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SUMMARY

We present effective numerical schemes for solving initial value control problems for diffeomorphic
image registration. Our formulation is governed by a transport equation for the image intensities
and the Euler—Poincaré equation associated with the group of diffeomorphisms. We present effective
numerical methods for the evaluation of forward and adjoint operators. We propose fast numerical
schemes to approximate the covariance matrix of the posterior distribution for uncertainty quantifica-
tion. Our applications are in biomedical imaging.
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1 INTRODUCTION

Image registration is a non-linear, ill-posed inverse problem. Generally speaking, image registration
is about establishing a plausible spatial correspondence y € ), Y C {qb | ¢: R — Rd} between
two (or more) images m; : ) — R>o (the “reference image”) and my : Q- R>g (the “template
image”) of the same object or scene, such that the deformed template image becomes similar to the
reference image [12, 13]. The images are defined as compactly supported function on an open set
Q c R? (with d € {2,3}), with closure 2 := Q U 9§ and boundary 9. In our work, we limit the
set ) of admissible transformations to R¢-diffeomorphisms, i.e., smooth maps that are one-to-one,
onto, and have a smooth inverse. One way to guarantee that y is a diffeomorphism is to introduce a
pseudo-time variable ¢ € [0, 1] and parameterize y in terms of a smooth, time-dependent velocity field
v € L2([0,1],H) [11,14-16,19]. Given v, the map y represents the endpoint of the flow equation
Oip = vo ¢ fort € (0,1] with initial condition ¢ = ida at time ¢t = 0, where idg4(x) = x for any
x € R?is the identity transformation. For suitable choices of the Sobolev space H = WP (2, R%),
p € N, s € N, the map y is guaranteed to be a diffeomorphism [14,16,19]. In our formulation, we do
not model the transformation of the template image mg by applying the map y; we directly transport
the intensities of mg given v [6-8, 10]. This leads to a PDE-constrained optimization problem.

Contributions. In the present work, we extend our past work on numerical methods for PDE-
constrained formulations for diffeomorphic image registration [6-8, 10]. In particular, we introduce
an additional PDE constraint—the Euler—Poincaré equation associated with the group of diffeomor-
phisms (EPDiff) [20,21]. We describe efficient numerical schemes for the evaluation of the forward
and adjoint operators. We use low-rank approximations based on randomized algorithms [24,25] to
construct the Hessian. We estimate uncertainties based on curvature information [27,28].

Related Work. This work extends our past efforts to design fast algorithms for diffeomorphic image
registration [1-10]. Related works on PDE-constrained formulations for diffeomorphic image regis-
tration include [17,22]. Examples for works that consider the EPDiff equation are [18, 23, 26, 30].
The works closest to ours are [26, 30].
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2 METHODS

Problem Formulation. The constraints for our problem are a hyperbolic transport equation for
the image intensities of mg and the EPDIff equation for the momentum u € L2([0,1],*). The
variational problem is as follows: Given two images mo and m; we seek the initial momentum
up € H* by solving

1
minimize — / (m(t =1,2),mi(z))* dz + a / (Kuo, up)ga dz (1a)
v, u, m, ug 2 9] 2 (9]
subjectto  ¢(m,u,v,up) = 0. (1b)

The state variables of (1) are the space-time fields v : [0,1] x Q — R%, v : [0,1] x Q@ — R, and m :
[0,1] x © — R. The control or decision variable is ug :  — R?. The first term in (1a) is a squared
L?-distance that measures the proximity between the transported image intensities of mg at ¢t = 1 and
the reference image m;. The second term in (1a) is a Tikhonov-type regularization functional with C :
H* = H, K =L, where £ : H — H*, L := a; diag(A2?, ..., AY)—ay diag(A, ..., A)+az idga.
We fix the parameters a; > 0 and only vary the regularization parameter o > 0. We select o = le—1
and vy = a3 = 1. The constraint ¢ in (1b) is given

om+Vm-v=0 in (0,1] x Q, (2a)

m—mp =0 in {0} x Q, (2b)

o+ (Vo) Tu+ (Vu)v +u(V-v) =0 in (0,1] x Q, (2¢)
u—1ug=0 in {0} x £, (2d)

v—Ku=0 in [0,1] x Q, (2e)

with periodic boundary conditions on 0f2. For a given (candidate) velocity field v, (2a) models
the transport of the image intensities of mg. The velocity field v is found by solving the EPDiff
equation (2¢) for a (candidate) initial momentum ug.

Numerical Methods. We use an optimize-then-discretize approach. That is, we form the La-
grangian of (1) and derive the optimality conditions in the continuum using variational calculus.
Subsequently, we discretize the resulting system of equations. We use a pseudo-spectral discretiza-
tion in space. We discretize integral operators based on a midpoint rule. We use a semi-Lagrangian
method for time integration and a globalized Gauss—Newton—Krylov method fo optimization.

Uncertainty Quantification. Our approach uses ideas described in [26—30]. Our goal is to design
efficient numerical schemes to estimate the covariance Cpos > 0 of the posterior distribution mpos
of ug conditioned on the data m,. To this end, we consider a reduced formulation of (1). That is,
we introduce the parameter-to-observation map JF, which represents the solution operator of (2).
This enables us to reformulate (1) as an unconstrained optimization problem and establishes a direct
connection between (1) and the negative log posterior £(ug) = —logmpost(uo|m1). According
to Bayes theorem, mpost(uo | Mm1) o Tiike (11 | ©0) Tprior(10). Here, i is the likelihood and 7pior
denotes the prior, which correspond to the distance and regularization functional in (1), respectively.
With slight abuse of notation we assume all quantities have been discretized. Under the assumption
that the map F is linear, it can be shown that 7,0 is a Gaussian distribution with a covariance that
corresponds to the Hessian H > 0 of ¢ [28]. Since F is not linear, we use a quadratic approximation
(i.e., a linearization) of the negative log posterior. Consequently, in our nonlinear setting the inverse
of the Hessian H is only an approximation of Cp,s. We obtain

Cpost & H™' = (Hyay + Hreg) ™" = Hylg (Hlg Hyu Holg + 1)~ HYZ,

where Hg, denotes the contribution of the data part of our problem and H,.; = 0 denotes the reg-
ularization part. We note that we do not form or store H; our algorithm is matrix-free. We use

a randomized algorithms [24, 25] to compute a rank r approximation of Hrle/g HdatH:ggQ . Using the
Sherman—Morrison—Woodbury identity, we obtain

(Holi Hoa g + 1) 70~ (V SV + 1) = T=V, (57 + 1)V

327



Figure 1: Registration results. Left block: new problem formulation. Right block: old problem formula-
tion [10]. We consider a dataset from [12] of size 128 x 128. Top row for each block (from left to right):
reference image m;, template image mg, and residual differences before and after registration. Bottom row
(from left to right): deformed template image, computed initial momentum wq/velocity v (color denotes orien-
tation), illustration of the associated map y~*, and determinant of the deformation gradient det V.

Figure 2: Left: Spectrum of the
Hessian for different regulariza-
tion parameters «. Right: Local
estimates of the posterior covari-
ance matrix entries visualized as
ellipsoids. Uncertainties are pro-
nounced along edges and reduced
perpendicular to those edges.
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3 RESULTS AND CONCLUSIONS

We show exemplary registration results in Figure 1. We show the spectrum of the Hessian in Figure 2
(left). We show local estimates of the posterior covariance entries in Figure 2 (right).

We have presented effective numerical schemes for solving PDE-constrained optimization problems
for diffeomorphic image registration governed by a transport equation and the EPDiff equation. The
variational problem belongs to the class of initial value control problems. We have developed an
effective numerical framework that allows us to estimate local uncertainties based on curvature infor-
mation of the negative log posterior.
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