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Abstract

Predicting sets of outcomes—instead of unique outcomes—is a promising solution to uncertainty
quantification in statistical learning. Despite a rich literature on constructing prediction sets with statistical
guarantees, adapting to unknown covariate shift—a prevalent issue in practice—poses a serious unsolved
challenge. In this article, we show that prediction sets with finite-sample coverage guarantee are
uninformative and propose a novel flexible distribution-free method, PredSet-1Step, to efficiently construct
prediction sets with an asymptotic coverage guarantee under unknown covariate shift. We formally show
that our method is asymptotically probably approximately correct, having well-calibrated coverage error with
high confidence for large samples. We illustrate that it achieves nominal coverage in a number of
experiments and a data set concerning HIV risk prediction in a South African cohort study. Our theory
hinges on a new bound for the convergence rate of the coverage of Wald confidence intervals based on
general asymptotically linear estimators.

Keywords: covariate shift, machine learning, nonparametric inference, nonparametric model, PAC guarantee,
prediction set

Abbreviations: APAC, asymptotically probably approximately correct; Cl, confidence interval; CUB, confidence upper
bound; PAAC, probably asymptotically approximately correct; PAC, probably approximately correct.

1 Introduction

With recent advances in data acquisition, computing, and fitting algorithms, modern statistical
machine learning methods can often produce accurate predictions. However, a key statistical chal-
lenge is to accurately quantify the uncertainty of the predictions. At the moment, it remains a sub-
ject of active research how to properly quantify uncertainty for the most powerful algorithms, such
as deep neural nets and random forests. The difficulty is salient because in many applications, there
are some instances whose outcomes are intrinsically difficult to predict accurately. In a classifica-
tion problem, for such objects, it may be more desirable to produce a small prediction set that cov-
ers the truth with high probability, instead of outputting a single prediction. Reliable prediction
sets can be especially important in safety-critical applications, such as in medicine (Berkenkamp et
al., 2017; Bojarski et al., 2016; Gal et al., 2017; Kitani et al., 2012; Malik et al., 2019; Moja et al.,
2014; Ren et al., 2017). The idea of such prediction sets has a rich statistical history dating back at
least to the pioneering works of Wilks (1941), Wald (1943), Scheffe and Tukey (1945), and Tukey
(1947, 1948).

To address this challenge, there is an emerging body of work on constructing prediction sets
with coverage guarantees under various assumptions (see e.g. Bates et al., 2021; Chernozhukov et
al., 2018b; Dunn et al., 2018; Lei et al., 2013, 2015, 2018; Lei & Wasserman, 2014; Park et al.,
2020; Sadinle et al., 2019). Most of these methods have theoretical coverage guarantees when the
data distribution for which the predictions are constructed matches that from which
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the predictive model was generated. Among these, one of the best known methods is conformal
prediction (CP) (see e.g. Chernozhukov et al., 2018b; Dunn et al., 2018; Saunders et al., 1999;
Vovk et al., 1999, 2005; Lei et al., 2013, 2018; Lei & Wasserman, 2014). Conformal prediction
can guarantee a high probability of covering a new observation, where the probability is marginal
over the entire data set and the new observation.

Moreover, inductive conformal prediction (Papadopoulos et al., 2002)—where the data at hand
are split into a training set and a calibration set, satisfies a training-set conditional, or probably
approximately correct (PAC) guarantee (Park et al., 2020; Vovk, 2013). A prediction set learned
from data is PAC if, over the randomness in the data, there is a high probability that its coverage
error is low for new observations. This guarantee decouples the randomness in data at hand and
the randomness in new observations. This allows a more fine-tuned control over the probability of
error. This guarantee is a generalisation of the notion of tolerance regions of Wilks (1941) and
Wald (1943) to the setting of supervised learning. As a generalisation in another direction, the
method in Bates et al. (2021) provides risk-controlling prediction sets, which have low prediction
risk with high probability over the randomness in the data.

The aforementioned methods are valid when the new observation and the data at hand are
drawn from the same population, but this condition might fail to hold in applications. This phe-
nomenon has been referred to in statistical machine learning as dataset shift (see e.g.
Quifionero-Candela et al., 2009; Shimodaira, 2000; Sugiyama & Kawanabe, 2012). More specif-
ically, an important form of data set shift is covariate shift: a change of only the distribution of
input covariates (or features), with an unchanged distribution of the outcome given covariates.
For example, the shift may arise due to a change in the sampling probabilities of different sub-
populations or individuals in surveys or designed experiments. Another setting is the assessment of
future risks based on current data, such as predicting an individual’s risk of a disease based on
the patient’s features. Here, the features can shift (e.g. as the conditions of the patient change), but
the distribution of the outcome given the features may be unchanged (Quifionero-Candela et al.,
2009). Other examples of covariate shift include changes in the colour and lighting of image data
(Hendrycks & Dietterich, 2019), or even adversarial attacks that slightly perturb the data points
(Szegedy et al., 2014). In both cases, the distribution of labels given input covariates is
unchanged.

A concrete example of covariate shift arises in a data set concerning HIV risk prediction in a
South African cohort that was analysed in Tanser et al. (2013) and is also studied in our article.
The empirical distribution of HIV prevalence across communities in the source (urban and rural
communities) and target populations (peri-urban communities) are presented in Figure 1, and a
severe covariate shift is present. The distributions of the outcome given covariates in the two pop-
ulations appear to be similar.

Another example of covariate shift arises in causal inference. As discussed in Lei and Candés
(2021) and studied in this article, under standard causal assumptions, predicting counterfactual
(hypothetical) outcomes can be formulated as a prediction problem under covariate shift. In
this setup, the two covariate distributions are those in the two treatment groups (treated and un-
treated), which may be different in observational data due to confounding.
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Figure 1. Empirical distribution of a covariate (binned community HIV prevalence with categories encoded by 1-6) in
the two populations of the data concerning HIV risk prediction in a South African cohort.
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In presence of covariate shift, prediction coverage guarantees may not hold if one assumes no
covariate shift. Possible solutions have only recently formally been studied. Tibshirani et al.
(2019) studied conformal prediction under covariate shift, assuming that the likelihood ratio is
known a priori. Park et al. (2022) studied the PAC property of inductive conformal prediction
(or, PAC prediction sets) under covariate shift. Their methods rely on knowing the covariate shift,
i.e. the likelihood ratio of the covariate distribution in the target population to that in the source
population, or on bounding its smoothness, which may not always be practical.

Cauchois et al. (2020) studied conformal prediction that is robust to a specified level of de-
viation of the target population from the source population. On the other hand, Lei and
Candeés (2021) studied conformal prediction under covariate shift without assuming that the
likelihood ratio is known and allowed estimation of this ratio instead. In this article, we focus on
the PAC property. In inductive conformal prediction under no covariate shift or known co-
variate shift, the PAC property can be obtained even though this method was developed to ob-
tain marginal validity (see Vovk, 2013 for the case without covariate shift and Park et al., 2022 for
the case with known covariate shift). However, to our knowledge, PAC property results for
inductive conformal prediction under completely unknown covariate shift have not yet been
obtained.

In this article, we focus on achieving a PAC guarantee and show that PAC prediction sets under
unknown covariate shift are uninformative. We next propose novel methods to construct predic-
tion sets that are asymptotically PAC (APAC) as the sample size grows to infinity, with a conver-
gence rate that we unravel. Our main method, PredSet-1Step, is based on asymptotically efficient
one-step corrected estimators of the true coverage error and the associated Wald confidence inter-
vals. The procedure to construct the estimator is illustrated in Figure 2, and the procedure to con-
struct prediction sets afterwards is illustrated in Online Supplementary Material, Figure S2 (see
notations in the rest of this article). PredSet-1Step heavily relies on semiparametric efficiency the-
ory (see e.g. Bickel et al., 1993; Chernozhukov et al., 2018a; Kennedy, 2022; Levit, 1974; Newey,
1990; Pfanzagl, 1985, 1990; Van Der Vaart, 1991; van der Vaart & Wellner, 1996) to obtain im-
proved convergence rates. PredSet-1Step may also be used to construct asymptotically risk-
controlling prediction sets (Bates et al., 2021).

This article is organised as follows. We introduce the problem setup, present a negative result on
PAC prediction sets, and present identification results under unknown covariate shift in Section 2.
In Section 3, we provide an overview of our proposed methods. We describe our method to esti-
mate the likelihood ratio, and present pathwise differentiability results of the miscoverage in the
target population; akin to those of Hahn (1998). These form the basis of our proposed methods.
We next describe our proposed PredSet-1Step method, which builds on cross-fitting/double ma-
chine learning (Chernozhukov et al., 2018a; Schick, 1986), along with its theoretical properties, in
Section 4. We show in Corollary 7 that PredSet-1Step yields APAC prediction sets with an error in
the confidence level that is typically of order n4 multiplied by the square root of the product of the
convergence rates of estimators of two nuisance functions. These results are based on a novel
bound on the difference between the realised and nominal coverage for Wald confidence intervals
based on general asymptotically linear estimators (Theorem 4). We then present simulation studies
in Section 5 and data analysis results in Section 6.

We present further results in the Online Supplementary Material. In Online Supplementary
Material, Section S1, we propose an extension, PredSet-RS, of the rejection sampling method
from Park et al. (2022). In Online Supplementary Material, Section S2, we present an alternative
approach to PredSet-1Step, PredSet-TMLE, a targeted maximum likelihood estimation (TMLE)
implementation of our efficient influence function based approach (Van der Laan & Rubin,
2006). We describe two methods to construct asymptotically risk-controlling prediction sets
(ARCPS) in Online Supplementary Material, Section S3. These methods are slightly modified ver-
sions of PredSet-1Step and PredSet-TMLE. The proofs of our theoretical results can be found in
Online Supplementary Material, Section S7. We discuss the PAC property, comparing it with mar-
ginal validity, in Online Supplementary Material, Section S8. We finally clarify a connection be-
tween causal inference and covariate shift, based on which we may apply methods for covariate
shift to obtain well-calibrated prediction sets for individual treatment effects (ITEs), in Online
Supplementary Material, Section S9. Our proposed methods are implemented in an R package
available at https://github.com/QlU-Hongxiang-David/APACpredset.
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Figure 2. Overall procedure of the cross-fit one-step corrected estimator y,, . of the coverage error corresponding to
the prediction set with threshold z, which forms the basis of our PredSet-1Step method.

2 Problem setup and assumptions

2.1 Basic setting

Suppose one has observed labelled data from a source population, and unlabelled data from a tar-
get population. Denote a prototypical full (but unobserved) data pointas O := (A, X, Y) &P,
where A B {0, 1} is the indicator of the data point being drawn from the source population (A =
1) or the target population (A = 0), X @ X are the covariates, and Y B Y is the outcome, label or
dependent variable to be predicted. The observed data points are of the formO := (A,
X, AY) B PC. In other words, in the observed data, outcomes (dependent variables) are observed
only from the source population, and are missing from the target population (encoded as zero for
notational convenience).

The observed data consist of n independently and identically distributed (i.i.d.) observed data
points 0; B PO (iB[n]:={1,2, ..., n}). Let s:X x Y — R be a given scoring function. For ex-
ample, when Y is a discrete variable, s(x, y) may be an estimator of the probability of Y = y given X
= x that has been trained from a held-out data set drawn from the source population. When Y is a
continuous variable, s(x, y) may be an estimator of the conditional density of Y aty given X = x or
-|y - y(x}| for a given prediction model y. The function s can be arbitrary user-specified map-ping.
We treat s as a fixed function throughout this article; as shown in the above examples, in practice
s can be learned from a separate training set.

Let B @ 2Y be the Borel g-algebra of Y, which is assumed to be a topological space. We refer to a
map C:X ! B that assigns to each input x B X a prediction set simply as a prediction set. Our
goal is to construct a prediction set that is asymptotically probably approximately correct
(APAC) in the target population. In other words, the prediction set should be asymptotically
training-set-conditionally valid in the target population.

To be more precise, we first review a few related concepts. A prediction set C is approximately
correct in the target population if the true coverage error in the target population, Pr-o
(Yg2 C(X) @A = 0), is less than gr equal to a given target upper bound derror @ (O, 1).

An estimated prediction set C constructed from the data is probably approximately correct
(PAC) in the target population, with miscoverage level (also termed content) oerror and confidence
level 1 - aconf (Gcont B (0, 1)), if, for aC-independent draw (X, Y) from the target population,

Prpo(Proo(Y BC(X) BA = 0, C) < derror) 2 1 - dlcont.

In other words,f is PAC if we have confidence at least 1 - aons that the true coverage error of the
estimated prediction setC in the target population is below the desired level oerror.
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Remark 1  For conciseness in notations, in the rest of the article, we may drop the distri-
bution over which a probability is taken over when this distribution is clear
(e.g. P° or PO) from the context. For example, we may write the above PAC
guarantee as Pr(Pr(YBC(X) BA = 0,C) € derror) 2 1 - Ocon-

Methods to construct PAC prediction sets under covariate shift have been proposed when Y is
observed in data points drawn from the target population, or when the distribution shift from the
source to the target population is known (Park et al., 2020, 2022; Vovk, 2013). Risk-controlling
prediction set (RCPS) have also been constructed, without considering covariate shift (Bates et al.,
2021), while the problem with covariate shift has not been addressed, to our knowledge.

However, in our setting, neither the outcomes from the target population nor the distribution
shift is known. Due to these unknown nuisance parameters, we have the following negative result
on nontrivial prediction sets with a finite-sample marginal or PAC coverage guarantee.

Lemma 1 Suppose that X and Y are Euclidean spaces. Let M~ be the set of all distribu-
tions P° on the full data point O such that unknown covariate shift is present
(namely Conditions 1-3 in Section 2.2 hold), and the joint distribution of
(X, Y) is absolutely continuous with respect to the Lebesgue measure on
X x Y. Suppose that a (possibly randomised) prediction setC is PAC in the tar-
get population, that is,

- A ad
Pr Pr(YBC(X) @A =0, C) < Gerror 2 1= aconf

for all PO EM . Then, for any POEM  and a.e. y @'Y with respect to the
Lebesgue measure,

Pr(y @ CA(X) A = 0) £ derror + Ocont-

If Gerror + Gconf < 1, Lemma 1 indicates that any PAC prediction setC in the target population
under unknown covariate shift is essentially uninformative since it will contain almost any pos-
sible outcome with a nonzero probability for any data-generating mechanism. This lack of infor-
mation can be clearly seen in the simple illustrative case where the supportof Y is R and YREEX. In this
case, it would be desirable to obtain a PAC prediction set that outputs, for example, an esti-mated
central or highest-density 1 - aerror probability region of the distribution Y @A = 0. However,
Lemma 1 implies that such a PAC prediction set does not exist, and that a PAC predic-tion set
would instead cover almost every y @ R with probability at least 1 = (dterror + @conf) With respect to
X. A similar negative result holds when Y is discrete. We prove this lemma by (a) obtain-ing a similar
negative result for prediction sets with finite-sample marginal coverage guarantees (Online
Supplementary Material, Lemma S1) and (b) using Theorem 2 and Remark 4 in Shah and Peters
(2020). The proof can be found in Online Supplementary Material, Section S7.1.

Because of this negative result on finite-sample coverage guarantee, in this article, we choose to
relax the validity criterion to an asymptotic one. It turns out that this way, we can account for un-
known covariate shift. Recall that n is the sample size used to estimate the prediction set.

Definition A sequence of estimated prediction sets (Cs),»; is asymptotically probably ap-

proximately correct (APAC) if

Pr(Pr(Y@ Cp(X) @A =0, Cn) € derror) 2 1= ttegns + 0(1) (1)

as n — o=, where the o(1) term tends to zero as n — oo.

In other words, a sequence of APAC prediction sets C, is almost PAC for sufficiently large n. We
will further quantify the magnitude of the o(1) error in the confidence level. We use an estimated
prediction set €, and a sequence (€Cn),s; interchangeably in this article and may say that €, is
APAC. Further, we treat derror and agonf as fixed.
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Remark 2 Risk-controlling prediction set (RCPS) (Bates et al., 2021) is more general than
but similar to PAC. Our proposed PredSet-1Step method can be readily applied
to constructing asymptotic RCPS (ARCPS) with a slight modification. We
introduce the concept of ARCPS and describe the modified method in Online
Supplementary Material, Section S3.

Vovk (2013) derived the PAC property of inductive conformal predictors (Papadopoulos et al.,
2002), and Park et al. (2020) presented a nested perspective (Vovk et al., 2005). While the formu-
lations of Vovk (2013) and Park et al. (2020) are equivalent, we follow Park et al. (2020). For
thresholds 7@ R, where R := R @ {+ oo}, we consider nested prediction sets (Vovk et al., 2005) of
the form

C.:x! {yRY:s(x,y)= 1}

Since Cr, (x) 7 C.,(x) for any x and any 71 2 73, typical measures of the size of C; (such as the car-
dinality or Lebesgue measure) are nonincreasing functions of z. Therefore, to obtain an APAC pre-
diction set with a small size, given afiniteset T, 7 R of candidate thresholds, we select a threshold 7,
Tn such that Pr(Pr(Y B Cz,(X) BA = 0) £ derror) 2 1= 0conf + 0(1) and 7, is as large as pos-sible.
Our methods under this setting are our main contribution.

We summarise one of our main results informally. Formal results can be found in later sections.
The algorithm to estimate the coverage error ¥, (P°) = Pr(Y @ C.(X) B A = 0) corresponding to the
threshold 7 used in PredSet-1Step is Algorithm 1. We will show in Corollary 7 that, under certain
conditions, the prediction set C,isee With the threshold %1"5te” selected by PredSet-1Step is APAC:

n

Pr(W,sies (P) € Gerror) 2 1= aconf = Chnye,

where Cis an absolute positive constant and A, is typically of order n'/# multiplied by the square

root of the product of the convergence rates of two nuisance function estimators. This corollary
relies on a novel result on the convergence rate of Wald confidence interval coverage for general
asymptotically linear estimators (Theorem 4). The result bounds the difference between the true
and the nominal coverage by three error terms: (a) the difference between the estimator and a sam-
ple mean, (b) the estimation error of the asymptotic variance, and (c) the difference of the distri-
bution of the sample mean from its limiting normal distribution.

Remark3 Beyondthe APAC criterion, an alternative approach is to find a prediction set C
that approximately solves

min size(C) subjectto PH(YEC(X)BA = 0) < derror,

where Pr(Y B C(X) BA = 0)is an estimator of Pr(Y B C(X) B A = 0) and size(C)
is a measure of the size of the prediction set C. This approach has been consid-
ered in Yang et al. (2022), and generally results in smaller prediction sets than
the APAC ones we consider in this article. The reason is that the APAC guar-
antee requires approximately controlling the confidence level 1 - oo to
achieve the desired coverage error level aerror Over the data, which leads to
some conservativeness. This difference can also been seen from the PAC guar-
antee in Yang et al. (2022) taking the form

Pr(Pr(YB Cn(X) BA = 0, Cn) < derror + 0p(1)) 2 1 - 0cont. 2)

To distinguish from the APAC guarantee in (1), we call the guarantee in (2) a
probably asymptotically approximately correct (PAAC) guarantee. The differ-
ence between APAC (1) and PAAC (2) is in the asymptotically vanishing ap-
proximation error: in APAC (1), the approximation is on the confidence
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level; in PAAC (2), the approximation is on the coverage error. This difference
may seem subtle but has substantial impact on the performance of prediction
sets satisfying these guarantees. We illustrate this difference by interpreting
APAC (1) and PAAC (2) in words: APAC (1) states that, with confidence ap-
proaching the desired level 1 - aconf, the true coverage error does not exceed
the desired level oerror, but may frequently be a little conservative; PAAC (2)
states that, with confidence at least 1 — aconf, the true coverage error does not
exceed the desired level aerror by much, but may frequently exceed aerror by a
little. We also illustrate the difference in Figure 3. In some applications, having a
high confidence guarantee on the desired level aerror Of true coverage error at a
price of slight conservativeness may be desirable, for example, for safety
purposes.

We conclude this section by introducing a few more notations. We use C to denote an absolute
positive constant that may vary line by line. For two scalar sequences (a,) ., and (b,) ., we use
an @ by, to denote that for some constant C > 0andalln > 1, a, < Cbp,, and we define @similarly. We
use an @ bp to denote that both a, B b, and a, B b, hold. We also adopt the little-o and big-O
notations. For a probability distribution P and a scalar p> 1, we use | - lp , to denote thel

(M-norm of a function.

2.2 ldentification

Without any further assumptions, it is impossible to estimate Pr(Y @ C(X) @ A = 0) for an arbitrary
prediction set C, since the joint distribution (X, Y) @A = 0 of (X, Y) in the target population can-
not be identified due to Y missing in the data. We make a few assumptions, following the standard
setting in the covariate shift literature (see e.g. Quifionero-Candela et al., 2009; Shimodaira, 2000;
Sugiyama & Kawanabe, 2012), so that Pr(Y @ C(X) @ A = 0) can be identified as a functional of
the true distribution P® on the observed data.

Let POA denote the marginal distribution of A under P°, P% denote the distribution of X BA = a

under PO fora @ {0, 1}, P_Yx,a thedistributionof Y B X = x, A = aunderthefull data distribution_PO,

and Py, := lel. For any distribution P of the observed data point O, we define these marginal and
conditional distributions similarly and denote them with similar notations except that the super-
script O denoting P is dropped. For example, Pxz, stands for the distribution of X B A = a under P.
It will also be convenient to define the loss function

Z::(x, y) ! Uy B C(x))

forany R. Our first condition is:
Condition 1 (Data available from both populations). 0< Pr(A= 1)< 1.

This condition ensures that data points from both source and target populations are collected in suf-
ficient quantity, and that the conditional distributions introduced above are well defined. In practice,
this condition requires that a reasonable amount of data from both populations is collected.

Next, we state the key covariate shift assumption (see e.g. Quifionero-Candela et al., 2009;
Shimodaira, 2000; Sugiyama & Kawanabe, 2012), which is central to our article.

Condition 2 (Covariate shift: Identical conditional outcome distribution). The condi-
tional distribution of Y @ X = x in the target population is identical to that
[no the source population for all x@EX.! Mathematically,

Pyax,1 = Pyex,0 = Pyax-
Condition 2 is similar to the missing at random assumption in the missing data literature (see
e.g. Little & Rubin, 2019). It holds, for instance, if in the target we observe the same Y (e.g.

1 Formally, this has to hold almost surely with respect to a given probability measure over X, with respect to which all

distributions of X considered are absolutely continuous; however, we simplify the statement for clarity.
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Figure 3. Exemplar sampling distributions of the true coverage error Pr(Y C,;(X) A=0, C:,) of prediction sets C;
satisfying APAC and PAAC guarantees, respectively.

does a car face left or right), with X from a different distribution (images from cities A vs. B).
Finally, we have an assumption to ensure that the target population overlaps with the source
population.

Condition3 (Dominance of covariate distributions). The marginal distribution of X in the
target population, P())(o' is dominated by that in the source population, Pf}l; that
is, the Radon—Nikodym derivative wo : = dPZ,,/d P%y, is well defined.

We assume that Conditions 1-3 hold throughout this article. For any distribution P of the ob-
served data point O satisfying Condition 3 and any @ R, we define the functionals

Wwp:= dP)(o/dPx;L and EP,TIX ! PI”p(YCT(X) X = X, A= 1). (3)

We will also replace P in the subscripts of these and other quantities with O when referring to the
functional components of PO. Here, wp is the likelihood ratio between target and source covariate
distributions under P, and Ep is the covariate-conditional coverage error of the prediction set C; in
the source population. It is not hard to show that, under the distribution P of the complete but
unobserved data, we can also express Ep; in terms of the target population asEp;(x)
= Pr(v@ Cﬁ(X) BX = x, A = 0). Further, we define

pecome p | Ep[Ep(X)BA =0] and P¥EM:p 1 Ep[wp(X)Z:(X, V) BA = 1].
One can verify that for j B {Gcomp, weight},
WI(P%) = Proo(Y B C.(X)BA = 0). (4)

In other words, although WP (P%) and P\¢iE"(PO) take as inputs different components of P°,
both correspond to the same functional of P9, the coverage error of the prediction set C; in the
target population. We will use ¥; to denote these two functionals when we need not distinguish
their mathematical expressions. In other words, ¥;(P°) equals the probability that Y B C;(X) in the
‘covariate shifted’ population where A = 0:

Wo(P%) = Pro(Y BC.(X) BA = 0). (5)

Borrowing terminology from causal inference and missing data, we refer to lI/('j“’m”(PO) and
‘{"Z”e‘ght(PO) as the G-computation formula and the weighted formula, respectively.

Remark 4 Both ‘l’fcom” and ‘P‘;"Eight take as inputs only certain components of the distribu-
tion rather than the entire distribution and hence may be computed as long as
the relevant components are defined. For example, ‘Pf“’mp(P) is defined if the
distribution Pxao and Ep,; are defined. We will specify only the required compo-
nents when defining our estimators.
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Remark 5 There is a connection between counterfactuals in causal inference and covari-
ate shift, as pointed out in Lei and Candes (2021). We discuss this connectionin
more detail in Online Supplementary Material, Section S9.

3 Overview and preliminaries of proposed methods

In all methods we propose, we assume that a finite set T, of candidate thresholds is given, with a
cardinality that may grow to infinity with n. Since, asafunction of 7, thereareat most n + 1 versions of
the observed miscoverage indicators {Z;(X;, Yi) = 1(s(X;, Yi) < 7), i @ [n]} in any data set, each
corresponding to a threshold in the set {s(X;, Y;) :i B [n]} B o=, this assumption is not stringent.

Our general strategy is to construct an asymptotically valid (1 - aconf)-confidence upper bound
(CUB) for ¥, (P9 for each threshold 7@ T ,, and select the largest threshold %, @ T , such that, for any
candidate threshold less than or equal to %,, the corresponding CUB is less than oerror. This
procedure is illustrated in Online Supplementary Material, Figure S2. To construct accurate ap-
proximate confidence intervals (Cls), we rely on semiparametric efficiency theory (Bickel, 1982;
Bickel & Doksum, 2015; Bickel et al., 1993; Newey, 1990; Pfanzagl, 1985, 1990; Van Der
Vaart, 1991; van der Vaart, 1998).

3.1 Estimation of nuisance functions

For a given threshold z, we will see in Section 3.2 that it is helpful to estimate nuisance functions
corresponding to the pointwise coverage error

Eo:= Epog:ix! Proo(YBC(X)BX = x, A=1) (6)

and the covariate shift likelihood ratio wo from Condition (3). An estimator E,; of Eo; may be
obtained with standard classification or regression algorithms in the subsample from the source
population with dependent variable Z; (X, Y) and covariate X.

However, for the estimation of the likelihood ratio wo, we opt for a re-parametrization to a clas-
sification problem. Inspired by Friedman (2004), Bickel et al. (2007), Sugiyama et al. (2008), and
Menon and Ong (2016), we use the following observation from Bayes’ Theorem. For any distribu-
tion P of the observed data point O satisfying Condition 3, definegp:x ! [0, 1]andy, & (0, 1) via

gp(x):=Prp(A= 18X =x), yp:=Prp(A=1). (7)
We define go and y, similarly for PO:
go(x):=Prpo(A= 18X =x), y5:=Prp(A=1). (8)

Following terminology in causal inference, we call go the propensity score function (Rosenbaum &
Rubin, 1983). When referring to generic propensity score functions and probabilities, we will write g
and y instead of g gand y PFor any propensity score function g and any probability y @ (0, 1), we
define W(g, y): X — [0, ==) as

_1-gl) y
W(g, 7)(x) := Wﬁ (9)
Bayes’ theorem directly shows that
wo(x) = W(go, 70)(x). (10)

We will use this reparameterization through the rest of this article. We can estimate y, by y, ob-
tained from the empirical distribution. Further, we may estimate go by g, obtained with standard
classification or regression algorithms with dependent variable A and covariate X. In our experi-
ence, existing classification techniques are more flexible in our setting than density estimation
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methods. For instance, density estimation procedures might need adjustment according to the sup-
port of variables in X (e.g. bounded continuous, unbounded continuous, discrete, a mixture, etc.),
while most classification methods need not make this distinction.

3.2 Pathwise differentiability

We next present results on pathwise differentiability of the error rate parameter ¥; with respect to
M, a model that is nonparametric at P° (Bickel, 1982; Bickel & Doksum, 2015; Bickel etal., 1993;
Levit, 1974; Newey, 1990; Pfanzagl, 1985, 1990; Van Der Vaart, 1991; van der Vaart, 1998). We
first briefly describe the intuition behind these terminologies. Consider a generic one-dimensional
parametric submodel (P )r satisfying dP¢ /dP°(0) = 1+ ¢H(o) for some function H with
Ep[H(O)] = O and finite variance. We only consider regular parametric submodels (see e.g.
Newey, 1990, for more details). The function H is called the score function of this submodel.
We say that a model M is nonparametric at PO if, for any function H with mean zero and finite
variance, P B M for € sufficiently close to zero. Roughly speaking, H encodes the direction of lo-
cal perturb%tions of PO in the submodel, and a nonparametric model allows any perturbation of P°.

We focus on nonparametric models in the main text, in which case no information about P° is
known. In particular, the estimator (En,;, W) of (Eo,r, Wo) may converge in probability in an L2(P?)
sense at a rate slower than or equal to n~12. This rate is typically slower than the parametric rate
n~12 as long as the covariate X has continuous components.

A parameter ¥ : M — R is pathwise differentiable if d‘I‘(P; )/dé€|c=0 = Epo[H(O)D(0O)] for some
function D with EPo[D(O)] = 0 and finite variance. This function D is called a gradient of the par-
ameter ¥ at P9, since it characterises the local change in the value of the parameter corresponding to
a perturbation of P°. We can then heuristically expand ¥(P¢ ) ﬁround Y(PO):

Zl

W(PS,) - ¥(P°) = €] H(0)D(0)P°(do)

(11)

[(1+ €H(0))D(0)P°(do) - | D(0)P°(do) = | D(0)(PS, - P°)(do).

In nonparametric models, the gradient D is unique and also called the canonical gradient. The
above explanation is informal, and we refer the readers to Online Supplementary Material,
Section S7.2 and to Levit (1974) and Pfanzagl (1985, 1990) for more details. The pathwise differ-
entiability of an estimator is closely related to efficiency and is crucial for the construction of a
root-n-consistent and asymptotically normal estimator.

An estimator is asymptotically efficient under a nonparametric model if it equals the estimand
plus the sample mean of the canonical gradient, up to an error op(n~Y/2). An asymptotically efficient
estimator is root-n consistent and has the smallest possible asymptotic variance among a large class
of estimators called regular estimators (see e.g. Section 8.5 in van der Vaart, 1998). Hence, the re-
sult on pathwise differentiability of ¥, forms the basis of constructing efficient estimators of W,(P°),
based on which approximate CUBs can be constructed under a nonparametric model.

Now, we return to our prediction set problem. Consider an arbitrary function E defined on X
with range contained in [0, 1], any scalar y @ (0, 1), and any positive scalar z. For each t @R, with
o :=(a, x, y), we define the function

a U 1-a
D.(P, g,y):0! y—\/\/(g, X)) Z:(x, y) - Epqo(x) + i [Ep,c(x) - PE©C™P(P)]. (12)
P P
For notational convenience, we suppress the dependence of this gradient function on the target
parameter ¥, (P); this dependence is implicit through the dependence on P.
We require an additional bounded likelihood ratio condition, which is standard in the literature on
covariate shift (Quinonero-Candela et al., 2009; Shimodaira, 2000; Sugiyama & Kawanabe, 2012).

Condition 4 (Bounded likelihood ratio). There exists a constant B < oo such that
sup,y Wo(x) < B. Equivalently, there exists a constant 6 @ (0, 1) such
that the propensity score is bounded away from zero, namely
infxax go(x) > J. Here, 6 may be taken as y5/(B(1 - yo) + 1).
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Under Condition 4, it holds that sup_ .- Epo[D:(P°, go, yo)(o)z] < oo, because Z,; is bounded.
The pathwise differentiability of ¥ is presented in the following theorem, our first main result.

Theorem 2 (Pathwise differentiability of ¥;). Under Conditions 1-4, for each t @ R, the
functional ¥, from (5), where ¥, (P°) = Pr(Y @ C.(X) @ A = 0)is the coverage er-
ror in the target, ‘covariate shifted’ population with A = 0, is pathwise differen-
tiable at PO relative to M with canonical gradient D,(P°, go, ) from (12).

The proof of Theorem 2 is related to the proof of Theorem 1 in Hahn (1998): with 1 - A being
the treatment indicator D in Hahn (1998), 1(Y B C:(X)) being the counterfactual outcome Yg in
Hahn (1998), W.(P°) can be written as the mean counterfactual outcome E[Yo @D = 1] in the
treated group in Hahn (1998). Estimating this is the main challenge in estimating the average treat-
ment effect E[Y1 - Yo @ D = 1] on the treated; the canonical gradient of E[1(Y B C;(X)) @A = 0] can
be calculated using arguments similar to the proof of Theorem 1 in Hahn (1998). We provide the
proof in Online Supplementary Material, Section S7.2. Since both nuisance functions Eg and wo
appear in the canonical gradient, it is helpful to estimate both functions in order to construct
asymptotically efficient estimators of W;(P°) as well as asymptotically valid CUBs. As is known in
the sieve estimation literature (see e.g. Chen, 2007; Qiu et al., 2021; Shen, 1997) and other non-
parametric inference literature (see e.g. Bickel & Ritov, 2003; Newey et al., 1998, 2004), it is pos-
sible to only estimate—for example—Eq,;, with specific nonparametric methods, and still obtain
an asymptotically efficient estimator of W;(P%). In this article, we do not take these approaches
and propose methods that require estimating both nuisance functions in our procedures to allow

for the most generality and flexibility in choosing estimators of nuisance functions.

Remark 6 The pathwise differentiability of ¥; does not use that the loss function
Z:(x, y) = 1(y @ C.(x)) is binary. Therefore, our approach works for general
loss functions, and we may construct asymptotically efficient estimators in
that setting. Then, we can construct asymptotically efficient estimators for
the true risk that corresponds to a general loss function for a prediction set
under covariate shift. In particular, PredSet-1Step may be used with slight
modifications for the estimation of the conditional risk function Eq; for gen-
eral losses. We present the corresponding results for constructing ARCPS in
Online Supplementary Material, Section S3.

4 PredSet-1Step

In this section, we describe the PredSet-1Step method, based on an asymptotically efficient one-
step corrected estimator of ¥, (P°), along with its main theoretical properties. For each candidate ¢
Tn, we first construct an asymptotically efficient estimator v, , of ¥; (P%), and then obtain a
consistent estimator 0'2 of the asymptotic variance 02 of w,.. We finally construct a Wald
CUB based on v, , and's 2. We select thresholds zB T, 3¢ prediction sets based on the CUBs. We
next describe each step in "fhore detail.

4.1 Cross-fit one-step corrected estimator

In this section, we describe a cross-fit one-step corrected estimator of W;(P°) for a given 7. After
obtaining an estimator E,; of Eq. via parametric (e.g. logistic regression, neural nets) or non-
parametric methods, it might be tempting to estimate ¥, (P°) by the mean of En (X) among obser-
vations from the target population. In other words, En, is plugged into ‘PG“’mp However, in
general, this plug-in estimator may not be rate-optimal and may invalidate subsequent CUB con-
struction and APAC guarantees. The reason is a bias term that may dominate the convergence of
this estimator.

Fortunately, this excessive bias can be reduced by a one-step correction on the standard plug-in
estimator (see e.g. Theorem 4 in Chapter 3 of Le Cam (1969) for early development of this idea for
parametric models, and Pfanzagl (1985) and Chapter 25 in van der Vaart (1998) for more modern
generalisations to semi/nonparametric models.) We further incorporate cross-fitting into the pro-
cedure to relax restrictions on the techniques used to estimate nuisance functions Eg; and go. This
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technique improves performance in small to moderate samples. Such sample splitting ideas date
back at least to Hajek (1962) and Bickel (1982).

Suppose that the data are split into V folds of approximately equal size completely at random.
We assume that V > 2 is fixed. Common choices of V include 5 and 10. Let /, 7 [n] denote the
index set of observations in fold v [V]. We use P™Y to denote the empirical distribution of

data in fold v. We also use P';* and P to denote the empirical distribution of A and X BA = a
corresponding to data in fold v. a

For each , let I:Z;,I"r denote a flexible estimator of Eg; obtained from data points out of fold v via,
for example, standard regression or supervised statistical learning tools. We also use g7’ to denote
a flexible estimator of go obtained from data points out of fold v. We define

3= Prenv(A= 1) (13)

We construct a cross-fit one-step corrected estimator using Algorithm 1. Direct calculation shows
that the one-step corrected estimator i,  for fold v from (15) equals

1 U
WoCOmP(PTY) + i D<(P™?, g%,y )(Oi). (14)
vl ial,

The key one-step correction in (14) based on the canonical gradient is similar to a correction based
on a linear approximation using the gradient in (12) at the estimated distribution .bf"’. We roughly
describe the intuition below in an informal manner, and refer the readers to Online Supplementary
Material, Section S6.3 for technical details. Following (11), we expand ¥(P°) around lI’(.‘f”z"’):

W(P) = W(PTY)+ [ Di(P"Y, 67, 74)(0)(P° - P"¥)(do)

T’

W(P™V) + Epo[D:(P"Y, 7Y, 7“)(0)],

where, in the expectation in the second line, we treat (ﬁ"{’”’, g, ¥7) as fixed. The second equality
follows because a gradient at P has mean zero under P. Since the above correction term is un-
known, we replace the expectation under P® with the empirical mean and thus find the one-step
correction in (14). This idea is illustrated in Figure 4. This one-step correction is crucial to ensure
root-n consistency and asymptotic normality of the estimator, as we illustrate in a simulation
shown in Online Supplementary Material, Figure S3.

Algorithm 1 Cross-fit one-step estimator of coverage error ¥,(P°) used in PredSet-1Step

1: for v @ [V] do Estimate go by g7/ using data out of fold v.
2:forv@[V] and t@ T, do Estimate Eq, by E;,,',"using data out of fold v.
3:forv@[V]and 7B T, do (Obtain a one-step corrected estimator for fold v)
4. Let APZ""’ be a distribution with the following components: (a) marginal distribution of A being P:"’, (b)
conditional distribution of X B A = 0 being Py, and (c) distribution of Z; B X, A = 1 defined byA"’
E, 5: Let |ly] be the cardinality of the index set /,. Set

-
ne*

O ~

a, (1= Ai)E, (X Ca; A -

o (= AVEDX) |1 AL s Wz Y) - B ). (15)
i, (1=A)) | ‘w:v I

6: for @ T, do Obtain the cross-fit one-step corrected estimator for threshold z:

R .
z//,”::; 17 (16)

v=1

We require two additional conditions on §,” and E 7 for /, . to be asymptotically efficient.
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Figure 4. lllustration of the idea behind the one-step correction in (14). In this figure, ‘PGf"'"p(PA"I'V) +

Epo[DoP™, g;¥, 7%)(O)] is the ideal/oracle first-order approximation to the estimand P%°™P(P°) at the naive plug-in

estimator ‘Pf°°mp(lsf'v); {ry . is the one-step corrected estimator.

Condition 5 (Bounded propensity score estimator). For some non-negative sequence
(gn)pso tending to zero as n-— oo, with probability 1- gn,
infua[vyxex g, Mx) > 6, where ¢ is the constant introduced in Condition 4.

Typically, with appropriate regularisation to avoid overfitting, the estimator g_" of the propen-
sity score is bounded away from zero except in extremely ill-posed data sets. These occur with ex-
tremely small probability (e.g. if the covariate X is discrete and for some x, all observations with
X = x are from the target population). Moreover, the user can always truncate the estimator to be
bounded away from zero, in which case g, = 0. Thus we often expect g, in Condition 5 to decrease to
zero at a much faster rate than the convergence rates of the nuisance function estimators in
Condition 6. This does not have an effect on our second main result below, which is on the asymp-
totic efficiency of the cross-fit one-step estimator ¢, ., but it will affect the Wald confidence interval
coverage in the next subsection. Recall that | - lp , stands for the L (P)-norm of a function. Our
condition for nuisance estimators is as follows.

Condition 6  (Sufficient rates for nuisance estimators). The following conditions hold:

v _
Epo  sup IIE‘M Ey |l o 2 o(1),
VBIV], BT

Eo sup (1= 67)/07" = (1- 90)/ggl 5 = ol1),
va[V]
0 mil
v 50 _ -1/2
Em(x) - Eo,:(x) PO, (dx) = o(n™V?).
1

T1- 5700 1- goln)

- X - X

Epo sup [ *A’g" - 9o
VE[V], BT &V (x) go(x)

By the Cauchy-Schwarz inequality, a sufficient condition for the last equation in Condition 6 is
the following:

0 -~

0 .
g 1-goii,h
Epo Sup —Afg" - iﬁﬂ"’ = EO,T[ =0 (n"12).
vavl, @, gnY go pp 2 Pa12

Therefore, a sufficient condition is that both nuisance estimators converge at a rate faster than
n~14. Thus, we allow for much slower rates than the parametric root-n rate. This o(n~'/4) rate
requirement is only a sufficient condition and is by no means necessary. Condition 6 is satisfied
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even if one nuisance estimator converges very slowly, as long as the other nuisance estimator con-
verges sufficiently fast to compensate for this slow convergence. We require convergence of the es-
timator E.”. uniformly over z @ T, to establish uniform asymptotic efficiency in Theorem 3 below.

Though this assumption on convergence is stronger than assumptions typically needed to obtain
efficient estimators, it may not be stringent. We illustrate this with an example in Online
Supplementary Material, Section S5.

Remark 7 The aforementioned phenomenon that one convergence rate can compensate
for the other is similar to the mixed bias property, which is frequently observed
for semiparametrically or nonparametrically efficient estimators (Rotnitzky
etal., 2021). The mixed bias property often leads to double robustness. An es-
timator is doubly robust if it is still consistent even when one nuisance function,
but not the other, is estimated inconsistently (see e.g. the rejoinder to discus-
sions of Scharfstein et al. (1999), and Bang and Robins (2005)). This double
robustness property also holds for our estimator {,, of coverage error
W:(P0), similarly to the method in Yang et al. (2022). In other words, ¥, , is
consistent for W;(P0) even if either Eg. or go is estimated inconsistently, in
which case Condition 6 fails. We do, however, generally require Condition 6
to hold for our proposed PredSet-1Step method except for special cases. The
reason is that PredSet-1Step further relies on asymptotically valid CUBs, which
rely on the asymptotic normality of ¢, .. If a nuisance function is estimated in-
consistently and thus Condition 6 fails, even though ¥, . is still consistent for
W:(PO), @, . is no longer asymptotically normal in general. In this case, it is chal-
lenging, if possible at all, to construct asymptotically valid CUB. We discuss
special cases where PredSet-1Step is doubly robust under Online
Supplementary Material, Condition S5 or S6 in Section S4. In particular,
when one nuisance function is known, our proposed procedure remains valid
with the known nuisance function plugged in.

This leads to our second main result.

Theorem 3 (Asymptotic efficiency of cross-fit one-step corrected estimator). Under
Conditions 1-6, the one-step corrected cross-fit estimator y,, , from (16) is
an asymptotically nonparametrically efficient estimator of the coverage error
Y, (P%) = Pr(Y B C.;(X) BA = 0) from (5), in the target, ‘covariate shifted’
population where A = 0. Moreover, with the gradient D, from (12), the pro-
pensity score go and the probability y, of A = 1 from (8), and the conditional
coverage error rate Eg; from (6),

H

sup%?,m - ¥, (P%) -
2T n i=1

5
D:(P°, go, 70)(0j) 0= op(n"Y2).

3

S|

Theorem 3 states the same asymptotic efficiency claim that is implied by the general result
Theorem 3.1 and the more concrete result Theorem 5.1 in Chernozhukov et al. (2018a). See
also Proposition 2 in Kennedy (2022). One difference is that Theorem 3 concerns a uniform effi-
ciency claim over @ T, which is implied by pointwise efficiency and the uniform rate condition 6;
another difference arises in the proof due to the different estimation strategies for the nuisance
parameter yg. The proof of Theorem 3 can be found in Online Supplementary Material, Section S7.
3. As explained in Section 3.2, this result implies that the one-step corrected estimator enjoys a
desirable optimality property: it has the smallest possible asymptotic variance, among all regular
estimators, under the nonparametric model M.

Remark 8 Although v, . is consistent for Y,(PY) @ [0, 1], this estimator itself may fall out-
side of the interval [0, 1]. This possibility may harm the interpretation of ,, . as
an estimator of a probability. We may project p, , onto [0, 1], or instead use the
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targeted minimum-loss based estimator (TMLE) (Van der Laan & Rose, 2018;
Van der Laan & Rubin, 2006). We present the method based on TMLE,
PredSet-TMLE, in Online Supplementary Material, Section S2.

4.2 Wald CUB and selection of threshold
To construct Wald CUBs based on ¢, , using Theorem 3, we need to estimate the asymptotic vari-
ance Ué,r 1= Epo [D<(P0, go, 70)(OF 1. We propose to use a plug-in estimator based on sample split-
ting. Let
o v Y
DB, %, #5)(0)7 and Gnei= o LlGr)® . (17)
ol nyq '

1 U

Avoy2.
(Ux,z) =

We propose to use 6,1,1/\/% as the standard error Vvhen constructing a (1 — aconf)-Wald CUB of
Y.(PY). That is, we propose to use Wt 2o On,c/ ﬁés an approximate (1 - aconf)-CUB, where we
use z, to denote the (1 - a)-quantile of the standard normal distribution for any a & (0, 1).

Our theoretical guarantees on the AP AC property of PredSet-1Step rely on the following general
result on the confidence interval coverage of Wald Cls based on asymptotically linear estimators.
Recall that an estimator zﬁn of ¢0 is asymptotically linear with influence function IF if the expansion

= $o+ % :’=1 IF(O;) + op(n‘l/z) holds for ¢, (see e.g. Chapter 25 in van der Vaart & Wellner,
1996). In this definition, it is implicitly assumed that Ep[IF(O)] = 0 and Epo[IF(0) 7] < oo,

Theorem4 (Coverage of Wald Cls). Suppose that (ﬁn is an asymptotically linear estimator
of ¢ with influence function IF such that o2 := Epo[IF(0)?] > 0. Let 62 be a
consistent estimator of the asymptotic var\i/aﬁnce ag. Consider the correspond-
ing Wald (1- a)-CUB  @,+ z46n/-n for ¢, Assume that
EplIF(0)[3= Py< o Then, for any fixed scalar 7 > 0, there exists a universal
constant C such that

o - 2

—L, ~ Vi P ata O 1 0m
reolfo < g+ ZaGn/ )= (1= a) < Gy Epoy= do-—  IF(O)) =
O'O = - = L

d
c Ero[16n = o0] < 1)|Gn = ool]

+ Pro(lén - ool > ) + 00712,
P

op O'g

The three terms on the right-hand side arise from three sources: (a) the deviation of ¢, - ¢, from
the sample mean of the influence function, (b) the estimation error of the asymptotic variance, and
(c) the deviation of a root-n-scaled centred sample mean from its limiting normal distribution. In
nonparametric models, the above bound typically converges to zero slower than the root-n-rate
that is standard for parametric models, which is a phenomenon observed in some semi/non-
parametric problems (Han & Kato, 2019; Zhang & Liang, 2011). The above bound is likely to
have room for improvement, but this result suffices to prove the desired APAC property of our
procedure. The proof of Theorem 4 can be found in Online Supplementary Material, Section
S7.4.

For our problem, Theorem 4 alone is insufficient for results on CUB coverage for all t @ T,. For
extremely large or small 7, it is possible that ¥;(P°) = 0 or 1 and D,(P°, go, o) = O. Therefore, we
need to consider this special case separately. For any € 2 0O, let

TEI={TR_ZO'O%T> €} and T~ =R\ T%= {rR_:0'0§= 0}, (18)

where a%}r is defined at the beginning of Section 4.2. These sets of candidate thresholds depend on

the true data-generating mechanism P° only, and are deterministic. For all z@ T ~, one of the fol-
lowing scenarios occurs: either (a) Eg . = 0and ¥;(P°) = O or (b) Eo; = 1and ¥;(P°) = 1. We make the
following assumption on AM.E-V
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Condition 7 (Deterministic conditional coverage error estimator for extreme thresh-
olds). Forallz@T 7, it holds that EA,;T": Eo,r for all v [V] and all n.

Condition 7 is so mild that it is often automatically satisfied: for extremely small rthatliesin T 7,
the random variable Z = 1(s(X, Y) > 7) is a constant equal to one. Since one can only observe
Z:(Xi, Yi)=1in any sample it is natural to estimate Eq, with E™ = 1, which equals Eg ;. On the
other hand, for extremely large rthatliesin T , the random varlable Z isa constant equal to zero,
and it is natural to estimate Eq; with E™Y = 0, vxfrnch also equals Eq ;.

We have the following convergence rate of the coverage to the nominal confidence 1 - aconf, OUr
third main result.

Theorem 5 (Convergence rate of Wald-CUB coverage based on cross-fit one-step cor-
rected estimator). Consider the cross-fit one-step corrected estimator i, ,
from (16), for the standard error estimator 6, from (17), and the coverage
error W, (P%) = Pro(Y B C:(X) BA = 0) from (5), in the target, ‘covariate
shifted’ population where A = 0. Under Conditions 1-6, for any fixed ¢>
0, with T € from (18), it holds that

N C
sup Pr(W(P°) < Vo + 2o, Gn,e/ 1) = (L= Geonf) B An,c
aT nT, orf -

where, with §.¥ from Line 2 of Algorithm 1,% from (13), go, yo from (8), E, i E.,
from Line 4 of Algorithm 1, Eq from (6), the marglnal distribution P9y, ofX

in the source population from Condition 3, and probability 1 - g, of having a
bounded nuisance estimator from Condition 5,

bj - g7’(x) - go(x)
- 1 x) 1 X
A, = nAe A sup E. A 79n go

’ VIV, @ET, P An‘,(x) )

‘ (19)
'(E (X) Eo, T(X))PX|1(dX)ED +qn

converges to zero. In addition, W|\7h T~ from (18), under Condition 7, it holds
that Pr(¥:(P°) < {1, . + 4 .6n, «/n)=1forallz@T "

conf

Theorem 5 is a consequence of Theorem 4, and the proof can be found in Online Supplementary
Material Section S7.4.The uniform bound only holdsfor thresholdsin T “ for some ¢ > 0 because, as
o? Bends to zero, it becomes more difficult to estimate o2 Wth a small relative error. The error
term A in Theorem 5 is essentially the square root of the product bias of the two nuisance func-
tion estimators g and En", scaled by n'4. This product bias term is the dominating term in the
bound in Theorem 4. This dominance suggests that, when using flexible nonparametric nuisance
estimators, the main challenge in improving the coverage of the Wald CI based on our proposed
estimator g, . might be the product bias; improved estimators of the asymptotic variance o? alone
might not substantially improve the Cl coverage. We conjecture that this phenomenon mlght hold
for a variety of efficient estimators that are constructed using semiparametric efficiency theory and
involve nuisance function estimation.

Based on the Wald-CUB, we select a threshold %1,,5“*" to ensure that the size of prediction sets is
small:

v oL

2P = max{r B Tp: W, + ZuyOne/ N< derror for all T BT, such that ¢ < 7}. (20)

conf
This step is illustrated in Online Supplementary Material, Figure S2. This procedure for choosing a
threshold based on CUBs is justified by the following general result on APAC prediction set con-
struction based on pointwise CUBs, which is similar to Theorem 1 in Bates et al. (2021) with adap-
tations to finite candidate threshold sets, general distributions of the score s(X, Y), and asymptotic
CUBs.
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Theorem 6 (Grid search threshold based on CUB). Given a finite set T, of candidate
thresholds and asymptotic (1 - aconf)-level CUBs A,(z) of W;(P°) valid point-
wise for each 7@ T, define the selected threshold

2n = max{t B Tp:An(r) < Gerror for all 7 BT, such that 7 < ). (21)
Then, the prediction set with threshold 7, satisfies the following:

0
PrPO(LF%,,(PO) < Gerror) 2 inf Prpo An(7) 2 lPT(PO) 2 1- aconf
T,
| 0
- supPrpo An(z) 2 W.(P°) - (1- C
0
Qconf) - 1@Tn

Consequently, the prediction set with threshold 7, is APAC if the asymptotic
validity of all A5(7) (z @ Tp) is uniform; that is,

O
inf Prpo An(7) 2 Wo(P°) 2 1 - teonf — 0(1),
T,

which is implied by a uniform convergence of CUB coverage to the nominal
level 1 - acont:

sup%’rpo An(7) 2 lPI(PO)D_ (1- aconf)%:
o(1). mat,

If the coverage of the CUB A,(7) is at least 1 — aconf forall @ T, then the pre-
diction set with threshold 7, is PAC.

In Theorem 6, pointwise valid CUBs, rather than uniform CUBs or confidence bands, are used.
More general results on using pointwise valid tests to control risk can be found in Angelopoulos et
al. (2021).

We require an additional condition to derive the APAC guarantee of PredSet-1Step from CUB
coverage results in Theorem 5 and APAC results in Theorem 6.

Condition 8 (Asymptotic variance equal to, or bounded away from, zero). Define '
1= min {t@Tp:¥:(P°) > derror}, Where we define min [:= e. For some fixed
€> 0,itholdsthatz, BT T “BT-

We have dropped the dependence of rﬂ: on P° from the notation for conciseness. Condition 8 is
again often automatically satisfied as long as the set of candidate thresholds T , is sufficiently dense.
Indeed, we argue that this condition holds if the candidate set T, increases with the sample size n.
Since inf {¥+(P°):n= 1,2, ...} 2 derror > O by definition, either inf {¥ (PO) n=1,2, ...}=1or
Oerror < inf {‘i’ (PO n=1, 2 ..}< 1.In thefirst case, ‘I’ (PO) is tr|V|a|Iy equal to unity, and there-
fore rT BT -, soCondition 8 holds In the second case, smce T is increasing with n, s decreasing
wnthn Thus forsomed> Oand N, derror < ¥ (P°)< 1-oforalln> N andthusr’r IT ¢ forsome
€”> 0. For each n< N, 7,@AT *@T ~ for some ¢, > 0. Condition 8 hence holds with
€= max{c", €1, ..., en}. Condition 8 may only fail if ¥:(P°) can be arbitrarily closeto—
but not equal to—one. Even if T, is not increasing, in all scenarios we can think of,
Condition 8 only fails for extremely contrived sets T .

We have the following corollary of Theorem 5, our final result showing the APAC property of
PredSet-1Step.

Corollary 7 If Conditions 1-8 hold, then we have

Prpo (\P%}'Step(Po) < aerror) 2 1- aconf - OAH,(' (22)

where Ay ¢ is defined in (19). In other words, the prediction set with threshold
15t s APAC.
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Remark 9 It might be preferable to use another CUB—rather than the Wald CUB we pro-

pose. For example, it is well known that carefully constructed bootstrap pro-

cedures can lead to better coverage for certain problems (Hall, 2013).

Another possibility is to efficiently estimate the asymptotic variance 020'1.
However, this does not appear to improve the overall convergence rate, be-
cause the estimation error in the asymptotic variance is not the only term
that dominates our bound on the convergence rate. The other dominating
term is the deviation of the estimator from the sample mean of the influence
function.

The empirical performance of the above methods has sometimes been ob-
served to be comparable to the ones without efficient estimation of the asymp-
totic variance or bootstrap (see e.g. Chapter 28 in Van der Laan & Rose,
2018). To our knowledge, theory on the convergence rate of confidence inter-
val coverage for general asymptotically linear estimators has not been devel-
oped in the literature. The bound we obtained in Theorem 4 requires the
development of novel tools to propagate the difference between the estimator
and the sample mean of the influence function to the difference between the
true and the nominal coverage.

Remark 10 PredSet-1Step relies on an efficient estimator based on the G-computation for-
mula ‘I’fwmp. An alternative approach is to use estimators based on the
weighted formula ‘P‘;"eight. In this approach, a one-step correctionis also crucial
to achieving the same asymptotic efficiency. Furthermore, for each fold v, we
have used 9¥ based on data in fold v to estimate y5. Using the empirical estima-
tor Ai/(n - |ly|) based on data out of fold v—an approach that coincides
with double/debiased machine learning (Chernozhukov et al., 2018a)—also
leads to efficient estimators and AP AC prediction sets under the same condi-

tions. The proof is similar, with minor modifications. We have chosen to esti-
mate yg in the same fold because it leads to a remainder that aligns with the
conventional definition of the mixed bias property (Rotnitzky et al., 2021).

5 Simulations

We conduct three simulation studies to investigate the performance of our methods. In the first
simulation, we consider a moderate-to-high dimensional sparse setting; in the second simulation,
we consider a relatively low dimensional setting; in the third simulation, we consider a relatively
low dimensional setting without covariate shift. In all settings, we consider oerror = 0Oconf = 0.05
and the following methods: (a) PredSet-1Step; (b) PredSet-TMLE, described in Remark 8 and
Online Supplementary Material, Section S2; (c) PredSet-RS, a method based on rejection sam-
pling, described in Online Supplementary Material, Section S1; (d) plug-in, a naive variant of
PredSet-1Step based on a naive cross-fit plug-in estimator of the true coverage error ¥,(P°); the
same as PredSet-1Step except that the one-step correction in (14) is not included; (e) plug-in2, a
method similar to PredSet-1Step based on a corss-fit estimator with the estimated likelihood ratio
wo plugged into ‘I’;”e‘ght; (f) weighted CP, weighted Conformal Prediction (Tibshirani et al., 2019)
with an estimated likelihood ratio and a target marginal coverage error at most derror; and (g) in-
ductive CP, inductive Conformal Prediction (Papadopoulos et al., 2002), tuned as in Park et al.
(2022); Vovk (2013) to ensure training-set conditional validity (i.e. the PAC property), ignoring
covariate shift. To our best knowledge, training-set conditional validity results are unknown for
weighted Conformal Prediction. We still include this method for comparison and do not expect it
to attain (approximate) training-set conditional validity. Whenever no threshold can be selected,
that is, the CUB corresponding to 7= O is above derror, We set the selected threshold to zero. We
consider a setting without covariate shift in the third simulation, because in this case, inductive
CP has afinite sample PAC guarantee while our proposed methods do not. In this case, we focus on
comparing our proposed methods PredSet-1Step and PredSet-TMLE with inductive CP.

For all methods incorporating covariate shift, we split the data into two folds of equal sizes
(V = 2). When estimating the nuisance functions Eo and go, we use Super Learner (van der Laan
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et al., 2007) with the library consisting of logistic regression, generalised additive models (Hastie &
Tibshirani, 1990), logistic LASSO regression (Hastie et al., 1995; Tibshirani, 1996), and gradient
boosting (Friedman, 2001, 2002; Mason et al., 1999, 2000) with various combinations of tuning
parameters (maximum number of boosting iterations being 100, 200, 400, 800, or 1,000; minimum
sum of instance weights needed in a child being 1, 5, or 10). Super Learner is an ensemble learner
that outputs a weighted average of the algorithms in the library to minimise the cross-validated pre-
diction error. In all above methods except inductive CP, the candidate threshold set T, is a fixed grid
on the interval [0, 0.3] with distance between adjacent grid points being 0.05. PredSet-RS requires
additional tuning parameters, and we present them in the Online Supplementary Material.

We consider sample sizes n = 500, 1,000, 2,000, and 4,000. For each sample size, we run all
methods on 200 randomly generated data sets. We approximately calculate the true optimal
threshold 7o by generating 10¢ samples from the target population and taking the derrorth quantile of
s(X, Y) in the sample. We next describe the data-generating mechanisms and the results of the three
simulations.

5.1 Moderate-to-high dimensional sparse setting
To generate the data, we first generate the population indicator A & Bernoulli(0.5). Given A = aq,

the covariate X : = (X1, ..., X20)? is a 20-dimensional random vector generated from exponential
distributions as follows:

X1 BExp(2¥79), X, BExp(2'9), X, BExp(1l) (k=3, ...,20),

where X1, ..., X20 are mutually independent. The outcome Y has three labels {0, 1, 2} and is gen-
erated according to the distribution implied by the following two equations:

Pr(Y=10X = x) 9t 11 Pr(y=20X 21-2 12
- = + - 1. —_— = -2.1- + 1. .
Priv=omx =x PR+ 2a-lbal GGy~ Pl X+ 1.2)

Instead of the true conditional probability of Y defined above, we set the scoring function s to be
the function satisfying the following three equations for all x: s(x, 0) + s(x, 1) + s(x, 2) = 1,

s(x, 1)
Stx )= exp (0.02 + 2.1x; - 0.91x, + 0.02x4), and
s(x, 2)
= exp (-0.03 - 1.95x; + 1.25x3 + 0.1xs).
s(x, 0)

The empirical proportion that the true miscoverage is below aerror is presented in Figure 5. Since
weighted CP was developed to achieve marginal coverage rather than training-set conditional
coverage, its proportion of having a miscoverage exceeding derror is much higher than the desired
level aconf. In this simulation, the optimal threshold for the source population is greater than the
optimal threshold 7o for the target population. Hence, inductive CP performs considerably worse
than all other methods—that incorporate covariate shift—in the sense that its miscoverage exceeds
Oerror much more often than the desired level aconf, especially in large samples (n = 4,000). As the
sample size grows, the performance of inductive CP becomes worse.

The two plug-in methods appear not to be AP AC because the Monte Carlo estimated actual con-
fidence level is below 90% even in large samples (n = 4,000) and the 95% confidence interval does
not cover the desired 95% level. PredSet-RS performs much worse than other methods, including
the invalid inductive CP and plug-in methods, when the sample size is not large (n £ 2,000).
However, PredSet-RS might be APAC as its confidence level appears to approach 95% as the sam-
ple size grows. The other two methods, PredSet-1Step and PredSet-TMLE, appear to be APAC and
have reasonable performance for moderate to large sample sizes (n = 2,000).

As shown in Online Supplementary Material, Figure S4, the distribution of the threshold se-
lected by PredSet-RS has a much wider spread than PredSet-1Step and PredSet-TMLE. We
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Figure 5. Empirical proportion of simulations where the estimated coverage error Pryb(Y B C; (X)BA=0,C; )does not
exceed Oeror, along with a 95% Wilson score confidence interval, in the moderate-to-high dimensional sparse
setting. The grey horizontal dashed line is the desired confidence level 1 - acont-

therefore recommend PredSet-1Step and PredSet-TMLE rather than PredSet-RS, although all
these methods appear to produce APAC prediction sets.

5.2 Low dimensional setting

The data-generating mechanism is similar to the previous simulation. We still generate A from a
Bernoulli(0.5) random variable. We generate a three-dimensional covariate from a trivariate nor-
mal distribution:

0000 O O
0 1 02 -0.2 Ul
XBA=aBNIIOL 0.2 1 0.2 Ux 1
0o -02 02 1 2

The outcome Y also has three labels {0, 1, 2} and is generated according to the distribution implied
by the following two equations:

Pr(Y=108X = = exp (1.4x1 + 1.5x 1.5x3 + 0.3(1 x)2+0015XX)
P = 0mX =0 p(1.4x1+ 1.5x2 - 1.5x3 + 0. 1 . 2X3),
Pr(Y=208X =

_ _ _ _ R
R (Y= 08X =x) exp(-0.1- 1.3x3 - 2.2x2 + 0.5x3 + 0.5(1 - x2)° + 0.03x1x3).

The scoring function is determined by the following three equations, valid for all
x:s(x, 0)+ s(x, 1)+ s(x, 2)= 1,

s(x, 1)
= exp(0.02 + 1.2x; + 1.91x, - 1.6x3), and
s(x, 0)

s(x, 2)
= exp (-0.03 - 1.5x; — 2.4x, + 0.3x3).
s(x, 0)
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Unlike in the previous simulation where go follows a logistic regression model, here neither go nor
Eo,; follows a parametric model that is correctly specified by an algorithm in the library of Super
Learner due to interaction terms in the distribution of Y B X and quadratic terms in the logit of wo.
The only exceptions are that Eo, follows a logistic regression model with an infinite slope for an
extremely large or small threshold 7. Thus, we do not expect our nuisance function estimators to
generally converge at the parametric root-n rate.

The simulation results are presented in Online Supplementary Material, Figures S5 and S6. The
performance of the methods is similar to the moderate-to-high dimensional sparse setting.

5.3 Low dimensional setting without covariate shift
The data-generating mechanism is identical to the previous simulation, except that
oodoo
0

od
1 0.2 -0.2

XBA=aBNIOD 0.2 1 02 o
-0.2 02 1

In other words, covariate shift is not present.

The simulation results are presented in Online Supplementary Material, Figures S7 and S8.
Inductive CP appears to perform the best for all sample sizes. This is not surprising, because in-
ductive CP has a finite sample PAC guarantee in the no-covariate-shift setting. Our proposed
methods PredSet-1Step and PredSet-TMLE also appear to be approximately PAC when the sample
size is moderate to large (n = 2,000). The performance of our proposed methods appears to be
comparable to that of inductive CP, even under no covariate shift. The performance of the other
two methods—plug-in and PredSet-RS—is similar to the previous simulation.

We therefore conclude from our simulations that, when the sample size is reasonably large, our
proposed methods PredSet-1Step and PredSet-TMLE empirically output approximately PAC pre-
diction sets regardless of whether covariate shift is present or not. Even when no covariate shift is
present, in which case inductive CP has a finite sample PAC guarantee, the performance of our
methods is empirically comparable with inductive CP. Our proposed methods can be applied as a
default method if the user suspects—but may be unsure—that covariate shift is present, and does
not know the likelihood ratio wg of the shift.

6 Analysis of HIV risk prediction data in South Africa

We illustrate our methods with a data set concerning HIV risk prediction in a South African cohort
study. Specifically, we use data from a large population-based prospective cohort study in
KwaZulu-Natal, South Africa which was collected and analysed by Tanser et al. (2013) to evalu-
ate the causal effect of community coverage of antiretroviral HIV treatment on community-level
HIV incidence. The study followed a total of 16,667 individuals who were HIV-uninfected at base-
line in order to observe individual HIV seroconversions over the period 2004 to 2011. In the pre-
sent analysis, we aim to predict HIV seroconversion status over the follow-up period, for a target
population of individuals living in a peri-urban community, using urban and rural communities as a
source population.

Although the outcome is in fact available in both source and target samples, we deliberately treat
the outcome in the target population as missing when constructing prediction sets and then use the
observed outcome in the target population to evaluate empirical coverage of prediction sets. There
are 12,385 and 5,136 participants from source and target populations, respectively. All partici-
pants are treated as independent draws from their corresponding populations. The covariates
used to predict the outcome are the followings: (a) binned number partners in the past 12 months,
(b) current marital status, (c) wealth quintile, (d) binned age and sex, (e) binned community anti-
retroviral therapy (ART) coverage, and (f) binned community HIV prevalence. For covariates that
are time-varying, we use the last observed value as the covariate. All covariates are treated as cat-
egorical variables in the analysis. Missing data for each covariate are treated as a separate cat-
egory, which is equivalent to the missing-indicator method (Groenwold et al., 2012). Covariate
distributions are presented in Online Supplementary Material, Figure S1. We also perform
Fisher’s exact test via a Monte Carlo approximation with 2,000 runs to test the equality of
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Table 1. Empirical coverage of prediction sets, 95% Wilson score confidence interval for coverage, and selected
thresholds in the synthetic sample from the target population in the South Africa HIV trial data

Method Empirical coverage (%) Coverage Cl (%) Selected threshold
PredSet-1Step 95.98 94.83-96.89 0.095
PredSet-TMLE 95.42 94.20-96.39 0.100
Inductive conformal prediction 91.89 90.35-93.20 0.195

Note. The target coverage is at least 1 — derror = 95%, with probability 95% over the training data.

covariate distributions in the two populations, and we observe evidence of shift in covariate dis-
tribution with a p-value < 0.001.

For illustration, in this analysis, we create a severe shift on a covariate that we believe to be
strongly related to the outcome. In the target population, we only include individuals with com-
munity ART coverage below 15% (binned community ART coverage being 1 or 2 in Online
Supplementary Material, Figure S1). In other words, we set the target population to be the popu-
lation in the peri-urban communities with AR T coverage below 15%, this sub-population maybe of
particular public health policy interest as likely to carry most of the burden of incident HIV cases.
We present the analysis results for the full data analysis (target population being peri-urban
communities) in Online Supplementary Material, Section S6. In this subset of the data, there are
1418 participants from the target population.

We randomly select 10,967 participants from the source population to train the scoring func-
tion s. We use Super Learner (van der Laan etal., 2007), with the same setup asin the simulations, to
train a classifier of the outcome on this subsample, which is used as the scoring function s. We then
construct prediction sets using the rest of the sample consisting of 1,418 participants from each
of the source and the target populations. The target PAC criterion has miscoverage level derror =
0.05 and confidence level 1 - aconf = 0.95. The methods we apply are a subset of the meth-ods
investigated in the simulations: PredSet-1Step, PredSet-TMLE, and inductive CP
(Papadopoulos et al., 2002; Park et al., 2022; Vovk, 2013), which ignores covariate shift. The tun-
ing parameters of these methods, such as the number of folds and the algorithm to estimate nuis-
ance functions, are identical to those in the simulations.

The empirical coverage of the above methods in the sample from the target population is pre-
sented in Table 1. The empirical coverage of both PredSet-1Step and PredSet-TMLE is close to
the target coverage level 1 - aerror = 95%, with the 95% confidence interval containing 1 -
derror- IN contrast, the empirical coverage of inductive CP is lower than the target coverage lev-el.
Thus, properly accounting for covariate shift as in PredSet-1Step and PredSet-TMLE is crucial for
achieving the PAC property in the ‘covariate shifted’ target population in this subset of the data.

7 Conclusion

There has been extensive literature on (a) constructing prediction sets based on fitted machine
learning models and (b) supervised learning under covariate shift. In this work, we study the inter-
section of these two problems in the challenging setting where the covariate shift needs to be esti-
mated. We propose a distribution-free method, PredSet-1Step, to construct asymptotically
probably approximately correct (APAC) prediction sets under unknown covariate shift.
PredSet-1Step may also be used to construct ARCPS with a slight modification. Our method is flex-
ible, taking as input an arbitrary given scoring function, produced by essentially any statistical or
machine learning method.

We use semiparametric efficiency theory when constructing prediction sets to obtain root-n con-
vergence of the true miscoverage corresponding to the selected prediction sets, even if the estima-
tors of the nuisance functions may converge slower than root-n. Our theoretical analysis of
PredSet-1Step relies on a novel result on the convergence of Wald confidence intervals based on
general asymptotically linear estimators, which is a technical tool of independent interest. We il-
lustrate that our method has good coverage in a number of experiments and by analysing a data set
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concerning HIV risk prediction in a South African cohort. In experiments without covariate shift,
PredSet-1Step performs similarly to inductive CP, which has finite-sample PAC properties. Thus,
PredSet-1Step may be used in the common scenario if the user suspects—but may not be certain—
that covariate shift is present, and does not know the form of the shift.

One interesting open question is the asymptotic behaviour of our selected threshold compared to
the true optimal threshold. Our simulation results (Online Supplementary Material, Figures S4, S6,
and S8) suggest that our selected threshold might converge in probability to the true optimal
threshold. Our selected threshold also appears to have a vanishing negative bias that ensures the
desired confidence level. Theoretical analysis is in need to confirm these conjectures.
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