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Abstract

We show both adaptive and non-adaptive
minimax rates of convergence for a fam-
ily of weighted Laplacian-Eigenmap based
nonparametric regression methods, when the
true regression function belongs to a Sobolev
space and the sampling density is bounded
from above and below. The adaptation
methodology is based on extensions of Lep-
ski’s method and is over both the smoothness
parameter (s € N, ) and the norm parame-
ter (M > 0) determining the constraints on
the Sobolev space. Our results extend the
non-adaptive result in Green et al. (2023),
established for a specific normalized graph
Laplacian, to a wide class of weighted Lapla-
cian matrices used in practice, including the
unnormalized Laplacian and random walk
Laplacian.

1 INTRODUCTION

Consider the following regression model,

}/’L:f(Xl)_‘_gl? 1=1,...,n, (1)

where f : X — R is the true regression function,
X; ERg- g, where g is a density on X C R? and
g R N(0,1) is the noise (independent of the X;’s).
The goal is to estimate the regression function f given
pairs of observations (X1,Y7),..., (X,,Y,). Our main
contribution in this work is to develop non-adaptive
and adaptive estimators that achieve minimax opti-
mal estimation rates, when f lies in Sobolev spaces.

The estimators we study are based on performing
principal components regression using the estimated
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eigenfunctions of a family of weighted Graph Lapla-
cian operators. Various versions of Graph Laplacian
matrices have been considered in the literature. Re-
cently, Hoffmann et al. (2022) proposed a unifying
framework describing a family of Graph Laplacian ma-
trices, parametrized by w € R3; see (2) and (3) for de-
tails. This captures Laplacian matrices used widely in
practice, including the normalized, unnormalized and
the random walk Laplacian.

Green et al. (2023) analyzed principal components re-
gression specifically using unnormalized graph Lapla-
cian matrices constructed over e-graphs, and estab-
lished non-adaptive minimax rates when f lies in
Sobolev spaces. In this paper, we first extend this
result to the entire family of weighted Laplacian ma-
trices from (2) and (3); Theorem 3.1. These results are
established by assuming a sampling density bounded
from above and below and a true regression function
belonging to a Sobolev space.

Note that technically, the weighted Laplacian ma-
trices correspond to a family of weighted Sobolev
spaces which all become equivalent under the above-
mentioned boundedness assumption on the sampling
density. However, the parameters of the correspond-
ing Sobolev spaces, in particular the smoothness pa-
rameter (s € N, ) and the norm parameter M > 0 de-
termining the constraints on the Sobolev space, both
change on w.

While the minimax rate optimal non-adaptive estima-
tor depends on the knowledge of the smoothness and
norm parameters of the true regression function, these
parameters are unknown in practice. Tuning parame-
ters, such as €, the graph radius (or the bandwidth
for the kernel) and K, the number of eigenvectors
considered, require knowledge of the smoothness and
the norm parameters. Hence, in order to apply the
Laplacian-based regression methodology in practice,
we develop an adaptive estimator, based on Lepski’s
method, and show in Theorem 3.2 that the developed
estimator achieves minimax rates (up to log factors)
without requiring the knowledge of either the smooth-
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ness or the norm parameters.

The main technical contributions we make in this work
towards establishing the aforementioned both adaptive
and non-adaptive results include the following:

e As a part of the proofs of our main results in The-
orem 3.1, we rigorously prove the idea roughly
outlined by Hoffmann et al. (2022) on showing the
convergence of the discrete weighted graph Lapla-
cian matrices to their continuum counterparts
(in appropriately well-defined sense) by leverag-
ing the concentration result established by Giné
and Guillou (2002) for kernel density estimators.

e We generalize the convergence property of the
eigenvalues of the Laplacian matrices in Calder
and Trillos (2022) to the weighted Laplacian ma-
trices by providing an analogous bound for the
eigenvalues combined with Weyl’s law.

o We formulate a simultaneous two-parameter Lep-
ski’s procedure and obtain the adaptive minimax
rate (see Theorem 3.2) through deriving a high-
order-moment-based concentration inequality of
the weighted Sobolev semi-norm.

Our contributions not only highlight the significance of
utilizing the weighted graph Laplacians for nonpara-
metric regression but also establish a solid statistical
foundation for this method, offering a robust frame-
work that underpins the reliability and effectiveness of
this approach.

1.1 Related Works

Graph Laplacians are widely used in many data sci-
ence problems for feature learning and spectral clus-
tering (Weiss, 1999, Shi and Malik, 2000, Ng et al.,
2001, von Luxburg, 2007), extracting heat kernel sig-
natures for shape analysis (Sun et al., 2009, An-
dreux et al., 2015, Dunson et al., 2021), reinforce-
ment learning (Mahadevan and Maggioni, 2007, Wu
et al., 2019) and dimensionality reduction (Belkin and
Niyogi, 2003, Coifman and Lafon, 2006), among other
applications. There is an ever-growing literature on
further applications of graph Laplacian in data science
topic, and we also refer to Belkin et al. (2006), Wang
et al. (2015), Chun et al. (2016) for more discussions.

As mentioned above, we consider the application of the
weighted graph Laplacian for achieving minimax opti-
mal rates in nonparametric regression. Other works fo-
cusing on this problem (including the semi-supervised
setting) include Green et al. (2021) and Green et al.
(2023) using unnormalized Laplacian based on the
Laplacian eigenmaps (see Belkin and Niyogi, 2003),

Bousquet et al. (2003) with Laplacian smoothing,
Rice (1984) adopting spectral series regression on the
Sobolev spaces, Trillos et al. (2022) applying the graph
Poly-Laplacians (see Remark 3.4 for specific compar-
ison to this method) and Hacquard et al. (2022) us-
ing topological data analysis. We also refer to Zhu
et al. (2003), Zhou and Srebro (2011), Lee and Izbicki
(2016), Dicker et al. (2017) and Garcia Trillos and
Murray (2020) for related analysis in the context of
regression problems.

In recent years, there has been a great deal of progress
on obtaining theoretical rates of convergence in the
context of Laplacian operator estimation and related
eigenvalue and/or eigenfunction estimation. Early
work on consistency of graph Laplacians focused on
pointwise consistency results for e-graphs, see Belkin
and Niyogi (2005), Hein et al. (2005), Giné and
Koltchinskii (2006), Hein et al. (2007) and references
therein for more details. For fixed neighborhood size
€, von Luxburg et al. (2008) and Rosasco et al. (2010)
considered spectral convergence of graph Laplacians.
Furthermore, Trillos and Slepcev (2018) established
conditions on connectivity for the above spectral con-
vergence with no specific error estimates. Later on,
the convergence of Laplacian matrices to Laplacian
operators has been considered, includes unnormalized,
random walk Laplacians and k-NN graph based Lapla-
cians in various work including Shi (2015), Calder and
Trillos (2022). There, rates of convergences of Lapla-
cian eigenvalues and eigenvectors to population coun-
terparts with explicit error estimates are derived. Fol-
lowing the above literature, Hoffmann et al. (2022)
developed a framework for extending the above con-
vergence results to a general Laplacian family, the
weighted Laplacians, and presented some heuristic
asymptotic analysis.

To the best of our knowledge, the only work that con-
siders adaptivity in the context of Laplacian estima-
tion is Chazal et al. (2016). They use Lepski’s method
for adaptive estimation of the unnormalized Laplace-
Beltrami operators, focusing on bandwidth parame-
ters. Also, they adopted a more flexible version of
Lepski’s method introduced in Lacour and Massart
(2016) that involves certain multiplicative coefficients
introduced in the variance and bias terms to develop
the method. Therefore, their proof technique is to
consider the trade-off between the bounds on the ap-
proximation error and the variance of Laplacian es-
timators. However, in this paper, we apply Lepski’s
method in the context of regression problem by using
weighted Laplacians instead of just the unnormalized
Laplacians (as in Chazal et al. (2016)). Additionally,
besides the bandwidth parameter, our method is also
adaptive to the smoothness parameter and the norm
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parameter of the Sobolev space under consideration,
i.e., in our work, we use Lepski’s method for simulta-
neous adaptation to the unknown parameters of the
function class under consideration.

2 PRELIMINARIES

In this section, we first describe the data-based
weighted graph Laplacian matrices, and the corre-
sponding nonparametric regression estimator. We
then introduce the associated limiting operators and
the weighted Sobolev spaces.

2.1 'Weighted Graph Laplacian Matrices

Given ii.d data X;,...,X, from a distribution G
on X C R? with the density g, consider a graph G
with vertex set {Xi,...,X,} and adjacency matrix

W given by

e (11X = Xl -

Wi = g (6 , hi=1,...,n, (2)
where || - || denotes the standard Euclidean norm. Here

n > 0 is a kernel function with support [0,1], and
¢ is the bandwidth parameter. In other words, G is
constructed by placing an edge X; ~ X;, when || X; —
Xj|| < € and this edge is given the weight w; ;. The
term (ne?)~! is a convenient normalization factor. The
degree matrix is then given by a diagonal matrix D

with the i-th diagonal element as

n

- ~e -
d; == g wi g, =1,...,n,

Jj=1

which can also be thought of as the kernel density es-
timator (KDE) of the density g at X;.

The weighted graph Laplacian matrices are a family of
graph Laplacians consisting of various types of normal-
izations characterized by a parameter w = (p,q,r) €
R3 constructed as follows. First define a re-weighted
adjacency matrix W with (¢, j)-th element as

TyE

e . Wig
Wij = A-g -2
d, *d; *?

? J

t,j=1,...,n,

so that the corresponding diagonal degree matrix D as
entries

n
—— € ; —
d; == E wig, i=1,...,n.
i=1

Then, the weighted graph Laplacian after re-weighting
is defined in Hoffmann et al. (2022) as follows: for a

tuple w = (p, q,r) € R?,

if ¢ # 1,

ifgq=1,
(3)

where 1/¢? is also a normalization factor. For u € R",
the i-th coordinate of the vector L, , cu is given by

1 1y .
D (D —W)D ™7,
€

Lw,n,e =

1
?(D - W)a

1 n, o1l-p __r_ __r_
(Lupn,eut); = = Zdi‘z’lw;j (di Tlug—d; uj> )
j=1
(4)

The above weighted graph Laplacian (3) generalizes
many commonly used graph Laplacian. For (p,q,r) =
(1,2,0), it recovers the unnormalized graph Laplacian
Ly; if (p,q,r) = (3/2,2,1/2), it gives the normalized
graph Laplacian L,; if (p,q,r7) = (2,2,0), it corre-
sponds to a non-symmetric matrix but can be inter-
preted as a transition probability of a random walk on
a graph denoted by L,:

L,:=D—-W,
Ly, := D~Y*(D - W)D'?,
L,:=D YD -W),

While the main focus is on e-graphs, we highlight
that the above formulation also captures the limits of
graphs constructed based on the k-nearest neighbor
graphs. In particular, when (p,q,r) = (1,1 — 2/d,0),
one can call the related normalization as the near k-
NN normalization; see Calder and Trillos (2022) and
Hoffmann et al. (2022) for details.

Note that the weighted Laplacian matrix L,, , . is ac-
tually not self-adjoint with respect to the Euclidean
inner product (-, -) since it is in general not symmetric.
However, it is self-adjoint with respect to the following
weighted inner product (-,-)gp-r:

<.7.> pii;T lfq # 1,
<'7’>9P*T = = .
<'7'> lfq: 17

where for a given a symmetric matrix A € R™*™ and
vectors u, v € R™, define

(u,v) 4 = ul Av.

We also define the normalized weighted inner product:
(-, Ywm :=n""(,-)gp—r and the normalized Euclidean
inner product: (-, ), :=n~!(-,-) and denote by || ||w.n
and || - ||, their respective corresponding norms. Here,
our estimation results are measured in | - ||y, and
under our assumptions in Section 3.1, it can be shown
to be equivalent to the classic norm || - ||,
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2.2 'Weighted Laplacian-Eigenmap Based
Nonparametric Regression

Following the ideas in Belkin and Niyogi (2003)
and Green et al. (2023), we propose the following prin-
cipal components regression with the weighted Lapla-
cian eigenmaps (PCR-WLE) algorithm:

(1) For a given parameter € > 0 and a kernel function
7, construct the e-graph according to Section 2.1.

(2) Construct the weighted Laplacian matrix given
by (3) and take its eigendecomposition Ly, . =
S Awv] with respect to (-, +)y.n, where
(X\i,v;) are the eigenpairs with eigenvalues 0 =
A1 < ... < )\, in an ascending order and eigen-
vectors normalized to satisty ||v;|w,n, = 1.

(3) Project the response vector Y = (Yi,...,Y,)T
onto the space spanned by the first K eigenvec-
tors, i.e., denote by Vi € R"*K the matrix with
Jj-th column as Vi ; = v; for j = 1,..., K and
define

f=VgVEy,

as the estimator.

The entries of the vector f are the in-sample values
of the estimator of the regression function f. Green
et al. (2023) considered the special case of the above
approach for the case when (p,q,7) = (1,2,0) corre-
sponding to the unnormalized graph Laplacian. Here,
we consider the entire family of graph Laplacians for
various choices of the parameters (p, ¢, r), the general-
ization from Hoffmann et al. (2022).

2.3 Weighted Laplacians And Weighted
Sobolev Spaces

Hoffmann et al. (2022) showed a heuristic framework
for the convergence of the weighted graph Laplacian
L.y e defined in (3) to the following weighted Laplace-
Beltrami operators, in the large sample limit, in terms
of the eigenvalues and eigenvectors/eigenfunctions:

Loyu = fidiv <ng (u)) , in X,
2gP g"
0 (u
q9___ _ =
T on <9T> b

Special cases of this convergence, including conver-
gences of L, L,, have been studied in Calder and Tril-
los (2022), Trillos et al. (2020) as mentioned before in
Section 1.1. Although our focus is not directly on the
convergence of the weighted Laplacians but on the re-
gression problems, the proof arguments in our paper

(5)
on 0X.

can be applied to show the convergence of the weighted
Laplacians by rigorously proving the heuristic idea in
Hoffmann et al. (2022) via the concentration properties
of kernel density estimation in Giné and Guillou (2002)
when the domain is considered without boundary as
it is well-known that the convergence of the Laplacian
matrices to the Laplacian operators is problematic at
the boundary (Belkin et al., 2012).

The weighted Laplacian operators are a generalization
of the classical Laplacian operator with different val-
ues of w = (p, q,r). Similar to the fact that the Lapla-
cian operator is linked with the Sobolev space, the
weighted Laplacian operators in (5) share a close con-
nection with the following so-called weighted Sobolev
spaces; see Triebel (1983) for a general introduction.
Define the weighted L? space for £ > 0 on X with a
density g as

g = {u: [ Juto o) < oo
with inner product
(u,v) e ::/Xu(a:)v(x)g(z)zdx.

Then, for w := (p,q,7) € R? and s € N, we define
the weighted Sobolev space as:

s u r
H*(X,g) := {gr € LX(X,¢"") : ullgs(x.g) < OO}’

where the weighted Sobolev norm ||u||gs(x,g) is

S

2 2
[ull3e gy =D ulfrix.g) +
j:l

u

gT

Y

L2(X,gPtT)

with the j-th order semi-norm |- [z 4) defined as
lulmi(x,g) = 2jaj=j 1D (ug™ ")l p2(x o) and using
multi-index notation with z = (z(,...,z(¥) € R?,
Def(x) = olelf/o(xM)> .. g @) and |a| =
ay + ...+ ag. When g is uniform or » = 0 and
g is bounded from above and below, the weighted
Sobolev space H*(X,g) becomes (or is equivalent to)
the classic Sobolev space H*(X). However, when f/g"
is s-times differentiable but f is not, the weighted
Sobolev space differs from the classic Sobolev space.
See Evans (2022) for more details regarding Sobolev
spaces. For M > 0, the class of all functions u
such that [lu gs(x,g) < M is a weighted Sobolev ball
H?(X,g; M) of radius M.

Furthermore, we say a function u € H*(X, g) belongs
to the zero-trace weighted Sobolev space H{(X,g) if
there exists a sequence u1g™",...,umg " of CZ(X)
functions such that

W}gnooﬂum — UHHS(X,g) = 0,
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where C2°(X) stands for the C'* functions with com-
pact support contained in X.

Similar to the weighted Laplacian matrix L., c, the
weighted Laplacian operators (5) are self-adjoint with
respect to the following weighted inner product (Hoff-
mann et al. (2022)):

(U, v) go—r :z/)(u(x)v(a:)gpfr(m)dx.

Note the following connection between the weighted
norms and inner products:

2
u

7 (u, u)gp—r.

= ||U||2L2(X,gp—r) =
L2(x,grtr)

A simple example showing the dependency of the
choice M on p,q,r is as follows. Consider u/g" is a
constant function and is assumed to be 1 for simplic-
ity and take s = 1. Then, we have

el ) = /X g(x)P*de.

Clearly, the power p+7 of the density function g deter-
mines the size of the weighted Sobolev ball, and thus
M. In other words, say for example, assuming g > 1
for simplicity, larger configurations of p + r will result
in large weighted Sobolev norm, thus requiring a large
norm parameter M. For generic u/g", the situation is
more intricate and depends on the geomtry of v and g
and choices of p + 7.

3 MAIN RESULTS

We now present our main results on adaptive and non-
adaptive rates for estimating the regression function f
as in (1) under some smoothness assumptions. Before
that, we recall that the minimax estimation error over
H*(X; M), a standard Sobolev ball of radius M, is
given by

2s

inf sup | f = fII} = MP(M3n) "=,

f feH=(x;M)

with high probability (Gyorfi et al., 2002, Wasserman,
2006, Tsybakov, 2008). Moreover, there are other
methods that can achieve the above minimax rate such
as kernel smoothing, local polynomial regression, thin-
plate splines, etc. In this context, Green et al. (2023)
showed that PCR-WLE method with the unnormal-
ized Laplacian' L, achieves the minimax rate, pro-
vided that n='/2 < M < n®/¢ under appropriate as-
sumptions, where for two real-valued quantities, A, B,
the notation A < B means that there exists a constant
C > 0 not depending on f, M or n such that A < CB
and A =< B stands for A < B and B S A.

!This procedure is refered to as PCR-LE in Green et al.
(2023).

3.1 Assumptions

We now list the major assumptions that are needed
for our theoretical results.

(A1) The distribution G is supported on X, which is an
open, connected, and bounded subset of R? with
Lipschitz boundary.

(A2) The distribution G has a density g on X such that
0 < gmin < 9(2) < gmax < 00, for all z € X,

for some gmin, gmax > 0. Additionally, g is Lips-
chitz on & with Lipschitz constant L, > 0.

(A3) The kernel 7 is a non-negative, monotonically
non-decreasing function supported on the inter-
val [0,1] and its restriction on [0,1] is Lipschitz
and for convenience, we assume 7(1/2) > 0 and
define

1
ooi= [ e, ovi= 1 [ ulPudlolas

Without loss of generality, we will assume o¢ = 1
from now on.

(A4) The kernel n satisfies a kernel VC-type condition
as follows. Let

%::{y%n<w>:e>0,m€R}
€

be the collection of kernel functions indexed by =
and e. For a density p, let the L?(X, p)-covering
number N (e, K, || - ||2(x,p)) of K be the small-
est number of L?(X, p)-balls of radius e needed
to cover K. With that we say that 7 satisfies the
kernel VC-type condition if there exist constants
A, v > 0 such that

A 1%
sup NG lzen) < () 2 (0)
P
See Remark 3.2 for some examples.

Assumptions (A1) and (A2) are mild assumption on
the density function, which are also made in Green
et al. (2023). In particular (A2) is important for us,
as it gives us the norm equivalence between the vari-
ous families of weighted Sobolev spaces. Assumption
(A3) is a standard normalization condition made on
the smoothing kernel, also made in Green et al. (2023).
Assumption (A4) is not used in Green et al. (2023).
It is used here because the general family of weighted
Laplacian matrices that we work with involve kernel
density estimation normalization, with which the nor-
malization in (3) will not tend to either infinity or
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zero. Also note that in general condition (6) involves
the L?(X, p)-norm of an envelope function 7o for K,
i.e. of a function 19 < h for all h € K. Since, by our
assumptions, 77 is bounded, we can use the maximum
of n as an envelope, for which the L?(X, p)-norm obvi-
ously does not depend on p and can thus be absorbed
by the constant A.

3.2 Non-adaptive Rates

In the following, we present the non-adaptive mini-
max optimal rate of convergence of the PCR-WLE
estimator in Section 2.2 for s = 1 and s > 1 sepa-
rately. These rates are non-adaptive as the choice of
K and e depends on unknown problem parameters, the
smoothness parameter s and the norm parameter M.
In the following, we make a remark here that the norm
| llw,n of fis empirically evaluated at Xq,...,X,, i.e.,
we consider in-sample errors.

Theorem 3.1 (Non-adaptive minimax rate of
PCR-WLE algorithm). Assume (A1)-(A4).

(a) For s € N.\{1}, assume f € H(X,g; M), f €

HYX,g; M) and g € C*~1(X). Suppose there
exist constants cg, Cy > 0 such that

1
logn) s ;
co< ( Og“> v (M2n)2<51>+d> < e<CpKTH,

n
and Toge]
oI 0, (7)
where
K:min{L(M“'n)ﬁJ v1,n}. 8)

Then, there exist constants ¢, C > 0 not depending
on f, M ormn such that for n large enough and any
0<d <1, we have:

If = fl12., < C{(67 M2 (M3n)~ =57 A1) vt
with probability at least 1 — § — Cne—cne’ — =K

(b) For s = 1, assume f € HY(X,g;M).
there exist constants cg, Co > 0 such that

1
d
o (log”) <e< Gk,
n

and (7), where K is given in (8) for s = 1. Then,
the assertion in part (a) also holds for s = 1.

Suppose

Remark 3.1. Notably, the above theorems do not re-
quire the assumption that s > d/2. As we mentioned
before in Section 2.2, this condition is commonly ap-
peared in the literature as in the sub-critical regime,

i.e., s < d/2, the (weighted) Sobolev space H® is not
a Reproducing Kernel Hilbert Space (RKHS) and can-
not be continuously embedded into the space of con-
tinuous functions C°(X). Theorem 3.1 highlights the
point that PCR-WLE algorithm obtains the minimazx
optimal rate when n=/% < M < n®/?® and the error is
measured by the weighted empirical norm || - ||w,n-

Remark 3.2. The kernel VC-type condition was first
proposed in Giné and Guillou (2002). A simple suffi-
cient condition for this condition to hold is that n is
of bounded variation; see Nolan and Pollard (1987) or
Giné and Nickl (2021). Clearly, many common kernels
are of this type, including Gaussian, Epanechnikov and
cosine kernels. Furthermore, Matérn family of ker-
nels is also of practical importance but is not consid-
ered a natural choice for kernels satisfying the required
bounded variation condition due to the oscillatory be-
havior of the Bessel function while the bounded vari-
ation condition is gemerally associated with functions
that do not oscillate too wildly. However, some special
cases of the family indeed satisfy the bounded variation
condition. For smoothness parameters v = p + 1/2
of Matérn kernels with positive integer p, the Matérn
kernels can be expressed as a product of an exponential
and a polynomial whose derivative is absolutely inte-
grable, and thus they satisfy the condition. Moreover,
the Matérn kernel becomes the Gaussian (RBF) kernel
in the limit of v — oo, thereby satisfying the VC-type
condition.

Remark 3.3. For practical consideration, there are
two tuning parameters: the graph radius (the band-
width for the kernel n) € and the number of eigen-
values K. The lower bound for € makes sure that
with this smallest radius, the resulting weighted graph
will still be connected with high probability and the up-
per bound for € ensures the eigenvalue of the weighted
graph Laplacian (3) to be of the same order as its con-
tinuum version, the eigenvalue of the weighted Lapla-
cian operator (5) (Weyl’s law). The asymptotic as-
sumption on € is from the concentration of the KDE.
The condition on K is set to trade-off bias and vari-
ance. Both € and K depend on the true smoothness
parameter s € N

3.3 Adaptive Rates Via Lepski’s Method

Despite the minimax optimality of the PCR-WLE al-
gorithm shown in Section 3.2, the main practical dif-
ficulties are the choice of several tuning parameters
including the bandwidth parameter (or the graph ra-
dius) € and the number of eigenvalues K, because op-
timal choices depend on the unknown true smooth-
ness parameter s of the regression function f in the
model 1. Moreover, K also relies on the bound of
the weighted Sobolev norm M. This naturally brings
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about the issue of adaptation, which we address us-
ing Lepski’s method. Note that, as we are concerned
with in-sample estimation error, other techniques like
cross-validation are not directly applicable to set the
tuning parameters.

Since its introduction in Lepskii (1991), Lepski’s
method has been widely used for adaptive estimation
and testing in various statistical contexts; e.g. see
Birgé (2001), Chichignoud et al. (2016), Bellec et al.
(2018), Balasubramanian et al. (2021), Lacour and
Massart (2016). In the following, we consider Lep-
ski’s method on the product space of the smoothness
parameter s € Ny and the constraint on the weighted
Sobolev norm M € R,.

Recall that s and M denote the true smoothness pa-
rameter and the norm parameter, respectively for the
weighted Sobolev norm of f. Here, we actually take
M as the minimum over all bounds of the weighted
Sobolev norm. We start by picking smin, Smax € Ny
here we can set sy, = 1 under no availability of fur-
ther information® regarding the knowledge of s. The
goal is that sp.x is large enough that s € N, satis-
fies s € [Smin, Smax). Similarly, we pick Mumin, Mmax
satisfying 0 < Mpin < Mpax < 00, where My,
and Mpy.x are small and large enough respectively
such that M € [Muyin, Minax]. Next, define the grid
BxD:= {(sj,Mj)};V:ll given by:

B = [Sminy Srnax] N N+

= {Smin =: 51 < 82 < ... < SN, := Smax |

(9)

and

D= [Mmina Mmax]
= {Mupin = M1 < My < ...< My, := Mpax},
where N; < logn.

For any pair (5, M) in the above grid, let fg 57 be the
PCR-WLE estimator in Section 2.2 correspbnding to
the parameters § and M. We define the Lepski’s esti-
mator as

fadapt = ng\}p
where § is given by
§:=max{s € B: ||f§1\;1 - f§/7M/\|w’n
< oI ((N"n/logn) "7 V& < 5,5 € B},
and M is the corresponding couple of § in the grid,

where ¢y > 0 is some finite constant. Here, we formu-

21f there is additional information, like s > 10, one can
pick smin = 10. Hence, we present out result with a generic

Smin-

late the above simultaneous Lepski’s method by cou-
pling the smoothness parameter and the norm param-
eter and only maximize through the smoothness pa-
rameter instead of dealing with a joint maximization,
which is not needed for our purpose of showing the
adaptive minimax rate in the following result as our
focus is its convergence rate in n.

The following result presents a near minimax optimal
rate of convergence of the Lepski’s estimator fagapt up
to a logarithmic factor in n.

Theorem 3.2. Assume (A1)-(A}) and g € C5~1(X).
Also, assume f € HY(X,g; M) N H{(X,g; M) and
fq == f/9" is M-Lipschitz, i.e., ||fg(x) — fo(z)|| <
M|z — «'|| for any z,a’ € X. Furthermore, assume
that (for large enough n) we have s € [Smin, Smax] and
M € [Mmin, Mmax|. Then, under the minimaz optimal
setting in Theorem 8.1 for M, i.e., n= /2 <M < ns/e,
the estimator fadapt satisfies: For n large enough and
any § € (0,1), there exists some constant C > 0 such
that

”fadapt - f”i;,n < 05_1M2(M2n/logn)72fﬁ,
with probability at least

1-6 log_2s/(25+d) n — Cne—Cne! log? n
- 16006411_1 log2725min/(25min+d) n

M2, d/(2s+d)
_ e lMEn) log? n.

Remark 3.4. Trillos et al. (2022) proposed a graph
poly-Laplacian regularization approach, where integer
powers of the Laplacian matrices are used as regqular-
ization in a least-squares context. They showed that
the proposed method achieves rate of convergence of
order n~s/(d+4s)  While the rate is not optimal, in
comparison to the Green et al. (2023) their estimator
does not require the knowledge of the norm parame-
ter M to achieve the derived rate (althogh they require
the knowledge of s). In comparison to both the above
works, our result in Theorem 3.2 achieves the optimal
rate, up to log factors, without requiring the knowledge
of either s or M.

Remark 3.5. As a part of our proof, a better con-
centration inequality for the non-adaptive PCR-WLE
estimator f 1s required compared to Theorem 3.1, for
which the assumption that f, is Lipschitz is required.
As also discussed in Green et al. (2023, see below The-
orem 1), it remains open whether a weaker assumption
or even the weighted Sobolev condition ||V f4|| L2 < oo
alone might be sufficient establish the required concen-
tration result for developing adaptive procedures.
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4 CONCLUSION

In this work, we provide adaptive and non-adaptive
rates of convergence, in Theorem 3.1 and 3.2 respec-
tively, for estimating a true regression function lying
belonging to the Sobolev space. Our estimators are
based on performing principal components regression
based on the eigenvectors of the weighted graph Lapla-
cian matrix, and using Lepski’s method for deriving
the adaptive results. Our contributions expand upon
the non-adaptive outcome outlined in Green et al.
(2023), which was originally established for a particu-
lar normalized graph Laplacian. This extension en-
compasses a broad spectrum of weighted Laplacian
matrices commonly employed in practical applications,
including the unnormalized Laplacian and the random
walk Laplacian among them.

Future works include (i) relaxing the assumption that
the density ¢ is bounded from below, (ii) developing
confidence intervals for the estimators by establishing
asymptotic normality results and developing related
bootstrap procedures, and (iii) developing estimators
that are instance-optimal in the sense of Hoffman and
Lepski (2002), i.e., estimators that achieve the best
possible rate for a given combination of the true regres-
sion function f and the sampling density g by adap-
tively picking the parameters p, ¢ and r in the weighted
graph Laplacian matrix.
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Adaptive and non-adaptive minimax rates for weighted
Laplacian-Eigenmap based nonparametric regression:
Supplementary Materials

5 PROOF

5.1 Proof Of Theorem 3.1

In this section, we will prove both Theorem 3.1 for s = 1 and s > 1 together. We first present and prove some
auxiliary lemmas. We will denote by B, (r) a closed Euclidean ball with midpoint = and radius r > 0.

Define the weighted Sobolev seminorm (L. f, f)g»-- given by the following non-local operator:

llz—z|
Ly f(x) = 6d1+2/Xg(w)l‘pg(x)ln(qm;(z))lq/2 (9(x)""f(z) — 9(2) " f(2))g(2)dz,

where according to (4), Ly, . can be viewed as a population counterpart of the discrete graph weighted Laplacian
Ly e Asin Green et al. (2023), we also call it a ‘non-local’ version. Note that the above non-local weighted
Sobolev seminorm and non-local operator generalize the definitions in Green et al. (2023) as the latter belong
to a special case when (p,q,7) = (1,2,0). The following Lemmas 5.1-5.6 therefore extend their counterparts in
Green et al. (2023) to the weighted Laplacians and the weighted Sobolev seminorm. Note that in our proofs,
we also highlight and fix several important typos and errors that appeared in Green et al. (2023). Despite the
errors, the final results in Green et al. (2023) remain true.

Lemma 5.1. For f € HY(X,g; M), we have

<Lw,sf7 f>gpf"' 5 MQ'

Proof of Lemma 5.1. Following the idea of Green et al. (2021, Proof of Lemma 1), take 2 as an arbitrary
bounded open set such that B,(cg) C Q for all # € X for some ¢y > 0 and we can assume that f € H(,g)
and ||fllgr (0,9 S Iflla(x,g) Without loss of generality due to the existence of an extension operator E :
HY(X,g9) = H'Y(Q,g) such that Ef satisfies these properties, see Theorem 1 in Chapter 5.4 in Evans (2022).
Also, since C*°(€2) is dense in H!(£), g) and the integral in Lemma 5.1 is continuous in H'((2, g), we can assume
fq:=f/g" € C*(Q) so that

fo(a') = f(@) = / V(@ 4t — )T (& — z)d.

Then, we have by symmetry in the first step:

2< wEf,f>gP "

y\l) 9
_ fl@) @, . .
= [, e e iy | s

IIr yH 2

= 6cl+2/ /Xg - q/2 1 /2 (/ Vfgy+tlx—1y)) (m—y)dt) g(x)g(y)dzdy

III yll
ed+2 / / / )= q/2 ))1 /2 (Viy+tz—y) (x— y))Qg(a?)g(y)dtdxdy

,/ /B / (Vf, (y +etz)” ) g(y+ez)q(||¢lz/!;(y)1q/QQ(y—i—ez)g(y)dtdzd%

with (

//B / (Vfoly + et2)T2) |20y + etz)dtdzdy

IN

N




Zhaoyang Shi, Krishnakumar Balasubramanian, Wolfgang Polonik

//B(l/ (V@) 72) n(I20)g (@) dtdzdy, G =y + etz € Q. (10)

N2
Since we have (V f,(9) z) = (ZZ LV fa ()@ (’)) and 7(||z||) is invariant with respect to the rotation, it
yields that

d
AT (2N ds — =1 () 7)) (@) 2O 2D pll2INdz
/Bo(l) (V@) 2)" n(||z[)d 'JZZI(Vfg(y)) (V£,0)) /Bo(l) (1)
d

N2
=Y (@) [ (=) nlelhiz
=3 (wn@®) [ ()
f@)) ’
=01||V = 11
' (g(y)r )
Plugging (11) in (10), we conclude
2L, f, fgo-r S o1 M.
This finishes the proof. O

Note that the proof of Lemma 5.1 also utilized the heuristic arguments given in Hoffmann et al. (2022) while we
provide a rigorous proof here.

Lemma 5.2. Suppose f, € L*(U, g?™"; M) for a Borel set U C X. Then, there exists a constant C which does
not depend on f or M such that

C
1Lw,efllez@.griry < M follzz@gren-
Proof. By Cauchy-Schwarz inequality, we have

n (1 2
Lacd @F = g | | g<z>1pg(x)1_(q/29(z))1_q/2 (9() ™" 7 () ~ 9() " F(2))g(=)d=

1 n (L)

77(”:22”)

— = _g()2(1-P) x) — f.(2))%dz - z
@ | )~ e [ s
20 2(q—p X z 2 2

oo [ (E=) anr  nepes

A

N

Then, we have
L Bagrrny = / @)l e ()P
2 [ [ st o (B2 g g

64+d/u/u77(xj”) (1fo (@) + | fy(2)[*)dzdz

Z/\

A

4 xr—z
saa | [ n( D) a0 Pasao
<5 / 9(2)*" (@) fo ()| 2d
< Sl g
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Lemma 5.3. Suppose f, € L*>(U, g?™"; M) for a Borel set U C X. Then, there exists a constant C > 0 such
that

C
Eyo(f;U) < 63||fg“%2(u7gp+r)7

where we define the Dirichlet energy for the set U as

€

1 —r —r 2 W(M>
But) = 5z | [ (0) 7 F@) =) 10 s S

(2)g(2)dzdz.

Proof. Note that

€

llz—=]l
Bufith) = 53 | [ 0@ @) =907 1) (=)

gla)=e2g(z) a2’

(2)g(z)dzdz

2 —r 2 —r 2 n(@)
<z [ ] (9@ 1@ + o) SO e S el@la e
— ez [ o0 sPn () gz 2asa:

€

ez [ [ o0 s@pPn () goprasa:

i 2 F(2)20(2)P T da
S5 [ o) @)Pg(ay .

N

O

We denote by X a subset of X’ such that for any x € X, B, (te) € X consisting of points sufficiently far away
from the boundary and 9, X" by its complement within X consisting of points close enough to the boundary.

Lemma 5.4. For f € HY(X,g; M)NHS (X, g; M) with s € Ny and g € C*~Y(X), there exist constants C1,Cy > 0
such that

(1) If s is odd, then we have with t = (s — 1)/2:

||qu7ef — oL fllp2(x,. griry < C1Me.

(2) If s is even, then we have with t = (s — 2)/2:

Ly o f — ot L FllL2 . grer) < CyMeé.

Proof. Without loss of generality, we assume both g and f are C°°(X) due to the fact that C°°(X) is dense
in both H*(X,g) and C*~'(X) and the norm in the statements is continuous with respect to || - || g=(x,q) and
I lles-1(x)-

Actually, we claim the following stronger result: for ¢ < s/2 and every x € X,

[(s—1)/2]—t
L, f@) =0l Luf(@)+ Y ragen(@)e +rs(a)e, (12)
j=1
for some functions r; such that
1751 o3 (20.g) < Cllgll o120 M- (13)

Note that the dependence of the functions r; on ¢ is suppressed in the notation.
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The key idea underlying the proof of (12) is to consider the following Taylor expansion. For an s-times differen-
tiable function F': X = R and x € X, define the following operator d;:

= > D°F(x
|a]=s

Also, define d*F := Z|a|:s DeF. Then, for ¢ € C*(X) and some h > 0, z € X}, x € B,(h), the Taylor expansion
at z is given as:

s—1

0(@) = 6(:) + 3 (o) = 2) + Rulo. 510)

j=1
Here, we note that (d’.¢)(z) is a polynomial of degree j and we have for any y € R:
(d0)(y2) = v’ (,0)(2)-

The remainder term R;(x, z; ¢) is

Rj(x,z;¢) = ﬁ/o (1—-6)~ 1(di+0(x @)z — z)do,

such that for any «* € Bo(1),

sup |Rj(z,x + hz*;¢)| < CW|@llci(x),
reXp

and

1
/X IRy(z + O, 2 §)Pdz < 1% /X / (], ) ()20 < W |62 .
h h

Now, we apply the above Taylor expansion on the function f,(x) := f(x)/g(x)" up to order s and the function
g9?(z) up to order S in Ly, f(z), where S = 1 if s = 1 and otherwise S = s — 1 and obtain:

s—1 S—1

L f(x W >

Jj1=172=0

6d+2 Z ]' / ’1/2 P <||;L‘€Z|> (dgclfg)(:c — Z)RS(Z’,Z;gq/Z)dz

1 _ T—2z
+ Edﬁ‘/‘/yg(fﬂ)p/2 p’l? <H€> Rs(m7z;fg)g(z)q/2dz.

Now, with the transformation y = (z — x)/e, we have

ey (B 220) @ g = 2y aza)c - g

31'32

1 s—1 S—
wef 72 Z Z
Jj1=1j2=0

s—1
1 12 _ .
-3 T/B ( )9(»"6)"/2 P (lyll) (& fo) (y) Rs (2, ey + 23 g%/*)dy
. o(1

€2 4

6j1 +J2

/B 9 ) (1)) ") )y

Jilje!

1 p—
F 2 o @) Ry + o Fydaey + )" 2dy
o(1

We will now prove (12) by induction on ¢, and throughout this proof, with a slight abuse of notation, the
functions r; in (12) may vary from line to line depending on ¢ at the induction step but they will always satisfy
the condition (13) as we are only interested in the bounds.
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Firstly, we start with L;(x). If s = 1, we can see L;(x) = 0. Therefore, in the following, we only focus on s > 2.
Now, we define

Lo () 1= / 9(@) 7P ([lyl) (2 £4) () (@22 97%) (y)dy,
Bo(1)

such that

s—1 S—1

ZIDS

Jj1=1j2=0

6J1 +j2

]1|.72| Jl J2 )

Since (d2.f,)(y) is a polynomial of degree j, lj, ;, actually depends on the sum j; + jo» and di'd?? is an order
j1 + jo multivariate monomial. Therefore, when j; + j» is odd, we have

ljl 2J2 (Z‘) =0.

Then, when s = 2, we have j; + jo = 1 and Li(x) = 0. As for s > 3, we notice that the lowest order term of
Ly (z) is from j; + jo = 2, which means either j; =1, jo =1 or j; = 2,j2 = 0. We have

ha(2) = /B 9@l ) 0 ) )y

d

= 2)127P (D f, (z)) ) (Dg?/? (z)) () 2 dy,
Y 9@ (DS () (Dg" () /Bo(l) 1y IFnClyl)dy

i1=1,ip=1
and

1 1

lao(z) = */ 9(@)2Pn(llyl) (d2 £,) () (d2g9"%) (y)dy
2 JBo(1)

1 d

= 5 9@ (DL )Pl [ ylPululdy

i1 Bo(1)

Therefore, we have by definition:

Lof(z) = _29(155)17 (Vg(m)q Y (g"lﬁ) +g(x)A (;&?)) :

~(1(2) + G la0()) = 1L f (7).

and

This is exactly the leading term. We remark here that in Green et al. (2023, Section D.2), the negative sign is
missing, which does not actually give the Laplacian operator by the leading term. Now, it remains to bound the
higher order terms with j; 4+ jo > 2. We will show that
L(s=1)/2]-1 ‘
Li@)=01Lw+ Y. 7@ +ri(a)e

Jj=1

It suffices to show for j1 + jo > 2, l;, j, satisfies (13) for j = min{j; + j2 — 2, s — 2}. Through the multi-index
notation, we write that

Logs(@) = g@)?27 S0 Do (2) Dt 2(a) / gy (lyll)dy,

|ai]=j1,|az]|=j2 Bo(1

where |fBo(1) yry*2n(|ly|)dy| < oo for all aq, as. Then, by Holder’s inequality, we have for |a1| = 71, |az| = ja,

||9($)Q/27pDalnga29q/2||Hs—<j+2>(x,g) S HDalfg”Hs—(jH)(&g)||g($)Q/27pDa29q/2|

Cs—G+2)(X)
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SAD foll e (2.9 |1 D2 97|
< M|gllcs-1-

Cs—G2+1) (x)

Summing over all |o;| = j1 and |ag| = jo2, we obtain that [;, ;, satisfies (13).
Next, as for Ly(z), note that if s =1, Ly(x) = 0. We want to show that for s > 2,
L2l L2, gty < Ce* M gllca-1)-

Clearly, if s = 1, La(z) = 0. Now, for s > 2, we have S = s — 1 and since |R,_1(z, 2 + ex*)| < Ces71||g|
for any x* € Bo(1) and d(+) is a j-homogeneous function, we have

Cs-1(X)

s—1
€2 .
|La(x)] < . /B (l)g(x)q”’pn(\\yll)I(dilfg)(y)\ | Rs (@, ey + ;")\ dy

s—1
5— 1 — j
< Ce 2”9”03*1(2()2ﬁ/ (@) Py (lyll) [(d! £) (y)|dy.
j:lj' Bo(1)

Moreover, we have by Cauchy—Schwarz inequality,

2
/ O ( / g(x)q“pn<|y||><d;1fg><y>|dy> da
X Bo(1)

< / o)1 Pt ( /B 0(1)n(lly|)I(dilfg)(y)IQdy> ( /B 0<1>”(y”)dy> du

</,
< o /B " /X Sl (& 1))y

N

o? / g (@) (d £,)(x))?da

3

0’8||djf9||%2()(€7gp+7‘)7

where in the last step, we use the fact that | f(y)| < |d’ f(z)| for all y € Bo(1). Therefore, it yields that

/ 9(2) 7| Lo(a) P

€

<C (|9l

s—1 2
crlmle /X oyt (j, /B () |<d;‘1fg><y>|dy> da

<C (|9l

2 .
o) YN follTaga, goie

=1
‘We obtain the desired bound.

Finally, similar to Ls(x), we obtain the same bound for Lz(x). Combining the obtained bounds for L; (z) — Ls(z),
we obtain (12) for t = 1.

Now, we perform the induction step. Assuming the bound (12) holds up to some ¢t < s/2, we want to show it also
holds for ¢ + 1, with ¢ + 1 < s/2. For convenience, we introduce the following notation: for any 1 < j <[ <s,
denote by 7;;(x) = T(s—1)+j (x). Note again that the functions r;; implicitly depend on ¢ at the induction step
thus they may vary in the below arguments from line to line. For a function r € H'(X;, g; C||g| tCS,I(X)M) for
some | < s, if [ <2, we have by the inductive hypothesis that for any x € X;41).,

Lw,er(x) = Tll (1‘)6172'
On the other hand, if 2 < < s, then by the inductive hypothesis, it holds that for any x € X1,

L(-1)/2]-1 .
Luer(@) = o1Lor(x)+ Y rojyau(x)e +rpy(z)e 2 (14)
j=1
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Then, we have

Ly (@) = (Lue o Ly,  f) ()
(s—1)/2]—k |
= UiLw,e‘Cfuf(I) + Z Lw,eTQ(j+t) (x)62] + Lw,ers('x)6572t~ (15)
j=1

In the following, we will bound these terms on the right-hand side individually. First of all, since Lf f €
H*72(X, g; Cllgllomr (x)M), applying (14) yields

[(s—2t—1)/2] -1 4
Lo Ll f(x) = o1 L f () + Z Tojr2,s—2t(T)€ + sy s ()€ 22

j=1
[(s—1)/2]=(t+1) .
=0 L f(x) + Z Tg(t+1+j)($)62] + rg(z)es 20D, (16)
j=1

where we apply the fact mentioned before that r;;(x) = r_p4;(x).
Next, suppose j < |(s —1)/2] —t. We apply (14) and obtain

|(s—2j—2t—1)/2] -1
Ly ero(j4+4) (1) = 01LuTo(j44)(T) + Z T2i42,5—2(j+t)(T)€
i=1
s—2(j+t)—2

21

+ Ts—2(j4+1),s—2(+1) (T )€
[(s=1)/2]—=(j+t+1)

= ra(+e+1)(@) + Z Tz(i+j+t+1)(l’)62i +rs(x)
=1

5200 +t+1)
)

where we use the fact that 7;;(z) = r_i)4;(®) and 01LyTa(j44)(T) = r25—2(j+4) () = T2(j44+1)(x). Therefore,
we have

L2 (k)
= Tagjre) (€)e + Z Po(mer1)(B)€ + 15 (2)e T2OHY, (17)

m=1

Loy ,erajte) (x)e2j

where the last equality is by changing the variable m = i + j. Moreover, when j = [(s — 1)/2] — ¢, we have
2(j +t) =2[(s —1)/2] and we simply calculate that

Lueragrro@) = 1123010 @)er =200, (z)es=306+), (13)
Finally, according to (14), we have
Lwﬁers(ac)es_% = rs(x)es_z(tﬂ). (19)
Combining (16)-(19) with (15), we obtain the proof for ¢ + 1.
O

Recall that we write X = X U 0X,, where for any x € Xy, B;(te) C X and 0;.X as its complement within X
consisting of points ‘close’ to the boundary.

Lemma 5.5. For f € H{(X,g; M) and t > 0 such that 2t < s, there exists a constant ¢ > 0 not depending on
M or f such that for all € < c,

1Ly F a0, gy S 202002,
Proof. Note that according to Lemma 5.2, we have

1 _ 1
1 e f o grry S I o grery S -+ S M alaanngrory:
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Therefore, it suffices to show for all € < ¢,

1fol1Z2 0, 20,904y S € 1F I Fe (,0)- (20)

In order to deal with f, near the boundary, we will take a similar procedure used in Green et al. (2023, Proof
of Lemma 5) and Leoni (2017, Theorem 18.1) as follows. With loss of generality, we take ¢ = 1 as one can view
€ < ¢/t for proving for the general case.

Step I: Local patch. We assume that for some ¢y > 0 and a Lipschitz mapping ¢ : R¥~! — [—cg, ¢o] and since
f € H§(X,g; M), without loss of generality, we can assume that f, € C2°(Uy(co)) with

Uy(co) = {y € Q(0,co) : (y=P) <y},

where Q(0, ¢p) is the d-dimensional hypercube of side length ¢y centered at 0. Now, following step 1 in Green
et al. (2023, Proof of Lemma 5) by replacing f as f,, we have

(d)

2
Y
Fy)? S D ( Lo, I(Dsfg(y(d),z))(d)ld2>
.

y(d)
st [ D) P
Yy

Then, we obtain:

( d)
/ 9P| £y () dy</ / o (4D, y D) [2dy( D dy—D
Vi (€) Qa—1(co) Jp(y(=D)

2s—1 Py M) +e (@) s (—d) (d)|2 @) (—d)
= /Q ( )/< =) /w oy (D7 Foly ™7, 2)) ey Sy, (21)
a—1(co) JY(y y

where Q4—1(0,¢9) is the d-1 dimensional hypercube of side length ¢y centered at 0. Also, by changing the
integration order, it yields that

P re py@ ‘ ., Do ., T te ., Do
[ D) Py e [ D) s
P(y—D) P(y—D) P(y=D)
co
Sef D) P (22)
P(y=D)

Combining (21) and (22), we obtain:

co
/ g(y)p—i-rlfg(y)'Zdy < €25 / / g(y(—d)7 Z)q|(Dng(y(_d), Z))(d)|2dzdy(_d)
Vi (€) Qa—1(co) J(y(=D)

S I wy co).0)-

Step 2: Rigid motion of local patch Now suppose at a point zo € X, there exits a rigid motion 7 : R¢ — R?
such that T'(xg) = 0, and a number Cj such that we have all Che < ¢,

T(QT(.TO7C()) n 862() - Vw(COG) and T(QT({L‘(), Co) N X) = Uw(Co), (23)
where Qr(zg, co) is a hypercube in R? of side length ¢o centered at o (not necessarily coordinate-axis-aligned).

Let vy(y) = fo(T ' (y)) and v(y) := f(T~'(y)) for all y € Uy(cy). Then, if f; € C°(X), we have v, €
C>(Uy(co)) such that ”vg”HS(Uw(co)) | foll % “(Qr(x0,co))nxv- Lherefore, according to Step 1, we have

9(@)"* vg (W) Pdy S €0 ll3r 0, (eo)).o°
~/Vw(Coe) g (Uy(co)),9
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Then, it yields that

/ @)y ()Pl
QT(I(],C())Q(?EX

_ / 07" () g () *d
T(Qr(x0,c0)NIX)

/ 9(2)"* v, () 2dy
Vi (Coe)

S 625||U||?15(U¢(00),g)
< 628||f||§_IS(QT(a:O,CO)ﬁ8€X7g) S 628||f“%{s(2( 9)

A

Step 3: Lipschitz domain. Now we arrive at the last step where we shall deal with the case: X is assumed
to be an open, bounded subset of R? with Lipschitz boundary. Again, following the procedure in Green et al.
(2023, Proof of Lemma 5). In this case, for every zo € X, there exists a rigid motion T}, : R? — R such
that T}, (zo) = 0, a number co(zg), a Lipshitz mapping v, : R4t — [~co(z0), co(z0)] and a number Co(zo)
satisfying for all Cp(zg)e < co(xo), (23) holds for replacing cg, Co, T, by co(xo), Co(x0), Ty, ¥, respectively.
Therefore, by Step 2, we have

/ 9 @)1y (@) Sy N )
QTy, (20,c0(20))N0 X

Although the constant in the last bound depends on z(, by compactness assumption, there exists a finite subset
(denoted by xo,1,...,20,n) of the collection of hypercubes {Qr, (zo,co(70)/2) : w0 € OX'} which covers OX.
Then, by taking the minimum of all constants with respect to zg 1, ..., 20 n, We can conclude that

De(X) C U Q. , (T0,i: co(T0,))-

Consequently, we have

/ P (@) fy( |dw<2 / @)y @)z S e -

Qtzy ,; (T0,5,¢0(%0,:))NO X

Therefore, we proved the desired result (20). O

The following result presents a higher order version of Lemma 5.1 for s > 1 and the non-local weighted Sobolev
seminorm, (L3, . f, f)gr—r-

Lemma 5.6. For f € HY(X,g; M) N H§(X,g; M) with s € N.\{1}, we have
<L181)7ef7 f>g1’*“" 5 MZ'

Proof of Lemma 5.6. Note here that we fix the assumption that f € H!(X,g; M) besides f € H§(X,g; M),
which is missing in the statement of Green et al. (2023, Theorem 3). In general, it is not true for X' # R? that
H}(X,g9; M) = H'(X,g; M). Based on Lemma 5.1, we will prove Lemma 5.6 in a recursive way for s > 1. Recall
that L., . is self-adjoint with respect to the weighted inner product, meaning (L, ¢ f1, f2)gr-r = (f1, Lw,e f2) go—r
for any f1/9", f2/g" € L*(X,gPT™). Also recall the definition of the Dirichlet energy given in Lemma 5.3, which
can be stated as Ey (f,X) = 2(Ly.c f, [)go-

Following the procedure in Green et al. (2023) 3, when s = 2t + 1 for t > 1, by using self-adjointness, we have

(L3 o f, Phgrer = (LELE LY fhgoer =

B (L o f, X).

3We remark here that the factor 2 is missing in (Green et al., 2023, Section D.4).
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We divide the Dirichlet energy into two parts:
Ew,e(quvefy X)

n (1=
- edlﬁ/xﬂ /th (9(z)~" f(z) _g(z)_rf(Z))Qg(a;)l—g/zg(z))l—qﬂg(x)g(z)dxdz

llz—=|l
1 —r —r Ml €
v [ ] @@ g f(Z))2g(x)1(q /QQ(Z)Zq o(r)g(2)dndz
= Ew,e(qu,efa Xte) + E’wx(qu,efa 8t6X)?

where X and 90X} have been introduced right before Lemma 5.4 (0X; C X consists of points te-close to the
boundary of X, and Xy = X\ 0X%).

By Jensen’s inequality, we have

Ew,e(qu,efv Xte) < 30’%tEw € (OjiLLt fa Xte)
o [ [ @)L @) g ot )

()

gla)=er2g() a2’

(2)g(z)dzdz.

By definition (5), we have L f € H' (X, g; C’||g|\cs,1(X)M) for some constant C' > 0, an application of Lemma

5.1 shows By, (01LL, f, Xie) S M?. We then focus on the second term on the right-hand side of the above
inequality. According to Lemma 5.4, we obtain:

llz==|l
cdt2 / / Ly, f(x) — 9(2’)_717%52,]((2’))2 ! ( - ) ()g(2)dzdz

g(e) =g (z)i=ar2’
< ;) / /Xte )Pt (g(x) "L, S () — g(fﬁ)frﬁiﬁfuf(x))Q n (JCZZ”> dxdz

” 2
S5 [ o (B ) ot f (@) dr
< M?.
Furthermore, near the boundary, according to Lemma 5.3 and Lemma 5.5, it yields that

Ew,e(qu,efa ate ) ~ 2 ||L f||L2(8t6 X,gPtT) S N M2

Putting all pieces above together, we obtain the proof for the case when s is odd and ¢ := (s — 1)/2. Similar

arguments can be applied to the case when s is even and t := (s — 2)/2. Therefore, combining all above together,
we obtain for all integer s > 1:

< f’f>ngNM2'

O
We are now in the position to prove the main results of Section 3.2.
Proof of Theorem 3.1. By Cauchy-Schwarz inequality, we have: for all s € N.:
1f = Fl2n < 201Ef = flan + 1f = EFI2,0)-
Then, according to PCR-WLE algorithm in Section 2.2, we obtain
IEf = FII%, = zn: {0k, [ < M (24)

)\.S
k=K+1 K+1
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and

K

If =Ef%n =D (k)i

k=1
Since (v, €)w,n is normally distributed with 0 mean and variance:

1 ;o 20-1-n

Var(vk,e>w7n=ﬁka 1y, (25)
where (Vk, Vg)wn kaD = v, = 1. Note that (vi/\/n,vx/y/n)go— = 1, then we have
. 1 p—l—r _p—l—r
min  —vf D a1 D a1y, (26)

v //MER™ N

is the smallest eigenvalue of the matrix D"F T with respect to the inner product (-,-),»--. As D is a diagonal
matrix with the (4, 4)-element as d;, according to Section 6.1, it is bounded from below, say by a constant C' > 0,
almost surly for n large enough. Then, combining (25) and (26), we have:

K
17 = EFIZ 0 = = S (Vlon, )
k=1

with v/n(vg, €)w,n being normal with mean 0 and variance
Var(v/n(vg, €)w.n) > C > 0.

According to an exponential inequality for chi-square distributions from Laurent and Massart (2000), we obtain:
. . VK
P(f—Eflli, > —+2—f+2 : (27)

With (24) and (27), it yields

qune? w,n OK
(L o CK

I = fI, < S5 =, (28)

with probability at least 1 — e ® if 1 < K < n. Then, it remains to bound the empirical weighted Sobolev
seminorm (L3, ,, f, f)wn and the graph weighted Laplacian eigenvalue A%, ;.

We will first focus on (L3, ,, . f; f)w,.n for s = 1. By definition (4), we have by symmetry:

X — Xl

1 (i)
E(Lwn,ef, flwun = B d+2|d ” 1f(Xi) —d; (X)) IW : (29)

i J

We would like to point out here that the normalization factor e~ (4+2) is motivated by the fact that a factor of

e~? is needed to scale 7 (M) and the remaining factor, €2, stabilized the squared differences of d; a1

under the expectation.

According to Section 6.1 and by conditioning on X; and the law of iterated expectation, we have for n large

enough,

. i} oy (1Xi=X]
— =T —q=1 e 3
E( A=ld, "7 F(X0) - d; TFXG) P J}(_W&l._—q/)z = 2Ly f, [gr—r| S An,€,m,9) + e,
i f]

(30)
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where

1 0 -1 1
w0)  no flosd

A(”:@Uag) = Egmax + ned " e ) —0 as n— oo.

Combining (29), (30) and Lemma 5.1, we obtain:
]E<Lw,n,ef7 f>w,n S M? + A(n,en,g) +e.

Consequently, by Markov’s inequality, we have: for any ¢ € (0, 1),

1
<Lw,n,ef7 f>w,n 5 g (M2 +A(n76777a9) +6) ) (31)

with probability at least 1—4. Note that the above bound on the expected weighted Sobolev seminorm generalizes
the results in Green et al. (2023) to the weighted Laplacians by some properties of KDE.

Next, we proceed to the higher order case when s > 1 for (L3, ,, .f, f)wn- We define the following difference
operator:

__r_ __r_ 1-p
Djf(x) = (d. " f(x) —d; " f(X;))d " w'y,
where d. and w¢ ; are defined by replacing X; by = in both d; and wyg ;. Furthermore, let D;f(z) := (Dj, fo...0

D;, f)(x), where j = (J1,---,7s) € [n]® :=={1,...,n}°. Denote by (n)s the sub-collection of vectors in [n]® with
no repeated indices and let by ij :== (i, j1,...,s)-

Following the idea of Green et al. (2023, Proof of Lemma 3), we decompose the weighted Sobolev seminorm into
a U-statistic, which is an unbiased estimator of the non-local Sobolev seminorm (L3, . f, f) g+, and a pure bias
term:

(Lonefs [lon = %Zd??ifwef(xi) (X))
i=1
1 p—l—r
=5 2. 47 Dif(X) - f(Xy)

ije(n)stt

1 poior

o D i D) f(X)
ijEn]s T\ (n)s+1

=: Il +12. (32)

Note that there are errors in Green et al. (2023, Proof of Lemma 3) when bounding both EI; and EJ5. Specifically,
in Green et al. (2023, Lemma D.3), there should not be a ¢ appearing in Equation D.4 by Markov’s inequality
and the power of € should be 2s+d. Although their final result is correct, we will fix these errors in the following
proof. Now, determined by whether all ij are distinct, the empirical weighted Sobolev seminorm can be divided
into two parts, I; and I. The first one involves all distinct indices where we make approximation by the so-called
non-local weighted sobolev norm (L3, . f, f)g»—+; the second part focuses on the case where not all 4j are distinct
and use the fact that it is related to a connected subgraph.

As for I from (32), we have

KL, — ”!)!E (d:qlerjf(Xi)-f(Xi)>

ne2s (n—s—1
1 n!

= e (s ~ DD (X, (XD g

where the operator Dj is iterated for s different times due to the fact that ¢j are all distinct. For each iteration,
say s = 1, we have

E(D; f(Xi), f(Xi))gr—r
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9 [ X = X511
= O [ el 00 — ) P (33)
T 2n | ed+2 ! J JL T Ci”z}—q/2d”]l'—q/2 :

Then, plugging (30) in (33), we obtain

2 2

€ €
‘E<Djf(Xi)7 f(Xi)>gP’T - g<Lw,efa f)gp’r 5 %(A(n’ €, 7779) + 6)'
After s times iteration, it yields that
628 2s
D60, S = S Bl | S o (Bl cag) + 0,

Putting all above results back in EI;, we conclude that for n large enough,

< n!)!(A(n, €,1,9) + €). (34)

LS p—T
'< w,ef7 f><] ~ ns+1(n —s—1

‘]Efl - nstl(n —s—1)

The Stirling’s formula shows

. n!
nlgr;o nstl(n —s—1)1 L

Therefore, by (34), we have for n large enough,
EIl 5 <qu,ef7 f>gp’r + (A(?’l, €1, g) =+ 6)'
According to Lemma 5.6, it yields that

El < M?+ (A(n,e,n,9) + €). (35)

We next shift our attention to I in (32):

e Y AT D) ()~ X)),

ij€[n]ot\(n)s Tt

For 4j not all distinctive, if they contains a total of (k + 1) distinct indices for example for 1 < k < s — 1, we
have by symmetry:

p=l-r 1 p=l-r
Yoo AT DX f(X) =50 > AT Dif(X) - (F(X) - £(X5):
ije[n]st1\(n)s+1 ije[n]st\(n)s+1
Observe that in order for

47T DX £ — (X))

to be non-zero, it must be the case that the graph Gy, (X;;) which is the subgraph induced by the vertices

Xi, Xj,,...,Xj, is complete. Since we have:
D;jf(x) = Di(D; f(x))
=D; ((d“lf(x) — dquf(Xj))d.“lwij>
= (d "T'Djf(x) —d; T D;f(Xi))d wsy,
then

__r_ __r_ 1-p
D5 f (Xl < (d 7T 1D f(X)| + 5, T D f (X)) i i,
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Repeating the above computation and by induction, it yields that for s > 2,

(s=D)r  (s=1)(1-p)
. . _ T g1 q—1 € s—1 ) )
Dy f(X3)| < (s 1)dmax/mindmax/min (Whnax) E |Dj, f(X5)1,
J€\{js}
where dpax = ‘1111ax diy dpin = 1{1in diy Wmax = ‘mlax w;j and dpax / min Means it is dpax if —(s—
i=1,...,n i=1,...,n i,j=1,...,n

1)r/(d —1) (respectively (s —1)(1 —p)/(q¢ — 1)) are positive and it is dp, otherwise.

According to Section 6.1, we have for n large enough, dp.x is bounded from above and dy,;, is bounded from
below a.s. and

1
Wmax S —
max ~o ned’
almost surely.

Consequently, it yields that
p—1—r
d; D f(Xa)] - f (X)) = (X))
p—1—r
= dz o |D.]f(Xl)| : |f(XZ) - f(XJ1)| . 1{Gn,€(X,1j) is connected}

1 e
’S (ned)sfl Z <dz o |D]sf(X])| : lf(Xl) - f(le)‘ ' 1{Gn,e(Xij) is Cormected})

g€\ {js}

2 Lo ) L (LX)
= nsed(sfl) Z <€d+2 di o |dj ot f(X]) - djsq_1 f(XJs) d]?_l dflfq/zdflfq/z
J€iI\{js} J Js
|f(Xz) - f(Xj1)|1{Gn,E(XiJ-) is connected})a (36)
+

where we again assign €72 as a normalization factor into the expectation as (29).

Now, note that for j =4 in the summand on the right-hand side of (36), we have according to Section 6.1:

X, —X;,
" (II . H)

jl—q/2 71—q/2
di djs

E<éifa“w¢q”ﬂxn—@:”ﬂxﬂ> £ - £(X,,))

1 {Gn,e(Xij) is COnnected}>

I - -
SE edﬁwi TUAXG) —dy T (X))

n (HXFXJSH> }
S LT T AKX — d T f(XG)
Ja2gi-a/z i i J

i Js

+ (A(nv €1, g) + 6)) 1{Gn,€(X,-j) is conncctcd})

n (llXi*stH)
2 €

g}—q/2g%—q/2

Js

I - e
SE edﬁwi TUAXG) —dy T (X))

+ (A(n, €,m,9) +¢€)

l{Gn‘E(X,ij) is conncctcd}) 5 (37)

where the last inequality is by Cauchy—Schwarz inequality and X7, ..., X,, beingi.i.d. data. Then, by integrating
out all indices in j not equal to i or js, it yields that
X=X |l
277( € ] )

1—q/2 71—q/2
d; djs

1 - -
El| a=ld FAXG) —dy T (X))

+ (A(n,e,n,9) +¢)
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1{Gn,5 (Xi5) is connected})

1 X =X |l
d k—1 1 - = 9 ( € )
S (Ce%gmaxVa) E edﬁmi (X)) —d; (X)) Fa/agiar
T Js

+(An,en,9) + 6)))- (38)

Therefore, according to (37), (38), (30) and Lemma 5.1, we obtain

(22

CZI q/2d —q/2 |f( ) (XJ1)|

? Js

E( e, T TR —d, (X))

l{Gn,E(Xij) is connected}>

5 Gd(k_l) (M2 + A(na €, 7779) + 6) . (39)
Applying a similar approach to all j # js and plugging (39) in (36) and (32), we have
1 1 =
(A1) (2 k+1
EIQNTLGZSnseds 1)2 (M +A(neng))n
2 .5—1
2
SJ ne 25 (M + A(

k:l

Note that the above sum is bounded from above when k = s — 1 by the assumption ne? > 1. Finally, we conclude
that

EIQ S M2 + A(na67nag) + 6) . (40)

ﬂ628+d (

Finally, combining (32), (35) and (40), we obtain:

2
€
< wnef7f>w,n SM2+(A(77‘7677779)+6)+W (M2+A("a€»7779)+6)
S M2+ (A(n,€,m,9) +€),

where the last step is by the assumption that e > n~/C(=D+d) By Markov’s inequality, we have for any
0€(0,1),

s 1
<Lw,n,ef7 f>wn ~ 5 (M2 (A(nv€7nag) +€) ) (41)
with probability at least 1 — 24. This bound can be considered as a higher order variant of (31) for s > 1.

Now, recall the bound (28). We have bounded the empirical weighted Sobolev seminorm by (31) and (41). It
remains to bound the eigenvalues Ax .

According to Lemma 6.1, we have:

Me = M (Lupme) 2 A6 (L) A €2 forall 2 <k <n, (42)

with probability at least 1 — Cne—"<" for some constants C,c> 0.

For s = 1, combining (28), (31) and (42), we have with probability at least 1 — 0 — Cne=<" — ¢=K and n large
enough:
M2

R K
_ 12 < -
1 = 1V S 50mmegney o
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Furthermore, based on the assumption € < K~/ and Proposition 6.6, the above inequality becomes:
. M? _ K
1 = FI20 S (B 41724 = (43)

By balancing the two terms on the right-hand side, we pick K = | M?n| @/(2+d)  Then, it yields that
A 1
1F = fll%n < EMQ(Mzn)*Q/(”d)- (44)
If M2 < n~! we can take K = 1 and obtain from (43) that:

A 1
— 1< =

If M > n'/4 we take K =n and in this case, we actually have f(XZ) =Y;fori=1,...,n and
1 n
||f_ f||121;,n = gzgf S C7
i=1
with probability at least 1 — e™" for some constant C. Combining all above cases depending on choices of K, it

yields that bound in Theorem 3.1 .

For s > 1, the proof follows in a similar way by considering (41) instead of (31). O

5.2 Proof Of Theorem 3.2

Proof of Theorem 3.2. Recall the construction of the estimator based on Lepski’s procedure: fadapt = fs o With

3, M given in Section 3.3. Let the event &; be that 5 = s; and suppose s = s; for the true smooth parameter.

First of all, it suffices to consider M € D by realizing that if M € (M;_1,M;), then f € H*(X,g; M) with
H*(X,9;M;_1) C H*(X,g; M) C H*(X,g; M;). Now, we also suppose M = M; correspondingly and consider
bounding the sum:

Ny
S (I, = 712, M 2020 Tog /o401, )
j=1

conditional on the event that the sample points X1, ..., X, satisfy (28) and (42) with K = [M?n|% @sitd),
These two statements hold with probability at least 1 — Cne=Cne’ — o= IMIn]"/E5FD A g e will see, the fact
that this sum does not explode, relies on the fact that the probabilities of the sets £; get small as n — oco.
First, note that by Cauchy-Schwarz inequality, we have

N,
>~ (I = £ 0072 (02 1og m)2e:/ 22 )

j=i

N;
S Z (Hfsj - fsi + fsj - f||12u,an_2(Mz2n/ 1Og”)23i/(25i+d)151)
=i

N
<> (2ede, +2 (I = F12, M2 (M0 logn)?/ @01, ) )
j=i

<263+ 2 (1 fo = FI12,, M2 (M log m):/ 2ot )

Therefore, according to Theorem 3.1, we have: for any ¢ € (0, 1),

N,

> (s = 11

J=1

w,n"e ’

2 M:2(M?n/log n)QSi/(25i+d)18j> <

SN
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with probability at least 1 — §log™2%/ 51+ y _ Cpe=Cne’ _ o= [Min] /bt

Next, we consider the other part when j < ¢:

i—1
> (s = £ M2 (M2n 1og m)> /oty ). (45)
j=1

By the definition, on the event &;, there exists ' € B with s < s; such that I fss = ferllwm
coM'"2(M"n/logn)~*"/@'+d)  This means ||f,, — fo |2, M'"2(M"?n/logn)?/2'+d) > & By trian-
gle inequality, this implies we have either [|f,, — f||2,M'~2(M"n/logn)?"/@'+d) > 2/4 or |fy —
flIZ, M —2(M"?n/log n)2s'/(2s'+d) 5 2 /4. Then, we have

1—1
<> (P (IF = FI2 M7 (MEn/ log m)™/ 1+ > 3 /1)
=1
P (1o = FI2,0 M2 (M0 log m)*1/ @150 > /1) ) (46)

Since | < i, we have f € H% (X,g; M;) C H*(X,g; M) for all [ < i. Therefore, it suffices to focus on the
concentration inequality of fs, to f, i.e., bounding

P (1o = FI12 M2 (M0 Tog m)2t/50+0) > /4] (47)

Note that the key problem here is the rate of convergence of || f57 flI2,, in (45) does not match the rate

(n/log n)QSi/ (2si+d) given there. However, this can be dealt with by Controlhng the probability of the event &;.
The strategy here is we need a better concentration inequality than what has been proven previously as (41)
otherwise the probability of the event £; will not decay to 0. Observe that the concentration (41): for n large
enough and with probability smaller than 1 — 26,

<wnef7f>wnw 1M2

is from the application of Markov’s inequality with

< wnef7f>wnNM2a

for n large enough. While bounding the first moment gives a concentration inequality with probability 1 — 26,
establishing a higher moment bound, e.g. the second moment, would result in a better concentration inequality
with higher probability similar to Green et al. (2021, Proposition 1), which fits in our proof technique.

Starting with s = 1 and similar to (30), we have: for n large enough,

Vaf<Lw,n,ef7 f>w,n

n (HX EX H)
Xi)TTf(Xq) Q(Xj)irf(Xj))Qg(Xi)lipg(X )= q/2 g(X )1 q/2 |- (48)

1 1
,SVar 577126‘1""2 i

Fori,jel,...,n,let

P
Vi = (906070 = )™ FOG) 900! s e

We have:

- 2 1 " (HX EX ”)
Var Z (g<Xz)_Tf(XZ) - g(Xj)_Tf(XJD g(XZ) _pg(Xi)lfq/gg(Xj)lfq/g
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Z Z Cov(Vij, Vim).

i,j=11,m=1

Now, consider the following four scenarios depending on the cardinality of {i, j,1, m}.

o If |{i, 4,1, m}| = 4, since V;; and Vj,,, are independent, we have Cov(V;;, Vis,) =0
o If |{4,4,1,m}| = 3, without loss of generality, say 7 = [, we have by Lipschitz condition,
COV(V;']', ‘/zm) S E[VLJ‘[LM]

< 2d+aprd

o If [{7, 7,1, m}| = 2, without loss of generality, say i = [ and j = m, similarly, we obtain
Cov(V;;, Vi) < ]EV2
< d+4M4.
o If |{i,j,I,m}| = 1, we have V;; = V},,, = 0.

Plugging the above results in (48), it yields that for n large enough,

1
Var(Lomefs Pom < yPETE (n362d+4M4 Tn ed+4M4) n=l M,

where the last step follows by the assumption that ne? > 1. Then, by Markov’s inequality, we obtain: for any
0 €(0,1),

P (1B s = Bl fhunl 2 3307) £ . (49
Combining (49) and (31), we conclude that for n large enough,
@mwﬂﬁwnN5M2
holds with probability not less than 1 — -%. Furthermore, following a similar argument in Lemma 5.6, one can

show the above high- probablhty bound also holds for the case s > 1. Thus, under the additional Lipschitz
assumption that |fy(x) — fg(2’)| < M|jx — 2’|, we establish a better bound for the empirical weighted Sobolev
seminorm: for all s € N and n large enough,

< ’LU'(lEf?f> N%Mz,

with probability at least 1 — C %.

Conditional on the event that the sample points X1, ..., X, satisfy (28) and (42) with K = |M?2n|%/@s+d)
following the proof of Theorem 3.1 to obtain (44) by using the better concentration inequality we derived above
instead, we have for n large enough,

I = fln S 5M2(M2 p)=2s/(2s+d)

with probability at least 1 — C6%2n~! — Cne=Cne’ — =M™ n]" "y der the minimax optimal setting for M.
Now, returning to our mission (47), by setting 6% = ¢2/4 - log2*"/ > 9 p we have:

B (|1 = I3, M2 (MEn  Tog n)**!/ G5 > 2 /a)

< 160664’071 log—Qsz/(2sz+d) n -+ Cneane + ef[I\/Iéinan/(%*d).
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With (46), we obtain:

4/(2s+d)

P(£;) < 16Ccy*n~* log!~2smin/ (2smintd) 4 Cne=Cn<’ logn + e~ Minn] logn

Combining the above result with (45) and noting that on 5]?, 1g;, =0, it yields that

5 (i
j=1

WM72(MPn/ logn)2s/ Coitd ) <

Oq\r—t

with probability at least

1— 510g—25i/(25i+d) n— 16000_41171 logZ—ZSmin/(ZSmin—i-d) n— C’ne’cnfd’ 10g2 n— eftMiand/(2s+d) 10g2 "

6 AUXILIARY RESULTS

In the subsequent two sections, we introduce some important properties of KDE and eigenvalues of the weighted
Laplacian matrices L, and the weighted Laplacian operators £, used in the previous proof respectively.

6.1 Property Of Kernel Density Estimation

Consider a Kernel density estimator (KDE) on X:
_ L zn: Ix — Xl
ned = )

where 7 is a kernel function.

In Giné and Guillou (2002), it has been proven that the above KDE satisfies the following almost sure convergence:

19n(2) = Egn(2)]lo0 = Oa.s. ( “"%f') ,

ne

given the assumption that the kernel n satisfies the kernel VC-type condition (A4) and see Remark 3.2 for more
details.

As for the bias, it is well-known that there exists a boundary effect on KDE due to the fact that (with probability
1) all the samples lie in the support of the density. However, when we are far enough away from the boundary
such that B,(e) C X, we have

Egn(x) — I—‘/ 'l <|"T y)g(y)dy—g(x)

< /Mlglnuz>|g<x+ez>—g<x>dz

Se [ lelinlela < e
Rd

where the last step is by the assumption that ¢ is Lipschitz. As a result, for such values of x,

| log €]
||gn(x)g(x)lloo0a.s.< med 1€

When z is near the boundary, i.e., B,(e) ¢ X, we have X; € B,(e) with probability less than Ce for some
constant C' > 0. Then:
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and

Egn(z) = / n(l2)g(@ + €2)dz > gonin / n(ll2l)dz > 0,
{lIzlIL1}n{z+ezeXx} {lIzlIL1}n{z4ezex}

under the assumption (A1) on X. Therefore, we have for all z € X, g,(x) is bounded from above and below a.s.
for n large enough.

By conditioning on X; and the law of total probability, we have for all ¢ € [n] and B.(X;) € X,
A_(n7 €1, g) < gn(X'L) - g(XZ) < A+(TL, €1, 9)7

almost surely with

_ 1 0 n—1
A (’I’L, €1, g) ‘= ——Omax + :]1(6(1) - A(n7 6)7
1 n(0) n-1

A+(’I’L, €, 7779) = _ggmin + m + A(?’L, 6)7

1
A(n,e€) =4/ | ::Egdd +e.

Since we are seeking a high-probability bound in Theorems 3.1, it is not necessarily required to have an exact
estimation near the boundary, which happens with probability of the order e. However, various approaches in-
cluding data reflection, transformations, boundary kernels and local likelihood, have been proposed for boundary
correction.

and

6.2 Property Of Eigenvalues

In this section, we focus on introducing some results on the eigenvalues of the weighted Laplacian Ly, , . and the
weighted Laplacian operator £,, based on analysis in Calder and Trillos (2022), Green et al. (2021).

6.2.1 Transportation Distance Between Measures

For a probability measure G defined on X and a map T': X — X, denote by Ty the push-forward of G by T,
i.e., the measure such that for any Borel subset U C X', it holds that

Ty6(U) == G(T(U)).

When Tj¢ is taken as the empirical measure of G denoted by G, T is called the transportation map between G
and G, and we define the co-transportation distance between G and G, as

deo(G,Gy) == T:TnlgiGnHT —1Id|| o) (50)
where Id is the identity mapping. We denote by T the optimal co-optimal transport map (co-OT map) between
G and G,, i.e,, the map that achieves the infimum (50).

Now, following Green et al. (2021), let

6 := max{n~ Y% C¢},

where C' > 0 is some constant not depending on n and we also let 6§ > 0 be some constant not depending on n.
We present the following result from Green et al. (2021).

Proposition 6.1 (cf. Proposition 3 of Green et al. (2021)). Under the assumptions (A1) and (A2), with
probability greater than 1 — CneiC”GQ‘sd, there exists a probability measure G,, with density Gn such that

doo (G, Gp) < C8,
and such that
”g - gn”oo < 0(9 + S),

where C' > 0 is some constant not depending on n.
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6.2.2 Discretization And Interpolation Maps

is to construct two maps: a discretization map P :

The key procedure adopted in Calder and Trillos 2)
— L?(G), that are "almost” isometries.

C Trillos (2
L?(G) — L?*(G,,) and an interpolation map Z : L?(G,,
For X;,i=1,...,n, define

02
)

U = T~ ({X;}).

Then, we define the contractive discretization map P : L2(G) — L*(G,,) by

PHE) = n- [ [

Moreover, the interpolation map Z : L2(G,,) — L*(G) is given by

Tu:=A,_,5(P*u).

Here, P* = uo T is the adjoint of P,, i.c.,
n
= Z u(xi)leUm
j=1

and A__,; is a kernel smoothing operator with respect to a kernel K (defined below) with the bandwidth e — 20.
The kernel K is defined by

K(z,y) = dC<IIw—yII),

€

where
1 o
)= [ nts)sds
g1 t
Then, define the operator Ay, for h > 0, by
Mf@) = = | K f)at)is
where 7(z) = [, K X (y)dy is a normalization factor.

].:‘lllrthelrmore7 we define the Dirichlet energies:
bw,e(u) = <Lw,n,eu7u>gl’*’"v
and
[ Is @Ry it e H (X,

o0 O0.W.

Dw(f) =

Clearly, when w = (p,q,r) = (1,2,0), the above Dirichlet energies become the ones associated with the unnor-
malized Laplacian, i.e., w = (p,q,7) = (1,2,0):

be(u) = (D — W), ),
and
LJVﬂmew%m if f e HY(X),

O0.W.

The following two propositions from Green et al. (2021), whose proof is based on Proposition 6.1, shows the fact
that discretization map P and interpolation map Z are almost isometries.
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Proposition 6.2 (cf. Proposition 4 of Green et al. (2021)). With probability at least 1 — Cne=Cm9%" " we have
for any f € L?(X),

be(Pf) < C(1+C(0+96)) (1 + Oi) o1 - Da(f),
and for any u € L*(G,,),

01D (Zu) < C(1+ C(0 +6)) <1 +C’§> - be(u).

Proposition 6.3 (cf. Proposition 5 of Green et al. (2021)). With probability at least 1 — Cne=Cm9%" we have
for any f € L*(X),

‘Ilflliz(@ B,

< C[| fll 2y V/D2(f) + C(0 + S)Hf”QL?(G)v
and for any u € L*(G,,),

2,y = 1Zullfegy| < Cellulliz (@, vVoe(u) + C(O +d)||ulZ2(q,)-

Now, as we consider the Dirichlet energies b, ¢(u) and D, (f) for the weighted Laplacian. Note that by the
boundedness assumption of the density g, we have there exist constants C > 0 and C’ > 0 such that

! 2 Idx 2)|Pg(x)?dx 2)|[Pg(x)dz.
c /Xllvfg(x)ll g9(z)?d S/Xllvfg( )Ng(z)™d SC/XHVfg( g(z)?d

Also, with transformation v := D~"/(¢= 1y, for ¢ # 1, we have
<Lw,n,eu7u>gp—r = <(D — W)’U,’U>.

This also holds for ¢ = 1 by definition (3). According to Section 6.1, we obtain that there exist constants C' > 0
and C’ > 0 such that for large n, almost surely,

C'biye(u) < be(u) < Chy e (u).

)

Consequently, following the proof in Green et al. (2021), we present the following propositions parallelling
Proposition 6.2 and 6.3 associated with the weighted case.

Proposition 6.4. With probability at least 1 — Cne_cn‘gzgd, we have for any f € L?>(X,gP™"),

b(Pf) < C(1+C(6+7)) (1 + 0‘5> o1 Da(f),

and for any u € L*(G,,),

01Dy (Tu) < C(1+C(0 4 6)) <1 + Ci) ~be(u),

where C' > 0 is some constant not depending on n or f.

Proposition 6.5. With probability at least 1 — Cne*C”GQSd, we have for any f € L*(X,gP™"),

1122 go—ry = IPFI%n] < OOl 2,90y VDo (F) + CO+ D) flI 20 go-r) + Aln€,1,9) + e,
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and for any u € L*(G,,),

< Oel|ullwny/bu,e(w) + CO +)||ul, . + Aln, €1, 9) +e,

lull? = I ZullZe 2 go-r)

where C' > 0 is some constant not depending on n or f and

1 n(0) n-1
A = —Ymax — A »€)s
(,€,17,9) = —gmax + - + (n,€)
[log €]
A .
(n,€) — +e

Also, we state the following Weyl’s law whose proof follows Dunlop et al. (2020, Lemma 7.10).
Proposition 6.6 (Weyl’s law). There exist constants C,C’ > 0 such that

C'PIY < N(Ly) < CPY,
for alll > 2.

Therefore, by following Green et al. (2021, Proof of Lemma 2) except that we replace Propositions 6.2 and 6.3
by Propositions 6.4 and 6.5, we obtain the following bound for the eigenvalues.

Lemma 6.1. Under the assumptions (A1) and (A2), there exist constant C,C' > 0 and N > 0 such that for
n > N and C(logn/n)'/¢ < e < C, with probability larger than 1 — C’ne’cnfd, it holds that

C' min{i%%, €72} < A\(Lun.c) < Cmin{i¥4 2},

forall2 <1<n.
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