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Figure 1: The design of the prompt architecture of Generative Students is based on the KLI framework, which uses knowledge
components (KCs) to de�ne the elements students are expected to learn. With the KCs identi�ed for a given task (a), the
generative student’s pro�le is a function of the list of KCs the student has mastered, has confusion about, or has no evidence
of knowledge of (b). Users can de�ne master prompt, confusion prompt, and unknown prompt for a given task (c). This
architecture thus supports automatic creation of diverse student pro�les (d).

ABSTRACT
Evaluating the quality of automatically generated question items
has been a long standing challenge. In this paper, we leverage LLMs
to simulate student pro�les and generate responses to multiple-
choice questions (MCQs). The generative students’ responses to
MCQs can further support question item evaluation. We propose
Generative Students, a prompt architecture designed based on the
KLI framework. A generative student pro�le is a function of the
list of knowledge components the student has mastered, has con-
fusion about or has no evidence of knowledge of. We instantiate
the Generative Students concept on the subject domain of heuristic
evaluation. We created 45 generative students using GPT-4 and had
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them respond to 20 MCQs. We found that the generative students
produced logical and believable responses that were aligned with
their pro�les. We then compared the generative students’ responses
to real students’ responses on the same set of MCQs and found
a high correlation. Moreover, there was considerable overlap in
the di�cult questions identi�ed by generative students and real
students. A subsequent case study demonstrated that an instructor
could improve question quality based on the signals provided by
Generative Students.
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1 INTRODUCTION
Decades of educational research has shown the bene�t of active
learning [9, 12, 15, 26], one-on-one tutoring [6, 24], and deliberate
practice [16, 17] in improving students’ learning outcomes. These
theories highlight the bene�t of providing students with hands-on
problem solving and question answering opportunities to facilitate
learning. It has been a long standing interest in the Learning at
Scale and AI in Education communities to study e�ective question
generation techniques [5, 28] to support the creation of high-quality
question items at scale to enhance active learning, tutoring, and de-
liberate practice. Multiple-choice question creation is of particular
interest because of their practical value in terms of ease of grading
and automatic provision of feedback [5, 28, 42, 46, 47, 50].

Prior work has explored a variety of ways to support multiple-
choice question creation for educational purposes, including crowd-
sourcing questions from students [42, 57], perusing prior students’
solutions and mistakes to generate new questions [46, 47], us-
ing teacher-AI collaborative approaches where teachers receive
AI suggestions[29], and fully automated techniques leveraging AI
[5, 13, 21, 28, 30, 31, 43, 48, 50]. With the advancement of generative
AI, there is a growing interest in using generative AI tools such
as ChatGPT [2] to create quiz questions. A handful of universi-
ties provide example prompts for instructors to create low-stakes
assessment questions with ChatGPT [1, 3]. This movement has
increased our likelihood of getting a large question pool, but how
do we know whether the questions generated are of high quality?

In addition to face evaluation by experts and student peers
[29, 42, 50], psychometric methods are still mainstream to evaluate
question item quality. Common psychometric methods evaluate
test reliability by the internal consistency of question items within
a test, e.g., using a Rasch model [54], Item Response Theory (IRT)
model [20], or Cronbach’s alpha [11, 47]. A unique challenge is that
it requires substantial response data for such models to e�ectively
prune out low quality (inconsistent) question items, making psycho-
metric methods expensive and impractical to use in most college
classrooms. Although teachers might be able to apply psychometric
methods between semesters, most teachers do not have access to
student response data the �rst time they assign the questions.

We propose a modular prompt architecture Generative Students,
in which we leverage large language models (LLM) to simulate
student pro�les. In this paper, we demonstrate that we can have
the generative students answer multiple-choice questions and use
the responses to identify unreliable question items. The design
of the prompt architecture is based on the Knowledge-Learning-
Instruction framework [25], which uses Knowledge Components
(KCs) to de�ne the elements students are expected to learn. In Gen-
erative Students, we simulate student pro�les by the KCs they have
mastered. In particular, for every given KC, the student may have
mastered it, have confusion about it, or have not shown understand-
ing of it. A student pro�le is essentially a function of the list of
KCs they have mastered, have confusion about, or have not shown
understanding of. We propose Generative Students as an approach
that does not require students’ historical performance data. Instead,
we rely on instructors to provide input on the knowledge compo-
nents required for skill mastery and the common misconceptions
that they anticipate. This makes Generative Students potentially

more generalizable to domains that do not have a lot of historical
data. Generative students can be created within seconds and pro-
duce a large amount of response data to a given set of questions.
We aim to address the research questions of: 1) Is it possible to
use LLMs to successfully simulate student pro�les and generate
believable answers to questions? 2) How do the generative students’
responses contrast with authentic students’ answers?

We study these questions in the context of teaching and learn-
ing heuristic evaluation, a usability inspection method. The reason
we pick heuristic evaluation as the subject domain is two-fold: 1)
We have collected an authentic student response dataset with 20
multiple-choice questions (MCQs) on this topic, which enables the
comparison between generative students and real students. 2) The
topic of heuristic evaluation has well-de�ned knowledge compo-
nents (KCs). In particular, learners need to master 10 Nielsen’s
heuristic rules and check them against a design. We can conve-
niently denote each of the 10 heuristics as a KC.

Using the prompt architecture, we created 45 generative students
with di�erent mastery levels on the 10 KCs, and had them answer
20 MCQs. Each response to an MCQ is an API call to GPT-4. The
LLM’s response contains both the answer and a rationale for picking
the answer. We �rst performed a qualitative analysis of the LLMs’
responses showing that the generative students produced logical
and believable responses that are aligned with their pro�les.

We then compared the 45 generative students and 100 real col-
lege students on their responses to the same set of 20 MCQs. To
investigate how well a brutal force simulation approach would per-
form, we added a third condition, where we simulated 45 students
using random number generation. Each random student has a 70%
chance of getting each question correctly. The comparison between
real students, generative students, and random students shows
that, the real students and generative students have a high consis-
tency in their responses measured by Pearson’s correlation (r=0.72).
However, the real students’ and random students’ answers are not
correlated (r=-0.16). Moreover, we see a reasonable overlap on the
easy and hard questions identi�ed by generative students and real
students, which shows potential of using generative students to
signal questions that need revision.

This study generates insights on creating LLM agents that have
speci�c knowledge de�ciency, when the LLM itself has perfect
content knowledge. Speci�cally, we asked the LLM agents to play
the role of a teacher and predict a student’s answer to a question.
This is the �rst study to our knowledge that shows promising re-
sults of leveraging LLM-simulated student pro�les to help evaluate
multiple-choice question items, without the requirement of stu-
dent historical performance data. This opens up avenues for using
generative students to support rapid prototyping and iteration of
questions. We discuss the potential risks of the approach and the
necessity of eliciting instructor (expert) input to steer the process.

2 RELATEDWORK
2.1 Automatic Question Generation for

Educational Purposes
It has been a long standing interest of the Learning@Scale and AI
in Education communities to study question generation techniques.



Generative Students: Using LLM-Simulated Student Profiles to Support�estion Item Evaluation L@S ’24, July 18–20, 2024, Atlanta, GA, USA

One line of work uses crowdsourcing techniques [42]. For exam-
ple, UpGrade creates questions based on prior student solutions
[47] and QMAps encourages students to generate questions for
each other [57]. Another line of work develops end-to-end NLP
models for question creation, which are good at creating factual
questions [13, 28], while not being able to generate questions that
target higher Bloom goals [7]. On multiple-choice question (MCQ)
generation, prior approaches used name entity recognition and
topic modeling to identify salient sentences and extract keywords
for question options [30, 31]. Recent work has also explored human-
AI collaborativemethods forMCQ creation, where instructors select
text input for the options [29]. Existing AI-assisted question gener-
ation systems face a common challenge, i.e., how to evaluate the
quality of generated question items. In this work, we explore the
feasibility of leveraging LLMs to simulate student responses and
use them to evaluate auto-generated question items.

2.2 Metrics and Approaches to Evaluate
Questions

Prior work has explored various strategies to evaluate question
quality based on student data. Both learner subjective ratings [53]
and student performance data [18, 23] were used to select high-
quality content. Item di�culty and discrimination indices evaluate
whether the questions are di�erentiable [23], while psychometric
methods are used to evaluate the inner consistency of the questions
[11, 20, 23, 54]. However, although these post-hoc analyses may
favor future students, the question items with low quality in the �rst
place might waste students’ learning opportunities. Another line of
approach focuses on evaluating questions based on the descriptions
solely, using rubrics and guidelines like Bloom’s Taxonomy [49]
and item-writing �aws [35]. The questions are viewed as lower
quality if they only involve a low level of cognitive process [10],
and if they violate multiple rules in the item-writing �aws [34].
Based on these rules, prior work explored automatic quality control
approaches using supervised learning [49], neural networks [39]
and LLMs [34] to reduce the need for human labor. However, these
rule-based evaluations do not take into account students’ obstacles
in learning and could be biased by expert blindspots [46].

2.3 Generative agents
The success of LLMs in reasoning [14] and problem-solving abilities
[37] have attracted growing interest in LLM-powered generative
agents [38, 45]. Prior work has shown LLMs can be prompted to
generate believable behavior [38], and even act like humans from
certain sub-populations [4, 32]. By creating modules to simulate
human memory, planning and re�ection, the generative agents
can mimic the logic in human behavior and result in a believable
decision-making process [38]. Prior work has shown the potential
of generative agents in realistically simulating human behavior in
various areas, including strategic gaming [44, 56], social network-
ing [38], and role-playing [51]. However, existing work focuses
on simulating characteristics with di�erent perspectives like oc-
cupations, personalities, values and relationships [58], where the
character will make decisions to the best of their knowledge or
memory. However, in this work, we aim to simulate agents that

have knowledge de�ciencies and will make mistakes when solving
educational problems.

Recent work explored using generative agents in education [19,
22, 32, 40]. Xu and Zhang showed the potential of using LLM to
model students’ learning based on past assessment scores [55].
Researchers have also developed teachable agents, which provide
practice opportunities for learners to identify knowledge gaps [22]
and for instructors to receive feedback from students [32]. However,
previous simulations often rely on historical student performance
data. Our work presents a prompt architecture to create generative
students using a data-sparse approach, where we rely on experts to
provide a list of knowledge components required for skill mastery
and a list of common student misconceptions.

2.4 Prompt Engineering
Prompting has become a main way of utilizing and steering LLMs
[8]. Prior work has looked into di�erent guidelines for creating
e�ective prompts, including prompt structures [8], languages [52]
and vocabulary [36]. One direction of prompting is to use few-shot
learning, where the task is demonstrated with several example
input-output pairs [8]. Wei et al. proposed Chain-of-Thought as a
method to improve few-shot learning performance by including the
thought process in the prompt [52]. However, prompt engineering
is still a non-intuitive skill [36] and can be challenging for non-
experts. In our work, we investigate methods to prompt LLMs to
behave like students with knowledge de�ciencies. We summarize
prompt engineering strategies using LLMs to simulate students.

3 GENERATIVE STUDENTS PROMPT
ARCHITECTURE

We propose a prompt architecture based on a widely adopted frame-
work in learning sciences, the Knowledge-Learning-Instruction
(KLI) framework [27]. In particular, the KLI framework de�nes
the �nest units of information learners are expected to learn as
Knowledge Components (KCs). KCs are supposed to be mutually
exclusive and provide the basis to design instructional activities.
Students acquire the KCs in their learning processes. The prompt
architecture we propose de�nes a student pro�le as a function of
the list of KCs the student has mastered, has confusion about, or
has not shown evidence of knowledge on.

3.1 Implementation of Generative Students on
Heuristic Evaluation

In this paper, we implemented the concept of generative students
on the topic of heuristic evaluation. Heuristic evaluation is a widely
used usability inspection method, in which designers use rules
of thumb to inspect the usability of user interfaces and identify
design problems. We choose the topic of heuristic evaluation as
our subject domain for two reasons. First, we have collected a
student response dataset that contains 100 students’ responses to
20 MCQs on heuristic evaluation. This makes it possible to compare
generative students’ responses to real students’ responses. Second,
the topic of heuristic evaluation has well-de�ned KCs, namely the
10 Nielsen’s heuristic rules, as shown in Table 1. It removes the
requirement for performing a cognitive task analysis in order to
infer the KCs needed to complete this task. We acknowledge that
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Table 1: The topic of heuristic evaluation contains 10 knowl-
edge components (KCs), namely the 10 Nielsen’s heuristic
rules. A generative student pro�le is a function of which KCs
the student has mastered, has confusion about, or has shown
no evidence of knowledge on.

H1 Visibility of system status
H2 Match between the system and the real world
H3 User control and freedom
H4 Consistency and standards
H5 Error prevention
H6 Recognition Rather than Recall
H7 Flexibility and E�ciency of Use
H8 Aesthetic and minimalist design
H9 Help users recognize, diagnose, and recover from errors
H10 Help and Documentation

the task of heuristic evaluation is unique in that the 10 KCs are
clear-cut and concurrent, and that there are fewer dependencies
among the KCs. We will discuss in later sections on the potential
of generalizing Generative Students to other domains.

3.2 Final Prompt Structure and Examples
The template of the prompt we used to create generative students
is shown in Figure 2. The prompt has three main parts: 1) an in-
troduction of the task; 2) an illustration of the generative student
pro�le; 3) an MCQ to which the generative student will produce an
answer. First, the introduction speci�es that the model is playing
the role of a teacher predicting a student’s answer. We will explain
the rationale of asking the model to simulate a teacher instead of
directly simulating a student answering a question in 3.4.2. Second,
the generative student pro�le is a function of lists of heuristic rules
the student has mastered, has confusion about, or has shown no
evidence of knowledge of. For example, generative student 1 (GS1)
has mastered �ve rules, is confused between two rules, and has not
shown evidence of knowledge of three rules. For each mastered
rule, it calls the mastered rule prompt function, which gives an
example question demonstrating the student has given a correct
answer to this question. The confusion prompt requires two rules as
the input, and uses two example questions to show that the student
has confusion between these two rules. There is no prompt for the
unknown rules. Third, the model is asked to predict an answer to a
new MCQ. With a di�erent input on the list of mastered, confusion,
and unknown rules, the template generates a di�erent generative
student pro�le (e.g., GS2 in Figure 2).

3.3 Input to the Prompt Template
The example questions and answers used in the prompt are provided
by an instructor who has been teaching this topic for 5 years. The
instructor provided one example question for each of the 10 heuris-
tic rules, indicating the student has mastered the rule. Moreover,
the instructor suggested 2 pairs of common confusions: between
"H3-User control and freedom" and "H7-Flexibility and e�ciency
of use", and between "H5-Error prevention" and "H9-Help users
recognize, diagnose, and recover from errors". We also created 2
pairs of random confusions. This gives us 4 pairs of confusion rules.

For each pair, the instructor provided us with 2 example questions,
where both heuristic rules are in the options and the correct an-
swer is one of them, as shown in Figure 2(b1). Please note that
the example questions the instructor provided to us were similar
in style to the 20 new questions we’re producing answers on. But
the 20 questions are completely new questions that the generative
students have not answered before. To summarize, the Generative
Students prompt architecture requires the following input from an
expert:

• Knowledge components(KCs) required to perform a task.
• An example question per KC with the correct answer to
demonstrate a student has mastered this KC.

• Common student misconceptions (optional). In the case of
heuristic evaluation, a misconception involves two KCs.

• Example question(s) per confusion with an incorrect answer
to demonstrate a student has confusion about this KC. In
the case of heuristic evaluation, it requires two example
questions.

3.4 Takeaways from the Prompt Engineering
Process

In this section, we describe our takeaways from the prompt engi-
neering process that led to the �nal prompt as shown in Figure 2.

3.4.1 Providing example MCQs and answers improves performance.
We found that using example questions to indicate the student
has mastered or has confusion about a rule is more e�ective than
simply stating it, in line with prior work [41, 52]. In particular, for
the confusion prompt component, we �rst tried specifying that
the student was confused about one rule. However, it will bias the
model towards always picking or not picking one choice. From our
trial-and-error process, the current prompt that takes two rules as
arguments works best in simulating a student’s confusion. More-
over, we need two example questions to demonstrate the student
can make a mistake in both directions. When we only use one ex-
ample question in the prompt, the model would mistakenly think
the generative student will always pick one rule over the other.

3.4.2 Asking the model to role-play as an instructor and predict the
generative student’s answer helps. Instead of prompting the LLM
to act as a student and "answer" the questions directly, we ask it
to act as a teacher who wants to "predict" the student’s answer.
We found that when asked to answer the questions based on the
student’s pro�le, the LLM is more likely to answer based on its prior
knowledge. For example, even when we specify in the prompt that
the student has confusion about a rule, the model will still answer
a related question correctly. On the other hand, when we prompt
the model to act as a teacher to predict the student’s answer, the
model’s performance is better aligned with the student’s pro�le.

3.4.3 Using unknown rules to increase uncertainty in the predicted
answers. To better simulate real students’ responses to the ques-
tions, we’d like to introduce some uncertainty on the generative
students’ answers. We found that specifying some unknown rules,
i.e., leaving them blank without any explicit prompting, achieves
this goal. For example, for GS1, H4, H9, and H10 are unknown rules.
We do not have any prompt components that specify the student’s
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Figure 2: The prompt template has three main parts: 1) an introduction of the task (c1); 2) an illustration of the generative
student pro�le (c2); 3) a new MCQ to which the generative student will answer (c3). The generative student pro�le is a function
of the list of heuristic rules the student has mastered, has confusion about, or has no evidence of knowledge of (a). For each
mastered heuristic rule, we used an example MCQ to indicate the student has su�cient knowledge (b2); For each pair of
confusion heuristic rules, we used two example MCQs to indicate the student may mistakenly choose one over the other (b1).

knowledge on these KCs. It turns out to be e�ective in introducing
uncertainty in the generative students’ answers.

3.4.4 Introducing uncertainty within the confusion prompt compo-
nent by providing both positive and negative examples. In reality,
even when a student has confusion between two rules, they may
still get easy questions correct. To simulate this uncertainty, we
created a variation of the confusion prompt component, where
the student has shown some understanding, but hasn’t mastered it
yet. We introduce example questions with varying di�culty in the
prompt. For example, we specify that the generative student can
answer the easy questions correctly while making errors on more
di�cult questions. We found that the variation of the confusion
prompt introduced more uncertainty that aligned with the prompt
speci�cation.

3.4.5 Using the prompt to get a generative student’s response to one
question at a time gives be�er results. We found that prompting the
generative students to answer 20 questions all at once did not work
well. First, due to the token limit in each response, the response to
each question is shorter. As a result, we observe shallower reasoning.
Second, if asked to predict 20 questions at a time, the model will use
its answer to a former question to predict a later question. Moreover,
a previous question’s response may also override the generative
student’s pro�le, leading to answers misaligned with the pro�le.

4 GENERATIVE STUDENTS RESPONSE
DATASET

4.1 Creation of 45 Generative Students
As we noted earlier, each generative student is a function of the
list of rules they have mastered, have confusion about, or have no
evidence of knowledge of.We can pass the list of rules as parameters
to automatically create the generative students, as shown in Figure 2.
A decision we need to make is how knowledgeable the generative
student is, e.g., the student can master 3 rules, 5 rules or 9 rules. In
this experiment, we created a suite of 10 struggling students, 30
average students, and 5 advanced students, as shown in Table 2.
The advanced students are more knowledgeable because they have
less confusion as speci�ed in the prompts. With the distribution set
(as shown in Table 2), one can randomly select heuristic rules from
the list to automatically create generative students. In this study,
we applied a semi-random approach instead of a fully random one
to better contrast di�erent generative student pro�les. We created
pairs of similar student pro�les, where only one variable di�ered
with everything else being the same between the two pro�les. For
example, to create two generative students with the same set of
mastered rules, but a di�erent pair of confused rules, we would
randomly pick a confusion pair for each student, and then randomly
pick the same set of 5 mastered rules for both of them.
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Table 2: The distribution of the number ofmastered, confused
and unknown rules among the 45 generative students.

# of mastered
HE rules

pair of confused
HE rules

# of un-
known rules

# of genera-
tive students

5 2 3 15 (Average)
7 2 1 15 (Average)
5 4 1 5 (Struggle)
3 4 3 5 (Struggle)
5 2 (focused con-

fusion prompt)
3 5 (Advanced)

4.2 Implementation
We used the OpenAI API to provide inputs and get responses from
GPT-4. As shown in Section 3.4.5, each API call contains only one
generative student pro�le, and only predicts the response to one
question. To ensure getting the most reliable prediction, we set the
temperature of the model to 0, which ensures that we are getting
the exactly same result from GPT with the same prompt.

4.3 Example GPT-4 Responses
With each API call, the model will output a predicted response, i.e.,
which option the student would pick, and a rationale explaining
why the model believes the student will pick this option. Here we
present two examples of the responses generated by GPT-4. In this
example, the generative student has confusion between "Flexibility
and e�ciency of use" and "User control and freedom". The correct
answer to the question is "User control and freedom", and "Flexibil-
ity and e�ciency of use" is among the options. It is predicted that
John would incorrectly choose "Flexibility and e�ciency of use"
based on the reasoning:

Given that John incorrectly chose "Flexibility and ef-
�ciency of use" over "User control and freedom" for
a question where the latter was the correct answer,
there’s a possibility that he might repeat this mistake
if he perceives the new scenario as a limitation in the
system’s �exibility or e�ciency, rather than an issue
of user control.

In another question, the correct answer is a rule John has mas-
tered, "Visibility of system status". None of John’s confused rules
are among the options. It is predicted that John would choose the
correct answer with the reasoning:

Considering John’s track record, it’s plausible that he
could again accurately recognize this scenario as a
violation of "Visibility of system status." His confusion
doesn’t directly apply to this scenario, so it’s less likely
to in�uence his answer here.

5 EVALUATION OF THE OUTPUTS BY
GENERATIVE STUDENTS

5.1 Methods
To investigate whether the answers are aligned with the generative
students’ pro�les, we applied both quantitative and qualitative
analyses. First, we counted the number of instances the generative
students answered correctly across di�erent conditions, e.g., when

the student has mastered a rule versus not. Second, we analyzed
the rationale the model generated using a�nity diagrams [33],
where we iteratively grouped the reasoning and identi�ed common
themes.

5.2 Generative Students’ Answers are Generally
Aligned with the Student Pro�les

Table 3: Performance by the generative students who have
mastered 5 rules, have confusion between 1 pair of rules. In
the target question, when the correct answer is a mastered
rule, students demonstrate good performance. When the
correct answer is one rule in the confused pair, the accuracy
is generally low. When the correct answer is an unknown
rule, there is a 30%-50% chance that the student can answer
correctly. In all three conditions, students’ performance is
lower when the confused rules are present in the distractors.

Correct
Answer

Confusion
in Other
Options

%Correct Total
Responses

% Choosing
Confused
Rule

Mastered No 85.2 64 -
Mastered Yes 72.4 125 59.4
Confused No 35.6 52 -
Confused Yes 11.0 41 82.2
Unknown No 52.1 47 -
Unknown Yes 34.5 71 46.2

5.2.1 Generative students are likely to answer a question correctly
when the correct answer is a "mastered" rule. When the correct an-
swer of the MCQ is a mastered rule, and no confused rules are
present in the distractors, the student is likely to answer correctly
(85.2% of the time). For example, GS9 has mastered the rule "User
control and freedom", he is predicted to correctly answer a question
on the same heuristic because "His past performance indicates a good
grasp of this particular heuristic, suggesting he is likely to apply it
correctly again." When confused rules present in the options, the ac-
curacy is slightly lower (72.4%). Here is one sample of GS8 predicted
to answer Q5 correctly where the correct answer is a mastered rule
and both confused rules are among the options. GPT-4 reasoned
that "the new question directly concerns the visibility of system status,
an area John previously demonstrated an understanding of. Addition-
ally, the new question does not directly involve distinguishing between
’Error prevention’ and ’Help users recognize, diagnose, and recover
from errors,’ areas where John showed confusion."

We summarized two scenarios where the student answers the
question wrongly when the options contained a confused rule
(27.6%). First, students might incorrectly choose the confused rules.
Second, the generative student may pick a suboptimal answer but
the reasoning shows a legitimate understanding of the mastered
rule. This happened when the question stem was vague and multi-
ple answers could be correct. For example, Q20 is about the system
not supporting using the ’tab’ key to navigate the form, the cor-
rect answer is "Flexibility and e�ciency of use". However, given
the prevalence of the ’tab’ key function, this scenario can also be
interpreted as violating "Consistency and standards". Although GS9
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has mastered "Flexibility and e�ciency of use", they are predicted
to choose "Consistency and standards" for this reason.

5.2.2 Generative students are likely to answer the questions wrong
when the correct answer is a "confused" rule. When the correct an-
swer is a heuristic that the student has shown confusion about, the
student will have a high likelihood of getting it wrong. The chance
of getting it wrong is in particular high, when the other rule in the
confusion pair is present in the options, as shown in Table 3.

5.2.3 Generative students could correctly answer a question when
the correct answer is a "confused" rule, if the other rule in the confu-
sion pair is not among the options. For example, the correct answer
for Q9 is "Help users recognize, diagnose, and recover from errors".
Although GS8 is confused between "Error prevention" and "Help
users recognize, diagnose, and recover from errors", they are pre-
dicted to answer this question correctly since "Error prevention" is
not in the options. GPT-4 predicts "it’s more likely that they might
choose the option that is closest to dealing with errors ... ’Help users
recognize, diagnose, and recover from errors’". The generative student
might also get correct by eliminating other options. For example,
GS2 confuses about the correct answer in Q6, but since the other
confusion rules are not among the options, and they have mastered
the rules in all the other options, GPT-4 predicts that "he might elim-
inate these options because (they could identify) they (other options)
don’t �t the scenario as well as ’Visibility of system status’ does."

5.2.4 Generative students are likely to be wrong when the correct
answer is an "unknown" rule, and there is a "confused" rule in the
option. However, when the options do not contain a confused rule,
the generative students show a slightly above 50% chance to get
the questions right. For example, Q2 doesn’t contain any confused
rules for GS3 in the options, and the correct answer is an unknown
rule. GS3 is predicted to answer it correctly because "the clear match
between the scenario’s description and the fundamental concept of
’User control and freedom’." and the fact that "the situation doesn’t
directly involve error messages or prevention". Moreover, GPT-4 also
predicts the student’s knowledge of the unknown rule based on
their knowledge of related heuristic rules. For example, the correct
answer to Q4-"Consistency and standards"- is an unknown rule to
GS8. Q4’s options do not contain any confused rules for GS8. GPT-4
predicts that since they "correctly answered questions related to user
interface design and user experience consistency (’Visibility of system
status,’ ’Aesthetic and minimalist design’, and ’Match between system
and the real world,’ )", "there is a reasonable chance that they might
select the correct answer".

5.3 Controlled Variable Generation in the
Prompt Leads to Probable Outcomes

As mentioned earlier, we applied a semi-random approach when
selecting the list of heuristic rules to create the generative students.
We created pairs of similar student pro�les, where only one variable
di�ered with everything else being the same between the two pro-
�les. This allows us to examine whether the change of one variable
in the prompt leads to outputs that align with our expectations.

5.3.1 Changing only the confusion pair in the student profile yields
reasonable outputs. We created multiple pairs of similar student

pro�les where the only di�erence was the confusion pair. We found
that the generative students would produce outputs that are aligned
with our expectations. For example, the correct answer for Q15 is
"Flexibility and e�ciency of use". GS4 has shown confusion between
"Flexibility and e�ciency of use" and "Recognition rather than
recall", so they are predicted to choose "Recognition rather than
recall" in this question. On the other hand, GS11 has the same set
of mastered rules as GS4, and the only di�erence between their
pro�le is that GS11 is confused between "Flexibility and e�ciency
of use" and "User control and freedom". For this question, GS11 is
thus predicted to choose "User control and freedom".

5.3.2 A more knowledgeable student is more likely to answer ques-
tions on unknown rules correctly. Consider a generative student that
has mastered 5 rules, has 1 pair of confused rules, and 3 unknown
rules. If we make this student more knowledgeable by adding 2
mastered rules, while keeping the original confusion pair, our ex-
periment shows that the more knowledgeable student will be more
likely to correctly answer questions on unknown rules. This aligns
with our expectations. For example, Q10’s correct answer "Visibil-
ity of system status" is a confused rule to GS2. Among the other
3 options of Q10, GS2 has mastered one rule and the other two
rules are unknown. GS2 is predicted to answer Q10 incorrectly.
When we create a new generative student GS12 with additional
mastery of the two unknown options, they answer Q10 correctly,
since they can successfully eliminate the options. Moreover, an
increased understanding of heuristic rules in general indicates an
improved overall ability to identify heuristic rules. In GS12’s case,
the increased understanding in other heuristics indicated that they
might be correct in answering questions with unknown rules as
reasoned by the model: "[because] their overall good performance on
questions related to the usability heuristics that directly impact user
interaction and control."

5.4 The Focused Confusion Prompt Introduces
Uncertainty and Improves Students’ Overall
Performance on Questions Related to the
Confused Rules

Table 4: We contrast the performance of generative students
who used the original confusion prompt versus the focused
confusion prompt ("Confused F-Prompt"). The focused con-
fusion prompt suggests that the student will answer easy
questions related to the confusion correctly. It aligned with
our expectation that students using the focused confusion
prompts have better performance.

Correct
Answer

Confusion
in Other
Options

%Correct Total
Responses

%Choosing
Confused
Rule

Confused No 26.9 39 -
Confused Yes 0 30 25
Confused
F-Prompt No 61.5 13 -

Confused
F-Prompt Yes 40.9 11 100
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Figure 3: The focused confusion prompt (right) contains the two original questions that the student got wrong (Q1, Q2), and
two additional examples to show that the students may answer the easy questions correctly (Q3, Q4). Generative students who
use the focused confusion prompt are expected to have better overall performance. The focused confusion prompt aims to
introduce more uncertainty to better simulate realistic scenarios.

We implemented a focused confusion prompt to indicate that
even when the student is confused between two rules, there is a
chance that they may answer easy questions on the confused rules
correctly. The GPT-4 output is aligned with the expectation, as
shown in Table 4. The student pro�les with the focused confusion
prompt have a higher likelihood of answering the questions cor-
rectly. We compare two generative students, GS1 and GS21, who
have the same pro�le, except that GS21 uses the focused confusion
prompt on the same pair of confused rules. GS21 is predicted to
answer Q14 correctly, where the correct answer is a confused rule
for both GS21 and GS1, whereas GS1 is predicted to answer it incor-
rectly. The reasoning for GS21’s correct answer is that "considering
that they correctly identi�ed ’Flexibility and e�ciency of use’ in a
previous question where it was indeed the correct answer, there’s a
good chance he will choose the correct answer this time."

6 COMPARISON BETWEEN REAL STUDENTS,
GENERATIVE STUDENTS, AND RANDOM
STUDENTS

6.1 Datasets
6.1.1 Real Students’ Response Dataset. The same set of the 20
MCQs have been previously assigned in a college-level course at an
R1 institution in 2021 as a homework assignment. We got IRB ap-
proval to collect student responses from that class. Students in the
course were asked to complete the assignment through a website
that contains the same 20 MCQs on the topic of heuristic evaluation.
100 students completed the assignment.

6.1.2 Random Students’ Response Dataset. To investigate how well
random simulations perform on this task and compare our princi-
pled simulation approachwith a randomone, we designed a baseline
condition where student responses were generated randomly. We
refer to these as random students. The random students are created
based on random number generation. For each question, there is

a 70% chance of getting the question correctly. We generated 45
random students.

6.2 Methods
First, to check the consistency of real students’ responses with gen-
erative and random students’ respectively, we computed Pearson’s
correlation using the students’ average score on each question. Sec-
ond, we used Cronbach’s Alpha to measure the internal consistency
of each dataset. Third, we identify hard and easy questions based
on the responses. We employed two thresholds: if the average score
is above 80%, it’s considered to be an easy question, and if the
average score is below 40%, it’s considered to be a hard question.
We compared across the three conditions to assess the overlap on
the easy and hard questions identi�ed. Moreover, for the questions
where real students and generative students yielded di�erent re-
sults, we performed an error analysis analyzing the distribution of
the options students picked.

6.3 Results
First, as shown in Table 5, generative students’ responses show a
high correlation with real students’ responses, with a Pearson’s
correlation of 0.72. On the other hand, the correlation between the
random students and the real students is only -0.16.

Second, the generative students’ responses dataset shows high
internal consistency asmeasured by Cronbach’s Alpha (0.6176), also
shown in Table 5. The internal consistency is comparable to that of
the real students’ response dataset (0.559). However, the random
students’ response data has low internal consistency (0.042).

We see 3 overlaps between the generative and real students’
datasets among the hard questions identi�ed, and 2 overlaps among
the easy questions identi�ed. However, there does not exist any
overlap between the real and the random student datasets. The
questions that received low scores may suggest that the clarity
of the questions needs to be improved. For these hard questions,
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Table 5: Average scores for each of the 20 MCQs across the
three response datasets. Green text indicates easy questions
(>0.8) and red text indicates hard questions (<0.4). The ques-
tions that receive very low scores may suggest that the clarity
of the questions needs to be improved.

Real
Stu-
dents

Generative
Students

Random
Stu-
dents

Real
Stu-
dents

Generative
Students

Random
Stu-
dents

Q1 0.76 0.54 0.73 Q11 0.84 (+) 0.8 (+) 0.6
Q2 0.69 0.51 0.67 Q12 0.88 (+) 0.67 0.76
Q3 0.56 0.22 (-) 0.73 Q13 0.16 (-) 0.04 (-) 0.69
Q4 0.33 (-) 0.53 0.69 Q14 0.72 0.52 0.73
Q5 0.74 0.57 0.56 Q15 0.52 0.26 (-) 0.82 (+)
Q6 0.79 0.67 0.76 Q16 0.69 0.34 (-) 0.71
Q7 0.84 (+) 0.72 0.62 Q17 0.36 (-) 0.34(-) 0.62
Q8 0.64 0.67 0.82 (+) Q18 0.59 0.8 (+) 0.71
Q9 0.45 0.37 (-) 0.8 (+) Q19 0.85(+) 0.94 (+) 0.62
Q10 0.57 0.79 0.64 Q20 0.37 (-) 0.14 (-) 0.71
Pearson’s R with real student averages 1 0.72 -0.16

Table 6: The real students’ and the generative students’ re-
sponse datasets have a comparable medium-to-high value of
Cronbach’s Alpha indicating good internal consistency, in
contrast with the random students’ response dataset.

Real
Students

Generative
Students

Random
Students

Cronbach’s Alpha 0.559 0.6176 0.042

Table 7: There is considerable overlap between the real stu-
dents and generative students on the distracting options they
picked (chosen by over 25% of students) for the hard questions.
Instructors might leverage such information to improve the
clarity of the questions.

Q3 Q9 Q13 Q15 Q17 Q20
Student Dataset A A, C C, D D A C. D
Generative Dataset A A, C C, D D B, C C, D

we further analyzed the distribution of students’ answers on the
options to reveal the sources of mistakes. In Table 7, we present
the frequent wrong answers chosen by over 25% of the students.
There is considerable overlap in the wrong options students picked
between the real student and generative student response datasets.
If instructors are interested in improving the clarity of the questions,
they could leverage such information.

6.4 Error Analysis
We further performed an error analysis to shed light on what caused
the generative students to answer questions di�erently from the
real students.

6.4.1 Generative students had be�er performance on some questions
because the real students’ confusion was not included in the profiles.
The generative students show higher performance in Q4, Q10 and
Q18 in comparison with the real students. One reason is that most of
the options in these questions are not among the pairs of confusions.
As a result, most generative students won’t �nd any of the options
to be confusing and will answer them correctly. However, real

students show coherent confusion in these questions. 76% (51 out
of 67) of the real students who got Q4 wrong and 49% of the students
who got Q18 wrong chose "Flexibility and e�ciency of use" instead
of "Consistency and standards". This suggests that the inclusion of
a more diverse set of confusion KCs may improve the proximity
between the generative students’ with real students’ responses.

6.4.2 Students’ confusionmay be over-emphasized or over-generalized
leading to more pessimistic predictions on some questions. The gen-
erative students show a higher tendency to fail questions when the
options contain a heuristic they have confusion about. Although
real students may also make repeated errors, the portion is lower.
For example, about 25% of the generative students lean to the wrong
option "Visibility of system status" for Q7. The same trend also ap-
pears in the real students, but it only takes up 7% of the responses.

6.4.3 LLM may lose focus on the question. When the question
description emphasizes a seemingly positive feature, the generative
students may misinterpret the question as asking for what heuristic
it describes, instead of what it violates. For example, the description
of Q3 reads "There are several ways to browse di�erent categories
of products on the same page. The user can either click the ’Shop by
category’ dropdown menu or click on the tabs from the main page.".
Many of the generative students "interpret the presence of multiple
ways to browse as a feature that enhances �exibility and e�ciency".

7 A POTENTIAL USE CASE LEVERAGING
GENERATIVE STUDENTS TO IMPROVE
QUESTION QUALITY

We did a case study with an instructor who was teaching heuristic
evaluation in the Spring semester of 2024 at an R1 institution. Specif-
ically, we presented them with the original 20 questions, generative
students’ responses, and asked them to revise some questions based
on the signals. The instructor speci�cally picked Q3, Q9, Q13, and
Q20 which received average scores below 0.4 when answered by
generative students (as shown in Table 5). The instructor considered
these 4 questions to be badly worded and improved the clarity based
on the wrong options the generative students picked. We then ran a
classroom experiment including the original and improved versions
of the questions in a required quiz in a class with 280 students. The
case study and the classroom experiment are IRB approved.

In the classroom experiment, all consented students needed to
answer a 7-question quiz on heuristic evaluation. We created two
versions of the quiz following a crossover design [46]. Quiz version
A contains the improved version of Q9 and Q20, with the original
version of Q3, Q13, Q1, Q5, Q7. Quiz version B contains the im-
proved version of Q3 and Q13, with the original version of Q9, Q20,
Q1, Q5, Q7. All students were randomly assigned to a quiz version.
Q1, Q5 and Q7 are shared between the two versions and used to
control for the two groups’ prior knowledge.

7.1 Real Students Got Better Performance on
the Revised Questions

A randomization check showed that students in the two quiz ver-
sions showed similar performance on the shared questions Q1, Q5
and Q7, indicating that the comparison between the two groups
was fair. To investigate whether the revised questions appeared
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Table 8: Students are randomly assigned to answer Version A
or B of the quiz. For Q3, Q9, Q13 and Q20, the underlined ver-
sion is the revised question leveraging generative students’
signals (including the wrong options picked by generative
students). Q1, Q5, and Q7 are baseline questions that are the
same across the two versions. We observed that there is a sig-
ni�cant improvement in the average question score between
the original and the revised version.

Q3 Q9 Q13 Q20 Q5 Q1 Q7
Version A (n=147) 0.84 0.86 0.29 0.83 0.88 0.94 0.96
Version B (n=133) 0.81 0.68 0.80 0.50 0.81 0.93 0.92

to be less di�cult as intended, we built a mixed-e�ects logistic re-
gression model where the dependent variable is the question score
(0 being incorrect and 1 being correct), and the �xed e�ect is the
question form, i.e., whether the question is original or modi�ed. To
account for di�erent question di�culty and varying student abili-
ties, we included a random slope for each question, and a random
intercept for each student and each question [46]. We found that
the revised questions led to a signi�cant increase in the question
score (z=-2.538, p=0.01 < 0.05). The average score improvement is
0.248. The average score on each question is shown in Table 8. In
particular, there is no improved performance on Q3, probably due
to the fact that students got reasonably high scores on the original
question.

8 DISCUSSION AND FUTUREWORK
Our work shows promises of using the Generative Students prompt
architecture to simulate student pro�les that can generate believ-
able and logical responses to MCQs. One potential avenue of this
work is to help instructors quickly evaluate an initial set of ques-
tions, identify bad items and improve them before assigning to real
students. In this section, we discuss how far we are from that goal
based on the results presented from this study.

First, we see promising results on the high correlation between
generative students’ and real students’ responses, and overlap on
the questions that students answered poorly. We discussed several
prompt engineering takeaways for simulating student behaviors.
First, describing the task as a pedagogical prediction leads to pre-
dictions more aligned with the student pro�les. Second, illustrating
students’ knowledge with example questions and answers result in
predictions that better align with the pro�les. Third, we explored
methods to introduce diversity and uncertainty when simulating
students, including a focused confusion prompt, an unknown com-
ponent in the prompt architecture, and including example questions
of varying di�culty when specifying the student pro�les. On the
other hand, we also revealed di�erent reasoning models behind real
and generative students. For example, generative students might
appear to be more stubborn as they repeatedly make similar mis-
takes. It requires more experiments to enhance the proximity of
the generative students’ responses. For example, future work could
explore including a more diverse set of confused rules, and intro-
ducing more prompt variations similar to the focused confusion
prompt to increase uncertainty.

Second, we propose a general-purpose architecture for simulat-
ing student pro�les. Although we only demonstrated our pipeline

on one topic, i.e., heuristic evaluation, the architecture may be
applied to other domains. For topics where the KCs are less well-
de�ned and have more dependencies, expert input and speci�ca-
tions are required to ensure the generative students produce reliable
and believable outputs. In future work, we plan to collaborate with
instructors to understand how they would de�ne KCs, structure the
prompts, gather examples, and interpret the results. We also aim to
investigate the feasibility of this approach when the instructors are
not able to articulate the KCs required for skill mastery. We also
plan to understand the time commitment from instructors to ensure
that this is a reasonable amount of e�ort for them to prototype and
iterate on their questions.

Third, the confusions we included in the student pro�les are
based on experts’ understanding of novice students’ challenges,
which may not be comprehensive. We plan to further explore meth-
ods to communicate students’ knowledge to LLMs. For example,
students’ historical performance data may provide a more accurate
representation of student knowledge, however it requires a lot of
data input and may be less scalable for everyday teaching. Future
work may explore methods to combine the expert-guided approach
as proposed in Generative Students with a small set of student
performance data to improve the simulation output.

Fourth, the case study showed that generative students could
provide signals for instructors to improve their questions, e.g., help
them identify di�cult questions, and give them insights on fre-
quently picked wrong options. The case study showed that an
instructor could indeed leverage such information to iterate on the
questions and make them less di�cult. However, we acknowledge
that "less di�cult" does not necessarily indicate higher educational
value. It requires further careful analysis to understand whether
and when "less di�cult" is desirable for instructors and students.

9 CONCLUSION
We propose Generative Students, a prompt architecture using LLM
to simulate student pro�les and produce reliable and believable
responses to MCQs. With knowledge components (KCs) identi�ed
for a given topic, a generative student pro�le is a function of the
list of KCs the student has mastered, has confusion about, or has
shown no evidence of knowledge of. We show that providing con-
crete question-and-answer examples and having the model play
the role of a teacher to predict student performance helps simulate
believable student behaviors. Our results suggest that generative
students’ responses to the MCQs are aligned with their pro�les, and
exhibit a strong correlation with those of actual students. A sub-
sequent case study demonstrates that generative students provide
useful signals for an instructor to identify badly-worded MCQs
and improve them. A classroom experiment reveals that the re-
vised questions, informed by the behaviors of generative students,
become "less di�cult" as intended.
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