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ABSTRACT

Prediction sets capture uncertainty by predicting sets of labels rather than individual
labels, enabling downstream decisions to conservatively account for all plausible
outcomes. Conformal inference algorithms construct prediction sets guaranteed to
contain the true label with high probability. These guarantees fail to hold in the face
of distribution shift, which is precisely when reliable uncertainty quantification can
be most useful. We propose a novel algorithm for constructing prediction sets with
PAC guarantees in the label shift setting, where the probabilities of labels can differ
between the source and target distributions. Our algorithm relies on constructing
confidence intervals for importance weights by propagating uncertainty through a
Gaussian elimination algorithm. We evaluate our approach on four datasets: the
CIFAR-10 and ChestX-Ray image datasets, the tabular CDC Heart Dataset, and the
AGNews text dataset. Our algorithm satisfies the PAC guarantee while producing
smaller prediction set sizes compared to several baselines.

1 INTRODUCTION

Uncertainty quantification can be a critical tool for building reliable systems from machine learning
components. For example, a medical decision support system can convey uncertainty to a doctor,
or a robot can act conservatively with respect to uncertainty. These approaches are particularly
important when the data distribution shifts as the predictive system is deployed, since they enable the
decision-maker to react to degraded performance.

Conformal prediction (Vovk et al.,[2005; |/Angelopoulos & Bates|,[2021) is a promising approach to
uncertainty quantification, aiming to outputs sets of labels instead of a single label. Under standard
assumptions (i.i.d. or exchangeable data), it guarantees that the prediction set contains the true
label with high probability. We consider probably approximately correct (PAC) (or calibration-set-
conditional) guarantees (Vovkl 2012} [Park et al., 2019), which ensure high probability coverage over
calibration datasets used to construct the prediction sets.

In this paper, we propose a novel prediction set algorithm that provides PAC guarantees under the
label shift setting, where the distribution of the labels may shift, but the distribution of covariates
conditioned on the labels remains fixed. For instance, during a pandemic, a disease may spread to a
much larger fraction of the population, but the manifestations of the disease may remain the same. As
another example, real-world data may have imbalanced classes, unlike the balanced classes typical of
curated training datasets. We consider the unsupervised domain adaptation setting (Ben-David et al.,
2006), where we are given labeled examples from a source domain, but only unlabeled examples
from the rarget domain, and care about performance in the target domain.

A standard way to adapt conformal inference to handle distribution shift is by using importance
weighting to “convert” data from the source distribution into data from the target distribution (Tibshi;
rani et al., 2019). In the label shift setting, one possible way to express the importance weights is
w* = C;,lq*, where Cp is the confusion matrix and ¢* is the distribution of predicted labels (Lipton
et al., [2018)); see details below. However, the estimation error for the unknown Cp and ¢* breaks the
PAC guarantee.
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Figure 1: An example of our approach on the ChestX-ray dataset. In the unshifted setting, standard
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PAC prediction sets guarantee high-probability coverage, but this guarantee fails under label shift.
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Instead, we construct confidence intervals around Cp and ¢*, and then devise a novel algorithm to
propagate these intervals through the Gaussian elimination algorithm used to compute w*. Finally,
we leverage an existing strategy for constructing PAC prediction sets when given confidence intervals

for the importance weights (Park et al.l [ 2021).

We empirically evaluate our approach on four datasets across three application domains: CIFAR-
10 (Krizhevsky et al., 2009) in the computer vision domain, the CDC Heart Dataset (Centers for
Disease Control and Prevention (CDC), [1984) and ChestX-ray (National Institutes of Health and
others|, 2022)) in the medical domain, and AGNews (Zhang et al.,2015) in the language domain.

Contributions. We propose a novel algorithm for constructing PAC prediction sets in the presence
of label shift, which computes provably valid intervals around the true importance weights. Our
algorithm is based on a technique for propagating confidence intervals through the updates of Gaussian
elimination, which to our knowledge is a novel approach to uncertainty propagation in a prediction
set construction setting. Finally, we empirically demonstrate that our approach satisfies the PAC
guarantee while constructing smaller prediction sets than several baselines.

Example. Figure [T]illustrates a use case of our technique on the ChestX-ray dataset. In medical
settings, prediction sets (denoted PS) provide a rigorous way to quantify uncertainty for making
downstream decisions. In particular, they can guarantee that the prediction set contains the true label
(in this case, a diagnosis) with high probability. However, label shift happens commonly in medical
settings, for instance, many illnesses have varying rates of incidence over time even when the patient
population remains the same. Unfortunately, label shift breaks the PAC coverage guarantee. Our
approach (denoted PSW) corrects for the label shift via importance weighting; it does so in a provably
correct way. The resulting prediction sets satisfy the PAC guarantee.

Related work. There has been recent interest in conformal inference under distribution shift, much
of it focusing on covariate shift (Tibshirani et al., 2019} [Lei & Candés, 2021}, [Qiu et al., [2022).
(Podkopaev & Ramdas|, [2021) develop methods for marginal coverage under label shift, whereas we
are interested in training-set conditional—or PAC—guarantees. Furthermore, they formally assume
that the true importance weights are known exactly, which is rarely the case. In the label shift setting,
the importance weights can be estimated (Lipton et al.| 2018)), but as we show in our experiments,
uncertainty in these estimates must be handled for the PAC guarantee to hold.

We leverage the method of (Park et al.|[2021) to handle estimation error in the importance weights.
That work studies covariate shift, and uses a heuristic to obtain intervals around the importance
weights. For the label shift setting, we can in fact obtain stronger guarantees: we modify Gaussian
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elimination to propagate uncertainty through the computation of the weights w* = C;,lq*. We give
a more comprehensive discussion of related work in Appendix [A]

2 PROBLEM FORMULATION

2.1 BACKGROUND ON LABEL SHIFT

Consider the goal of training a classifier g : X — ), where X C R is the covariate space, and
Y =[K]=1{1,..., K} is the set of labels. We consider the setting where we train on one distribution
P over X x Y)—called the source—with a probability density function (PDF) p : (z,y) — p(x,y),
and evaluate on a potentially different test distribution ()—called the rarget—with PDF g : (z,y) —
q(z,y). We focus on the unsupervised domain adaptation setting (Ben-David et al., 2007), where
we are given an i.i.d. sample .S,,, ~ P" of m labeled datapoints, and an i.i.d. sample of n unlabeled
datapoints T% ~ Q%. The label shift setting (Lipton et al., [2018) assumes that only the label
distribution (y may be change from Py, and the conditional covariate distributions remain the same:

Assumption 2.1. (Label shift) We have p(x | y) = ¢(x | y) forallz € X,y € V.

We denote p(y) = Py (Y = y) for all y € Y and analogously for ). (Lipton et al.|[2018)) consider
two additional mild assumptions:

Assumption 2.2. For all y € ) such that ¢(y) > 0, we have p(y) > 0.

Next, given the trained classifier g : X — Y let Cp € REXK denote its expected confusion
matrix—i.e., Cij = (Cp)ij = P(X_’y)wp(g(X) =1,Y = j)

Assumption 2.3. The confusion matrix Cp is invertible.

This last assumption requires that the per-class expected predictor outputs be linearly independent;
for instance, it is satisfied when g is reasonably accurate across all labels. In addition, one may test
whether this assumption holds (Lipton et al., 2018).

Denoting the importance weights w* = (q(y)/p(y))yey € R, and § := g(z), we will write
p(9ly) = Px,v)~pl9(X) = 9|Y = y], and define p(7, y). p; as well as the corresponding expres-

sions for ¢ analogously. Since ¢ depends only on x, we have ¢(¢ | y) = p(J | y). Thus, see e.g.,
Lipton et al.|(2018),

0= 3 a1 walw) = 3.0 | vay) = Zp@,w”;,

(
yey yey yey p(y
or in a matrix form, ¢* = Cpw*, where ¢* := (g;)5ecy € RE. As we assume Cp is invertible,

Our algorithm uses this equation to approximate w*, and then use its approximation to construct PAC
prediction sets that remain valid under label shift.

2.2 PAC PREDICTION SETS UNDER LABEL SHIFT

We are interested in constructing a prediction set C : X — 2, which outputs a set of labels
C(z) C Y for each given input = € X rather than a single label. The benefit of outputting a set of
labels is that we can obtain correctness guarantees such as:

Pxyy~plY €C(X)] > 1—¢, 2

where ¢ € (0, 1) is a user-provided confidence level. Then, downstream decisions can be made in a
way that accounts for all labels y € C'(x) rather than for a single label. Thus, prediction sets quantify
uncertainty. Intuitively, equationcan be achieved if we output C'(z) = Y for all € X, but this is
not informative. Instead, the typical goal is to output prediction sets that are as small as possible.

The typical strategy for constructing prediction sets is to leverage an fixed existing model. In particular,
we assume given a scoring function f : X x Y — R; most deep learning algorithms provide
such scores in the form of predicted probabilities, with the corresponding classifier being g(x) =
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arg max, oy, f(,y). The scores do not need to be reliable in any way; if they are unreliable, the
PAC prediction set algorithm will output larger sets. Then, we consider prediction sets parameterized
by a real-valued threshold 7 € R:

Cr(x)={y e V| fz,y) >}

In other words, we include all labels with score at least 7. First, we focus on correctness for P,
in which case we only need S,,, usually referred to as the calibration set. Then, a prediction set
algorithm constructs a threshold 7(S,,) € R and returns Cg,,,)-

Finally, we want 7 to satisfy (2); one caveat is that it may fail to do so due to randomness in .S,,,. Thus,
we allow an additional probability § € R of failure, resulting in the following desired guarantee:

Ps, ~pm [P(X7y)NP[Y S C%(S,,,L)(X)] >1- e’:‘] >1-0. 3)
Vovk! (2012); Park et al.|(2019) propose an algorithm 7 that satisfies , see Appendix

Finally, we are interested in constructing PAC prediction sets in the label shift setting, using both the
labeled calibration dataset S,,, ~ P™ from the source domain, and the unlabeled calibration dataset
TX ~ Qm from the target distribution. Our goal is to construct 7(S,,, 7 ) based on both S,,, and
T&, which satisfies the coverage guarantee over () instead of P:

Ps,npm 15 nQy [Px )Y € Crgs,m) (X)) > 1—€] 214, “)

Importantly, the inner probability is over the shifted distribution @ instead of P.

3 ALGORITHM

To construct prediction sets valid under label shift, we first notice that it is enough to find element-
wise confidence intervals for the importance weights w*. Suppose that we can construct W =
[Ticylwy, @] € R such that w* € W. Then, when adapted to our setting, the results of Park et al.
(202 1))—originally for the covariate shift problem—provide an algorithm that returns a threshold
7(Sm, V, W,b), where V'~ Uniform([0, 1])¥ is a vector of random variables, such that

Ps,.~pmveur [Px,y)~olY € Cos,viwy =1 —¢] >1-4. (5)

This is similar to equation ] but it accounts for the randomness used by our algorithm—via V—in
the outer probability. We give the details in Appendix [C|

The key challenge is to construct W = [, cy,[wy, W] such that w* € W with high probability. The
approach from |Park et al.| (2021) for the covariate shift problem relies on training a source-target
discriminator, which is not possible in our case since we do not have class labels from the target
domain. Furthermore, |Park et al.|(2021)’s approach is does not provide conditions under which one
can provide a valid confidence interval for the importance weights in their setting.

Our algorithm uses a novel approach, where we propagate intervals through the computation of
importance weights. The weights w* are determined by the system of linear equations C pw™* = g*.
Since Cp and ¢* are unknown, we start by constructing element-wise confidence intervals

Cp<Cp<Cp and ¢ <q <7, ©)

with probability at least 1 — § over our calibration datasets S,,, and 7.X. We then propagate these
confidence intervals through each step of Gaussian elimination, such that at the end of the algorithm,
we obtain confidence intervals for its output—i.e.,

w' <w* <w* with probability at least 1 — 4. @)
Finally, we can use with the algorithm from (Park et al., [2021) to construct PAC prediction sets

under label shift. We describe our approach below.

3.1 ELEMENTWISE CONFIDENCE INTERVALS FOR Cp AND ¢*

Recall that Cp = (c¢;j)ijey and ¢* = (qr)rey. Note that ¢;; = Plg(X) = i,Y = j] is the
mean of the Bernoulli random variable 1(g(X) = 4,Y = j) over the randomness in (X,Y) ~ P.
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Similarly, gy, is the mean of 1(g(X) = k) over the randomness in X ~ (x. Thus, we can use
the Clopper-Pearson (CP) intervals (Clopper & Pearson, [1934) for a Binomial success parameter
to construct intervals around ¢;; and gx. Given a confidence level § € (0,1) and the sample mean
Gij == (z.y)es,, 1(g(x) =i,y = j)—distributed as a scaled Binomial random variable—this is
an interval CP(¢;;,m,d) = [c;;, ;] such that

PSMNPW [Cij S CP(éij,m, 6)] >1-4.

Similarly, for g, we can construct CP intervals based on ¢, = = > _.x 1(g(z) = k). Together,
for confidence levels ¢;; and J, chosen later, we obtain for all ¢, j, k € [K],

Ps,mpm [cy S ey ST) 2 1=, Pryegy |6, <@ <@ 21-60 8

Then, the following result holds by a union bound: Given any 6;;, i € (0,00), for all 4, j, k € [K],

letting [c;;,¢;;] = CP(&ij,m,d;5) and [g,,q] = CP(Gk,n,dy), and letting & = 3_, . x 0ij +
>_re[x] Ok» We have
P, ~prrx~qy | N\ Gy <cii <@ )\ ¢, <o <q| 2106 ©)

ij€[K] ke[K]

3.2 GAUSSIAN ELIMINATION WITH INTERVALS

We also need to set up notation for Gaussian elimination, which requires us to briefly recall the
algorithm. To solve Cpw* = ¢*, Gaussian elimination (see e.g.,|Golub & Van Loan, 2013) proceeds
in two phases. Starting with ¢ = Cp and ¢° = ¢*, on iteration t > 1, Gaussian elimination uses
row k = t to eliminate the kth column of rows ¢ € {k + 1, ..., K'} (we introduce a separate variable
k for clarity). In particular, if c}“g x 7 0, we denote

Lot t ot
C:1.Cy Cc.q
+ ik“kj o t ek ifi I
t+1 ci"_ti lf’L>I€, t+1 quti I > ..
Cij = 7 chy g = chy Vi, j € [K].
et otherwise; q otherwise,

(¥

If ¢}, = 0, but there is an element j > k in the kth column such that ¢}, # 0, the kth and the jth

rows are swapped and the above steps are executed. If no such element exists, the algorithm proceeds

to the next step. At the end of the first phase, the matrix ¢ ~! has all elements below the diagonal

equal to zero—i.e., cfj( ! = 0if j < 4. In the second phase, the Gaussian elimination algorithm

solves for w; backwards from ¢ = K to ¢ = 1, introducing the following notation. For each ¢, if
K K—1,

K140, we denoteﬂwg‘ = (¢; — 5:)/ch ™!, where s; = Djmis1 Gy W

in equation (6, which amount to A << and q0 < q0 < 60. We now work on the event (2 that
these bounds hold, and prove that our algorithm works on this event; later, we combine this result
with Equation |§I to obtain a high-probability guarantee. Then, our goal is to compute ¢!, ¢, ¢, ¢
such that for all iterations ¢ € {0, 1, ..., K — 1}, we have elementwise confidence intervals specified
by ¢!, ¢, ¢* and ¢ for the outputs ¢!, ¢* of the Gaussian elimination algorithm:

In our setti we do not know ¢ and ¢"; instead, we assume given entrywise confidence intervals as

d<d < and ¢ <¢f <7 (10)

The base case ¢t = 0 holds by the assumption. Next, to propagate the uncertainty through the Gaussian
elimination updates for each iteration ¢t € [K — 1], our algorithm sets

0 ifi >k, j<k,
1), Tl .
G = - ifi,j >k, Vi, j € [K] (1D
Crk
ct otherwise

!The algorithm requires further discussion if cg ~1 = 0 (Golub & Van Loan, [2013); this does not commonly
happen in our motivating application so we will not consider this case. See Appendix@]for details.
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for the lower bound, and computes

0 ifi >k, j <k,
41 " kag};j oo i i
=9 - —= ifi,j >k, Vi, j € [K] (12)
Ckk
ot otherwise

for the upper bound. The first case handles the fact that Gaussian elimination is guaranteed to zero
out entries below the diagonal, and thus these entries have no uncertainty remaining. The second
rule constructs confidence intervals based on the previous intervals and the algebraic update formulas
used in Gaussian elimination for the entries for which ¢, j > k. For instance, the above confidence
intervals use that on the event €2, and by induction on ¢, if gﬁj > 0andcl;, > 0foralli,j € [K]and

t+1 _ ot t ot /ot
for all ¢, the Gaussian elimination update ¢;; " = ¢j; — ¢;,¢4; /ct, can be upper bounded as
t t t ot
CiChi CiiChi
t+1 _ ity —t =it=tj _ —t+1
G =Ci— —3 - ST — =0 (13)
Cit Cit

The assumptions that c > 0and ¢!, > 0foralli,j € [K] and for all ¢ may appear a little stringent,
but the former can be removed at the cost of slightly larger intervals propagated to the next step, see
Section [D] The latter condition is satisfied by any classifier that obtains sufficient accuracy on all
labels. We further discuss these conditions in Section[D] The third rule in equation|[TT]and equation|I2]
handles the remaining entries, which do not change; and thus the confidence intervals from the
previous step can be used. The rules for ¢ are similar, and have a similar justification:

—t —t t .t
v Gk . G4 ...
qt+1 _ gz 7@2k if i > k7 qt-i-l — q; — Ezkl if 7 > k, Vi € [K] (14)
1; = i
Q: otherwise; qt otherwise.

For these rules, our algorithm assumes Qz > 0 forall ¢ € [K] and all ¢, and raises an error if this fails.
As with the first condition above, this one can be straightforwardly relaxed; see Appendix

In the second phase, we compute w; starting from ¢ = K and iterating to ¢ = 1. On iteration 7, we
assume we have the confidence 1ntervals w? < w; < wj for j > 4. Then, we compute confidence
intervals for the sum s;, with a similar Justﬂ{catlon based on the Gaussian elimination updates:
n n
D iy and  mi= ) T, (s)
j=it1 j=i+1
and show that they satisfy s, < s; < 3; on the event (2. Finally, we compute confidence intervals for
w, assuming gg_l > 0: _ 35 _
w; = K1 an Wi = "1 (16)

(X3 =11

for which we can show that they satisfy © < w; < w; based on the Gaussian elimination updates.
Letting W = {w | w* < w < w*}, we have the followmg (see Appendlx.for a proof).

Lemma 3.1 (Elementwise Confidence Interval for Importance Weights). If (6) holds, and for all
zg,tG[K],7 >0, >0andg520thenw CPq ew.

We mention here that the idea of algorithmic uncertainty propagation may be of independent interest.
In future work, it may further be developed to other methods for solving linear systems (e.g., the LU
decomposition, |(Golub & Van Loan|(2013)), and other linear algebraic and numerical computations.

3.3 OVERALL ALGORITHM

Algorithm[I| summarizes our approach. As can be seen, the coverage levels for the individual Clopper-
Pearson intervals are chosen to satisfy the overall 1 — § coverage guarantee. In particular, the PAC
guarantee equation[dfollows from equation 5] equation[9} Lemma[3.1] and a union bound; we provide
a more detailed explanation in Appendix [F|

Theorem 3.2 (PAC Prediction Sets under Label Sh1ft) Forany givene, § € (0, 1), under Assumptions
and ifvi, j,t € [K], we have ¢f; > 0, c}; > 0, and q75 > 0, then Algorlthmlsatlsﬁes

]P)S,,LNPM,Tfer",erUm [P(X,Y)NQ[Y S C;f- (Sm,V,W,b) (X)] >1-— 5] >1-— 0.

As discussed in Appendlx@ we can remove the requirement that c - > 0and q > 0fori # j.

6
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Algorithm 1 PS-W: PAC prediction sets in the label shift setting.

: procedure LABELSHIFTPREDICTIONSET(S, T.X, f, €, )
¢,C,q,q < CPINTERVAL(Sy,, TX ,  — arg max, ¢y f(z,y)
W+ INTERVALGAUSSIANELIM(c, €, ¢, )
if W = @ then return @

1

> K(K+1) 5)
3

4

5: return IWPREDICTIONSET(S,,,, f, W,¢e,6/[K(K + 1) + 1])

6

7

8

9

P (K(K+1)+1)

: procedure CPINTERVAL(Sy,, T, g, 6)
fori,j € [K] do

Compute [c,, 5] = CP (m ™1 220, s, Lg(@) = ivy = j),m, 8/ (K(K +1)))

for k € [K] do
10: Compute [g, , | = CP (n_l erT'{( 1(g(z) = k),n,6/(K(K + 1)))
11: return ¢, c, q,q

12: procedure INTERVALGAUSSIANELIM(c’, 2°, ¢°,7°)
13: fort € [1,..., K — 1] do

14: fori,j € [K] do

15: Compute gfj,Eﬁj using & , and gz, 6’; using

16: if ¢;; < 0 for some i # j or ¢}, < 0 for some i or gf < 0 for some %, then return &
17: fori € [K,...,1] do

18: Compute s!, 5 using (15), and w;, ®W; using

19: return W = [[%_, [w,, @]

20: procedure IWPREDICTIONSET(Sy, f, W = [Ir_, [w,, @], €, §)
21: V'~ Uniform([0, 1])™

22: return 7(Sy,, V, W, maxe(x) W, €, 6) as in

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Predictive models. We analyze four datasets: the CDC Heart dataset, CIFAR-10, Chest X-ray,
and the AG News dataset; details are provided in Section [#.2] We use a two-layer MLP for the
CDC Heart data with an SGD optimizer having a learning rate of 0.03 and a momentum of 0.9,
using a batch size of 64 for 30 epochs. For CIFAR-10, we finetune a pretrained ResNet50 He et al.
(2016), with a learning rate of 0.01 for 56 epochs. For the ChestX-ray14 dataset, we use a pre-trained
CheXNet (Rajpurkar et al.,2017) with a DenseNet121 (Huang et al.,[2017) backbone with a learning
rate of 0.0003 for two epochs. For AGNews, we fine-tune a pre-trained Electra sequence classifier
for one epoch with an AdamW optimizer using a learning rate of 0.00001.

Hyperparameter choices. There are two user-specified hyperparameters that control the guarantees,
namely ¢ and ¢. In our experiments, we choose § = 5 x 10~ to ensure that, over 100 independent
datasets .S,,, there is a 95% probability that the error rate is not exceeded. Specifically, this ensures
that P x y)~p[Y € Ci(s,,)(X)] > 1 — ¢ holds for all 100 trials, with probability approximately

1—0.95/100 ~ 5 % 10~%. We select ¢ for each dataset in a way that the resulting average prediction
set size is greater than one. This ensures that the coverage guarantee is non-trivial, as a single-valued
classifier should not achieve the desired coverage rate (as J is small).

Dataset construction. We follow the label shift simulation strategies from previous work (Lipton
et al.| 2018)). First, we split the full dataset into training data, and “base” source and target datasets.
We use the training dataset to fit a score function. Given label distributions Py and )y, we generate
the source dataset .S,,, target dataset 7T, f , and a labeled, size o target test dataset (sampled from Q)
by sampling with replacement from the corresponding base datasets. We consider two choices of
Py and Qy: (i) a tweak-one shift, where change the probability of one label, and keep the relative
proportions of the other labels equally likely, and (ii) a general shift, where we shift each probability
as described later.

Baselines. We compare our approach (PS-W) with several baselines (see Appendix [G)):
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* PS: PAC prediction sets that do not account for label shift (Vovk}2012; |[Park et al.,|2019). This
does not come with PAC guarantees under label shift.

WCP: Weighted conformal prediction under label shift, which targets marginal coverage (Pod{
kopaev & Ramdas| [2021). This does not come with PAC guarantees under label shift either.
PS-R: PAC prediction sets that account for label shift but ignore uncertainty in the importance
weights; again without guarantees.

PS-C: This addresses label shift via a conservative upper bound on the empirical loss (see
Appendix |G| for details). This is the only baseline with a PAC guarantee under label shift.

We compare to other baselines in Appendix [[.3] and to an oracle with the true weights in Appendix
Results for other hyperparameters are in Appendix [I}

Metrics. We measure performance via the prediction set error, i.e., the fraction of (z,y) ~ @ such
that y ¢ C-(x); and the average prediction set size, i.e., the mean of |C(x)|, evaluated on the
held-out test set. We report the results over 100 independent repetitions, randomizing both dataset
generation and our algorithm.

4.2 RESULTS & DISCUSSION

CDC Heart. We use the CDC Heart dataset, a binary classification problem (Centers for Disease
Control and Prevention (CDC), |1984)). The goal is to predict the risk of heart attack given features
such as level of exercise or weight. We use ¢ = 0.1 and § = 5 x 10~*. We consider both large and
small shifts. For the large shift, the label distributions—denoted (pos%, neg%)—are (94%, 6%) for

2.00
1.6 :;: 012¢ T
5 010 é_ﬁ. % = La | 5., = 1 5 1.75
s S = + 1.50
@ 0.08 121 =g 2= == o= o &2 .
g 1.0 @008 o 0 125] = = e
ol
g 0.06 ; Nosg 5006 T 5 1.00
Toos == 0.6 g 0.04 0.75
K 0.4 8 0.50
0.02
i £=0.10 02 sooz £=0.10 0.25
0.00 0.0 0. 0.00
PS PS-C PS-R PS-W WCP PS PS-C PS-R PS-W WCP PS PS-C PS-R PS-W WCP PS PS-C PS-R PS-W WCP

(a) Prediction set error and size under small shifts on  (b) Prediction set error and size under large shifts on
the CDC Heart dataset. Parameters are ¢ = 0.1, 6 = the CDC Heart dataset, Parameters are ¢ = 0.1, § =
5x 1074, m = 42000, n = 42000, and 0 = 9750. 5 x 10™*, m = 42000, n = 42000, and o = 9750.

Figure 2: Prediction set results on the CDC Heart dataset.

source, and (63.6%), 36.4%) for target; results are in Figure We also consider a small shift with
label distributions (94%, 6%) for source, and (91.3%, 8.7%) for target; results are in Figure 2a] As
can be seen, our PS-W algorithm satisfies the PAC guarantee while achieving smaller prediction set
size than PS-C, the only baseline to satisfy the PAC guarantee. The PS and PS-R algorithms violate
the PAC guarantee.

CIFAR-10. Next, we consider CIFAR-10 (Krizhevsky et al.,[2009)), which has 10 labels. We use
e=0.1and 6 = 5 x 10~*. We consider a large and a small tweak-one shift. For the large shift, the
label probability is 10% for all labels in the source, 40.0% for the tweaked label, and 6.7% for other
labels in the target; results are in Figure For small shifts, we use 10% for all labels for the source,
11.76% for the tweaked label, and 9.8% for other labels for the target; results are in Figure [3;5} Under
large shifts, our PS-W algorithm satisfies the PAC guarantee while outperforming PS-C by a large
margin. When the shift is very small, PS-W still satisfies the PAC guarantee, but generates more
conservative prediction sets similar in size to those of PS-C (e.g., Figure [3b) given the limited data.
Results for a non-uniform source distribution and general shifts are shown in Appendix [L.8]

AGNews. AG News is a subset of AG’s corpus of news articles (Zhang et al., 2015). It is a text
classification dataset with four labels: World, Sports, Business, and Sci/Tech. It contains 31,900
unique examples for each class. We use € = 0.05 and § = 5 x 10~%. We use tweak-one label
shifts. We consider a large shift and a medium-sized calibration dataset, with label distributions
equalling (30.8%, 30.8%, 7.7%, 30.8%) for the source, and (12.5%, 12.5%, 62.5%, 12.5%) for the
target; results are in Figure As before, our PS-W approach satisfies the PAC guarantee while
achieving smaller set sizes than PS-C.

ChestX-ray. ChestX-rayl4 (Wang et al.,|2017) is a medical imaging dataset containing about 112K
frontal-view X-ray images of 30K unique patients with fourteen disease labels. This dataset contains
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(a) Prediction set error and size with larger shift on the  (b) Prediction set error and size with small shift on the
CIFAR-10. Parameters are ¢ = 0.1, 6 = 5 x 107, CIFAR-10. Parameters are ¢ = 0.1, 6 = 5 x 1074,
m = 27000, n = 19997, and ¢t = 19997. m = 27000, n = 16500, and ¢ = 16500.

Figure 3: Prediction set results on the CIFAR-10 dataset.
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(a) Prediction set error and size on the AGNews (b) Prediction set error and size on the ChestX-ray
Dataset. Parameters are ¢ = 0.05, § = 5 x 107%, dataset. Parameters are ¢ = 0.3, § = 5 x 1072,
m = 26000, n = 12800, and ¢t = 12800. m = 67200, n = 35200, and o = 3520.

Figure 4: Prediction set results on the ChestX-ray dataset.

instances with multiple labels, which we omit. We also omit classes with few positively labeled
datapoints, leaving six classes: Atelectasis, Effusion, Infiltration, Mass, Nodule, Pneumothorax.
We consider a general label shift. We consider a large tweak-one shift, with label distributions
of (19.1%, ...,19.1%,4.5%, 19.1%) for the source, and (11.1%, . ..,11.1%, 44.5%, 11.1%) for the
target. Results for ¢ = 0.3 are in Figure Bbl As before, our PS-W approach satisfies the PAC
guarantee while outperforming PS-C. The PS-R and WCP methods violate the constraint.

Discussion. In all our experiments, our approach satisfies the PAC guarantee; furthermore, it produces
smaller prediction set sizes than PS-C—the only baseline to consistently satisfy the PAC guarantee—
except when the label shift is small and the calibration dataset is limited. In contrast, the PS baseline
does not account for label shift, and the PS-R baseline does not account for uncertainty in the
importance weights, so they do not satisfy the PAC guarantee. The WCP baseline is designed to
target a different guarantee, and it does not satisfy the PAC guarantee. Thus, these results demonstrate
the efficacy of our approach.

Limitations. Our approach is focused on problem settings where the label shift is not too small
and sufficient calibration data is available; and may produce conservative prediction sets otherwise.
This reflects the intrinsic difficulty of the problem in these settings. Importantly, our PAC coverage
guarantees still hold.

5 CONCLUSION

We have proposed a PAC prediction set algorithm for the label shift setting, and illustrated its
effectiveness in experiments. Directions for future work include improving performance when the
calibration dataset or the label shift is small.

Reproducibility statement. Our code is available at https://github.com/averysi224/
pac—-ps—label-shift|for reproducing our experiments.
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A ADDITIONAL RELATED WORK

Conformal Prediction. Our work falls into the broad areas of distribution-free uncertainty quantifi-
cation, conformal prediction and tolerance regions (e.g., Guttman, [1970; [Vovk et al., 2005} Balasub-
ramanian et al.,[2014; Angelopoulos & Bates| 2021} |[Kaur et al., 2022} [Li et al.} 2022} |Dobriban &
Yul, 2023 etc), which aim to construct prediction sets with finite sample coverage guarantees. The
prediction sets are often realized by a setting a threshold on the values of a traditional single-label
predictor (i.e. conformity/non-conformity score function) and predict all labels with scores above this
threshold. Our setting is related to inductive conformal prediction (Papadopoulos et al.| |2002; |Vovkl
2012} [Lei et al.| 2015), where the dataset is split into a training set for fitting the scoring function and
a calibration set for constructing the prediction sets.

PAC Prediction Sets. A standard coverage guarantee for conformal prediction methods is marginal
coverage over the training, calibration and test data. For inductive conformal prediction, training-data
conditional correctness (Vovk, [2012} Park et al.,[2019) aims to achieve an (g, §)-coverage guarantee,
where coverage over test points exceeds the desired error rate level € with probability at most §. Sets
satisfying this guarantee have been termed PAC prediction sets (Park et al.,|2019). This guarantee is
also equivalent to the classical coverage properties of tolerance regions (Wilks} |1941; [Fraser, |1956).
PAC coverage may be desired when a slight excess of the desired error rate cab cause a significant
safety concern.

Covariate shift Label shift
Importance weights, as a function of z, y q(z)/p(x) q(y)/p(y)
Shared conditional distribution, for all =, y|p(y | z) = q(y | ) |p(z | y) = q(z | y)

Table 1: Comparison of covariate shift and label shift.

Label shift. Label shift (Zadrozny}, [2004; Huang et al.,[2006; Sugiyama et al., 2007; (Gretton et al.,
2009) supposes that the conditional covariate distribution is fixed but the label distribution may
change from a source to a target distribution; see Table Il In more detail, let p and g denote the
probability density functions of the source and target domains with respect to a common dominating
measure, respectively. Label shift assumes that for all labels y, ¢(y) may differ from p(y), but for all
features x and labels y, we have p(x | y) = g(« | y). Label shift can arise when the representations of
the classes changes, for instance in scenarios like medical diagnosis and object recognition (Storkey
et al.,[2009; [Saerens et al., 2002} |[Lipton et al., 2018)).

Early solutions required the estimation of ¢ and p, which may scale poorly with the dimension (Chan
& Ng| 2005} |Storkey et al., 2009; |[Zhang et al., 2013)). More recently, two approaches achieved
scalability by assuming an approximate relationship between ground truth labels y and the outputs 3
of a classifier (Lipton et al., 2018} |Azizzadenesheli et al.,2019; [Saerens et al.,2002): Black Box Shift
Estimation (BBSE) (Lipton et al.| 2018) and RLLS (Azizzadenesheli et al.,|2019)) provided consistency
results and finite-sample guarantees assuming the confusion matrix is invertible. Subsequent work
developed a unified framework that decomposes the error in computing importance weights into
miscalibration error and estimation error, with BBSE as a special case (Garg et al., [2020); this
approach was extended to open set label shift domain adaptation (Garg et al., 2022). We also mention
that label shift is a special case of a more general class of distribution shifts that allow the source and
target distributions to be related by sharing sequential conditional distributions (Qiu et al., 2023)).

Conformal methods and distribution shift. Conformal prediction has been adapted to distribu-
tion shifts such as covariate shift (Tibshirani et al., [2019; |Le1 & Candes, [2021; |Q1u et al., [2022).
(Podkopaev & Ramdas) [2021)) considers label shift when the true importance weights are exactly
known. Importance weights are typically estimated with uncertainty. We address this by developing
an algorithm to find confidence intervals for the importance weights. More broadly, prediction sets
have been studied in the meta-learning setting (Dunn et al., 2022; |[Park et al., [2022]), as well as the
setting of robustness to all distribution shifts with bounded f-divergence (Cauchois et al., 2020).

Class-conditional prediction sets. Although not designed specifically for solving the label shift
problem, methods for class-conditional coverage (Sadinle et al.,|2019) and adaptive prediction sets
(APS) (Romano et al., 2020) can improve robustness to label shifts. However, class-conditional
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coverage is a stronger guarantee that leads to prediction sets larger than for our algorithm, while APS
does not satisfy a PAC guarantee; we compare empirically to these approaches in Appendix

B BACKGROUND ON PAC PREDICTION SETS

Finding the maximum 7 that satisfies (3) is equivalent to choosing the largest 7 such that the empirical

error B
Ls,(C) = Y 1y ¢ C (@)
(z,9)ESm
on the calibration set .S, is bounded [Vovk et al.| (2005)); Park et al|(2019). Let F'(k;m,e) =
¥ o (M)€i(1 — €)™ be the cumulative distribution function (CDF) of the binomial distribution
Binom(m, €) with m trials and success probability € evaluated at k. Then, |Park et al.|(2019) constructs
C; via

7= max 7 subj. to  Lg, (C,) < k(m,e,0), (7
where k(m,e,0) = max k subj. to F(k;m,e) <.
kENU{0}

Their approach is equivalent to the method from [Vovk| (2012), but formulated in the language of
learning theory. By viewing the prediction set as a binary classifier, the PAC guarantee via this
construction can be connected to the Binomial distribution. Indeed, for fixed C, Lg, (C) has
distribution Bionm(m, Lp(C')), since 1(y ¢ C(z)) has a Bernoulli(Lp(C)) distribution when
(z,y) ~ P. Thus, k(m, ¢, ¢) defines a bound such that if Lp(C) < ¢, then Lg, (C) < k(m,e,0)
with probability at least 1 — 4.

C BACKGROUND ON PREDICTION SETS UNDER DISTRIBUTION SHIFT

Here we demonstrate how to obtain prediction sets given intervals w* < w* < w* around the
true importance weights. This approach is based closely on the strategy in (Park et al.,|[2021) for
constructing prediction sets under covariate shift, but adapts it to the label shift setting (indeed, our
setting is simpler since there are finitely many importance weights). The key challenge is computing
the importance weight intervals, which we describe in detail below.

Given the true importance weights w*, one strategy would be to use rejection sampling (Von Neumann),
1951}, [Shapiro} 2003} Rubinstein & Kroesel [2016) to subsample S,,, to obtain a dataset that effectively
consists of N < m i.i.d. samples from @ (here, N is a random variable, but this turns out not to be
an issue). Essentially, for each (z;,v;) € Sy, we sample a random variable V; ~ Uniform([0, 1]),
and then accept samples where V; < wy, /b, where b is an upper bound on wy:

w
TN(Sm, V,w*,b) = {(Ivv%) €Sm | Vi< by}
In our setting, we can take b = max,cyw;. Then, we return 7(Tx(Sm,V,w*,b)). Since

Tn(Sm, V,w*,b) consists of an i.i.d. sample from (), we obtain the desired PAC guarantee @)

In practice, we do not know the true importance weights w*. Instead, suppose we can obtain intervals
Wy = [wy,wy] such that wy € W, with high probability. We let W = [], ., W, and assume
w* € W with probability at least 1 — §. The algorithm proposed in (Park et al., [2021) adjusts
the above algorithm to conservatively account for this uncertainty—i.e., it chooses 7 so the PAC

guarantee (4) holds for any importance weights w € W:
7(Spm, V,W,b) = mivr[l/ T(Tn (S, V,w,b)). (18)
we

We minimize over T since choosing smaller 7 leads to larger prediction sets, which is more conserva-
tive. (Park et al.,[2021)) show how to compute (I8) efficiently. We have the following guarantee:

Theorem C.1 (Theorem 4 in (Park et al.,[2021)). Assume that w* € W. Letting U = Uniform(|0, 1)),
Ps,,~pmveum [Px,yinoly € Cos,vwy) =1 —¢] >1—4.

In other words, the PAC guarantee (IZ_II) holds, with the modification that the outer probability includes
the randomness over the samples V' ~ U™ used by our algorithm.
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D ENSURING THE CONFIDENCE BOUNDS AT EACH STEP

The diagonal elements cyj, of the confusion matrix of an accurate classifier, are typically much larger
than the other elements. Indeed, for an accurate classifier, the probabilities of correct predictions
ckr = P(g(x) = k,y = k) are higher than those of incorrect predictions c;, := P(g(z) = i,y =
k),i # k. On the other hand, the Clopper-Pearson interval is expected to be short (for instance, the
related Wald interval has length or order 1/+/m, where m is the sample size). Thus, we expect that

e < k=1,... K,i#k. (19)
Without loss of generality, we consider equation [TT] as an example. In the Gaussian elimination

process, recall that the update at step ¢ is

—t
t+1 _ ot Cik t oo -
G =Cij— %ij ifi,j > k. (20)

Combining with equation the factor by which the k-th row is multiplied is small, i.e., ¢, /cf, < 1.
Thus the resulting ¢-th diagonal elements

t

C:
t+1 _  t 1k =t
Cii T G — ot Cki
Crk

change little after each elimination step, and are expected to remain positive. Next we discuss
intervals for off-diagonal elements.

Balanced classifier. For a balanced classifier, when c;;, and c;y, are close for all 7, j such that i # £,
J # k, since the factor ¢}, /c} . is small, the lower bound in equation is expected to be positive.

Imbalanced classifier. For the more general case of a possibly imbalanced classifier, c;; and c; may
not be close. This could cause non-positive bounds at certain steps, so the confidence interval may
not be valid at the next steps; e.g., equation[I3|may fail. However, note that since

Ciy € [Ch Tirls Cij S [QZjvéz-j]v

we have
cicry < max{|ci |, [ |} - max{|cy,l, [e);1}

and hence . Do P
CikClj < max{|cj, |, [} - max{|§kj|a |ij‘}

t — t
Ckk Crk

In fact, one can derive the even tighter bound

=t =t t =t t .t =t it =t =t t =t t it =t it
CikChki CikCkj SikCkj CikCkj CikChkj CikChkj CikCkj CikChj
max S S S RS fer S I :
S Sk Ske o SRk Ckk Ckk  Ckk Ckk
This can be checked by carefully going through all possible cases of positive and negative values of
the bounds. Similar changes can be made to computing the upper bounds.

It is possible for our final interval W to contain negative lower bounds due to loose element-wise
intervals or other factors. Since importance weights are non-negative, negative importance weight
bounds act the same way as zero lower bounds in rejection sampling, and preserve our guarantees.

Finally, the requirement of an accurate classifier is already imposed by methods such as BBSE to
ensure the invertibility of the confusion matrix. Therefore, our Gaussian elimination approach does
not impose significantly stronger assumptions.

E PROOF OF LEMMA

For the first phase, we prove by induction on ¢ that holds for all ¢. The base case ¢ = 0 holds by
assumption. For the induction step, we focus on ¢;;'; the remaining bounds Eﬁjl, g‘;jl, and g:™!
follow similarly. There are three sub-cases i, each corresponding to one of the update rules in (IT).

For the first update rule EZH = 0, equation |10| follows since the Gaussian elimination algorithm
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guarantees that ct+1 = 0. For the second and third update rules, equationfollows by direct algebra
and the induction hypothes1s For instance, for i, j > t, equatlon.holds and similarly ¢/ > ¢+
For the second phase, the fact that s < s < 5 and w* < w* < w* follows by a similar induction
argument. Since Gaussian elimination guarantees that w* = C;lq*, and we have shown that

w*eW = Hfil@i,ﬁi], the claim follows. [J

F PROOF SKETCH OF THEOREM [3.2]

First, Theorem 3.2 follows from equation 5, assuming the given confidence intervals W; = [w,, w;]
for each importance weight w; is valid—i.e., w; € W;. Equation 5 follows by Theorem 4 in Park
et al[(2021). Roughly speaking, if w; is known, then we can use a standard rejection sampling
procedure based on w; to convert Sy, into a set of i.i.d. samples from (). Then, the PAC guarantee
would follow by standard conformal prediction results, e.g., [Park et al.| (2020). When w is not
known, then intuitively, |[Park et al.| (2021) takes the worst case over all w; € W;. They use a
reparameterization trick to do so in a computationally efficient way. Finally, by Lemma[3.T] we have
w; € W; for all i € [n] with high probability, so Theorem 3.2 follows by a union bound.

G CONSERVATIVE BASELINE

We describe PS-C, the conservative baseline summarized in Algorithm [2] In particular, given an
upper bound b > w* on the importance weight, we use the upper bound

Exy)~pll(9(X),Y) - wy] <b-Ex y)op[l(9(X),Y)].

As a consequence, we can run the original prediction set algorithm from [Vovk| (2012); [Park et al.
(2019) with a more conservative choice of € that accounts for this upper bound.

Algorithm 2 PS-C: an algorithm using the CP bound in equation

1: procedure PS-C(S,,, TX, f,T,¢, 5w,5c)

2: ¢, 6 q,q < CPINTERVAL(Sm,Tn , T = argmax, oy f(,9), 0w)
3: W INTERVALGAUSSIANELIM(c, Z, ¢, )
4.
5

b+ maXge[K] Wk
return PS(S,,, f,T,¢/b,0¢)

Lemma G.1. Algorithm 2] satisfies the PAC guarantee under label shift equation[d]

Proof. Having constructed the importance weight intervals w*, we can use b = maxy¢[x) Wy to find
a conservative upper bound on the risk as follows:

Exyrmall(Y ¢ Co(X)] = / 4(z,y)L(y & Cy (x))ddy

= /p(af,y)w(y)ll(y ¢ Cr(x))dady < bE(x yyop[L(Y ¢ C-(X)]. 21)

Hence, using the PS prediction set algorithm with parameters (¢/b, §), the output is (¢, 6)-PAC. O

H ORACLE IMPORTANCE WEIGHT RESULTS

Here, we show comparisons to an oracle that is given the ground truth importance weights (which are
unknown and must be estimated in most practical applications). It uses rejection sampling according
to these weights rather than conservatively accounting for uncertainty in the weights. In contrast to
our baselines (which need to estimate w), this oracle represents a “gold (yet not achievable) standard”
to compare with. It enables us to quantify the increase in average prediction set size due to uncertainty
in our estimates of w, stemming from (i) finite sample error, accounted for by Clopper-Pearson
intervals, and (ii) label shift, accounted for by our interval Gaussian elimination algorithm.
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(a) Prediction set error and size on the CDC dataset.
Parameters are ¢ = 0.1, § = 5 x 1074, m = 42000,
n = 42000, and o = 9750.
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(b) Prediction set error and size on the CIFAR10. Pa-
rameters are ¢ = 0.1, § = 5 x 1074, m = 27000,
n = 19997, and t = 19997.

Figure 5: Prediction set results with comparison to the oracle importance weight (Ora).

First, for the CDC heart dataset, we consider the following label distributions: source (94%, 6%),
target: (63.6%,36.4%); see Figurefor the results. Second, for the CIFAR-10 dataset, we consider
the following label distributions: source (10%, 10%, 10%, 10%, 10%, 10%, 10%, 10%, 10%, 10%),
target: (6.7%, 6.7%, 6.7%, 40.0%,6.7%, 6.7%,6.7%,6.7%,6.7%, 6.7%); see Figurefor results.

I ADDITIONAL RESULTS

1.1 CDC HEART
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(a) Prediction set error and size under small shifts on
the CDC Heart dataset. Parameters are ¢ = 0.05, § =
5% 10™*, m = 42000, n = 42000, and 0 = 9750.
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(c) Prediction set error and size under small shifts on
the CDC Heart dataset. Parameters are € = 0.03, 6 =
5x 107%, m = 42000, n = 42000, and o0 = 9750.
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(b) Prediction set error and size under large shifts on
the CDC Heart dataset, Parameters are ¢ = 0.05, 6 =
5 x 107%, m = 42000, n = 42000, and 0 = 9750.
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(d) Prediction set error and size under large shifts on
the CDC Heart dataset, Parameters are ¢ = 0.03, 6 =
5 x 1074, m = 42000, n = 42000, and 0 = 9750.

Figure 6: More Prediction set results with different hyperparameters on the CDC Heart dataset.

17



Published as a conference paper at ICLR 2024

1.6 1.6 ==

005 ; j_' == == =+ == + L 005 = . -+ =+ +
Sl T B T & M e 1T Y
T 004 T T 1.2 @ 0.04 L = 1.2
= = TS
g 010 g T 010
2003 g 2 0.03 N
o ©0.8 s ‘% 0.8
Soo02 0.6 Soo2 0.6
el el
o001 0.4 Son 0.4
o U o

***** £=0.05 0.2 ----- £=0.05 0.2

0.00 0.0 o 0.0
PS PS-C PS-R PS-W PS PS-C PS-R PS-W PS PS-C PS-R PS-W PS PS-C PS-R PS-W
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Heart dataset. Parameters are ¢ = 0.05, 0 = 5 X 10™*  Heart dataset, Parameters are ¢ = 0.05, § = 5 X 1074,
, m = 42000, n = 42000, and o = 9750. m = 42000, n = 42000, and o = 9750.

Figure 7: More Prediction set results with different hyperparameters on the CDC Heart dataset.
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(a) Prediction set error and size with larger shift on the (b) Prediction set error and size with larger shift on the
CIFAR-10. Parameters are € = 0.05, 5 = 5 X 10_4, CIFAR-10. Parameters are € = 0.03, d = 5 x 10_4,
m = 27000, n = 19997, and ¢t = 19997. m = 27000, n = 19997, and t = 19997.

Figure 8: More Prediction set results with different hyperparameters on the CIFAR-10 dataset.
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(a) Prediction set error and size on the AGNews (b) Prediction set error and size on the AGNews
Dataset. Parameters are ¢ = 0.03, § = 5 x 107%, Dataset. Parameters are ¢ = 0.1, § = 5 x 1074,
m = 26000, n = 12800, and ¢ = 12800. m = 26000, n = 12800, and ¢ = 12800.

Figure 9: More Prediction set results with different hyperparameters on the AGNews dataset.

1.4 CHESTX-RAY
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(a) Prediction set error and size on the ChestX-ray (b) Prediction set error and size on the ChestX-ray
dataset. Parameters are ¢ = 0.3, § = 5 X 1074, dataset. Parameters are ¢ = 0.1, § = 5 X 1074,
m = 33600, n = 17600, and ¢ = 3520. m = 67200, n = 35200, and ¢ = 3520.

Figure 10: More Prediction set results with different hyperparameters on the ChestX-ray dataset.
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1.5 ADDITIONAL BASELINES

Class-conditional conformal predictors fit separate thresholds for each label and demonstrate robust-
ness to label shift. In Figure[IT] we show the class-conditional results for both conformal prediction
tuned for average coverage and our PAC prediction set, on the CDC and CIFAR-10 dataset. Here,
LWCP is a baseline from the label-conditional setting from |Sadinle et al.| (2019), which does not
satisfy a PAC guarantee. PS-LW adapts the standard PAC prediction set algorithm (Vovk, 2012} |Park
et al., |2020) to the label-conditional setting; our approach is PS-W. Most relevantly, while PS-LW
approximately satisfies the desired error guarantee, it is more conservative than our approach (PS-W)
and produces prediction sets that are larger on average. Intuitively, it satisfies a stronger guarantee
than necessary for our setting, leading it to be overly conservative.
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Figure 11: Prediction set error and size on the CDC dataset under small shifts. Parameters are ¢ = 0.1,
§ =5 x 107%, m = 42000, n = 42000, and 0 = 9750.

Empirically, we find that while APS improves coverage in the label shift setting, it does not satisfy
our desired PAC guarantee. In particular, we show results for the APS scoring function with vanilla
prediction sets in Figure as can be seen, it does not satisfy the desired coverage guarantee. Due to
its unusual structure, it is not clear how APS can be adapted to the PAC setting, which is our focus.
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Figure 12: Prediction set error and size on the CDC dataset. Parameters are ¢ = 0.1, § = 5 X 1074,
m = 42000, n = 42000, and o = 9750. Label distribution (94%, 6%) with small shift (91.3%, 8.7%)
in the target.

1.6 CIFAR-100

We show results on CIFAR-100 in Figure The scores are the logits of a pretrained ViT model.
The results show that both PS-C and PS-W attain the desired coverage guarantee, while the remaining
approaches do not do so. Furthermore, PS-W outperforms PS-C in terms of average prediction set
size.
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In this case, both PS-C and PS-W are quite conservative, due to two main reasons. First, the Clopper-
Pearson intervals can be conservative when ¢ is very small, and we need to divide § by K (K +1)+1,
since we need to take a union bound over K (K + 1) + 1 events in equation |8} Second, although
our Gaussian “interval” elimination algorithm does uncertainty propagation in time O(K?), the
resulting confidence intervals (w, W) may be conservative, thereby amplifying the first issue. With
more calibration data, our approach would be less conservative.
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Figure 13: Prediction set error and size on the CIFAR-100 dataset. Parameters are ¢ = 0.1,
§ =5 x 1074, m = 270k, n = 180k, and o = 5950. Label distribution is ([1.01%] x 99 + [0.3%])
for source, and ([0.84%)] x 99 + [16.8%]) for target.

1.7 LARGEe

We provide results on larger choices of ¢ in Figures|14| &
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Figure 14: Prediction set error and size on the CDC dataset. Parameters are ¢ = 0.3, § = 5 X
1074, m = 42000, n = 42000, and o = 9750. Label distribution is (94%, 6%) for source, and
(63.6%, 36.4%) for target.

1.8 NON-UNIFORM SOURCE DISTRIBUTIONS

We provide results with a non-uniform source distribution in Figure
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Figure 15: Prediction set error and size with large shifts on the CIFAR-10 dataset. Parameters are
£=0.2,6 =5 x 1074 m = 27000, n = 19997, and t = 19997.
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Figure 16: Prediction set error and size on the CIFAR-10 dataset. Parameters are ¢ =
01, § = 5 x 1074 m = 34k, n = 45k, and o = 45k. Label distribution is
(10.53%, 5.26%, 15.79%,5.26%, 5.26%, 10.53%, 15.79%, 10.53%, 5.26%, 15.79%) for source, and
(3.57%,7.14%, 10.71%, 35.71%, 3.57%, 7.14%, 10.71%, 3.57%, 7.14%, 10.71%) for target.
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