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ABSTRACT
We propose a new method for high-dimensional semi-supervised learning problems based on the careful
aggregation of the results of a low-dimensional procedure applied to many axis-aligned random projections
of the data. Our primary goal is to identify important variables for distinguishing between the classes;
existing low-dimensional methods can then be applied for final class assignment. To this end, we score
projections according to their class-distinguishing ability; for instance, motivated by a generalized Rayleigh
quotient, we can compute the traces of estimated whitened between-class covariance matrices on the
projected data. This enables us to assign an importance weight to each variable for a given projection, and to
select our signal variables by aggregating these weights over high-scoring projections. Our theory shows that
the resulting Sharp-SSL algorithm is able to recover the signal coordinates with high probability when
we aggregate over suficiently many random projections and when the base procedure estimates the
diagonal entries of the whitened between-class covariance matrix suficiently well. For the Gaussian EM base
procedure, we provide a new analysis of its performance in semi-supervised settings that controls the
parameter estimation error in terms of the proportion of labeled data in the sample. Numerical results on
both simulated data and a real colon tumor dataset support the excellent empirical performance of the
method. Supplementary materials for this article are available online, including a standardized description
of the materials available for reproducing the work.
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1. Introduction

Semi-supervised learning, where we attempt to assign observa-
tions to one of finitely many groups based on partially-labeled
training data, represents a core modern statistical challenge.
It is suficiently general to incorporate, at either extreme, the
unsupervised case of no labeled training data (clustering) and
the supervised setting of fully-labeled training data (classif ica-
tion). Such tasks abound in many application areas, including
genomics (e.g., Eisen et al. 1998), image processing (Jain and
Flynn 1996; Cheplygina, de Bruijne, and Pluim 2019), natural
language processing (Liang 2005; Turian, Ratinov, and Bengio
2010) and anomaly detection (Akcay, Atapour-Abarghouei, and
Breckon 2019; Wang et al. 2019). Entry points to the litera-
ture on semi-supervised learning include Zhu (2005), Zhu and
Goldberg (2009), Chapelle, Schölkopf, and Zien (2006), and
Van Engelen and Hoos (2020). For introductions to clustering,
see Xu and Wunsch (2005), Kaufman and Rousseeuw (2009),
and Xu and Tian (2015), and for classification, see Devroye,
Györfi, and Lugosi (2013) and Hastie, Tibshirani, and Friedman
(2009).

A common feature of contemporary semi-supervised learn-
ing problems is high-dimensionality, since we may record many
covariates having a possible association with the labels. corre-
sponding to different observations. This represents a significant
challenge, as can be seen by considering a simple two-class

problem with more covariates than observations. For any given
assignment of class labels, if no subset of n0 observations lies in
an (n0 −  2)-dimensional afine space, then we can find hyper-
planes with orthogonal normal vectors, each of which achieves
zero training error (in other words, they perfectly separate the
classes). Nevertheless, even in the simple setting where the true
Bayes decision boundary is linear, many such hyperplanes may
be little better than a random guess on test data.

An appealing approach to tackling high-dimensionality is
via random projections into lower-dimensional spaces. Such
projections may almost preserve the pairwise distances between
observations, as seen from the Johnson–Lindenstrauss lemma
(Johnson and Lindenstrauss 1984; Dasgupta and Gupta 2003).
Moreover, in cases where we have reason to believe that only a
relatively small proportion of the variables recorded are rel-
evant for the learning task, we can choose our random pro-
jections to be axis-aligned in order to preserve this structure. A
third benefit is the possibility of aggregating results over
multiple random projections, though this must be done with
care so as to avoid noise accumulation. These attractions have
meant that random projections have now been employed in
many high-dimensional statistical problems, including preci-
sion matrix estimation (Marzetta, Tucci, and Simon 2011), two-
sample mean testing (Lopes, Jacob, and Wainwright 2011), clas-
sification (Durrant and Kabán 2015; Cannings and Samworth
2017), (sparse) principal component analysis (Yang et al. 2021;

CONTACT Tengyao Wang t.wang59@lse.ac.uk        Department of Statistics, London School of Economics, London, UK.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the
author(s) or with their consent.

https://doi.org/10.1080/01621459.2024.2340792
mailto:t.wang59@lse.ac.uk
http://www.tandfonline.com/r/JASA
http://creativecommons.org/licenses/by/4.0/


+ K −1

{x:kxk=1}

1 k

2 T. WANG ET AL.

Gataric, Wang, and Samworth 2020), linear regression (Thanei,
Heinze, and Meinshausen 2017; Slawski 2018; Dobriban and
Liu 2019; Ahfock, Astle, and Richardson 2021), clustering (Das-
gupta 1999; Fern and Brodley 2003; Han and Boutin 2015;
Yellamraju and Boutin 2018; Anderlucci, Fortunato, and Mon-
tanari 2022) and dimensionality reduction (Bingham and Man-
nila 2001; Reeve, Kabán, and Bootkrajang 2022). See Cannings
(2021) for a review of recent developments in the area.

In this article, we propose a new method, calledSharp-SSL
(short for Selective high-dimensional, axis-aligned random
projections for Semi-Supervised Learning). Our primary goal is
to identify a small subset of variables that are particularly helpful
for label assignment; existing low-dimensional methods can
then be used to complete the learning task. To this end, we gener-
ate a large number of axis-aligned random projections, and apply
a base learning procedure such as a semi-supervised version of
the Gaussian Expectation–Maximization (EM) algorithm to our
projected data. We seek to score projections according to their
ability to distinguish the classes; for instance, motivated by the
notion of a generalized Rayleigh quotient (see (2) for a formal
definition), and to avoid the noise accumulation issue
mentioned above, we can compute the traces of the correspond-
ing estimated whitened between-class covariance matrices. This
enables us to assign an importance weight to each variable
for a given projection, and we select our signal variables by
aggregating these importance weights over the high-scoring
projections. See Section 2 for a more detailed description of our
methodology.

Section 3 is devoted to a theoretical analysis of our
Sharp-SSL algorithm. We first show in Theorem 2 that pro-
vided the low-dimensional base learning procedure estimates
the variable importance scores suficiently well, the correspond-
ing high-dimensional semi-supervised learning algorithm can
recover the signal coordinates with high probability when we
aggregate over suficiently many random projections. It turns out
that both Linear Discriminant Analysis and an EM algorithm are
examples of low-dimensional learning procedures that satisfy
this proximity guarantee, as we prove in Theorems 3 and 6,
respectively. The latter is particularly challenging, and one of
the main novel contributions of our analysis is to provide a
guarantee on the performance of a d-dimensional Gaussian EM
algorithm in a semi-supervised setting. In particular, we control
the parameter estimation error in terms of the proportion of
labeled data in the sample, showing that with a sample size of
n it smoothly interpolates between the (d/n)1/4 rate for
unsupervised learning and the (d/n)1/2 rate for fully-labeled
data, up to logarithmic factors. An advantage of the modular
approach to our analysis is that it illustrates the way in which the
Sharp-SSL algorithm can be used with different base learning
algorithms to adapt to different problem settings and reflect the
preferences of the practitioner.

In Section 4, we study the numerical performance of the
Sharp-SSL algorithm. Section 4.1 presents the results of a
simulation study involving the Sharp-SSL method, as well
as five alternative approaches, on high-dimensional clustering
tasks (since not all of the competing methods are able to leverage
partial label information). We find that the Sharp-SSL algo-
rithm is able to attain a misclustering rate very close to that of the
optimal Bayes classifier, even with only around 50 observations

per cluster, in settings where these alternative techniques may
perform poorly. In Section 4.2, we investigate the extent to which
the different versions of the Sharp-SSL method are able to
leverage partial label information. The results here are consistent
with the phase transition phenomenon articulated by our theory.
Finally, in Section 4.3, we apply the Sharp-SSL algorithm,
as well as the other methods from our simulation study, on a
colon tumor dataset, where we withhold the true labels from
the algorithms in order to assess performance. Our analysis
supports the ability of the Sharp-SSL algorithm to identify
signal coordinates (genes) that are useful for identifying patients
with and without tumors.

In the broader literature on high-dimensional learning, a
large number of methods have been developed to leverage sparse
low-dimensional structures for both clustering (Witten and Tib-
shirani 2010; Azizyan, Singh, and Wasserman 2013; Wasserman,
Azizyan, and Singh 2014; Azizyan, Singh, and Wasserman 2015;
Jin and Wang 2016; Verzelen and Arias-Castro 2017; Löf ler,
Wein, and Bandeira 2022; Löfler, Zhang, and Zhou 2021) and
classification (Cai and Liu 2011; Witten and Tibshirani 2011;
Mai, Zou, and Yuan 2012; Cai and Zhang 2019). These methods
are not designed for partially labeled (semi-supervised) settings.
Another common approach is to project the data into the span
of the top few principal components, and run a standard low-
dimensional method such as k-means clustering or the EM algo-
rithm (Butler et al. 2018). This approach can fail if the directions
of largest variation in the data are not aligned with the direc-
tions separating the clusters. Finally, recent developments in
other aspects of semi-supervised learning include self-training
(Oymak and Gulcu 2020), mean estimation (Zhang, Brown,
and Cai 2019), choice of k in k-nearest neighbor classification
(Cannings, Berrett, and Samworth 2020) and linear regression
(Chakrabortty and Cai 2018).

Proofs of all of our results, as well as some additional
simulation results, are provided in the online supplementary
material. We conclude this introduction with some notation
used throughout the article. We write Sd×d for the set of d-
dimensional symmetric positive semi-definite matrices, and
Sd×d for the subset that are invertible. We also write Sd×d the
subset of matrices in Sd×d of rank at most K −  1. For p ≥  d, let
Op×d denote the set of p ×  d matrices with orthonormal
columns. For p � [1,∞], the ̀ p-norm of a vector x is denoted by
kxkp; we also abbreviate the Euclidean norm of x as kxk. The
operator norm of a matrix is denoted by k · kop, so that kAkop
: =  sup kAxk. Given two sequences (an) and (bn),
we write an .  bn when there exists a universal constant C > 0
such that an ≤  Cbn, and, given an additional problem parameter
R, we write an . R  bn when there exists C > 0, depending only
on R, such that an ≤  Cbn. If S � Rd , we define sargmax S to
be the smallest element in the argmax in the lexicographic
order. For a positive integer k, we define [k] : =  {1, . . . , k}. For
a vector v =  (v , . . . , v )>      � Rk , and j � [k], we define v− j

=  (v1, . . . , vj−1, vj+1, . . . , vk)> � Rk−1 .

2. The Sharp-SSL Algorithm

In this section, we describe in detail the Sharp-SSL algorithm
for K-class semi-supervised learning, with K ≥  2. We aim to
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provide a unified treatment of clustering, semi-supervised learn-
ing and classification. To this end, we assume that for i � [n],
the observation xi � Rp  has a true label y� � [K], but it may be the
case that we do not observe y . Instead, we assume that our
observed label yi takes values in [K] � {0}, where yi : =  y� when
the true class label is observed, and yi : =  0 otherwise. Thus, our
data can be regarded as (x1, y1), . . . , (xn, yn) � Rp  × ([K]�{0}),
and our goal is to construct a data-dependent classifier1, that is a
Borel measurable function C : Rp  ×  Rp  ×  ([K] � {0}) →
[K], with the interpretation that C x; (x1, y1), . . . , (xn, yn) is the
predicted class of x � Rp .

To motivate ourSharp-SSL algorithm, it is instructive first
to consider a canonical Gaussian classification problem, where
our data can be regarded as n independent realizations of a
pair (X, Y) taking values in Rp  ×  [K], with prior probability
πk : =  P(Y =  k) for the kth class and X | Y =  k � Np(νk , 6w), for
class means ν1, . . . , νK � R  and within-class covariance
matrix 6 w  � S +      . Let ν : = k=1 πkνk � Rp  denote the grand
population mean, let

6 b  : =  
X
π k ( ν k  −  ν)(νk −  ν )> � Sp×p (1)

k=1

denote the between-class covariance matrix, and consider D �
Op×(K−1) with a column space spanned by 6 −1 (νk −  ν) : k �
[K] . Observe that for k =  `, the likelihood ratio

½
P(Y =  k | X =  x)

¾

P(Y =  `  | X =  x)

=  log 
π`     

−  
2

(νk +  ν ` )> 6 −1 (νk −  ν`) +  x> 6 −1 (νk  −  ν`),

and hence the Bayes classifier x →  argmaxk�[K] P(Y =  k | X =
x), only depends on x through D>x. Thus, for the purposes of
classification, no signal would be lost (and the noise would be
reduced) if X were replaced with D>X .

In high-dimensional settings with p À  n, the matrix 6 − 1  is
not consistently estimable in general, but we can nevertheless
make progress if the vectors 6 −1 (ν1 −  ν), . . . , 6−1(νK −  ν)
are sparse. In other words, writing S0 for the union of the set of
coordinates for which these vectors are nonzero, we suppose that
|S0| ¿  p; this is a very common assumption in high-
dimensional LDA (e.g., Cai and Liu 2011; Witten and Tibshirani
2011; Mai, Zou, and Yuan 2012; Cai and Zhang 2019).

In such a setting, the column space of D has a sparse basis, so
it is natural to consider projecting the data onto a small subset
of its coordinates. For d � [p], define the set of axis-aligned
projection matrices Pd  : =      P � {0, 1}d×p : PP> =  Id , that is
the set of binary d ×  p matrices with orthonormal rows. We
refer to these projections as axis-aligned because each row of any
P � P  contains a single entry equal to 1, with all others equal to
zero, so if x � Rp  then Px � Rd  simply selects the d coordinates of
x corresponding to the columns of P that contain a nonzero
entry. By the argument above, if d ≥  |S0| then there exists
P � Pd  such that the error of the Bayes classifier is unchanged by
projecting the data along P . In practice, it would typically be

1It is convenient to use the term “classifier”here, even though some or all of
the labels may be unobserved.

computationally too expensive to enumerate through all p(p −
1) · · · (p −  d +  1) axis-aligned projections. Instead, we consider
a randomly chosen subset of projections within Pd . An axis-
aligned projection chosen uniformly at random is unlikely to
capture all the signal coordinates S0, but by aggregating over a
carefully-chosen subset of these random projections, we can
nevertheless recover the set of signal coordinates under suitable
conditions; see Theorem 2. To describe our method for choosing
good projections, for V � Op×d , we define the generalized
Rayleigh quotient along V by

J(V ; 6b, 6w) : =  tr{(V > 6wV)−1(V > 6bV)}. (2)

Proposition 1 motivates seeking to choose projections to max-
imize the generalized Rayleigh quotient by showing that the
column span of any maximizer J(V ; 6b, 6w) over V � Op×d

must contain the column space of D.

Proposition 1. Let K ≥  2 and d ≥  K −  1. Assume that
the convex hull of ν1, . . . , νK is (K −  1)-dimensional, and let
V � argmax p×d J(V ; 6 , 6  ). Then the column space of
V� contains the eigenspace corresponding to the K − 1  nonzero
eigenvalues2 of 6 − 1 6  , which is equal to the space spanned by
6 −1 (νk −  ν) : k � [K] .

Based on Proposition 1, a natural conceptual approach to
maximizing the generalized Rayleigh quotient is to compute the
leading (K −  1)-dimensional eigenspace of 6 − 1 6 b .  This strat-
egy, however, runs into dificulties when we replace these popu-
lation quantities with their sample versions in the setting of the
opening paragraph of this section. More precisely, writing nk : =

i=1 1{yi =k} for k � [K], as well as 6 w  : =  1
k=1 i=1(xi −

ν̂k)(xi −  ν̂k)>1{y =k}  � Rp × p  and 6 b  : = K k (ν̂k −  ν̂)(ν̂k −
ν̂ )> � Rp×p ,  for the sample versions of the within-class and
between-class covariance matrices, respectively, the matrix 6 w

is not invertible whenever p > n. Fortunately, though, this issue
can be resolved by working with the projected data, as long as
we choose d ≤  n −  K: the projected data {PX : i � [n]} has
within-class covariance matrix P 6  P >  � Rd × d  and between-
class covariance matrix P6bP> � Rd×d , so with probability one,
the sample version P6w P is invertible.

Returning to the general setting of the opening para-
graph of this section, then, we seek projections P with large
J(P> ; 6b , 6w ) =  tr (P6w P> )−1 (P6b P> ) . To this end, for
fixed A, B � N, we sample a set of axis-aligned projections
{Pa,b     : a � [A], b � [B]} uniformly at random from Pd . We
further assume that we have access to a base algorithm ψ :

Rd  ×  ([K] � {0}) →  [0,∞)d, which takes low-
dimensional semi-supervised data as an input and returns a
vector of estimated importance scores for distinguishing the
classes for each of the variables. We suppose throughout for
convenience that ψ is permutation equivariant in the sense
that ψ (5z1, y1), . . . , (5zn , yn) =  5ψ  (z1, y1), . . . , (zn, yn)
for every permutation matrix 5  � Rd×d .  By applying ψ to
the projected data (Pa,bx1, y1), . . . , (Pa,bxn, yn), we obtain for
each a and b an estimator wa,b of the projected importance

2 Even though 6−1 6 is not guaranteed to be symmetric, it is similar (i.e., con-
jugate) to the symmetric matrix 6 − 1 / 2 6  6 −1 / 2 ,  so has real eigenvalues
and eigenvectors.
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Algorithm 1: Variable selection via ensembles of axis-aligned random projections.

Input: (x1, y1), . . . , (xn, yn) � R p ×  ([K] � {0}) (yi =  0 denotes a missing label);
Projected dimension d � [min(p, n −  K)], number of selected signal coordinates `  � [p];
A, B � N for groups of projections and number of projections per group;
Permutation equivariant base algorithm ψ : Rd  ×  ([K] � {0}) →  [0,∞)d.

Generate axis-aligned random projections {Pa,b : a � [A], b � [B]} independently and uniformly from Pd .
for a � [A] do

for b � [B] do
Let wa,b : =  ψ (Pa,bx1, y1), . . . , (Pa,bxn, yn) .

end

Set b�(a) : =  sargmaxb�[B] j=1 w
a,b.

end
Let w : =  A−1

a=1 P
a,b�(a),>wa,b�(a).

Output: S � [p], defined as the index set of the `  largest components of w.

scores. In Sections 3.2 and 3.3, we take ψ to be the operator
that when applied to the projected data returns the diago-nal
of the whitened between-class (projected) covariance matrix
(Pa,b6wPa,b,>)−1(Pa,b6bPa,b,>).

To choose projections, for each a � [A], we define b (a) : =
sargmaxb�[B] j=1 ˆ

a,b to be the projection within the ath
group with the largest sum of importance scores, and select
Pa,b (a). The main rationale for dividing the projections into
A groups and selecting one within each group—as opposed to
selecting the A projections with the largest sum of importance
scores—is that, conditional on the original data, the selected
projections are independent and identically distributed. This
facilitates our theoretical analysis by enabling the application of
concentration inequalities in the proof of Theorem 2.

The selected importance scores {wa,b (a) : a � [A]} within
each group can be “back-projected” into the original higher-
dimensional space and aggregated to form the overall vector of

importance scores w : =  1
a=1 P

a,b�(a),> ˆ a,b�(a) � [0,∞)p.
Finally, we rank the p variables by their overall importance
scores, and our estimate S of the set of signal coordinates is given
by the largest ` entries in w, breaking ties arbitrarily if necessary,
where ` � [p] is specified by the practitioner. Pseudocode for the
variable selection aspect of the Sharp-SSL procedure is given
in Algorithm 1.

After applying Algorithm 1 to obtain an estimated set S
of signal variables, the Sharp-SSL procedure then applies
any existing low-dimensional semi-supervised learning method
with input (Pˆxi,, yi)i�[n], where Pˆ is the projection onto the
coordinates in S.

2.1. Base Learning Methods

Algorithm 1 relies on a base learning method for low-
dimensional data to estimate the diagonal of the projected
whitened between-class covariance matrix from the projected
data. When all or almost all of the input data are labeled, we can
use the procedure outlined in Algorithm 2, which ignores any
unlabeled data, for this purpose. On the other hand, when we
have a substantial amount of unlabeled data, Algorithm 2 may
be inaccurate. In such circumstances, it may be preferable to use

Algorithm 3, which runs an Expectation–Maximization (EM)
procedure to predict the unobserved labels and subsequently
estimate the whitened between-class covariance matrix and its
diagonal. More precisely, from M random initializations of the
cluster means and the within-class covariance matrix, Algo-
rithm 3 uses the EM algorithm to update these quantities, and
thereby compute the whitened between-cluster sample covari-
ance matrix estimators ˆ [m] : m � [M] . We select m � [M]
such that Q[m] is in best agreement with results from the other
EM runs.

Algorithm 3 also allows the practitioner to incorporate prior
knowledge about the true cluster means and within-cluster
covariance matrices, both through optimizing over a restricted
constraint set C in the M step of the EM algorithm, and through
the choice of a distribution supported on C for the initializa-
tion of these quantities. An alternative to the EM algorithm
for unsupervised learning would be to apply k-means cluster-
ing as a base procedure. Previous studies have suggested that
these approaches have comparable empirical performance (e.g.,
de Souto et al. 2008; Rodriguez et al. 2019, and references
therein), but the EM algorithm is more amenable to theoretical
analysis in our setting.

3. Theoretical Guarantees

3.1. Results for the High-Level Algorithm

Here we consider independent triples (X , Y , Y�), . . . ,
(Xn, Yn, Y�) taking values in Rp  ×  ([K] � {0}) ×  [K]. We
recall that Y denotes the true label of the ith observation,
and that Y : =  Y� if the ith label is observed, and Y : =  0
otherwise. For a fixed vector w =  (w1, . . . , wp)> � Rp , we
define S0 : =      j � [p] : wj > 0 , and write s0 : =  |S0|. As we will
see later in Sections 3.2 and 3.3, in specific applications, w
will be defined to be a direction that best distinguishes different
classes/clusters and S0 can be interpreted as the set of signal
coordinates.

Our first main theoretical result shows that if the base algo-
rithm is accurate on each low-dimensional projection and A is
large, then with high probability, all signal coordinates are
selected.
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Algorithm 2: Base learning using only labeled data

Input: (z1, y1), . . . , (zn, yn) � Rd  ×  ([K] � {0}). A closed constraint set C � Sd×d , with default C =  Sd×d .
for k � [K] do

Set nk : =  |{i : yi =  k}| and μ̂ k : =  n−1
i:yi =k zi (if nk =  0, then set μ̂ k : =  0).

end

Compute n0 : = k=1 nk and μ̂ : =  (n0)−1
i=1 zi.

Compute the within-class and between-class covariance matrices as

0w : =      0 
X

( z i  −  μ̂yi )(zi −  μ̂ yi )
>

i=1

and 0b : =  
X  n0

 (μ̂k −  μ̂)(μ̂k −  μ̂ )> . (3)
k=1

Output: ψ
¡
(zi, yi)i�[n]

¢ 
: =  

¡
({ProjC ˆ w}−1 ˆ b)j,j

¢
j=1, where ProjC : Sd×d →  C denotes the Euclidean projection operator

onto C; here we take the pseudoinverse if ProjC ˆw is not invertible.

Algorithm 3: Base learning using partially labeled data via an EM algorithm

Input: Data (z1, y1), . . . , (zn, yn) � Rd  ×  ([K] � {0}). A constraint set C � (Rd)K ×  Sd×d and a probability distribution πC
supported on C. Number of random initializations M. Number of iterations T.

for m � [M] do
Randomly sample (μ̂1, . . . , μ̂K , 0w) � πC .
for t � [T] do

(E step) Compute the soft-label matrix (Li,k)i�[n],k�[K] with entries

µ − 1  (zi− μ̂ )>  ˆ −1 (zi− μ̂ ) ¶
Li,k : = P

` = 1  e
− 2  (zi − μ̂ ` )> 0 −1 (zi − μ̂ ` )      

1{yi =0} +  1{yi=k} . (4)

(M step) Update parameter estimates by

(μ̂1, . . . , μ̂K , 0w) : = argmin
½

1 X X
L i , k ( z i  −  μk )> 0 −1 (zi  −  μk ) +  log det 0

¾
. (5)

(μ1 ,...,μK ,0)�C           i=1 k=1

end
Compute (Li,k)i�[n],k�[K] using the final values of (μ̂1, . . . , μ̂K , 0w) as in (4).
Set μ̂tot : =  1

i=1 k=1Li,k μ̂k and 0b : =  1
i=1 k=1 Li ,k(μ̂k − μ̂ tot)(μ̂k − μ̂ tot)> .

Set Q[m] : =  0 −1 0b .
end
Set m � argminm�[M] median kQ[m] −  Q[m0]kop : m0 � [M] \  {m} and Q : =  Q[m].

Output: (Qj,j)j=1.

Theorem 2. Define γmin : = minj�S0 wj and γmax : =
maxj�S wj. Let S be the output of Algorithm 1 with input K, p,
(X1, Y1), . . . , (Xn, Yn), A, B, s0 ≤  d ≤  min(p, n −K), `  ≥  s0 and
permutation equivariant base procedure ψ . For P � Pd , write w
: =  ψ (PXi, Yi)i�[n] and

µ ¶
ε : =  P max °ˆ P −  Pw°

1 ≥  min     . (6)

Then P(S0 � S) ≥  1 −  ε −  pe−Aγmin /(50p2γmax) .

In fact, we can see from the proof of Theorem 2 that the fol-
lowing stronger conclusion holds: for any realization (xi, yi)i�[n]
of the data satisfying maxP�Pd      ̂

P −  Pw < γmin /4, we have

P S0 � S | (Xi, Yi)i�[n] =  (xi, yi)i�[n]     ≥  1−pe−Aγmin /(50p2γmax ) .
Note here that, after conditioning on the data, the probability

is taken over the randomness in the projections. An attraction
of Theorem 2 is its generality, and in particular the fact that
we do not impose strong distributional assumptions—we simply
require control of ε in (6). The price we pay for this generality is
that the probability bound may be loose in particular cases; for
example, the bound holds even with B =  1, though in practice
we would expect it to improve as B increases, at least for small
values of B.

3.2. Theory for Base Learning Using Labeled Data

In this subsection, for k � [K], let π : =  P(Y� =  k) and ν� : =
E(X1 | Y� =  k) denote the prior probability and the cluster
mean of the kth cluster, respectively. Let ν�     : = K πkν�

denote the weighted cluster mean and let 6 w  : =  Cov(X1 |



�

ˆ ˆ

K
p

n

�
k

¡ ¢

�
k

�

−1
ª

P K
k k¡

w
¢d

P�P d

° °

w k k0

¡
w

¢p

0

¡ ¢

¡
j j

j j¢

©
w

3 0ª

ˆ

ˆ A

1 n

i i i
¡ ¢

i

L L

6 T. WANG ET AL.

Y1 =  k) denote the common within-cluster covariance matrix.
We demonstrate how the high-level result in Theorem 2 can
be used to derive performance guarantees for the estimated
variable importance scores in a high-dimensional classification
setting where we apply Algorithm 1 in conjunction with the low-
dimensional base method described in Algorithm 2.

Algorithm 2 takes as an input a closed constraint set C �
Sd×d . This allows the user to impose prior knowledge on
the structure of the within-class covariance matrix of our
low-dimensional (projected) data, by outputting the diagonal
of {ProjC 0w}−10b. The following theorem provides uniform
control of the output of Algorithm 2 for all axis-aligned d-
dimensional projected datasets when C is the set of d×d diagonal
positive semidefinite matrices. For positive integers n, d, p, K
with p ≥  d and ε > 0, we denote

E(n, d, p, K, ε) : =  
n 

+  

s
log

¡
8d

¡
d

¢¢ 
+  log(1/ε)

. (7)

Theorem 3. Fix ε � (0, 1], K � {2, 3, . . . , }, and p, d � N with p
≥  d. Suppose that (X1, Y1), . . . , (Xn, Yn) are independent and
identically distributed pairs, with P(Y1 =  k) =  πk and X1 |
Y1 =  k � Np(ν , 6w ) for k � [K], and let ψ (PXi, Yi)i�[n]
denote the output of Algorithm 2 with input (PXi, Yi)i�[n], for
P � Pd , and C as the set of d × d diagonal positive semi-definite
matrices. Suppose that maxk�[K] kν −  ν k∞  ≤  R1 for some
R1 > 0, and that 6 w  is diagonal and well-conditioned in the
sense that max{k6wkop, k6w kop     ≤  R2 for some R2 ≥  1. Then
there exists c1 > 0, depending only on R1 and R2, such that if
E(n, d, p, K, ε) ≤  c1, then for 6b = k=1 πk(ν�−ν�)(ν�−ν�)>

and wP =  (P6 −1 6b P> )j , j  j=1, we have with probability at least

1 −  ε that

max°ψ
¡
(PXi, Yi)i�[n]

¢ 
−  wP °∞

 .R 1 ,R 2  E(n, d, p, K, ε).

We remark that in the setting of Theorem 3, 6 −1 /2 (ν� − ν� )
is parallel to the linear discriminant direction distinguishing
between class k and class k0. Hence, w : =  (6 −1 6b )j , j  j=1 can be

viewed as an entrywise weighted sum of squares of all pairwise
linear discriminant direction vectors for classification. In fact,
there is a sense in which wj > wj0 if j is a more important
variable than j . Indeed, focusing on the two-class setting for
simplicity, the sum of the components of w is the Mahalanobis
distance between the classes, and if we project the data onto
the jth coordinate, then the Bayes risk in the resulting one-
dimensional problem is a decreasing function of wj. This follows

because the Bayes risk is π1 8 −w1 /2 /2 −  log(π1/π2)/w1/2 +
π2 8 −w1 /2 /2 +  log(π1/π2)/w1/2 , where π1 and π2 are prior
probabilities of the respective classes and 8 denotes the standard
normal distribution function. Furthermore, by the argument
following (1), if we reduce our covariates to their coordinates in
S0 (i.e., where the corresponding components of w are nonzero),
then the Bayes risk is unaffected. The vector wP in Theorem 3 is
the restriction of w under the projection P.

The sample size condition E(n, d, p, K, ε) ≤  c1 is implied
by n &R1,R2     d log(p/d) +  log(d/ε) +  K, so may be regarded
as mild. Thinking of K as a constant, Theorem 3 confirms that

the uniform control of Algorithm 2 is at the parametric rate,
up to a logarithmic factor. The following corollary then follows
immediately by combining Theorems 2 and 3.

Corollary 4. Fix ε � (0, 1]. Suppose that the conditions of
Theorem 3 hold, and moreover that minj�[p](6b)j,j ≥  1/R3

for some R > 0. Define the set of signal coordinates S : =
j � [p] : (6 −1 6b )j , j      > 0 and s0     : =  |S0|. Then there

exist C1, C2     > 0, depending only on R1, R2 and R3, such
that if C1E(n, d, p, K, ε) ≤  1/d, then the output S of Algo-
rithm 1 with input K, p, s0 ≤  d ≤  min(p, n −  K), `  ≥  s0,
(X1, Y1), . . . , (Xn, Yn), A, B, the set C of d ×  d diagonal positive
semi-definite matrices, and base procedure ψ from Algorithm 2
satisfies µ ¶

P(S0 � S) ≥  1 −  ε −  p exp −
C2 p2     . (8)

Thus, under the conditions of Corollary 4, the Sharp-SSL
algorithm can, with high probability, select all of the signal
variables, provided that the number A of groups of random
projections is large by comparison with p2. In other words, the
algorithm reduces the problem to a low-dimensional one, for
which standard learning techniques can be applied. The guaran-
tees for these methods (e.g., Anderson 2003, Theorem 6.6.1) can
then be combined on the high-probability event of Corollary 4
to establish theoretical results for the full procedure. Further, in
Section S2, we provide an algorithm and analysis for the more
general case where we allow the within-class covariance matrices
to be different for different classes.

3.3. Theory for Semi-Supervised Base Learning

When the proportion of labeled data is low, Algorithm 2 may be
inaccurate when used as the base procedure in Algorithm 1. The
aim of this subsection, therefore, is to study the base procedure
of Algorithm 3, which is able to leverage both the labeled and
unlabeled data via an EM algorithm to estimate variable impor-
tance scores for each projected dataset. Our analysis builds on
several recent breakthroughs in our understanding of the EM
algorithm. This line of work includes Balakrishnan, Wainwright,
and Yu (2017), Daskalakis, Tzamos, and Zampetakis (2017), Yan,
Yin, and Sarkar (2017), Dwivedi et al. (2020a), Dwivedi et al.
(2020b), Minsker, Ndaoud, and Shen (2021), Ho et al. (2020),
Ndaoud (2022), Wu and Zhou (2022), and Doss et al. (2023), all
of which focus on the unsupervised case. While our main focus
in this section is on the EM algorithm, we also mention that a
similar semi-supervised procedure could be developed based on
Lloyd’s algorithm for k-means clustering. We refer to the recent
works of Lu and Zhou (2016) and Ndaoud (2022) for theoretical
analyses of Lloyd’s algorithm.

For simplicity, we will focus on the setting where independent
and identically distributed (X1, Y�), . . . , (Xn, Y�) are generated
from a mixture of two Gaussians with opposite means and
identity covariance matrix:

Y� � Unif({1, 2}), Xi | Y� � Np  (−1)Y�
ν�, Ip , and

Yi =  Y�1{i≤nL} for all i � [n]. (9)

We     assume     that     we     observe     (X1, Y1), . . . , (Xn , Yn ),
XnL+1, . . . , Xn for some nL      �     {0, . . . , n}. In other words,
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we are given nL labeled observations and nU     : =  n −  nL
unlabeled ones. Thus, nL = 0 corresponds to the fully
unsupervised case, that is, clustering, while n =  n corresponds
to the supervised case, that is, classif ication. We def ineYi =  Y�

for i � [nL], and Yi =  0 for i � {nL +  1, . . . , n}. In this setup, if
all labels are known, then ν is the optimal (linear discriminant)
direction for distinguishing the two clusters. Algorithm 1 using
Algorithm 3 as the base procedure can be used to recover the
nonzero coordinates of w : =  (ν�)2 

j=1 .
In addition to allowing more general class-conditional

covariance matrices, it would be of interest to extend our
methodology beyond the Gaussian setting. Recent work on
spectral estimation of sub-Gaussian mixtures in the unsuper-
vised case includes Abbe, Fan, and Wang (2022) and Zhang
and Zhou (2022). Although sub-Gaussianity, which only con-
trols tail behavior, is insuficient to guarantee the existence of a
maximum likelihood estimator, one could also consider other
global constraints such as log-concavity (Walther 2002; Sam-
worth 2018). Indeed, Cule, Samworth, and Stewart (2010) con-
sidered a log-concave EM algorithm for fitting finite mixtures of
(low-dimensional) log-concave densities but did not study the
theoretical properties of this algorithm. One significant issue is
related to identif iability: for instance, writingφd for the standard
d-dimensional Gaussian density, the mixture density π1φd(· −
μ) +  (1 −  π1)φd(· +  μ)  with π1 � [0, 1] is itself log-concave
whenever kμk ≤  1. See Balabdaoui and Doss (2018) for a
univariate EM algorithm in the context of a two-component
symmetric log-concave mixture.

As in Section 3.2, to understand the performance of the
sharp-SSL algorithm in this setting, we first study the per-
formance of the EM procedure after the covariates have been
projected into a lower-dimensional space. In other words, for
some fixed P � P  , define Z : =  PX for i � [n] and μ� : =  Pν�

� Rd , so that Zi | Y� � Nd (−1)Yi μ�, Id . In this setting,
we have a single unknown parameter μ to estimate, and this can
be achieved by applying Algorithm 3 to (Zi, Yi)i�[n] with K =  2
and the constraint set

C : =  
©

(−μ, μ, Id) : μ  � Rdª
. (10)

After initializing the EM algorithm at some fixed
(−μ̂ (0) , μ̂ (0) , I ) � C, for t � N, the tth iterate of the EM
iteration described in (4) and (5) is (−μ̂(t) , μ̂(t) , Id), where

μ̂(t) : =  
1

½ X  
(−1)Yi Zi +  

X  
Zi tanh Zi, μ̂(t−1)®¾

; (11)
i:Yi =0 i:Yi =0

see Lemma S10. Since we allow nL =  0, where μ  is only identi-
fiable up to sign, and since the between-class sample covariance
matrix 0b computed in Algorithm 3 is equal to 0b =  μ̂ 1 μ̂ >  −
μ̂tot μ̂tot , which is invariant to flipping the signs of μ̂ 1 and μ̂ 2

simultaneously, it is natural to consider the loss function L :
Rd  ×  Rd  →  [0,∞) given by

L(μ, μ0) : =  kμ  −  μ0k � kμ  +  μ0k.

Proposition 5 provides a theoretical guarantee for this semi-
supervised EM algorithm. For notational simplicity, we define γ
: =  nL /n, ω0     : = {d log n +  log(1/δ)}/nU and ζ0     : =
min{ω0γ −1/2, ω1/2} throughout this section. Thus, treating d as

a constant and ignoring polylogarithmic terms, ω is of order
n−1 /2 and ζ0 is of order min{n−1/2 , n−1/4} when γ  < 1/2.

We remark that n−1 /2 is the critical `2-testing radius for dis-
tinguishing the means of two labeled Gaussian distributions
with identity covariance using nL observations. On the other
hand, as we show in Lemma S11, no test of the null hypothesis
H0 : Nd(0, Id) against the two-component mixture alternative
H1 : Nd (μ  , Id) +      N d (−μ  , Id) based on nU observations
can have large power unless the signal strength kμ  k is at least of

order n−1/4 .

Proposition 5. Fix δ � (2e−n , 1] and r ≥  1, and suppose that
kμ�k ≤  r and γ  < 1/2. There exists c > 0, depending only on
r, such that if ω0 ≤  c and n ≥  3, then the following statements
hold:

(i) For any μ̂(0) � Rd  with kμ̂(0)k ≤  r +  3, we have with
probability at least 1 −  2δ that lim sup L(μ̂(t) , μ�) .
ζ0 � kμ�k.

(ii) There exists C > 0, depending only on r, such that if
kμ�k ≥  Cζ0     d log n and μ̂(0)     =  (ζ0 � rω0)η0 with η �
Unif (S d−1), then with probability at least 1 −  2δ −

2/(π log nU), we have lim supt→∞ L(μ̂(t) , μ�) . r  kμ�k �
0

γ 1 /2

In order to interpret Proposition 5(i), consider the regime
where kμ�k ≤  ζ0. In this case, as discussed above, the two
mixture components are essentially indistinguishable, and the
bound reveals that the EM algorithm performs no worse than
the trivial zero estimator, up to constant factors. On the other
hand, part (ii) studies the more interesting regime where the
two mixture components are distinguishable, and we establish a
faster convergence rate for the EM algorithm in this strong signal
regime.

The following theorem combines the two convergence
regimes in Proposition 5 to derive a convergence guarantee for
the estimated variable importance scores output by Algorithm 3.
To state the result, recall the definition of C from (10). For any
ζ > 0, we write U(ζ ) for the pushforward measure on C induced
by Unif (ζ S d−1) under the map μ  →  (−μ, μ, Id ).

Theorem 6. Fix δ � (2e−n , 1], and r ≥  1 and suppose that
kμ�k ≤  r and γ  < 1/2. There exists c > 0, depending only
on r, such that if ω0 ≤  min{c, (d log n)−3} and n ≥  108, then
the sequence of outputs (Q(T))T�N of Algorithm 3 with inputs
(Z1, Y1), . . . , (Zn, Yn), C, πC =  U(ζ0 � rω0), M � N and T � N
satisfies with probability at least 1 −  3δ −  e that

lim sup max
¯
Q(T) −  (μ�)2¯ 

.
ω0     � ζ .

T→∞  j�[d]

Finally in this section, we study the implications of Theo-
rem 6 for the recovery of the signal coordinates, that is the
nonzero coordinates of ν� � Rp , in the semi-supervised learn-
ing setting. Recalling the definition of w in the second paragraph
of this subsection, we write S0 : =  {j : wj =  0} =  {j : νj =  0}
and let s0 : =  |S0|. We write ψ (M,T) for the base procedure that
takes (zi, yi)i�[n] � Rd×([K]�{0}) as input and returns (Qj,j)j=1,
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where Q is the output of Algorithm 3 when run with these inputs
together with C, πC , M, and T.

Corollary 7. Fix ε � (8e−n/2, 1], r ≥  1, and suppose that kμ�k ≤
r, M ≥  50 log(4/ε)+50d log p and γ < 1/2. Let νmax : =  kν�k∞

and let νmin denote the minimum absolute value of a nonzero
component of ν . There exist C1, C2 > 0, depending only on r,
such that if n ≥  C1(d log p)6{d log p +  log(1/ε)}, and

C2 min
·½

d log(p � n) +  log(1/ε)
¾1/4

,

s
d log(p �

 
n)

 
+

 
log(1/ε)

¸

(νmin)2

4d

then the sequence of outputs (S(T))T≥1 of Algorithm 1 with
inputs K =  2, p, s0 ≤  d ≤  min(p, n −  K), `  ≥  s0, (Xi, Yi)i�[n],
A, B and base procedure ψ (M,T) satisfies lim inf P(S �
S(T)) ≥  1 −  ε −  pe−A(νmin)4 /(50p2(ν� 

ax)4).

Corollary 7 reveals in particular that, treating νmax and νmin
as constants and under the stated sample size conditions, we
again recover all of the signal coordinates in the top s0 output
entries, provided that A is large by comparison with p2. Thus, in
this sense, we can achieve a similar guarantee to that provided
by Corollary 4, though the number of groups of projections
required for a high probability guarantee in Corollary 7 may be
significantly larger in settings where the ratio νmax/νmin is large.

4. Numerical Studies

Throughout this section, unless otherwise stated, data
(Xi, Yi, Y�)i�[n] are sampled from an equal-probability
normal mixture as follows: P(Y =  k) =  1/K for k � [K],
P(Yi =  Y�) =  1 − P(Yi =  0) =  γ  and Xi | Y� � Np(μY�, 6w).
The cluster means (μk)k�[K] are chosen to be s0-sparse and
we define the signal-to-noise ratio of the problem to be

SNR : =
mink,k0�[K],k=k0 kμk−μk0 k

. In our numerical studies,
w

we slightly modify Algorithm 3 so that instead of randomly
initializing the cluster means and the covariance matrix, we
use the output of hierarchical clustering to initialize the EM
algorithm as implemented in the mclust R package (Fraley
and Raftery 1998). This allow us to run Algorithm 3 with M
=  1.

4.1. Comparison with Existing Methods

Our goal here is to compare the empirical performance of the
Sharp-SSL algorithm in high-dimensional clustering tasks
with several existing approaches. We apply the Sharp-SSL
algorithm using the EM algorithm of Algorithm 3 as a base
procedure, with input parameters A =  150, B =  75, d =  `  =  s0

(choice of tuning parameters is discussed in Section S4.1), and
our final estimated cluster labels are then obtained as described
there.

3In some of our simulations, 6 w  was generated randomly for convenience.
In such settings, we replaced tr(6w )/p in the denominator of the SNR
definition with E{tr(6w )}/p.

We compare theSharp-SSL algorithm with five alternative
high-dimensional clustering methods: spectral clustering (e.g.,
von Luxburg 2007), the `1-penalized approach of Witten and
Tibshirani (2010) and the RPEClus algorithm of Anderlucci,
Fortunato, and Montanari (2022) as well as a pair of methods
that, like Sharp-SSL, apply dimension reduction prior to a
low-dimensional clustering algorithm.

In more detail, the spectral clustering approach first con-
structs a J-nearest neighbor graph adjacency matrix A =
(Ai,i0)i,i0�[n] � {0, 1}n×n , where Ai,i0     : =  1 if either Xi is one of the
J =  10 nearest neighbors of Xi0 in Euclidean distance or vice
versa, and Ai,i0 : =  0 otherwise. It then computes an n ×  K matrix
of eigenvectors associated with the K smallest nonzero
eigenvalues of the Laplacian matrix L : =  D−A, where D � Rn × n

is a diagonal matrix with diagonal entries Di,i : = i0�[n] Ai,i0 .
The final step is to apply the K-means clustering algorithm
(Lloyd 1982), as implemented in the kmeans base R function
with 100 random initializations, to the rows of L with the oracle
choice of K.

The Witten and Tibshirani (2010) method, which is imple-
mented in the sparcl R package, determines the estimated
cluster memberships by maximizing a coordinatewise-weighted
between-cluster sum of squares criterion, subject to an `1 con-
straint on the weights. A permutation approach is used to select
the `1 tuning parameter.

In the RPEClus algorithm of Anderlucci, Fortunato, and
Montanari (2022), we generate B random orthogonal pro-
jections and incorporate the d-dimensional projected data as
covariates for a linear regression with the orthogonal comple-
ment of the projected data as the response. We then use the
Bayesian Information Criteria (BIC) from both an application of
the EM algorithm to the projected data and the aforementioned
regression to identify good projections, and aggregate using
the consensus clustering technique of Dimitriadou, Weinges-
sel, and Hornik (2002) over the best B� projections chosen
according to the sum of the BIC scores. Following the rec-
ommendation of Anderlucci, Fortunato, and Montanari (2022),
we took B =  1000 and B�     =  100 as well as d =  s0. It
turned out that this approach had a misclustering rate almost
identical to that of a random guess, primarily because it did
not leverage the sparsity of the signal. We therefore modi-
fied this method by generating random axis-aligned projec-
tions instead of orthogonal ones, and report this version in our
comparison.

The first of the two-stage approaches applies principal com-
ponent analysis (PCA) to project the data into the oracle choice
of K −1 dimensions (the dimension of the space spanned by the
K cluster means); the second uses sparse principal component
analysis (SPCA), as implemented in the SPCAvRP algorithm
(Gataric, Wang, and Samworth 2020) with the default choices of
A =  600 groups of B =  200 random projections in each group,
and the oracle choices to project into d =  s0 dimensions and
return K −  1 eigenvectors having sparsity `  =  s0. Thereaf ter,
both algorithms apply K-means to the projected data as above.
We also explored the option of replacing the K-means steps in
these latter algorithms with the EM algorithm, but observed very
little difference, so do not report these results here.

Given true labels y1, . . . , yn     � [K] and estimated labels
y1, . . . , yn � [K] from a clustering algorithm, we measure the
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Figure 1. Average misclustering rate over 100 repetitions using Sharp-SSL followed by the EM algorithm, as well as using the other methods from Section 4.1. Data are
generated from the normal mixture distribution described at the beginning of Section 4 with K =  3 and p =  200 (left) as well as p =  600 (right). The three cluster means are
given by μ1  =  a(1, 1, 0, 0p−3), μ2  =  a(−1, 0, 1, 0p−3) and μ3  =  a(0, −1, −1, 0p−3), where the scale a is chosen such that their pairwise distances are all equal to
SNR. For isotropic settings (left), 6 w  =  Ip; for anisotropic settings (right), 6 w  =  V 3 V > ,  where 3  � R p × p  is diagonal with independent Unif[0, 2] diagonal entries and V
is independent of 3 ,  and sampled from the Haar measure on Op×p . The Bayes risk is shown as the gray dashed line. In the top panels, n =  250 and the SNR varies; in the
bottom panels, SNR =  3 and n varies. The shaded regions represent interpolated 95% confidence intervals at each of the points.

performance of the algorithm via its misclustering rate, defined
as4

n

L({y1, . . . , yn}, {y1, . . . , yn}) : =  min 1{π(yi)=yi} ,
i=1

where SK is the group of all permutations of [K]. In particular,
Figure 1 presents the average misclustering rates over 100 Monte
Carlo repetitions of the different high-dimensional clustering
algorithms described above. Across two different dimensions
p � {200, 600}, isotropic and anisotropic settings, and for
different values of n � {50, 100, 150, 200, 250} and SNR �
{2, 2.5, 3, 3.5, 4}, we see a consistent picture of the Sharp-SSL
algorithm combined with EM producing the lowest miscluster-
ing rates, of ten by a large margin. Indeed, for all but the smallest
sample sizes or values of SNR, the Sharp-SSL+EM algorithm
nearly attains the Bayes risk in all of the problems considered
here. Additional comparisons in misspecfied settings between
the Sharp-SSL+EM method and alternative approaches are
given in Section S4.2.

4Here, the minimum over permutations is taken because it is only the cluster
groupings, and not the labels themselves, that are important.

4.2. Effect of Observed Fraction on Misclustering Rate

One of the key attractions of our procedure is that it offers a
unified framework to perform classification or clustering with
an arbitrary fraction of labeled observations. In this subsection,
we explore the performance of the algorithm as we vary the
proportion of observed labels.

Recall that we have two different options for the way in which
we implement the Sharp-SSL algorithm to estimate the set
of signal coordinates: we can either use only the labeled data, as
in the supervised learning approach of Algorithm 2, or we can
try to leverage in addition the unlabeled data via the semi-
supervised EM approach of Algorithm 3. In Figure 2 we com-
pare the performance of these two methods with the baseline
EM approach that ignores all labels in both high- and low-
dimensional versions of the normal mixture distribution data
generation mechanism described at the beginning of Section 4
as the proportion γ of observed labels varies. More precisely, for
the semi-supervised and unsupervised algorithms, we adopt the
same implementation of Sharp-SSL as described at the begin-
ning of Section 4.1. The supervised algorithm is very similar, but
applies Algorithm 2 in place of Algorithm 3 to select coordinates,
and obtains final predicted labels by applying LDA again on the
projected labeled data. In cases where the proportion of labeled
data was so small that the convex hull of the projected labeled
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Figure 2. Effect of label fraction on performance of supervised, semi-supervised and unsupervised Sharp-SSL learning methods. Data are generated from the normal
mixture distribution described at the beginning of Section 4 with K =  2 and 6 w  =  Ip , μ1  =  −μ 2  =  a(1s , 0p−s)> � Rp , where a is chosen such that kμ1 −  μ2 k =  SNR.
Bottom: average Frobenius loss of estimating the (μ , μ  ) � R p × 2  over 100 repetitions via the semi-supervised approach (Algorithm 3), supervised approach (Algorithm 2)
and unsupervised approach (Algorithm 3 without using the labels). Top: average misclustering rate over 100 repetitions from applying the above three methods as base
algorithms in Algorithm 1. The shaded regions represent interpolated 95% confidence intervals at each of the points.

data was less than full-dimensional for every class, we forced
Algorithm 2 to return a zero matrix (this only happened when
γ  was very small).

The top panels of Figure 2 present the results in high-
dimensional settings with p � {200, 600}. Since the unsu-
pervised approach has no access to the labels, it has constant
misclustering rate. The performance of the semi-supervised
approach is always at least as good as that of the unsupervised
algorithm, and improves as γ  increases. In other words, it effec-
tively leverages the additional information provided by the class
labels. When γ  is very small, the supervised algorithm—which
ignores the unlabeled data—is inaccurate, as it has very little data
to work with. On the other hand, its performance also improves
as γ  increases, and once around 5% of our data are labeled, it
outperforms the unsupervised algorithm. Further, it essentially
matches the semi-supervised approach when about a third of the
data are labeled. We truncate the plot at γ  =  1/2 to ensure that
we have enough test data on which to compute the misclustering
rate.

In the bottom panels of Figure 2, we explore the perfor-
mance of the three algorithms above in two low-dimensional
settings with different values of SNR, in order to provide further
insight into the phenomena described in the previous paragraph.
Here, we take K =  2 and report the average Frobenius norm
loss L  (μ̂1 , μ̂2), (μ1 , μ2) : =  min k(μ̂1 , μ̂2) −  (μ1, μ2)kF,

k(μ̂ 2 , μ̂ 1) − (μ1, μ2)kF
ª 

of the estimated means, over 100 repe-
titions. If there are insuficient labeled data to run Algorithm 2,
then we output μ̂ 1     =  μ̂ 2     =  0p. We see that, already in
these low-dimensional problems, a similar picture emerges: if
the proportion of labeled data is small, then the unsupervised
algorithm outperforms the supervised one, but this situation
may be reversed when γ  is larger. The semi-supervised algo-
rithm is able to leverage both the unlabeled and labeled data
to obtain the best of both worlds. These empirical observations
agree with our theory from Section 3, in particular in the way
in which Theorem 6 bounds the accuracy of mean estimation
for the semi-supervised algorithm by a minimum of a term that
does not depend on γ  and one that decreases as γ  increases. It
appears that the switch in the minimum occurs around γ =  0.02
in these examples.

4.3. Empirical Data Analysis

We applySharp-SSL, as well as several competing methods, to
the gene expression dataset from Alon et al. (1999), which con-
tains observations on 62 patients. A preprocessed version of the
data can be downloaded from the R package “datamicroarray”
(Ramey 2016), with a total of 2000 features (genes) measured
on 40 patients with colon tumors and 22 without tumors. We
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Figure 3. Average misclustering rate (over 100 repetitions for randomized algo-
rithms) for the colon tumor data, usingSharp-SSL followed by the EM algorithm,
as well as the other methods described in Section 4.3. The right-hand data points
plot the average misclustering rate on the full dataset. The other points were
obtained by applying each method to a subset of genes formed from the top five
genes identified by Sharp-SSL together with randomly sampled genes. The
shaded regions represent interpolated 95% confidence intervals at each of the
points.

first exclude 9 genes to remove perfect collinearity and then
standardize each of the remaining p =  1991 columns of the
dataset to have unit variance.

We apply the Sharp-SSL algorithm using EM (Algo-
rithm 3) as the base procedure, with input parameters A =
150, B =  75, d =  `  =  5. In addition to our approach
(Sharp-SSL+EM), we also compare the performance of spec-
tral clustering (SC), the Witten and Tibshirani (2010) method
(WT2010, as well as four two-stage methods (PCA+Kmeans,
PCA+EM, SPCA+Kmeans, SPCA+EM), where we first reduce
dimension of the data to a 5-dimensional subspace using either
PCA or SPCA and then apply either the EM algorithm or K-
means clustering on the low-dimensional data. For SPCA, we
use the SPCAvRP algorithm (Gataric, Wang, and Samworth
2020) with inputs A =  600, B =  200 and d =  `  =  5. The true
labels are hidden to all algorithms and are only used to evaluate
the final misclustering rate.

Over 100 Monte Carlo repetitions of the randomized algo-
rithms, the Sharp-SSL+EM method had an average mis-
clustering rate of 28.8%, whereas all other competitors had a
misclustering rate above 40%, as can be seen from the right-
hand data points in Figure 3. To investigate this performance
further, we applied each method to a subset of the features.
These were constructed from the top `  =  5 genes identified
throughSharp-SSL, together with m =  0, 10, 50, 200, and 600
randomly chosen genes from the remaining 1986. The results are
presented as the other data points in Figure 3. We see that the
improved performance of theSharp-SSL+EMmethod relative
to the other methods persists, even when only a small number
of potentially non-discriminative covariates are present. When
m =  0, Sharp-SSL+EM has a slight disadvantage as other
algorithms benefit from the ensemble effect of combining two
different learning methods; nevertheless it remains competitive.
This reinforces the point that the primary contribution of the
Sharp-SSL algorithm is to identify signal coordinates that
are helpful for semi-supervised learning, and once this has
been accomplished, a variety of low-dimensional procedures are
available to the practitioner.

5. Discussion

The main contribution of this work is to propose the
Sharp-SSL method for high-dimensional semi-supervising
learning based on a careful aggregation of variables selected
by running a low-dimensional algorithm on axis-aligned ran-
dom projections of the data. An attraction of our framework is
the way in which it can be combined with different base
learning algorithms according to the proportion of labeled data
and the desired characteristics of the low-dimensional learning
algorithm. Our theory ensures that when our base procedure
estimates our variable importance scores suficiently well, the
Sharp-SSL algorithm is able to recover the signal coordinates
with high probability, provided we aggregate over suficiently
many random projections. Moreover, our numerical results on
both simulated and real data illustrate that our methodology
performs favorably in comparison with several state-of-the-art
methods. In future work, one could study modifications of the
Sharp-SSL algorithm presented in Algorithm 1 that might be
applicable to other high-dimensional problems, such as sparse
PCA or sparse graphical models. In a theoretical direction,
it would be of interest to understand the performance of the
Sharp-SSL algorithm in more general settings, for instance
to study its robustness to outliers or heavy-tailed distributions.

Supplementary Materials

The supplementary materials contain proofs and extensions of the theoret-
ical results and additional numerical simulation experiments.
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