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SUMMARY
We present effective numerical schemes for solving initial value control problems for diffeomorphic
image registration. Our formulation is governed by a transport equation for the image intensities
and the Euler–Poincaré equation associated with the group of diffeomorphisms. We present effective
numerical methods for the evaluation of forward and adjoint operators. We propose fast numerical
schemes to approximate the covariance matrix of the posterior distribution for uncertainty quantifica-
tion. Our applications are in biomedical imaging.
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1 INTRODUCTION

Image registration is a non-linear, ill-posed inverse problem. Generally speaking, image registration
is about establishing a plausible spatial correspondence y 2 Y , Y ✓

�
� | � : Rd

! Rd
 
between

two (or more) images m1 : ⌦̄ ! R�0 (the “reference image”) and m0 : ⌦̄ ! R�0 (the “template
image”) of the same object or scene, such that the deformed template image becomes similar to the
reference image [12, 13]. The images are defined as compactly supported function on an open set
⌦ ⇢ Rd (with d 2 {2, 3}), with closure ⌦̄ := ⌦ [ @⌦ and boundary @⌦. In our work, we limit the
set Y of admissible transformations to Rd-diffeomorphisms, i.e., smooth maps that are one-to-one,
onto, and have a smooth inverse. One way to guarantee that y is a diffeomorphism is to introduce a
pseudo-time variable t 2 [0, 1] and parameterize y in terms of a smooth, time-dependent velocity field
v 2 L

2([0, 1],H) [11, 14–16, 19]. Given v, the map y represents the endpoint of the flow equation
@t� = v � � for t 2 (0, 1] with initial condition � = idRd at time t = 0, where idRd(x) = x for any
x 2 Rd is the identity transformation. For suitable choices of the Sobolev space H = W

p,s(⌦,Rd),
p 2 N, s 2 N, the map y is guaranteed to be a diffeomorphism [14,16,19]. In our formulation, we do
not model the transformation of the template image m0 by applying the map y; we directly transport
the intensities ofm0 given v [6–8, 10]. This leads to a PDE-constrained optimization problem.

Contributions. In the present work, we extend our past work on numerical methods for PDE-
constrained formulations for diffeomorphic image registration [6–8, 10]. In particular, we introduce
an additional PDE constraint—the Euler–Poincaré equation associated with the group of diffeomor-
phisms (EPDiff) [20, 21]. We describe efficient numerical schemes for the evaluation of the forward
and adjoint operators. We use low-rank approximations based on randomized algorithms [24, 25] to
construct the Hessian. We estimate uncertainties based on curvature information [27, 28].

RelatedWork. This work extends our past efforts to design fast algorithms for diffeomorphic image
registration [1–10]. Related works on PDE-constrained formulations for diffeomorphic image regis-
tration include [17, 22]. Examples for works that consider the EPDiff equation are [18, 23, 26, 30].
The works closest to ours are [26, 30].
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2 METHODS

Problem Formulation. The constraints for our problem are a hyperbolic transport equation for
the image intensities of m0 and the EPDiff equation for the momentum u 2 L

2([0, 1],H⇤). The
variational problem is as follows: Given two images m0 and m1 we seek the initial momentum
u0 2 H

⇤ by solving

minimize
v, u,m, u0

1

2

Z

⌦
(m(t = 1, x),m1(x))

2 dx+
↵

2

Z

⌦
hKu0, u0iRd dx (1a)

subject to c(m,u, v, u0) = 0. (1b)

The state variables of (1) are the space-time fields u : [0, 1]⇥ ⌦̄ ! Rd, v : [0, 1]⇥ ⌦̄ ! Rd, andm :
[0, 1]⇥ ⌦̄ ! R. The control or decision variable is u0 : ⌦̄ ! Rd. The first term in (1a) is a squared
L
2-distance that measures the proximity between the transported image intensities ofm0 at t = 1 and

the reference imagem1. The second term in (1a) is a Tikhonov-type regularization functional withK :
H

⇤
! H,K = L

�1, whereL : H ! H
⇤,L := ↵1 diag(

r2
, . . . ,

r2)�↵2 diag(

r

, . . . ,

r

)+↵3 idRd .
We fix the parameters ↵i > 0 and only vary the regularization parameter ↵ > 0. We select ↵1 = 1e–1
and ↵2 = ↵3 = 1. The constraint c in (1b) is given

@tm+rm · v = 0 in (0, 1]⇥ ⌦, (2a)
m�m0 = 0 in {0}⇥ ⌦, (2b)

@tu+ (rv)Tu+ (ru)v + u(r · v) = 0 in (0, 1]⇥ ⌦, (2c)
u� u0 = 0 in {0}⇥ ⌦, (2d)
v �Ku = 0 in [0, 1]⇥ ⌦, (2e)

with periodic boundary conditions on @⌦. For a given (candidate) velocity field v, (2a) models
the transport of the image intensities of m0. The velocity field v is found by solving the EPDiff
equation (2c) for a (candidate) initial momentum u0.

Numerical Methods. We use an optimize-then-discretize approach. That is, we form the La-
grangian of (1) and derive the optimality conditions in the continuum using variational calculus.
Subsequently, we discretize the resulting system of equations. We use a pseudo-spectral discretiza-
tion in space. We discretize integral operators based on a midpoint rule. We use a semi-Lagrangian
method for time integration and a globalized Gauss–Newton–Krylov method fo optimization.

Uncertainty Quantification. Our approach uses ideas described in [26–30]. Our goal is to design
efficient numerical schemes to estimate the covariance Cpost � 0 of the posterior distribution ⇡post
of u0 conditioned on the data m1. To this end, we consider a reduced formulation of (1). That is,
we introduce the parameter-to-observation map F , which represents the solution operator of (2).
This enables us to reformulate (1) as an unconstrained optimization problem and establishes a direct
connection between (1) and the negative log posterior `(u0) := � log ⇡post(u0 |m1). According
to Bayes theorem, ⇡post(u0 |m1) / ⇡like(m1 |u0)⇡prior(u0). Here, ⇡like is the likelihood and ⇡prior
denotes the prior, which correspond to the distance and regularization functional in (1), respectively.
With slight abuse of notation we assume all quantities have been discretized. Under the assumption
that the map F is linear, it can be shown that ⇡post is a Gaussian distribution with a covariance that
corresponds to the Hessian H � 0 of ` [28]. Since F is not linear, we use a quadratic approximation
(i.e., a linearization) of the negative log posterior. Consequently, in our nonlinear setting the inverse
of the Hessian H is only an approximation of Cpost. We obtain

Cpost ⇡ H
�1 = (Hdat +Hreg)

�1 = H
1/2
reg (H

1/2
regHdatH

1/2
reg + I)�1

H
1/2
reg ,

where Hdat denotes the contribution of the data part of our problem and Hreg � 0 denotes the reg-
ularization part. We note that we do not form or store H; our algorithm is matrix-free. We use
a randomized algorithms [24, 25] to compute a rank r approximation of H

1/2
regHdatH

1/2
reg . Using the

Sherman–Morrison–Woodbury identity, we obtain

(H
1/2
regHdatH

1/2
reg + I)�1

⇡ (VrSrV
T
r + I)�1 = I � Vr(S

�1
r + I)�1

V
T
r .
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Figure 1: Registration results. Left block: new problem formulation. Right block: old problem formula-
tion [10]. We consider a dataset from [12] of size 128 ⇥ 128. Top row for each block (from left to right):
reference image m1, template image m0, and residual differences before and after registration. Bottom row
(from left to right): deformed template image, computed initial momentum u0/velocity v (color denotes orien-
tation), illustration of the associated map y�1, and determinant of the deformation gradient detry.
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Figure 2: Left: Spectrum of the
Hessian for different regulariza-
tion parameters ↵. Right: Local
estimates of the posterior covari-
ance matrix entries visualized as
ellipsoids. Uncertainties are pro-
nounced along edges and reduced
perpendicular to those edges.

3 RESULTS AND CONCLUSIONS

We show exemplary registration results in Figure 1. We show the spectrum of the Hessian in Figure 2
(left). We show local estimates of the posterior covariance entries in Figure 2 (right).

We have presented effective numerical schemes for solving PDE-constrained optimization problems
for diffeomorphic image registration governed by a transport equation and the EPDiff equation. The
variational problem belongs to the class of initial value control problems. We have developed an
effective numerical framework that allows us to estimate local uncertainties based on curvature infor-
mation of the negative log posterior.
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