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Abstract

Data containing human participants and time-series features, as is commonplace in Human Factors research, require special
considerations when used in machine learning applications. Ignoring such features during cross-validation procedures might
lead to artificially increased model performances due to temporal (i.e. using future observations to predict the present) and
participant (i.e using sub-data sets coming from the same participant for training and testing) data leakage. Ve propose a
comparison approach to assess the model performance when machine learning algorithms are trained with two distinctly
different cross-validation algorithms: k-fold, which assumes data independence, and population-informed forward chain
(PIFC), which accounts for human participants and time-series features. A case study was conducted by using biometric
measurements collected from a virtual reality chess experiment. The results show that substantial overestimation might

occur when applying the k-fold algorithm instead of the PIFC algorithm.
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Introduction

Cross-validation is a procedure used to train and evaluate
machine learning models by determining how the data needs
to be partitioned into training and validation (i.e. testing)
data sets, as well as the best-performing hyperparameters
that define the model. It is good practice to choose a cross-
validation algorithm that represents the problem one is trying
to model. Various cross-validation algorithms, such as k-fold
(Stone, 1974) and forward chain (or rolling-origin) (Tashman,
2000; Hyndman & Athanasopoulos, 2021) are distinctively
different. The k-fold algorithm assumes that observations
contained in a data set are independent of each other, whereas
the forward chain algorithm assumes that data are dependent
on time.

The choice of a cross-validation algorithm might have an
effect on model performance (e.g. accuracy), especially
when machine learning models are fed biometric data (e.g.
eye tracking data, haptic interaction data, cerebral hemody-
namic activity data) which can depend on factors such as
time and participant. Depending on the application, an
improper cross-validation procedure can introduce temporal
and/or participant data leakage into the model during train-
ing that could lead to performance overestimation. Temporal

data leakage may occur when data from future time periods
are inadvertently used during the training and/or evaluation
(i.e. trying to predict the a present observation using future
ones) of a predictive model leading to performance overesti-
mation (Kaufman et al, 2021). Furthermore, participant data
leakage may occur when data from the same participant is
used for both training and evaluation, which might also lead
to performance overestimation (Dehghani et al, 2019). In
short, not accounting for participant and time characteristics,
when needed, might lead researchers to obtain incorrect or
unrealistic predictive model performances.

To address the issues of temporal and participant data
leakages, Cochrane and colleagues (2021) proposed an
enhanced algorithm called “population-informed forward
chain (PIFC) algorithm” which conducts cross-validation
considering both users and time elements. Existing research
efforts investigate the possible bias on assessing model
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performance (Varma & Simon, 2006), and PIFC algorithm
was successfully implemented to analyze the temporal net-
work data of an IBM cloud server (Ohana et al., 2022).

However, to the best of our knowledge, no officially pub-
lished research exists on the extent of overestimation when
k-fold is used instead of population-informed forward chain
using actual human experiment data, specifically humans’
biometric (or physiological) data.

Prior research by Dehghani et al (2019) compared the
effects of a subject-dependent (i.e. k-fold) vs. a subject-inde-
pendent (a modified k-fold algorithm to account for partici-
pant and time data leakage) cross-validation using a human
motion data consisting of 17 participants and 33 fitness
activities collected over time. They report that subject-
dependent cross-validation, which assumes that observations
are independent, had higher performances across all their
classifiers (ranging from 10% to 21%) compared to subject-
independent cross-validation.

Our research goal was to verify whether similar perfor-
mance overestimation might be obtained when using human
experiment data, specifically biometric (or physiological)
data collected from multiple participants over time. The dif-
ferences between our proposed comparison approach
(explained in a section below) with those of Dehghani and
colleagues (2019) is that (1) we evaluated and compared per-
formance estimations using root mean square deviation
(RSME), as our machine learning problem is one of regres-
sion and not classification, (2) k-fold and PIFC algorithms,
the latter of which came after Dehghani work was published,
were applied to commonly used machine leaning algorithms
(i.e. multiple linear regression, ridge regression, and random
forest), and (3) plausible procedures were defined and devel-
oped to compare cross-validation algorithms.

In this research, three machine learning algorithms were
considered: multiple linear regression, ridge regression and
random forest. Multiple linear regression has been widely for
prediction using human experiment data (e.g. Ibrahim &
Rusli, 2007). Ridge regression, closely related to multiple
linear regression, was considered since it penalizes complex
models to prevent overfitting (de Vlaming & Groenen,
2015). Lastly, random forest, unlike the other models, is an
ensemble learner, meaning that it creates several decision
trees and aggregates their results to produce a single output,
which perform better even with relatively smaller data set
(Boulesteix et al., 2012).

The application used to obtain biometric data for analysis
was a virtual reality chess game. Virtual reality can provide
immersive capabilities that can increase user engagement
(Bodzin et al, 2021; Allcoat & von Miihlenen, 2018). As part
of a larger effort, we were able to establish a multi-person
virtual reality system and developed apps that enables the
collection of biometric measures such as eye fixations, pupil
size, haptic interactions, and cerebral hemodynamic activity
data (Kang et. al, under review). Note that a variety of bio-
metric data collected using a low frequency (e.g. 100hz) for

a relatively short time from a single participant can generate
tens of thousands of data points.

Objective

The objective of the present study was to evaluate the effect
of machine learning model performance when time-series
data collected from multiple participants are treated as inde-
pendent vs. dependent (on time and participant). The evalua-
tion is conducted by comparing the RMSEs of three machine
leaning algorithms (i.e. linear regression, ridge regression,
and random forest) when different cross-validation algo-
rithms (i.e. k-fold vs. population-informed forward chain)
are applied. This was investigated through a simplified vir-
tual reality experiment of a chess game.

Proposed Comparison Approach

The proposed comparison approach builds upon the prior
research efforts (Dehghani et al., 2019; Cochrane et al., 2021)
by introducing detailed steps, procedures, and measures, that
were adapted to better compare the model performances
when different cross validation algorithms (i.e. k-fold vs.
population-informed forward chain (PIFC)) are implemented.
To better illustrate the procedures, we assume 6 participants
(P1-P6) and 3 time-ordered trials per participant. The assump-
tions matched with the case study are explained later.

Step |. Define the parameters and procedures
using similar amount of validation data sets to
compare the cross-validation algorithms

Each cross-validation procedure can be visualized in
Figure 1. Regarding the k-fold cross-validation, firstly, all
data are randomly split into training and test sets. The train-
ing data contains 80% of the data and the remaining 20% are
allocated for testing. Secondly, the training data are again
split into k-folds (i.e. subsets), and a fold (i.e. subset) is used
to validate the model. Note that the test data set is different
from the validation data set and is used to assess model per-
formance on unseen data once the cross-validation proce-
dures identifies the best performing models.

In the case of the PIFC, firstly, data are split based on
participants: a train set (i.e. P2-P6) and a test set (i.e. P1).
Note that the percentage of data used for training can slightly
differ. In the below example, P2-P6 contains approx. 83%
and P1 contains approx. 17%. Secondly, each validation fold
is used against the data available until the point-in-time (see
pink area in Figure 1(b)). For example, when P6 is used for
validation, 3 folds are created (since we assumed 3 time-
ordered trials) using the time-ordered data of P6. When using
the first fold of P6, the remaining data are not included to
prevent data leakage from future samples (see grey area in
Figure 1(b)). Three validation folds are used per participant;
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Figure |. Cross validation algorithms: In each cross-validation
fold, the light pink denotes the data used for training, while the
light green represents the data used for testing. Note that the
PIFC process explained by Cochrane and colleagues (2021) is
visualized here. In our case, each fold results in an RMSE value.
For the population-informed (right), the grey color indicates data
that are assumed to be not temporarily available at that fold.

(a) K-fold cross-validation: Example using |5-fold.

(b) Population-informed forward chain cross-validation (PIFC).

therefore, a total of fifteen folds are used (resulting in fifteen
iterations) when we consider all five participants.

Step 2. Apply each cross-validation algorithm to
different machine learning algorithms to generate
combinations of prediction models

Many machine learning algorithms can be used for training
and testing, and we considered three popular machine learn-
ing algorithms: multiple linear regression, ridge regression,
and random forest. For both cross-validation algorithms, each
iteration produces the RMSE when a given machine learning
algorithm is applied. For example, if we have two cross-vali-
dating algorithms and three machine learning algorithms,
then a total of six combinations can exist: {(k-fold, linear
regression), (k-fold, ridge regression), (k-fold, random for-
est), (population-informed forward chain, linear regression),

(population-informed forward chain, ridge regression), and
(population-informed forward chain, random forest)}.

Step 3. Obtain the RMSE values

RMSE values are obtained for each iteration. Using the
assumptions provided above, in the case of k-fold cross-val-
idation, the fifteen folds are used; therefore, fifteen iterations
are performed which generates fifteen RMSE values.
Similarly, for PIFC, fifteen RMSE values are obtained due to
the training data containing five participants and each par-
ticipant having three time-ordered trials.

Step 4. Obtain the magnitude of overestimation
by comparing the average RMSE values among
the prediction models

The average RSME values are used to calculate performance
differences through equation (1) shown below. In (1), PD
represents the performance difference (as a percentage),
Xyog 18 the performance of the k-fold cross-validation
trained model (in RMSE), and Xpjzc is the performance of
the population-informed forward chain trained model (in
RMSE).

_ Xigord ~ Xpirc y

PD 100 (1)

Xpirc

Case Study

A case study was conducted through an experiment of a fully
immersive virtual reality chess game environment. The six
combinations (explained in Step 2 within the Proposed
Comparison Approach section) are used to evaluate the mag-
nitude of overestimations among the combinations. The results
might help us to better understand the magnitude of the over-
estimation effect before the predictive model is chosen.
Participants and Data Points: Eight participants were
recruited from the University of Oklahoma. Ages ranged
between 20 and 40, and participants were identified as non-
expert chess players who play chess casually. Due to the low
quality of the oxygenation/de-oxygenation data collected,
two participants’ data were not included in the analysis. The
data collected consisted of a matrix composed of 3965 rows
and 16 features, totaling 63,440 data points, including both
dependent and independent variables, among 6 participants.
Apparatus: HTC Vive Pro Eye Virtual Reality (VR)
device was used to collect the eye and hand movements. The
VR device is equipped with an eye tracking system running
at 120 Hz sampling rate having a spatial accuracy of 0.5° -
1.1°. Vive Pro controllers were used to interact within VR.
fNIR Model 2000C (BIOPAC Systems, Goleta, CA, USA)
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Figure 2. A participant’s eye movements at the end of a
scenario. The yellow dots represent the location of gazes made
by the participant, and the red lines constitute the saccades in-
between said gazes.

was used to collect oxygenation data (Ayaz, 2005). Vizard
Virtual Reality API functions (version 7.1; WorldViz, Santa
Barbara, CA, USA) were used to synchronize all data.

Scenarios: Human-sized chess pieces were used to create
an enjoyable and engaging virtual reality (VR) environment.
Three scenarios were re-created based on the existing famous
chess games played available at Chess.com (e.g. Kasparov
vs. Topalov, Aronian vs. Anand). Each scenario was set up so
that the participant had to move a chess piece based on how
the opponent (expert) moved a chess piece. The opponent’s
move was chosen through the suggested move generated in
Chessbase.com. An example of the VR environment created
along with captured eye movements from a participant is
provided in Figure 2.

Task and Procedure: Prior to the experiment, partici-
pants were trained on how to navigate through the VR space
and move chess pieces. They were instructed to move a chess
piece after the opponent moved a chess piece. The oppo-
nent’s action was conducted by the researcher. Participants
were instructed to make a move (using white pieces) that
would move them one step closer towards winning the game,
which would be followed by a move by the researcher (using
black pieces). The scenario would end after they had com-
pleted a total of three moves, after which another scenario
would be loaded until the participant completed all three sce-
narios (i.e. three trials).

Measures: For each scenario, eye movement, hand move-
ments, and oxygenation/de-oxygenation data of the partici-
pants were collected. In detail, for the eye movement data,
the variables consist of the location x, y, and z of the gaze in
the virtual reality environment (point X, point y, and point z),
the cumulative time until the next gaze on a chess piece
(tTFix), as well as the pupil diameter (pupil diameter). In
terms of hand movements, the location x, y, and z of both the
left and right hands, relative to the body of the user, were
included (lhand x, lhand y, and lhand z for the left hand;
rhand x, rhand y, and rhand z for the right hand). Lastly, sev-
eral variables were feature engineered, such as the distance

from the gaze point to the left and right hands (distGLH for
the left hand and distGRH for the right hand), as well as the
distance between the left and right hands (distRLH). Finally,
for the brain activity data, oxygenation and de-oxygenation
data were collected, then the difference between the oxygen-
ation value and deoxygenation value was calculated (oxy-
DeoxyDiff), which indicates the brain activity level.

Data analysis: The models were trained through two
cross-validation methods: 15-fold cross-validation and a
population-informed forward chain cross-validation (as
described in Cochrane et al, 2021). Differences in perfor-
mance on the train and test data sets, quantified through root
mean squared error (RMSE), are reported. Prior to training,
as the data contains different units, the features were scaled
to a range between 0 and 1, based on the observed maximum
and minimum values in their corresponding train sets. Three
machine learning algorithms, multiple linear regression,
ridge regression, and random forest, were implemented and
trained using the two cross-validation approaches. During
both cross-validation procedures, a wide range of hyperpa-
rameter values were explored. For ridge regression, alpha
values of .001, .01, .05, .1, .5, 1, 5, 10, 50, and 100 were
considered, which penalizes overly complex models that can
lead to overfitting. For the random forest model, two hyper-
parameters were explored to control overfitting: the number
of estimators used (10, 50, 100, 500) and the maximum depth
of each estimator (3, 6, 9, and 12). Finally, a Pearson correla-
tion matrix was computed to explore the linear relationship
between the dependent and independent variables.

Results

The model performance results are provided in Table 1.
K-fold cross-validation algorithm shows better performance
(i.e., lower averaged RMSE values) compared to the PIFC
algorithm. Hyperparameters values obtained from the best
performing ridge regression and random forest models are
provided in Table 2.

The model performance of the best models on the test data
can be seen in Table 3. The performance differences (as per-
centages) between the k-fold cross-validation and popula-
tion-informed forward chain cross-validation across the
machine learning models and the train/test data sets can be
found in Table 4. The k-fold cross-validation trained models
report higher performances (i.e. lower RMSE) across all
models on the train data, ranging from the lowest increase at
18.58% for ridge regression to the highest increase at 60.67%
for random forest. The increased performance trends can
also be seen when using the test data, with the exception of
the ridge and linear regression models, which saw a slightly
higher performance than the PIFC.

The Pearson correlation matrix between the dependent
and independent variables is visualized in Figure 3. Note that
no dependent variables have a strong positive or negative
relationship with the independent variable.
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Table 1. Train data: Average model performance (RMSE) across the two cross-validation methods on their respective training data.

Cross-validation method

Multiple Linear Regression

Ridge Regression Random Forest

K-fold 2.44
PIFC 3.42

2.44 .17
2.99 2.99

Table 2. Hyperparameter values of the best ridge regression & random forest models between the two cross-validation algorithms.

Cross-validation method

Ridge Regression

Random Forest

K-fold o=l
PIFC o =150

500 estimators, max depth of 12
50 estimators, max depth of 9

Table 3. Test data: Average model performance (RMSE) across the two cross-validation methods on their respective test data.

Cross-validation method

Multiple Linear Regression

Ridge Regression Random Forest

K-fold 2.53
PIFC 2.48

2.53 .11
231 222

Table 4. Performance differences (in percentages): Negative percentage indicates a higher performance (i.e. lower RMSE) of the k-fold
cross-validation when compared to that of population-informed forward chain cross-validation.

Ridge Regression Random Forest

-18.58% -60.67%
(2.44 vs 2.99) (117 vs 2.99)
+9.35% -50.09%
(2.53 vs 2.31) (111 vs 2.22)

Data set Multiple Linear Regression
Train -28.70%
(2.44 vs 3.42)
Test +1.85%
(2.53 vs 2.48)
point x 10
pointy - 08
point Z - . .
rhand x - | 5
rhand y - s
rhand z - - -04
Ihand x -
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thand z - [ J
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AStGRH - [ ] -0.4
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Figure 3. Visualization of the Pearson correlation matrix. Red
indicates a positive correlation, while dark blue a negative one.

Discussion, Limitations, and Future
Research

Our results indicate a sharp contrast in the performance of
the chosen machine learning algorithms depending upon the

cross-validation algorithms implemented. Similar to other
closely related research (e.g. Dehghani et al, 2019), we
found that the models trained under a k-fold cross-valida-
tion might provide artificially increased performance results.
The best performing model, the random forest model, had a
60.67% lower RMSE on the train data and a 50.09% lower
RMSE on the test data when using the k-fold cross-valida-
tion procedure, relative to population-informed forward
chain cross-validation.

Regarding the k-fold cross-validation algorithm, the ran-
dom forest algorithm performed substantially better (1.11
RMSE in the test data) than the other two models (2.53
RMSE in the test data for both). One reason behind this may
be that the random forest algorithm can handle non-linear
relationships between the dependent and independent vari-
ables better than the linear algorithms. However, the clear
model choice highlighted by the k-fold cross-validation pro-
cedure cannot be seen in the more appropriate population-
informed forward chain cross-validation algorithm.

Therefore, based on the results of the study, one may inap-
propriately conclude that the random forest model may be the
most suitable algorithm to predict engagement when using a
relatively small set of data among a limited number of partici-
pants. However, when accounting for the temporal and subject
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aspects contained in the data, as was done when implementing
the PIFC algorithm, none of the machine learning algorithms
chosen substantially differed in performance.

In addition, the Pearson correlation matrix shows that the
input features used might not be capable of effectively pre-
dicting hemodynamic brain activities. It may be reasonable
to believe that the results shown in the matrix somewhat bet-
ter accord with the results obtained from the PIFC algorithm.
In other words, it is plausible that these particular set of fea-
tures, when used as inputs in a machine learning algorithm,
should not generate an accurate model in the first place, par-
ticularly in the linear models.

Lastly, we believe, and agree on the idea that we want to
train and tune the model in a way that reflects the application
and environment it will be deployed in, specially to “simulate
the real-world forecasting environment” (Tashman, 2000). In
our case, PIFC served as an appropriate cross-validation pro-
cedure that represented our application. On the other hand,
for example, if a group of researchers were interested in pre-
dicting the state (i.e. cognitive engagement or any other mea-
sure) of a user with every hour for an experimental or a
real-life application, then they should train and assess the per-
formance of their algorithms to reflect such an application.

Future research involves better defining the measures to
predict the cerebral hemodynamic activities, such as using
eye fixations and durations on the areas (or targets) of inter-
ests, visual scanning patterns and hand movement patterns,
interaction behaviors, among others. In addition, more data
should be collected, and experiment design can be improved
to better isolate incidents that lead to substantially increased
brain activities. Finally, other machine learning algorithms
will be considered that could better predict user engagement
(i.e. brain activities) in virtual reality. For example, support
vector machines, and their ability to incorporate several dis-
tinct kernels, could have more predictive capabilities than
our linear regression and regularized models.
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