die circuitry
as in the baseline HBM3 [9]. Figures 5, 6, 7, and 8 show the
timing transactions of read and write operations in TDRAM
and are discussed in detail in §III-C.

4) Direct-Mapped & Set-Associative TDRAM: The ar-
chitecture of TDRAM applies equally well to direct-mapped
and set-associative caches. On-die tag comparison can provide
greater benefits for set-associative caches. In Figure 4, if pairs
of bank groups (e.g., 0 and 1, 2 and 3, etc) form two ways of a

set, tag comparisons can be performed in parallel if each way
has its own comparator. A signal from the matching way is sent
to the internal control logic to select the proper column in the
data mats. Implementations without on-die tag comparators
send all tags in the set back to the controller, incurring
additional latency and energy, and the controller subsequently
sends a request for the proper column to the DRAM, again
incurring additional latency and energy consumption [48].

5) Tag Mats Timing Values: TDRAM architecture mini-
mizes the tags access latencies using small low-latency mats
as discussed in §III-B2. In our evaluation, we use timing
parameters for the tag mats that are loosely based on RL-
DRAM technology. We choose to base our timings on public
datasheets as the timing parameters for RLDRAM are close
to the proprietary analysis we conducted. Through discussions
with DRAM designers, we validated the internal timing values.
Table III shows a list of timing values we used. The RLDRAM
spec values (e.g., tRL=15ns and tRC=8ns) match, or are
more optimistic than, our values (e.g., tRCD_TAG+tHM=15ns
and tRC_TAG=12ns). Furthermore, these values and internal
TDRAM timings were also correlated with prior work analyz-
ing the use of smaller mats [64].

Additionally, tHM_int = tCCD_L+tHM_detect (which is
a fast equal comparison). Address comparisons are already
done in DRAMs today to quickly determine if every row
or column address that the DRAM receives is a repaired
row or column. We set tHM_detect to 0.5ns (one 2GHz
clock cycle) for the fast equal comparison based on dis-
cussions with expert DRAM designers. The use of tHM_int
depends on tRCD since a read operation cannot occur un-
til tRCD is met. In our design, tRCD = 12ns which is
longer than tRCD_TAG+tHM_int=10ns, effectively hiding the
tag access and hit/miss detection latency. tHM_int was also
correlated with prior work [64], which breaks ACT-to-data
delay into: 47%-sensing, 26%-address-decode, 20%-MUXing
(transfer+rate-conversion), and 7%-10. The column decode is
done in parallel to sensing (tRCD) with our ActRd/ActWr
commands. Finally, the I/O delay is not relevant to internal
timing. Only a portion of the MUXing delay, the delay to
move data out of the IOSA, is relevant to internal timing,
and this delay is optimized with smaller mats to achieve
tHM_int=2.5ns, including HM detect logic.

To ensure dirty data is not overwritten in the SA,
tRL_CORE (used in write operations as illustrated in Fig-
ure 7) needs to be less than or equal to intRD-to-
WR_data_Delay+tBURST/2=9ns. We performed our evalua-
tion using tRL_CORE=tCCD_L=2ns.

6) Tag Storage Area Overhead: A 64 GiB direct-mapped
DRAM cache can support 1 petabyte address space using a
14-bit tag. We assume 3B of tag and metadata for each 64B
cache line. Tags are stored only in one bank group of the
pair (the even-numbered bank groups), and the result of the
tag comparison is communicated to the other (odd-numbered)
bank group through an internal bus.

We estimate the die size impact of tag storage, control logic,
and on-die comparison as follows. HBM3 DRAMs store an

TABLE II: TDRAM'’s cache operations on different accesses.

[CMD]| DQ Activity | HM Bus

Cache Access

Later Actions |

Read hit to clean Hit Data Hit None

Read hit to dirty - Hit Data Hit None

Read to invalid & None Miss Read main mem & fill
Read miss to clean & None Miss Read main mem & fill
Read miss to dirty Dirty Data Miss, Dirty Tag %fﬁiﬁifd?ﬁ?dﬁaﬁ“
Write to invalid Wr Data Miss None

Write miss to clean § Wr Data Miss None

Write miss to dirty 5 Wr data Miss, Dirty Tag | Dirty data to flush buffer
Write hit to clean < Wr Data Hit None

Write hit to dirty Wr Data Hit None

additional 6B of information (2B metadata and 4B parity) for
every 32B of data (i.e., total column size is 38B) across 19
mats as shown by Park et al. [57]. The HBM3 die photo shows
that banks (including mats, BLSAs, and Sub-WL drivers)
occupy about 66% of die area. The remaining 34% of die area
includes shared resources like through silicon vias (TSVs),
IOSAs, per-bank group ECC, and column decoders.

For the tag mats, we use four smaller tag mats per data
mat to reduce the row cycle time by reducing the bit line
and word line lengths. Son et al. show that the overhead of
changing the aspect ratio by a factor of 4 is 19% [64]; however,
we estimate a more pessimistic 24.3% when we scale by 1/2
in each dimension, based on our discussions with DRAM
designers. Additionally, we only need tag mats in the even
banks, reducing our overall area overhead. Thus, even banks
require 24.3% additional area for the tags and the data banks
occupy 66% of the die. So the overall impact on die size
is 24.3% x 0.5 (only even banks) x 0.66 (area for banks)
= 8.02%. We also add additional area for wire routing (for
example, to route Hit/Miss signals from the even bank to the
odd bank), resulting in our estimate of 8.24% die area impact.

7) Tag Storage Power Overhead: On-die tag storage and
tag checking increase the power of TDRAM over standard
HBM3 DRAMs. However, TDRAM provides power benefits
at the system level, as (i) tags are not communicated back
to the controller to perform the tag check, and (ii) the
protocol minimizes data movement amplification, reducing the
number of commands and cache line packets sent between the
TDRAM and the controller. In the HBM2 generation, 62.6%
of the power is spent moving data between the DRAM and
the controller [12]. Avoiding data transfers associated with the
tag and cache-lines, which are potentially not needed if the
tag comparison result is a read miss clean for example, can be
beneficial for overall memory system power. §V-C provides
an extensive power analysis of TDRAM.

C. Protocol

TDRAM’s command protocol is similar to traditional
DRAM protocols, with modifications to minimize access la-
tency of tags and bandwidth bloat. TDRAM provides new
combined ActRd and ActWr commands that activate a row and
read/write a column at both tag and data banks with an auto-
precharge for close-page policy. These combined commands
include the row and column addresses, bank group, bank, and
tag address needed to determine cache hit/miss. Internal state
machines in TDRAM handle sequencing and timing of the

CA|[ActRd (AP)
Mem |
ctrlr | HM ,
pQ|:
'
'
Tag Mats ACTtRCDﬁTAG
BGO CMD I:
; tRL
! To both banks
i tRL
Data Mats E in the BG
BGO CMD|| ACT RO RD - e

!
BGlCMDEtRRD'- tRCD - tRTP -

Fig. 5: Timing transactions of a read operations in TDRAM.
The timing is the same for a read miss dirty.

activate and column operations to the banks and sense amps.
Read and write data appear at fixed offsets on the DQ bus
from these commands, as is done in modern DRAMs.

Having a single command to access tag and data banks
reduces command amplification and saves energy [6], [10],
[11]. Moreover, it simplifies the memory controller since
the tag and data banks have the same number of rows and
columns. A single address is decoded for both tag and data,
allowing their banks to be activated by a single command
in lockstep. Regarding the scheduling policy of read/write
requests, TDRAM’s controller can adopt any policy such as
first-ready first-come first-serve (FR-FCFS). Table II shows
the operations the cache performs for each type of access.

1) Read Operations: The low-latency tag mats allow hit-
miss determination to occur before cache-line data is available.
Figure 5 shows the timing transaction of commands involved
in read operations of TDRAM. For reads, the HM response
will precede the DQ bus transfer, allowing a conditional
response based on the hit/miss result: (1) on a read-hit, cache-
line data is returned to the controller. (2) On a read-miss-
clean, no read command is issued and no cache-line data is
returned to the controller. The unused DQ slot can be used to
transfer data from the flush buffer (more details in §III-C2)
to the controller. (3) On a read-miss-dirty, the dirty data is
returned to the controller with the same timing on the DQ
bus that would have been used to return data on a cache
hit. The dirty tag is returned on the HM bus along with the
indication that the transaction is a dirty miss. Figure 6 shows
the timing transactions of pipelined read accesses in different
cases. When the controller receives miss indicator for read
requests on the HM bus, it can initiate a backing store read
to access the data needed (for the cache line fill and LLC
response) before data (if any) arrives at the controller. Early
tag probing optimizes this further (§III-D).

2) Write Operations: Writes are more complicated than
reads since they must avoid overwriting a dirty cache-line
with the new data on a write-miss — a rare occurrence but one
that needs to be handled correctly. All existing DRAM caches
have to serialize the cache-line data read (sending it back
to the controller) and the incoming write data, for all write
demands. TDRAM avoids this serialization by implementing
a flush buffer. The flush buffer is shared among all banks, and
operates similar to how a write buffer in a controller stores

cA|[AcT RD] [acT RD] [AcTrD]
Néfm HM i H=Hit, MC=Miss Clean
= = =

!
|
.
.

.
oo |,

Fig. 6: Timing transactions of pipelined read accesses.

data to be written to the DRAMs. The flush buffer (along
with additional logic to support caching) is placed on the
existing base layer which already contains logic to support
HBM protocol, etc. The base layer is not area limited, thus
can support the needed buffer and logic.

TDRAM issues an ActWr command that initiates an internal
tag and data access. Once the tag comparison result arrives to
the data banks, in case of hit and miss-clean, only an internal
write command is issued. If the tag check indicates a miss-
dirty, an internal read command followed by an internal write
command is issued. Figure 7 shows the sequence of these
commands. TDRAM places the read dirty data into the flush
buffer and then writes the new data to the DRAM. The flush
buffer needs to be sized large enough such that the controller
does not need to interrupt a sequence of cache writes for the
sole purpose of emptying a full flush buffer, which would
require insertion of a full DQ bus turnaround from write to
read and then back to write direction. When this occurs, the
turnaround delays are optimized since the flush buffer is not in
the DRAM core and traditional internal resource conflicts are
avoided. Since write-dirty-miss is expected to be a relatively
rare event, the flush buffer can be sized modestly (16 entries
or less in our simulations) to eliminate virtually any need to
require a forced emptying of the flush buffer. It is true that
there still will be a small read-to-write turnaround internally
to support moving the dirty data from the DRAM bank to the
flush buffer, but the much larger turnaround on the DQ bus
and on to the controller, can be avoided. A sequence of cache
writes from the controller would not experience any delay
on the DQ bus due to the write-dirty miss. Direct RDRAM
uses a similar approach implementing a Write Buffer and
a Write/Retire mechanism to minimize turnarounds due to
resource conflicts in the DRAM core [3]. Next we explain
how TDRAM opportunistically returns the dirty data in flush
buffer when DQ bus is idle or in read-state.

Unloading the Flush Buffer: TDRAM transmits the
dirty data in the flush buffer to the controller opportunistically
or on-demand, as follows: (i) when the DQ bus is idle, such
as during refresh operations, (ii) in read-miss-clean accesses
in which DQ is in read-state and is not used for data transfer,
and (iii) if the flush buffer becomes full, the controller sends
explicit read from flush buffer commands, transmitting multi-
ple entries as a group to amortize any bus turnarounds. The
controller has a global knowledge of the addresses in the flush
buffer. If the DRAM cache receives a read request to any of

CA|[Actwr (AP)
Mem tHM
Ctrlr|

DQ

includes dirty tag

W Write Data o DIM(D i
No Write-Read

Turnaround Bubble

tRTW_int tWR

i
i
ACT RD WR PRE
. o =
i
Flush Buffer] tRL_Core Dirty Data

Fig. 7: Timing transactions of write operations in TDRAM.

the addresses in the flush buffer, the controller will get the data
from the buffer. In case of a write demand to an address in the
flush buffer, the incoming write demand will proceed into the
DRAM cache and the controller removes the older data from
the flush buffer. Our analysis (§V-D) has shown if we assume
16 entries for the buffer, transferring during read-miss-cleans
and refresh cycles, prevents its overflow and any explicit read
command to empty the buffer.

D. Early Tag Probing Optimization

The TDRAM architecture and command bus have additional
unused bandwidth, because: (i) the timing parameters of the
tag banks is shorter than the data banks; thus, the the tag
banks’s busy-time is less than data banks, and (ii) the size
of the packets transferred on HM bus (few bytes) is much
smaller than DQ bus (64B), while both buses work at the same
frequency. We use this unused bandwidth for early tag probing,
in which the controller can query the status of a cache-line and
get an earlier hit/miss determination so that following actions
(e.g., read main memory for read misses) can begin earlier.
Figure 8 illustrates a set of pipelined read transactions. While
the data bus is fully occupied by back-to-back data transfers,
the CA bus and HM bus are not. Tag probing allows a request
to be sent over unused CA bus cycles to perform a tag access
and comparison.

1) Probing Mechanism: Tag probing only involves access-
ing the tag mats and returning a result on the HM bus to the
controller and does not access the cache-line data. We refer to
commands that can access both tag and data, and transferring
them on the HM and DQ bus as MAIN slot commands, and
tag probe requests that only access the tags and transmit status
on the HM bus as PROBE slot commands.

While TDRAM without probing accelerates the tag check
through fast tag bank access, the probing mechanism aims
to reduce the tag check latency by minimizing the queue
occupancy time of the requests waiting to be scheduled for
tag access. For instance, if the probing indicates a miss-clean
for a read demand, the request can be removed from the read
queue as soon as the tag check result arrives to the controller
on HM bus. The early tag probing lowers the contention in the
read buffer, requiring fewer entries and reducing the average
queueing delay. Moreover, if a tag probe for the read requests
results in a miss, the main memory access starts earlier than if
the system waited for the MAIN slot for tag check. A future
MAIN slot can then be used for the cache-line fill using the
data returning from the main memory.

cA|[AcT RDJPROBEJACT RDJPROBE[ACT RD]
i

’\éfm HM: M H=Hit, MC=Miss Clean
oal; _Nodats [Data]

tRCDiTAG o]
‘
:

ACT

|
|

=

: e
| ACT [RD |

Fig. 8: The timing transaction of early tag probing. The tag
check results transfer from tag banks to data banks is left out
to make figure clear.

2) Selection Policy: Once the controller finds a PROBE
slot, amongst all tag check requests that can be issued at that
time (i.e., no bank conflict), it picks the youngest request
to minimize the average queueing delay in the controller.
Even though the write packets can also use probing, TDRAM
focuses on using these slots for read requests to reduce
potential bank conflicts induced by early tag probing. Our
analysis has shown that the probing-induced bank conflicts
are not common (less than 1% of total demands).

IV. EVALUATION METHODOLOGY
A. Modeled System for Evaluation

Many of the previous studies on DRAM caches [28],
[42], [43], [58], [70] rely on trace-based or functional-first
simulators, which might not faithfully simulate the behavior
of applications that take different paths depending on I/O or
thread timings [29]. In contrast, we use an execute-in-execute
simulator gem5 and use full-system simulation. Notably, prior
DRAM cache research often omits full-system simulations,
failing to capture OS effects. Bin et al.’s work demonstrated
that OS kernel bottlenecks can degrade memory access latency
in DRAM cache systems [32].

gem5 implements off-package memory systems via two
event-driven components: (i) memory controller responsible
for receiving demands from the CPU/LLC, enqueuing them
into appropriate queues, and scheduling them to access the
memory device, and (ii) a memory interface that handles
device-specific timings and operations and communicates with
the memory controller [31], [37]. We extended gem5’s memory
system and implemented TDRAM device and DRAM cache
controller [20]. This memory interface uses the DRAM timing
parameters listed in Table III. We explained the timing values
setup for the tag banks of TDRAM in detail in Section III-B5.

We have integrated alternative DRAM cache designs into
gem5 to assess the performance of TDRAM cache: Cascade
Lake: As the state-of-the-art commercial hardware-managed
DRAM cache, we use Intel’s Cascade Lake model to establish
a baseline for our evaluation. This is a block-granule direct-
mapped insert-on-miss cache storing tag and metadata in
DRAM. Alloy: This is a research proposal DRAM cache
designed specifically to reduce hit latency [28], [58]. We
chose Alloy since has the most similar design principles to

TDRAM. We do not consider predictor parts of Alloy, as they
are orthogonal to our work (explained in §II-B). To model
Alloy’s 80B burst size, we have proportionally increased the
corresponding timing parameters of TDRAM (e.g., tBURST,
etc.). TDRAM-NP: TDRAM no probing (NP), implements
all the microarchitectures we described for TDRAM in this
work, except the early tag probing. TDRAM: implements
all the optimizations described for TDRAM, including early
tag probing. Ideal: We consider an ideal cache which has
an architecture similar to TDRAM and knows hit/miss and
metadata status in zero latency and overhead.

In order to hold a fair comparison between our approach
and other DRAM caching protocols, we use the same timing
parameters for modeling the DRAM device unless a parameter
does not apply to a caching protocol (e.g., tRCD_TAG in
Table 111 is only used for TDRAM cache). We modeled % of a
target system similar to Intel’s Xeon Max series [25], rounded
up to 64 cores and 64 GiB of HBM (1 GiB per core, in DRAM
cache mode). Table III shows the detailed parameters of the
modeled system.

TABLE III: System Configurations

Processors

Number of cores 8

Frequency 5 GHz
On-chip Caches
Private Inst. 32 KB
Private Data 512 KB
Shared LLC 8 MB

DRAM Cache Controller
64 entries each

Read & Write Buffers

Writeback Buffer 64 entries
Controller latency 20ns round-trip
Shed. Policy FR-FCFS
DRAM Cache (TDRAM)
Capacity 8 GiB (8 channels)
Peak BW 32 GiB/s per channel

Read/Write Buffer 64 entries each

Main Memory (DDRS)
128 GiB (2 channels)
Peak BW 32 GiB/s per channel
Read/Write Buffer 64 entries each

Timing Parameters (ns) (same for all evaluated DRAM cache designs)
Clk=2 GHz, data rate = 8Gbps, close page, RoCoRaBaCh, tBURST = 2, tRCD = 12,
tRCD_WR = 6, tCCD_L = 2, tRP = 14, tRAS = 28, tCL = 18, tCWL =7, tRRD = 2, tFAW
= 16, tRL_core = 2, For Tag Banks in TDRAM Architecture only: tHM = 7.5, tHM_int=2.5,
tRCD_TAG = 7.5, tRTP_TAG = 2.5, tRRD_TAG = 2, tWR_TAG = 1, tRTW_TAG = 1,
tRC_TAG =

Capacity

B. Benchmarks

Since we focus on large-scale computing systems for our
DRAM cache design, we picked multithreaded workloads
with memory footprints larger than the DRAM cache from
NPB [21] and GAPBS [22] that are used to evaluate high-
performance computing systems. Many past studies often
use copies of benchmarks across multiple cores, neglecting
inter-thread dependencies apparent in real-world workloads. In
contrast, we leverage multithreaded workloads to fully utilize
simulated cores, enhancing realism. We utilize the C and D
class of NPB workloads and a synthetic graph for the GAPBS
workloads with with 22 and 25 vertices as inputs. Note: the
performance of same workload at different classes or inputs
must not be compared together, as the workload has differrent
execution phases in differrent classes (§IV-C) that remains

10

a Cascade Lake . Alloy TDRAM-NP W TDRAM
=
5751
c
]
© 50
-
g
2 251
o LOLALAUAUAUUR 0040400 CHOORL AT L I
g o -
[P .
gg8ags set-ﬂem%g EEEY “W-ﬂeg&g
a a
GAPBS-22 NPB-C GAPBS-25 NPB-D

Fig. 9: Tag check latency comparison, the time it takes once
controller receives a demand until the tag check result is ready.
TDRAM is 2.6x and 2.65x faster than Cascade Lake and
Alloy, respectively.

the same across different microarchitectures we are analyzing.
Thus, they should be seen as 28 separate workloads.

The working-set sizes of these workloads range from a few
hundred megabytes to tens of gigabytes, giving different miss
ratios in the 8 GiB DRAM cache. Figure 1 shows the miss
ratio of these workloads. We grouped our applications based
on their miss ratios: (i) below 30% miss ratio naming them
low-miss-ratio, and (ii) above 50% miss ratio calling them
high-miss-ratio. There are no workloads in the middle range
(i.e., no mid-miss-ratio group).

C. Methodology for Experiments

Simulating large scale applications like NPB and GAPBS
to completion is impractical, necessitating focused execution
segments for each benchmark. Measuring work in such appli-
cations is complex due to thread interference and extended
spin loops. Traditional metrics like instruction count can
cause misleading inaccurate performance measurements [18].
Instead, we employ a technique similar to LoopPoint, a sam-
pling technique for multithreaded applications, tracking work
progress via global loop instruction counts [60]. LoopPoint en-
sures that we capture the same phases of execution on different
target configurations while comparing their performance.

Following is a summary of our evaluation methodology. Per
each workload, first, Linux kernel boots on the target system in
gem5, the program starts and continues until the start of the
region of interest (ROI) of the workload using KVM CPU.
Beginning at the ROI, we warm up the system including the
CPU caches and the DRAM cache to ensure that the cold
miss ratios stay a small fraction of the overall miss count
(less than 1%). At the end of warmup, we take a checkpoint.
This process is done once per workload. Later, we restore
from the checkpoint to run all simulations using an out-of-
order CPU with different DRAM cache configurations. Using
a checkpoint ensures that all runs start at the same system
state for a fair comparison across different configurations.

V. RESULTS AND DISCUSSION

A. Impact of Optimizing Tag Check Mechanism

Figure 9 illustrates the average tag check latency for
TDRAM and TDRAM-NP in comparison to Intel’s Cascade
Lake and Alloy caches. Tag check latency is the time once
the controller issues a tag check request to the cache until

Cascade Lake mmm Alloy msm TDRAM

>
(R B
3 g 60
A<
o3
£ 401
%m

e
2 © 204
58

c
Z*= oA

606,&000,%%(}\ G &S /(,0,9% % 606,3000,%%(;\ LR /(,o,oqo %

GAPBS-22 NPB-C GAPBS-25 NPB-D
Fig. 10: The average queueing delay of read requests in the
controller’s read buffer. TDRAM significantly reduces the
queueing delay compared to the other two designs.

the result is ready at the controller. The reported numbers
are measured in the controller during simulation and include
the queue occupancy time, DRAM cache tag access time,
tag compare latency, bus latency, etc. The tag access time in
Cascade Lake and Alloy designs consist a read from cache
line data while for TDRAM is an access to the separate tag
storage of the DRAM cache. All designs use the same timing
parameters (Table III) for cache line data access and TDRAM
uses validated timings (based on RLDRAM) for tag storage
as explained in §III-B5. In baseline design tRCD, tRL(tCL),
tBURST timing parameters and for TDRAM tRCD_TAG
and tHM have the most impact in tag check latency. Based
on the simulation measurements, in both Cascade Lake and
Alloy, the tag check latency falls into 40-85 ns interval, as
shown in Figure 9. TDRAM-NP reduces this to 20-50 ns,
and TDRAM (with early tag probing), further improves it
to 19-39 ns. TDRAM-NP achieves faster hit/miss indication
across all applications compared to Cascade Lake and Alloy
by parallelizing tag and data access and employing conditional
data response. TDRAM which also incorporates early tag
probing, further expedites this process by opportunistically
performing tag checks. On a geomean, TDRAM’s tag check
is 2.6x faster than Cascade Lake and Alloy.

Tag check latency is on the critical path of the hit and
miss latencies. Specifically, for read demands that miss on
DRAM cache, tag check latency directly impacts the LLC miss
penalty, thereby affecting CPU throughput. Improving the tag
check latency accelerates the fetch of missing line from the
main memory (response to the LLC), thus, reduces LLC miss
penalty. Figure 9 shows how much faster this main memory
read can be issued.

In both Cascade Lake and Alloy, for all demands, the
controller issues a DRAM read for tag check, placing them
in the controller’s read buffer. I.e., all read and write demands
compete in the same queue for DRAM read access in their tag
check process. This causes contention in this buffer, increasing
queue occupancy time and extends the process time of read
requests. Figure 10 shows the average queueing delay of these
read requests: the time taken since a read request enters the
queue, until the read command for that demand is issued.

Figure 10 shows that the read queueing delay is significantly
shorter in TDRAM compared to two other designs, thanks
to TDRAM’s early tag probing mechanism. By employing
opportunistic tag probing, TDRAM allows a read request to

11

Cascade Lake WM Alloy W TDRAM aw Ideal

1.51

Q
3 1.0

[

[

Q
v 0.5 A

0.0-

bc bfs cc pr sssp tc bt «cg ft is lu mg sp wua
L L L L L L L L H H L H L H
GAPBS-22 NPB-C

1.5

Q
3 1.0+ - - .
RS

[

Q
(7]

0.5

0.0

bc
L

bt
H

ft
H

lu
H

is
H
NPB-D

cc
L

GAPBS-25

bfs
L

pr sssp tc cg
L L L L
Fig. 11: System’s speedup normalized to the Intel’s Cascade
Lake. TDRAM gives 1.2x speedup on a geomean.

leave the read queue as soon as the hit-miss indicator arrives on
the HM bus in the case of a miss-clean, without even activating
the data bank. This leads to fewer bank conflicts in the system
and significantly impacts bank availability, resulting in reduced
access time for future demands. Note that in all read-misses
in TDRAM, the controller issues a fetch from main memory
immediately after seeing the miss indicator on HM bus.

The early-tag-probing benefit is totally workload dependent.
Read-misses get the most benefit from this mechanism as it
accelerates the off-package memory access with 0 overhead.
If we have a smaller DRAM cache size, or workloads with
larger memory footprints with the current DRAM cache size
(i.e., increasing miss rates), TDRAM will benefit more from
early-tag-probing. In other words, TDRAM allows misses to
happen while minimizing the miss penalty.

B. Overall Performance

Figure 11 shows the speedup of TDRAM compared to
Cascade Lake and Alloy and Ideal designs. In all workloads
TDRAM outperforms Cascade Lake and Alloy, providing a
geometric mean speedup of 1.20x and 1.23x, respectively.

As discussed in §V-A, TDRAM effectively reduces tag
check latency and read demands queueing delay. This im-
provement positively impacts the hit and miss latency of the
DRAM cache and the miss penalty of LLC. Consequently,
the overall performance of the system is enhanced compared
to existing designs, as evident in Figure 11. The ideal cache
offers tag check results with zero latency, eliminating the need
to endure queueing delay and DRAM access latency for tag
checks. In essence, the ideal cache sets a performance upper
bound for caching, and Figure 11 demonstrates that TDRAM
closely approaches this ideal.

Figure 12 compares the speedup of the aformentioned four
systems to the same system that has only a main memory
(no DRAM cache). As the figure shows for applications with
lower miss ratios DRAM caching improves system overall
throughput. This improvment decreases as the miss ratio

Cascade Lake mmm Alloy =sm TDRAM e Ideal
2.0
a 1.5
=]
?
o 1.0 1
Q
7]
0.5
0.0 -
bc cc pr sssp tc bt cg is lu mg sp wua
GAPBS-22 NPB-C
2.0
1.5 1
Q
3
3
© 1.0
Q
)
0.5
0.0 -

bt ft is lu

NPB-D

cc
GAPBS-25

pr sssp tc cg mg ua

sp

Fig. 12: Speedup of systems with DRAM cache normal-
ized to system without DRAM cache. TDRAM provides
1.11x speedup, while Cascade Lake and Alloy cause 8% and
10% slowdown, respectively.

increases due to the miss penalty of DRAM cache that involves
main memory acccess. Analyzing the data, Intel’s Cascade
Lake and Alloy caches cause a geomean slowdown of 8% and
10%, respectively. In contrast, TDRAM provides an overall
speedup of 1.11x, primarily due to optimizations in hit latency
and miss penalty within its protocol.

C. TDRAM’s Energy Improvement

Prior work has defined bandwidth bloat factor as: total
number of bytes moved, over total useful bytes moved [28].
Table IV shows the bandwidth bloat factor for the evaluated
designs. Our results shows that TDRAM reduces the band-
width bloat factor upto 39.9% and 25.1% compared to Alloy
and Cascade Lake, respectively.

TABLE IV: Bandwidth Bloat Factor

| Design | Low-Miss Ratio | High-Miss Ratio |
Alloy 1.68 343
Cascade Lake 1.35 2.75
TDRAM 1.13 2.06
TDRAM Reductions
Over Alloy 32.7% 39.9%
Over Cascade Lake 16.3% 25.1%

As the bandwidth bloat factor increases, more energy is
consumed since more data is transferred. TDRAM eliminates
unnecessary data transfers, saving energy by reducing the total
data movement, while servicing the same number of memory
demands as the other two designs. To analyze the energy
consumption of TDRAM, we developed an HBM3 power
model using HBM?2 power data in [55] and scaled it for HBM3
speeds and timings (Table III). Processor interface power is
calculated from our validated HBM3 PHY design. Compared
to a standard HBM3 DRAM, TDRAM’s power is increased to
account for on-die tag storage and associated operations, and
both DRAM cache and processor interface power are increased
for the additional signals and HM buses and associated logic.

12

EEm Cascade Lake mmm TDRAM

=
<)

Relative Energy
=t
w

e
S

606,3‘000,4;%@ G Q26 L% % éoé,&(‘(-\oﬁ%%(p %D R L0 %
GAPBS-22 NPB-C GAPBS-25 NPB-D
Fig. 13: Relative energy consumption of TDRAM compared
to baseline. TDRAM reduces energy by 21% on average
compared to the baseline.

o
E 0.00100 Bmm Read-Miss-Clean Refresh 30 -
> e Avg x Max G
£ 0.00075 207
2 4
2 0.00050 E
= 105
& 0.00025 @
P N
2 0.00000

bc bfs cc prsssp tc bt cg ft s
GAPBS-25
Fig. 14: Flush buffer size sensitivity test. The left axis is
the ratio of write-miss-dirty demands out of total requests
that DRAM cache received. Each bar is broken into different
colors depicting the ratio of dirty data in the flush buffer that
was unloaded during read-miss-cleans or refresh cycles. The
right axis shows the maximum and average occupancy of flush

buffer when it had 32 entries total.

lu mg sp ua
NPB-D

Figure 13 shows the relative energy consumption (power
xbenchmark runtime) of TDRAM and Cascade Lake DRAM
cache. We are not showing Alloy’s energy consumption as it is
much higher than Cascade Lake. On average, TDRAM saves
21% energy compared to the Cascade Lake due to reducing
bandwidth bloat. Applications with high number of write-hits
or read/write miss-cleans demands, such as ft and is, show
more energy savings with TDRAM’s.

D. Flush Buffer Size Sensitivity Analysis

We assessed the sensitivity to the flush buffer size with 8§,
16, 32, and 64 entries. The results indicate that the flush buffer
consistently avoids becoming full, preventing TDRAM stalls
to empty the buffer, except for a minor exception with [u in
NPB-D with a buffer size of 8. In this case, TDRAM stalled
only 13 times, resulting in negligible performance overhead.
Figure 14 shows the total write-miss-dirty accesses ratio in
NPB-D (which has the largest memory footprint and highest
miss rate among all workloads we tested) with a flush buffer
size of 32. The figure represents how the dirty data was
transferred from the flush buffer to the controller, via read-
miss-cleans, refresh cycles, or explicit command to read from
flush buffer (which is zero).

Write-miss-dirty accesses in the DRAM cache should be
rare, since write-misses in general are the LLC write-backs,
that previously required a read in the DRAM cache. This
expectation is confirmed by our results, as shown in the left
Y-axis the write-miss-dirty ratios are extremly low. The results
also shows that most applications heavily rely on read-miss-
clean accesses to unload the flush buffer. Notably, [u and bc
efficiently use refresh cycles to unload the flush buffer. This

mmm Cascade Lake TDRAM

50ns

100ns 250ns
Low-Miss-Ratio

500ns 50ns 100ns 250ns

Fig. 15: Speedup of systems with DRAM cache in disaggre-
gated systems normalized to the same system having a remote
main memory only (no DRAM cache).

500ns

data confirms the effectiveness of TDRAM’s opportunistic
behavior in unloading the flush buffer to minimize data transfer
overhead. The flush buffer’s average occupancy is 5, with a
maximum of 12. Setting the buffer size to 16 prevents TDRAM
stalls. Thus, the overhead of flush buffer is minimal.

E. Link Latency Case Study

We assume incorporating DRAM caches in disaggregated
memory systems where it accesses the main memory through
an interconnect such as CXL. We consider round-trip link
latencies of 50 ns, 100 ns, 250 ns and 500 ns. Figure 15
shows the speedup of the DRAM cache systems compared
to the same system having a remote main memory only (no
DRAM cache) and the link latency of this main memory also
varies from 50-500 ns.

As Figure 15 shows, in all cases TDRAM outperforms
Cascade Lake DRAM cache. We are not showing the Alloy
cache data as it was worse performant than Cascade Lake in
all cases. For low miss ratio applications, Cascade Lake has
an overall speedup of 1.99x while TDRAM increases this to
2.27x, based on a geometric mean of all speedups. For high
miss ratio applications, the speedup is challenging due to the
extended miss penalty that includes the interconnet’s latency.
Cascade Lake DRAM cache system causes 17% slowdown;
however, TDRAM reduces it to 7%.

F. Set-Associative TDRAM

TDRAM’s on-die tag comparison is beneficial for set-
associative caches since it avoids transferring multiple tags
in a set to the controller for comparison. In general, set-
associativity is helpful for applications with high number
of miss conflicts. However, our analysis showed the HPC
workloads we tested barely have miss conflicts on DRAM
cache. Thus, they did not get significant performance im-
provement from set-associativity compared to direct-mapped
TDRAM. Our results showed both direct-mapped and 16-way
set-associative TDRAMs have similar speedup (over the same
system having a main memory only) for tested workloads.

VI. RELATED WORK

Table I and §II-B provides a comparison of TDRAM with
prior work. Loh and Hill [48] proposed one of the earliest
block-based DRAM cache where tag and data access were
stored in the same row with a MissMap to avoid accessing the
DRAM cache on predicted misses. Alloy [58] reduces latency

13

by streaming data and tags together in a single burst. Fur-
thermore, they introduced a memory access predictor, which
incurred less overhead compared to the MissMap technique.
Retagger [26] uses tags in the controller to mitigate the DRAM
row buffer miss cost. RedCache [23] adapts at runtime to start
and stop caching for individual blocks. While these works
have explored different approaches for storing tags and data
in DRAM caches, they all require the tags to be moved to the
controller for tag comparison and checks to be performed.
R-Cache proposed to use RRAM memory for on-die tag
storage [24]. Due to longer latency of RRAM compared to
DRAM, it can extend the tag check latency, exacerbating the
hit and miss latencies of DRAM cache. In contrast, our work
modifies the DRAM microarchitecture to enable tag checks
to be performed inside the DRAM, thereby reducing the data
movement overhead and improving overall cache efficiency.

The Footprint Cache [43] and Unison Cache [42] blend
block and page-based designs in a hybrid architecture. This
lowers off-chip traffic compared to page-based designs, with
high hits, low latency, and minimal tag overhead. Coarse-grain
tracking leads to bandwidth waste and poor utilization of cache
capacity in contrast to block-based caches like TDRAM.

Several works [45], [46], [71] combine software and hard-
ware techniques for DRAM caching. Also, Hong et al.
proposed a DRAM cache specifically for GPUs working
with storage-class memories [39]. We envision potential soft-
ware/OS integration benefits for TDRAM, as well as GPU-
specific changes which are directions we plan to explore.

To our knowledge, the only work to leverage HBM’s embed-
ded logic die for cache management is Stockdale et al.’s [65].
They enhance the base HBM DRAM layer, introducing a
cache result signal and reserving one pseudo-channel for tags.
The eTag DRAM cache uses eDRAM storage on the processor
die, with tag comparison preceding DRAM cache access [68],
but eTag cannot scale with increased off-chip capacity as
eDRAM size limits the data cache capacity. Hameed et al.
proposed a DRAM cache with a separate tag and data storage
that relies on a predictor and a Data-Absence-Table [36].
These speculation-based designs are orthogonal to TDRAM.
TDRAM minimizes amplification, using the HM bus for
cache outcomes and tag transfers, and employs tag probing
to mitigate read miss impact. TDRAM puts tags and data on
each channel which scales with cache capacity.

CONCLUSION

In this paper we introduced TDRAM, tag-enhanced energy-
efficient DRAM for caching, to optimize caches hit and miss
latencies. We showed TDRAM’s 1.2xspeedup and 21% energy
saving over commercial designs (Intel’s Cascade Lake) and
research proposal (Alloy). TDRAM can bridge performance
gaps between LLC DRAMs and remote memories in heteroge-
nous/disaggregated systems.

REFERENCES

[11 “Amd epyc 9654p.” [Online]. Available: https://www.techpowerup.com/
cpu-specs/epyc-9654p.c2934

[2

[3

[tr?

[4

=

[5

=

[6

=

[7]

[8

=

[9

—

[10]

[11]

(12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

“Aurora supercomputer.” [Online]. Available: https://wccftech.com/intel-
unveils-aurora-supercomputer-specifications-21248-xeon-cpus-63744-
gpus-for-over-2-exaflops/

“Direct rdram.” [Online]. Available: https://datasheetspdf.com/pdf-
file/623377/HynixSemiconductor/HYSR288HC745/1/

“Hbm aquabolt: New potential breakthrough memory.” [Online]. Avail-
able: https://semiconductor.samsung.com/us/dram/hbm/hbm?2-aquabolt/
“ledm 2022: Did we just witness the death of sram?” [Online].
Available: https://fuse.wikichip.org/news/7343/iedm-2022-did- we- just-
witness-the-death-of-sram/

“Intel. rldram ii and rldram 3 features”” [Online]. Avail-
able: https://www.intel.com/content/www/us/en/docs/programmable/
710283/17-0/rldram-ii-and-rldram- 3-features.html
“Intel xeon platinum 8468h.” [Online]. Available:
itcreations.com/product/140851

“Intel’s cascade lake: 2nd generation intel® xeon® scalable processors.”
[Online]. Available: https://www.intel.com/content/www/us/en/products/
platforms/details/cascade-lake.html

“Jedec. high bandwidth memory dram (hbm3), jedec standard jesd238,

https://www.

jan 20227 [Online]. Available: https://www.jedec.org/standards-
documents/docs/jesd238a

“Micron. async/page/burst cellularram® 1.0 memory
mt45w2mw16bgb.” [Online]. Available: https://www.digchip.com/

datasheets/parts/datasheet/301/MT45W2MW 16BGB-701_IT-pdf.php
“Micron rldram 3 specifications.” [Online]. Avail-
able: https://media- www.micron.com/-/media/client/global/documents/
products/data-sheet/dram/1,-d-,125gb_x18_x36_rldram3.pdf
“Power consumption in hbm.” [Online]. Available:
/Isemiengineering.com/where-power-is-spent-in-hbm/
“Rambus inc. hbm3 controller”” [Online]. Available: https:/www.
rambus.com/interface-ip/hbm/hbm3-controller/

“Rambus inc. hbm3: Everything you need to know.” [Online].
Available: https://www.rambus.com/blogs/hbm3-everything-you-need-
to-know/,0Oct2023.

“Samsung. hbm3 icebolt: Powering the next frontier”” [On-
line]. Available: https://www.semiconductor.samsung.com/us/dram/hbm/
hbm3-icebolt/

“Synopsys. what is high bandwidth memory 3 (hbm3)?”
[Online]. Available: https://www.synopsys.com/glossary/what-is-high-
bandwitdth-memory-3.html

“[tech day 2022] dram solutions to advance data intelligence.”
[Online]. Available: https://semiconductor.samsung.com/news-events/
tech-blog/dram-solutions-to-advance-data-intelligence/

A. R. Alameldeen and D. A. Wood, “Ipc considered harmful for
multiprocessor workloads,” IEEE Micro, vol. 26, no. 4, pp. 8-17, 2006.
M. Arafa, B. Fahim, S. Kottapalli, A. Kumar, L. P. Looi, S. Mandava,
A. Rudoff, I. M. Steiner, B. Valentine, G. Vedaraman, and S. Vora,
“Cascade lake: Next generation intel xeon scalable processor,” IEEE
Micro, vol. 39, no. 2, pp. 29-36, 2019.

M. Babaie, A. Akram, and J. Lowe-Power, “Enabling design space
exploration of dram caches for emerging memory systems,” in 2023
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). 1EEE, 2023, pp. 340-342.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” The International
Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63-73, 1991.
S. Beamer, K. Asanovi¢, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

P. Behnam and M. N. Bojnordi, “Adaptively reduced dram caching
for energy-efficient high bandwidth memory,” IEEE Transactions on
Computers, vol. 71, no. 10, pp. 2675-2686, 2022.

P. Behnam, A. P. Chowdhury, and M. N. Bojnordi, “R-cache: A highly
set-associative in-package cache using memristive arrays,” in 2018 IEEE
36th International Conference on Computer Design (ICCD). IEEE,
2018, pp. 423-430.

A. Biswas and S. Kottapalli, “Next-Gen Intel Xeon CPU - Sapphire
Rapids,” in Hot Chips 33, 2021.

M. N. Bojnordi and F. Nasrullah, “Retagger: An efficient controller for
dram cache architectures,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1-6.

C. C. Chou, A. Jaleel, and M. K. Qureshi, “Cameo: A two-level memory
organization with capacity of main memory and flexibility of hardware-

https:

14

[28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

managed cache,” in 2014 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. 1EEE, 2014, pp. 1-12.

C. Chou, A. Jaleel, and M. K. Qureshi, “Bear: Techniques for mitigating
bandwidth bloat in gigascale dram caches,” ACM SIGARCH Computer
Architecture News, vol. 43, no. 3S, pp. 198-210, 2015.

L. Eeckhout, “Computer architecture performance evaluation methods,”
Synthesis Lectures on Computer Architecture, vol. 5, no. 1, pp. 1-145,
2010.

M. El-Nacouzi, I. Atta, M. Papadopoulou, J. Zebchuk, N. E. Jerger, and
A. Moshovos, “A dual grain hit-miss detector for large die-stacked dram
caches,” in 2013 Design, Automation & Test in Europe Conference &
Exhibition (DATE). 1EEE, 2013, pp. 89-92.

W. Elsasser and N. Nikoleris, “Memory controller updates for new
DRAM technologies, NVM interfaces and flexible memory topologies,”
in 3rd gem5 Users’ Workshop with ISCA 2020, 2020.

B. Gao, H.-W. Tee, A. Sanaee, S. B. Jun, and D. Jevdjic, “Os-level
implications of using dram caches in memory disaggregation,” in 2022
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). 1EEE, 2022, pp. 153-155.

M. Ghosh and H.-H. S. Lee, “Smart refresh: An enhanced memory
controller design for reducing energy in conventional and 3d die-
stacked drams,” in 40th Annual IEEE/ACM international symposium on
microarchitecture (MICRO 2007). 1EEE, 2007, pp. 134-145.

N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan, “Bi-
modal dram cache: Improving hit rate, hit latency and bandwidth,” in
2014 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture. 1EEE, 2014, pp. 38-50.

F. Hameed, L. Bauer, and J. Henkel, “Simultaneously optimizing dram
cache hit latency and miss rate via novel set mapping policies,” in 2013
International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES). 1EEE, 2013, pp. 1-10.

F. Hameed, A. A. Khan, and J. Castrillon, “Improving the performance
of block-based dram caches via tag-data decoupling,” IEEE Transactions
on Computers, vol. 70, no. 11, pp. 1914-1927, 2020.

A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. N. Udipi,
“Simulating dram controllers for future system architecture exploration,”
in 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). 1EEE, 2014, pp. 201-210.

M. Hildebrand, J. T. Angeles, J. Lowe-Power, and V. Akella, “A case
against hardware managed dram caches for nvram based systems,”
in 2021 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). 1EEE, 2021, pp. 194-204.

J. Hong, S. Cho, G. Park, W. Yang, Y.-H. Gong, and G. Kim,
“Bandwidth-effective dram cache for gpu s with storage-class memory,”
in 2024 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 1EEE, 2024, pp. 139-155.

C.-C. Huang and V. Nagarajan, “Atcache: Reducing dram cache latency
via a small sram tag cache,” in Proceedings of the 23rd international
conference on Parallel architectures and compilation, 2014, pp. 51-60.
K. Inoue, S. Hashiguchi, S. Ueno, N. Fukumoto, and K. Murakami, “3d
implemented sram/dram hybrid cache architecture for high-performance
and low power consumption,” in 2011 IEEE 54th International Midwest
Symposium on Circuits and Systems (MWSCAS). 1EEE, 2011, pp. 1-4.
D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A
scalable and effective die-stacked dram cache,” in 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE,
2014, pp. 25-37.

D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for
servers: Hit ratio, latency, or bandwidth? have it all with footprint cache,”
ACM SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 404—
415, 2013.

Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for ex-
ploiting subarray-level parallelism (salp) in dram,” in 2012 39th Annual
International Symposium on Computer Architecture (ISCA), 2012, pp.
368-379.

Y. Kim, H. Kim, and W. J. Song, “Nomad: Enabling non-blocking os-
managed dram cache via tag-data decoupling,” in 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2023, pp. 193-205.

J. B. Kotra, H. Zhang, A. R. Alameldeen, C. Wilkerson, and M. T.
Kandemir, “Chameleon: A dynamically reconfigurable heterogeneous
memory system,” in 2018 51st Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). 1EEE, 2018, pp. 533-545.

[47]

(48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

J. Lee and et al., “A 48-gb 16-high 1280-gb/s hbm3e dram with all-
around power tsv and a 6-phase rdqs scheme for tsv area optimization,”
International Solid State Circuits Conference (ISSCC) 2024.

G. Loh and M. D. Hill, “Supporting very large dram caches with
compound-access scheduling and missmap,” IEEE Micro, vol. 32, no. 3,
pp. 70-78, 2012.

G. H. Loh, N. Jayasena, K. Mcgrath, M. O’Connor, S. Reinhardt, and
J. Chung, “Challenges in heterogeneous die-stacked and off-chip mem-
ory systems,” in 3rd Workshop on SoCs, Heterogeneous Architectures
and Workloads, vol. 20, 2012, p. 12.

J. Lowe-Power, On Heterogeneous Compute and Memory Systems. The
University of Wisconsin-Madison, 2017.

J. Lowe-Power et al., “The gem5 simulator: Version 20.0+,” 2020.

N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Balasubramonian,
R. Iyer, S. Makineni, and D. Newell, “Optimizing communication
and capacity in a 3d stacked reconfigurable cache hierarchy,” in 2009
IEEE 15th International Symposium on High Performance Computer
Architecture. 1EEE, 2009, pp. 262-274.

M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and
G. H. Loh, “Heterogeneous memory architectures: A hw/sw approach
for mixing die-stacked and off-package memories,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2015, pp. 126-136.

J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
efficient and scalable hybrid memories using fine-granularity dram cache
management,” IEEE Computer Architecture Letters, vol. 11, no. 2, pp.
61-64, 2012.

M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W.
Keckler, and W. J. Dally, “Fine-grained dram: Energy-efficient dram
for extreme bandwidth systems,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, 2017, pp.
41-54.

K. H. Park, S. K. Park, H. Seok, W. Hwang, D.-J. Shin, J. H. Choi,
and K.-W. Park, “Efficient memory management of a hierarchical and a
hybrid main memory for mn-mate platform,” in Proceedings of the 2012
International Workshop on Programming Models and Applications for
Multicores and Manycores, 2012, pp. 83-92.

M.-J. Park, J. Lee, K. Cho, J. Park, J. Moon, S.-H. Lee, T.-K. Kim,
S. Oh, S. Choi, Y. Choi et al., “A 192-gb 12-high 896-gb/s hbm3 dram
with a tsv auto-calibration scheme and machine-learning-based layout
optimization,” IEEE Journal of Solid-State Circuits, vol. 58, no. 1, pp.
256-269, 2022.

M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in archi-
tecting dram caches: Outperforming impractical sram-tags with a simple
and practical design,” in 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. 1EEE, 2012, pp. 235-246.

A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter, “Hemem:
Scalable tiered memory management for big data applications and
real nvm,” in Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, 2021, pp. 392-407.

A. Sabu, H. Patil, W. Heirman, and T. E. Carlson, “Looppoint:
Checkpoint-driven sampled simulation for multi-threaded applications,”
in 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 1EEE, 2022, pp. 604-618.

D. D. Sharma, “System on a package innovations with universal chiplet
interconnect express (ucie) interconnect,” IEEE Micro, vol. 43, no. 2,
pp. 76-85, 2023.

J. Sim, G. H. Loh, V. Sridharan, and M. O’Connor, “Resilient die-stacked
dram caches,” ACM SIGARCH Computer Architecture News, vol. 41,
no. 3, pp. 416-427, 2013.

A. Sodani, R. Gramunt, J. Corbal, H.-s. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights Landing: Second-
Generation Intel Xeon Phi Product,” IEEE Micro, vol. 36, no. 2, pp.
34-46, mar 2016. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7453080

Y. H. Son, O. Seongil, Y. Ro, J. W. Lee, and J. H. Ahn, “Reducing
memory access latency with asymmetric dram bank organizations,” in
Proceedings of the 40th annual international symposium on computer
architecture, 2013, pp. 380-391.

T. Stocksdale, M.-T. Chang, H. Zheng, and F. Mueller, “Architecting
hbm as a high bandwidth, high capacity, self-managed last-level cache,”
in Proceedings of the 2nd Joint International Workshop on Parallel Data
Storage & Data Intensive Scalable Computing Systems, 2017, pp. 31-36.

15

[66]

[67]

[68]

[69]

[70]

[71]

[72]

H. Sun, J. Liu, R. Anigundi, N. Zheng, J. Lu, R. Ken, and T. Zhang,
“Design of 3d dram and its application in 3d integrated multi-core
computing systems,” IEEE Design and Test of Computers, pp. 36-47,
20009.

K. Wang, K. Angstadt, C. Bo, N. Brunelle, E. Sadredini, T. Tracy,
J. Wadden, M. Stan, and K. Skadron, “An overview of micron’s automata
processor,” in 2016 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2016, pp. 1-3.

K.-H. Yang, H.-J. Tsai, C.-Y. Li, P. Jendra, M.-F. Chang, and T.-F. Chen,
“etag: Tag-comparison in memory to achieve direct data access based on
edram to improve energy efficiency of dram cache,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 64, no. 4, pp. 858-868,
2016.

S. Yin, J. Li, L. Liu, S. Wei, and Y. Guo, “Cooperatively managing
dynamic writeback and insertion policies in a last-level dram cache,” in
2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1EEE, 2015, pp. 187-192.

V. Young, C. Chou, A. Jaleel, and M. Qureshi, “Accord: Enabling
associativity for gigascale dram caches by coordinating way-install
and way-prediction,” in 20/8 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 1EEE, 2018, pp. 328-
339.

X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-efficient dram caching via software/hardware cooperation,”
in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, 2017, pp. 1-14.

L. Zhao, R. Iyer, R. Illikkal, and D. Newell, “Exploring dram cache
architectures for cmp server platforms,” in 2007 25th International
Conference on Computer Design. 1EEE, 2007, pp. 55-62.

	Introduction
	Background and Motivation
	HBM3 Architecture
	Tag Management in Existing DRAM Caches
	Opportunities to Improve DRAM Cache Designs
	DRAM Cache's Increased Hit Latency
	DRAM Cache's Increased Miss Latency
	Increased Bandwidth Bloat and Energy Consumption

	Tag-enhanced DRAM Design
	TDRAM's Interface
	TDRAM's Internal Architecture
	Data Storage and Access Granularity
	On-Die Tag Storage
	Metadata Access and Tag Comparison
	Direct-Mapped & Set-Associative TDRAM
	Tag Mats Timing Values
	Tag Storage Area Overhead
	Tag Storage Power Overhead

	Protocol
	Read Operations
	Write Operations

	Early Tag Probing Optimization
	Probing Mechanism
	Selection Policy

	Evaluation Methodology
	Modeled System for Evaluation
	Benchmarks
	Methodology for Experiments

	Results and Discussion
	Impact of Optimizing Tag Check Mechanism
	Overall Performance
	TDRAM's Energy Improvement
	Flush Buffer Size Sensitivity Analysis
	Link Latency Case Study
	Set-Associative TDRAM

	Related Work
	References

