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Abstract

An important question in elections is determining
whether a candidate can be a winner when some
votes are absent. We study this determining winner
with absent votes (WAV) problem with elections
that take top-truncated ballots. We show that the
WAV problem is NP-complete for single transfer-
able vote, Maximin, and Copeland, and propose a
special case of positional scoring rule such that the
problem can be computed in polynomial time. Our
results for top-truncated rankings differ from the re-
sults in full rankings as their hardness results still
hold when the number of candidates or the number
of missing votes are bounded, while we show that
the problem can be solved in polynomial time in
either case.

1 Introduction

In a multi-agent system, voting is one of the most common
methods to aggregate preferences and make collective deci-
sions. Voting has been rooted in the democratic procedure
while emerging as new techniques to other scenarios includ-
ing search engines [Dwork et al., 2001], crowdsourcing [Mao
et al., 2013], and blockchain governance [Grossi, 2022].

An important question in these scenarios is the need to
know possible winners without knowing the preferences of
all the voters. There are several common reasons in practice
why some votes may not be available right away for tallying:
delay of absentee ballots, the forecasting of votes with polling
results, or the contestation of the validity of some ballots.

Example 1. Suppose a city runs its mayoral election and
adopts the single transferable vote (STV) (or so-called
ranked-choice voting (RCV)) as the voting rule. Unfortu-
nately, some of the absentee ballots have experienced sub-
stantial delays and are suspected to be lost. The official in-
vestigation will take about one month to locate these missing
ballots, causing a significant disruption to the usual political
proceedings. Is it possible for the city officials to offer a fore-
cast of all potential winners by considering the current votes
and estimating the number of undisclosed ballots?

A full version of this paper: https://arxiv.org/abs/2310.07150.

In fact, such examples have happened in practice in U.S.
localities that have recently switched to ranked-choice vot-
ing. In 2018, the results of the RCV San Francisco mayoral
election took a week to be confirmed and tabulated, largely
due to the late counting of mail-in ballots. The results of the
2021 New York City primary election were not known until
a full month after the election due to the large number of ab-
sentee ballots. These delays, the lack of transparency, and the
incomplete information, or lack thereof, on the outcome of
ballots led to distrust in the election process [Ennis, 2023].

Winner determination with absent votes also justifies
a candidate’s victory in ballots susceptible to manipula-
tion [Baumeister and Hogrebe, 2023]. A proposed heuris-
tic [Jelvani and Marian, 2022] empirically evaluated on NYC
election night data shows promises in identifying election
winners, or narrowing down the field of possible winners in a
single transferrable vote scenario.

From another perspective, determining winners with ab-
sent votes is also related to the classic problem of coalitional
manipulation in computational social choice. In this context,
a group of manipulators influence the outcome by strategi-
cally adding specific votes to the ballot. Originated from
the famous Gibbard-Satterthwaite Theorem [Gibbard, 1973;
Satterthwaite, 1975], there have been extensive theoretical
studies on this problem in the computational social choice lit-
erature from the perspective of coalitional manipulation [Fal-
iszewski and Procaccia, 2010; Faliszewski et al., 2010al.
Subsequent studies characterize the complexity of such prob-
lems for different voting rules including STV [Bartholdi and
Orlin, 1991], positional scoring rules [Davies et al., 2011;
Betzler er al., 20111, Copeland [Faliszewski et al., 2010b],
and Maximin [Xia et al., 2009].

However, most previous studies assume that each voter
casts a complete linear order, i.e. a full ranking toward all
the candidates. In contrast, votes where voters cast a few top
preferences become increasingly common in real-world sce-
narios. Top-ranked voting is more practical to implement be-
cause it simplifies the computation of the winner and prevents
voters without full preferences from casting random votes and
corrupting the ballot. Moreover, the results of coalitional ma-
nipulation under full rankings do not extend to the winner
prediction for top-ranking votes. [2014] study vote where
top-truncated votes are allowed. [2017] study a weighted ver-
sion of coalitional manipulation for top-truncated votes. Yet
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their hardness results also do not apply due to the incorpora-
tion of weights in the voting process.

Therefore, the following question remains open: What is
the complexity of determining possible winners in top-
ranked voting election with absent votes?

1.1 Our Contribution

We investigate the computational complexity of determining
winner with absent votes (WAV) under multiple voting rules.
We focus on two specific settings of top-truncated rankings.
In the rop-¢ setting, every voter is asked to provide their top-¢
preference. And in the up-ro-L setting, every voter can rank
his/her at most L favorite candidates.

We first show that, when the number of candidates or the
quantity of absent votes is bounded, the WAV problem can be
solved in polynomial time under both top-£ and up-to-L set-
tings. This distinguishes our work from the previous studies
under full-ranking settings, in which the hardness results hold
even for a bounded number of candidates or manipulators.

Subsequently, we show that in STV, Maximin, and
Copeland, determining the winner with absent votes is NP-
complete for every £ > 2 in the top-¢ setting and every
L > 2 in the up-to-L setting. Conversely, for the positional
scoring rule, we show that the winner can be determined in
polynomial time under both settings when the scoring vector
does not distinguish the second to the ¢-th (L-th, respectively)
rank. This case covers many common voting rules including
plurality, veto, and k-approval. A comparison between our
results and the results in full rankings in previous works is in
Table 1.

We define the problem in the way of determining the win-
ner with absent votes rather than following the convention
of coalitional manipulation because the objectives of the two
problems are opposite. For winner determination, we hope
the problem is easy so that there are efficient ways to provide
accurate predictions to the public. In the coalitional manipu-
lation problem, on the other hand, hardness results are more
welcomed because they prevent manipulators from corrupt-
ing the elections easily [Faliszewski et al., 2010a]. Our moti-
vation aligns with the winner determination problem.

2 Related Works

As mentioned in the introduction, winner determination with
absent votes has been extensively explored by the computa-
tional social choice community from the perspective of coali-
tional manipulation. [1973] and [1975] show that all reason-
able voting rules suffer from manipulation under some sit-
uations. The earliest studies on the complexity of manip-
ulation problems [Bartholdi et al., 1989; Bartholdi and Or-
lin, 1991] show that determining even if a single manipula-
tor would succeed is NP-hard under some voting rules when
the number of candidates is unbounded. A large literature
follows the path and develops theoretical results of coali-
tional manipulation under a spectrum of weighted [Conitzer
and Sandholm, 2002; Conitzer et al., 2007; Hemaspaandra
and Hemaspaandra, 2007; Zuckerman et al., 2009; Xia et al.,
2010] and unweighted [Xia er al., 2009; Betzler et al., 2011;
Davies et al., 2011; Narodytska et al., 2011; Faliszewski et

al., 2010b] voting rules. However, most of the previous
work focuses on featuring full rankings. [2014] study ma-
nipulations under up-to-m setting, i.e., voters can rank an ar-
bitrary number of candidates, and most of their results are
very different from ours. [2017] study the complexity of
weighted coalitional manipulation when top-truncated votes
are allowed. However, the incorporation of the weights pre-
vents their intractability results from extending to the un-
weighted version.

A closely related problem to the winner with absent votes
and coalitional manipulation is the possible winner problem.
The problem takes a set of candidates and a profile of partial
orders on the candidates and asks if there is a full-order profile
that extends the partial orders and makes a certain candidate
a winner. A coalitional manipulation instance can be seen
as a possible winner instance where a portion of the profile
is full orders and the rest is empty votes. When the number
of candidates is bounded, the possible winner problem can
be solved in polynomial time in unweighted votes and NP-
complete in weighted votes under multiple rules [Conitzer et
al., 2007; Pini et al., 2011; Walsh, 2007]. When the num-
ber of candidates is unbounded, the problem is P in the Con-
dorcet rule [Konczak and Lang, 2005] yet NP-complete in
a large variety of other rules [Bartholdi and Orlin, 1991;
Xia and Conitzer, 2008; Betzler and Dorn, 2010; Baumeister
et al., 2012; Baumeister et al., 2023]. [2019] shows that the
possible winner problem under STV is NP-hard even when
the partial profile is restricted to top-2 rankings.

Recent work has also looked at the intersection of vot-
ing theory with regulatory frameworks in the context of
ranked-choice voting elections. In particular, there has been
an interest in defining and computing the margin of vic-
tory (MoV), an important robustness measure of elections in
Australia, where small margins would trigger elections au-
dits [Blom et al., 2016; Magrino et al., 2011], or potentially
result in shifts in the balance of power [Blom et al., 2020a;
Blom et al., 2020b], and in election manipulation [Blom et
al., 2019] in the ranked-choice voting.

3 Preliminaries

Let M be the set of candidates (or alternatives). Let m =
| M| denote the number of candidates. Given a positive inte-
ger {, atop-£ ranking R is a ranking on a £-subset of M, where
all the unranked candidates are regarded tied with each other
and ranked lower than the ranked candidates. Let £,(M) de-
note the set of all top ¢ rankings (or linear orders) on M.

There are in total n + ¢ voters in the vote, where n is
the number of voters whose votes are known, and ¢ is the
number of voters whose votes are absent. In the top-£ set-
ting, each voter casts a top £ ranking R € L;(M) to repre-
sent their preference, where a > b means the voter prefers
a to b. In the up-to-L setting, each agent cast a ranking
R e (Uf:1 L;(M)). The vector of all voters’ votes is called
a profile. Let P denote the profile of known votes and P’
denote the profile of absent votes.

We use square brackets to denote votes. For example, given
M = {a,b,c,d}, [b] to denote a vote that prefers candidate
b to all other candidates while indifferent among other can-



Rule Top-/¢ Up-to-L

Full Ranking

STV NPC for ¢ > 2 (Thm. 1) NPC (Thm. 2)

Maximin  NPC for ¢ > 2 (Thm. 3)
Copeland NPC for ¢ > 2 (Thm. 5)
PSR P for ¢ = 2 (Corollary 1)

Pforas =--- = ay (Thm. 7)

NPC for L > 2 (Thm. 4)

NPC for L > 2 (Thm. 6)

P for 1-Rd [Menon and Larson, 2017]
P for [-Rd and as = --- = ar, (Thm. 8)

NPC [Bartholdi and Orlin, 1991]
NPC [Xia et al., 2009]

NPC [Faliszewski et al., 2010b]

P for plurality and veto

NPC for Borda [Davies et al., 2011]

Table 1: Complexity of predicting winner with absent votes under full ranking, top £ ranking, and up to L ranking.
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Figure 1: Weighted majority graph of instances in Example 2.

didates, and [b > a] is a vote that prefers b the most, a the
second, and all other candidates the least.

Given a profile P and two alternatives a and b, Pla > b)
denotes the votes in P that prefer a to b. The weighted ma-
jority graph (WMG) of P is a graph whose vertices are the
candidates and weights on ¢« — bis wp(a — b) = Pla >
bl — P[b = al.

Example 2. Let M = {a,b,c,d},n =4,and t = 2.

Let P; be a profile of 4 votes under the top-2 setting. P;
contains two votes for [c¢ > a], one vote for [a > d], and one
vote for [b > a].

Let P; be a profile of 4 votes under the up-to-3 setting. P;
contain two votes for [a > c], one vote for [b > a > d], and
one vote for [c].

The weighted majority graph of P, and P is in Figure 1.

3.1 Voting Rules

A (resolute) voting rule takes a profile as input and outputs a
unique candidate as the winner. In the top-/ setting, a voting
rulery : (L¢(M))* — M, and in the up-to-L setting, a voting
rule 7, : (UZ.L:1 Li(M))* — M. A voting rule is anonymous
if the winner is insensitive to the identities of agents.

We focus on the variation of the following common voting
rules for the top £ or up to L rankings. For a voting rule r, we
use 7 to denote its variation in top-£ setting and 7, to denote
its variation in up-to-L setting.

The single transferable voting (STV) elects the winner in
at most m — 1 rounds. In each round, each vote contributes 1
score to its most preferred candidate that has not been elim-
inated, and the candidate with the lowest score is eliminated
in that round. A tie-breaking mechanism is applied to select a
single loser when necessary. If all candidates ranked in a vote
are eliminated, that vote does not contribute to any candidate.
The last remaining candidate becomes the winner.

The Copeland rule is parametrized by a real number 0 <
a < 1, denoted by Cd®. Given a profile P, a candidate a
gains 1 score for every other candidate b it beats in the head-
to-head competition (the weight on edge a — b is positive
in the WMG) and « score when there is a tie. The candidate

with the highest score becomes the winner, and a tie-breaking
mechanism is applied to select a single winner if necessary.
In the Maximin rule, the min-score of a candidate a is the
lowest weight of its out-going edges in the weighted major-
ity graph, i.e. minye (o} wp(a — b). The candidate with
the highest min-score becomes the winner, and a tie-breaking
mechanism is applied to select a single winner if necessary.

Remark 1. We follow the definition of the Maximn rule
in [Young, 1977]. There is an alternative definition (adopted,
for example, in [Menon and Larson, 2017]) in which the
min-score of a candidate a is the min,., Pla > b], where
Pla > b] is the number of votes in P that prefers a to another
candidate b. The Maximin rule of two definitions always elect
the same winner when P contains only full rankings, but may
diverge from each other when P contains top-truncated rank-
ings. See Appendix A for a concrete example of divergence.

We define the (integer) positional scoring rule in two set-
tings respectively.

In the top-/ setting, a positional scoring rule is character-
ized by an ¢-dimension vector §; = (aj,as,- - ,a;) with
a; > ag > --- > ap > 0. Given a top-{ vote V; and a
candidate ¢, let s(V;,¢) = a; where j is the rank of ¢ in V;
or s(V;,¢) = 0 if ¢ is not ranked in i. For any profile P,
let s(P,c) = >y cps(Vi,c). The candidate ¢ maximizing
s( P, ¢) becomes the winner, and a tie-breaking mechanism is
applied to select a single winner if necessary.

In the up-to-L setting, we follow the scheme from [2014]
to deal with top-truncated rankings. A positional scoring
rule is characterized by an L-dimensional vector, §, =
(a1,a2,--+,ar) with a; > a9 > --- > ar, > 0, and a
rounding indicator, denoted by 1 or |. In an up-rounding
(7-Rd for short) scoring rule 57,1, a candidate ¢ ranked j-th
in an ¢-ranking vote V; has a score s(V;,¢) = a;. Andina
down-rounding (}-Rd for short) scoring rule 57|, a candidate
c ranked j-th in an ¢-ranking vote V; has a score s(V;,c) =
ar—¢+;. In both cases, an agent not ranked in a vote gets a
score of 0. For any profile P, let s(P,a) = . cp s(Vi, c).
The candidate ¢ maximizing s(P, ¢) becomes the winner, and
a tie-breaking mechanism is applied to select a single winner
if necessary.

Example 3. We calculate the STV winner for the top-/ in-
stance (P;) in Example 2. In the first round, ¢ gets two votes,
a and b get one vote each, and d gets no votes. Therefore, d
is eliminated.

In the second round, ¢ gets two votes, and a and b get
one vote each. Suppose we use a lexicographic tie-breaking
mechanism. Therefore, b is eliminated.



In the third round, [b > a] contributes to candidate a.
Therefore, both a and ¢ get two votes. Then c is eliminated,
and a becomes the winner.

Example 4. We calculate the winner for the up-to- L instance
(P») in Example 2 under up-rounding and down-rounding po-
sitional scoring rules with 57, = (8,2,1).

In the up-rounding rule, a is ranked the first twice and the
second once, so its score is 18. The score of b is 8, the score
of c¢is 10, and the score of d is 1. Therefore, a is the winner.

In the down-rounding rule, a gets 2 points from each [a >
c] as L = 3, and the ranking has a length of 2. a also get two
points from [b > a > d], and has a score of 6, the score of b
is 8, the score of cis 3, and the score of d is 1. Therefore, b is
the winner.

3.2 Computational Problems

We consider the following computational question: when ¢
(or L, respectively) is a constant, given a set of candidates
M, a set of known profiles P of top-¢ (up-to-L, respectively)
votes, the number of absent votes ¢, and a targeted candidate
¢, is there a profile P’ of ¢ votes that makes ¢ the winner?

We first define the question for the top-¢ setting. For each
constant £ > 1 and a voting rule for top-¢ rankings, we define
the following problem.

Definition 1 (WAV-r,). Input: a set of candidates M, a pro-
file P of known top-¢ ranking votes, the number of absent
votes t, and a candidate c.

Determine: does there exist a profile P’ of ¢ top-£ ranking
votes such that r,(P U P’) = ¢?

We also consider two variations of the WAV problem with
fixed parameters. In WAV with fixed m, the number of the
candidates is removed from the input and becomes a pre-
determined constant. In WAV with fixed ¢, the quantity of
the absent votes becomes a pre-determined constant.

For the up-to-L setting, we follow a similar definition. For
each constant L > 1 and a voting rule 77, we define the
following problems.

Definition 2 (WAV-71,). Input: a set of candidates M, a pro-
file P of known up-to-L ranking votes, the number of absent
votes t, and a candidate c.

Determine: does there exist a profile P’ of ¢ up-to-L rank-
ing votes ranking votes such that 7, (P U P’) = ¢?

Similarly, we also consider WAV with fixed m and WAV
with fixed ¢ in the up-to-L setting.

We focus on ¢ > 2 and L > 2 cases, as when ¢ = 1 or
L = 1, most common voting rules reduce into plurality, and
the WAV problem can be computed in polynomial time.

4 Fixed Number of Candidates and Fixed
Number of Absent Votes

We first show the easiness result for the variation of a fixed
number of candidates and a fixed number of absent votes un-
der both settings.

Proposition 1. For any ¢ > 2 and any anonymous voting rule
r¢, both WAV-r, with any fixed m > 2 and WAV-r, with any
fixed ¢ can be solved in polynomial time if the winner of r,
can be computed in polynomial time.

Proof Sketch. Fixed m. We enumerate all possible anony-
mous profiles P’ of ¢ votes. There are (mL—'e)' = 0O(mt) =

O(1) different top-¢ rankings. The numbers of these rank-

ings sum up to ¢t. Therefore, there will be at most O(tmg) =
poly(t) many anonymous profiles.

Fixed ¢. We enumerate all possible profiles P’ of ¢ votes. For
each vote, there are O(m*) different top-¢ rankings. There-
fore, the number of all possible P’ is at most O (m?**). O

Proposition 2. For any L > 2 and any anonymous voting
rule 7, both WAV-7, with any fixed m > 2 and WAV-7,
with any fixed ¢ can be solved in polynomial time if the win-
ner of 77, can be computed in polynomial time.

Proposition 1 and 2 imply that previous results for full-
rankings votes (where ¢ = m is variable) do not apply to our
top-¢ and up-to-L settings, as their hardness results hold even
when ¢ is fixed, including Copeland when ¢ = 2 [Faliszewski
et al., 2010b], Maximin for any ¢ > 2 [Xia et al., 2009], and
STV when ¢t = 1 [Bartholdi and Orlin, 1991].

In the rest of the paper, we focus on the problem with vari-
ables ¢t and m under common voting rules.

5 Single Transferable Vote

Theorem 1. For every constant £ > 2, WAV-STV, is NP-
complete.

Proof sketch. The membership of NP is held by running the
vote and checking the winner. The hardness is proved by a re-
duction from restricted exact three-cover (RXC3) that follows
the spirit of the reduction in the hardness proof for the manip-
ulation problem under STV [Bartholdi and Orlin, 1991]. Here
we only present the case of £ > 4. The full proof, including
the case of £ = 2 and ¢ = 3 is in Appendix B.

Definition 3 (RXC3 [Gonzalez, 1985]). Input: (1) a set of
g-elements, denoted by X = {z1,22,...,2,}, where ¢ is
divisible by 3; (2) ¢ sets S = {S1,52, ..., .54} such that for
every j < ¢,S; € X and |S;| = 3. Forevery i < ¢, x; is in
exactly three sets in S. Without loss of generality, we assume
that ¢ is an even number. If ¢ is odd, then we use an instance
with duplicate X and S.

Determine: if there exists a subset S* C S such that for
every x; € X, there exists exactly one S; € S* such that
x; € S;. We call §* an exact 3-cover of X. Note that if such
S*, there exists [S*| = 4.

For an arbitrary RXC3 instance (X,S), where X =
{z1,22,...,24} and S = {51, 52,...,5,}. We construct
the following WAV-STV, instance.

Candidates: there are 3¢ + 3 alternatives {w,c} U
{do,d1,...,dg} U{b1,b1,... by, by}. We assume that dy >
dy =dy = >=dg >=by = by =bay=by == by~ by
in tie-breaking.

Absent Votes: ¢t = ¢/3.

Known votes: The profile P consists of the following
votes, of which only the top preferences are specified. We’ll
show that either w or c is the winner, therefore, the votes
can be filled to top-£ ranking arbitrarily without affecting the
proof. Both ¢ and j in the list are in {1,2,...,q}.



e P;: There are 12¢ votes of [¢ = w].

e P,: There are 12q — 1 votes of [w > ¢].

o P5: There are 10g + 2¢/3 votes of [dy > w > ¢].

e P,: For every 1, there are 12q — 2 votes of [d; = w > ].

° P51: For every i, there are 6 + 4i — 6 votes of [b; > b; >~
w > ¢]; and P52: for every ¢ and every j such that x; € 5,
there are two votes of [b; > d; > w > c].

° P61: For every 4, there are 6q + 4¢ — 2 votes of [51- = b; =
w > c|; and P62: for every ¢, there are two votes of [Ei —
do > w > ¢.

First, no matter what rankings P’ contains, the winner will
be either c or w. This is because once one of ¢ or w is elim-
inated in any round, the remaining other will get all 24q — 1
votes from P; and P,. On the other hand, all other alterna-
tives cannot have such a high score and be the winner.

Suppose RXC3 is a YES instance. S* is an exact 3-cover
of X,and I = {i | S; € §*} be the index set of S*. Then
we construct P’ as follows: for each ¢ € I, there is one vote
of [b; = b; > ¢ = w]. In the first ¢ round of voting, for each
i < gq,ifi € I, b; is eliminated; otherwise b; is eliminated. At
the beginning of the ¢+ 1 round, the plurality scores of the re-
maining alternatives are as in the following table. Therefore,

Rd w C bl OI'EZ‘ do d7
12g+ 8 —1or
+1 [12¢—1 |12 12¢|12
1 1 W 19q48i-5 | 711

Table 2: Plurality score in the g 4- 1 round.

w is eliminated in round ¢ + 1, and ¢ will become the winner.

Suppose WAV-STV, is a YES instance. We prove that
RXC3 is a YES instance in the following steps.

Step 1. In the first ¢ rounds, exactly one of b; and b; is
eliminated for every ¢ < q. Firstly, the initial score of b;
and b; is at most 6g + 4¢ + ¢/3 < 10q + ¢/3, while the
score of other alternatives is at least 10g + 2/3¢. On the other
hand, once one of b; and b; is eliminated, the other gets the
transferred votes and has a score of more than 12¢. Therefore,
in the first ¢ round, in each round, either b; or b; is eliminated
for a distinct 4.

Step 2. Let I = {i : b; is eliminated in the first g rounds.}.
Then I must be the index set of an RXC3 solution. Firstly,
for each i € I, b; needs at least one vote for P’ “to win b;, and
each vote in P’ can contribute to at most one b;. Therefore,
there are at most ¢/3 of b, that beat b;.

Then if 7 is not (the index set of) an RXC3 solution, there
must exist some x; € X that is not covered, and the corre-
sponding d; does not get any transferred votes. Then in the
g + 1 round, such d; will be eliminated with 12¢ — 2 votes,
and its vote will be transferred to w. Then w has a score of
at least 24q — 3 which exceeds c all the time. Therefore, c
cannot be the winner.

Therefore, once WAV-STV, is a YES instance, the index
set of eliminated b; in the first ¢ rounds forms the index set of
a solution to the RXC3, and RXC3 is a YES instance. O

Theorem 2. For every constant L > 2, WAV-ST'V |, is NP-
complete.

The proof for the up-to-L case follows the top-¢ case by
replacing all ¢ to L. The construction of the WAV instance
requires P’ to make use of all L positions in every vote to
make c the winner.

6 Maximin

For Maximin and Copeland, we leverage the following
lemma to construct the instance in the reduction.

Lemma 1. For any constant ¢ > 2, an arbitrary set of candi-
dates M with m > /¢, and two arbitrary candidates a,b € M,
there exists a voting profile P with poly(m) of top-£ ranking
votes such that the weighted majority graph of P contains
only one non-zero-weighted edge of a — b with weight 2.

Lemma 1 enables us to construct an arbitrary WMG with
even edge weights in polynomial-many votes.

Proof. Our construction of P follows the spirit of McGar-
vey [McGarvey, 1953]. It takes two steps:

Step 1: We first construct a slightly different profile P’. For
any ¢-subset M, of M, and any permutation o4, on M, P’
contains a vote for [oar, (1) = oar,(2) = -+ - = opr,(£)]. The
number of votes in P’ is A7 = O(m"). Due to symmetricity,
all the candidates are tied in P’, and the weights of all the
edges are 0 in the WMG of P’.

Step 2: Pick one vote in P’ such that b is ranked the top and
a is ranked the second. P is constructed by swapping a and
b in this vote while keeping all other votes unchanged in P’.
Since the only change is the relative position between a and b
in one vote, the WMG of P contains only one edge which is
a — b with weight 2. And P also contains O(m*) edges. [

Theorem 3. For all constant ¢ > 2, WAV-Maximin, is NP-
complete.

Remark 2. Theorem 3 does not contradict Theorem 11
in [Menon and Larson, 2017]. The two papers adopt different
definitions of the Maximin rule which may lead to different
winners under top-truncated votes, as discussed in Remark 1.

Proof sketch. The membership of NP is held by running
the vote and checking the winner. For the hardness, we
give a reduction from RXC3. For an RXC3 instance X =
{z1,22,..., 24} and S = {51, 52, ..., Sy}, we construct the
following WAV-Maximin, instance.

Candidates. There are 2¢ + ¢ candidates: X USU {c} UW,
where W = {wy,wa, -+ ,we—_1}. We assume ¢ > x1 >
Ty > -+ > T4 in tie-breaking.

Absent votes. ¢ = %. (Without loss of generality, we as-
sume that ¢ can be divided by 6(¢£—1). With not, we duplicate
both X and S for 6(¢ — 1) times.)

Known votes. The WMG of P is shown in Figure 2. (There
are no edges inside W, X, or S in WMG(P).) P can
be constructed via Lemma 1 and adding one vote for [¢ >
wy > --+ = wy_1]. Then in profile P, the min score of c is
—(¢+ % +1), of each w; is —(2¢ + 1), of each x; is —¢
(from S; > w;), and for each S; is —2¢. The details of the
construction can be found in Appendix C.
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Figure 2: WMG for Maximin. Q = ﬁ.

Intuition of construction. The min-score of each z; comes
from three S; > x;, and is exactly ﬁ + 1 higher than ¢’s
min-score . To make ¢ the winner, ¢ appears in all votes in

P’ to increase its min-score by ﬁ. Moreover, the S; that

appears in P’ should consist of an exact 3-cover so that the
min score of every x; decreases by 1. If not, ¢ will be beaten
by some z; not covered.

Suppose RXC3is a YES instance. And let S* be the exact
3-cover of X. Then we construct P’ as follows: c is ranked
the top and followed by £ —1 of S; in each vote. The set of all
the S, ranked the second to the ¢-th in P’ (which is exactly
ﬁ x (I —=1) = 4 of §j) is exactly S*. In P U P, the
min-score of ¢ is (—g — 1). For any x;, since $* is an exact
3-cover, there exists a 5; € S* such that z; € ;. Since there
is one vote that ranked S; higher than z; in P’, the min-score
of z; in PU P is —g — 1. The min-score of any S or any w;
will not exceed —2¢ + 1. Therefore, c becomes the winner.

Suppose WAV-Maximin, is a YES instance. And let P’
be a profile of ¢ votes such that Maximin, (P U P’') = c¢. We
proceed with the proof in two steps.
Step 1. Without loss of generality, we can assume that c is
ranked the first in all votes in P’. If this is not the case, we
can lift c to the first and keep the order of other candidates in
every vote. Then the min-score of ¢ will not decrease, and the
min-score of any other candidate will not increase. Therefore,
the new profile is also a solution.
Step 2. For every vote in P’, the second to ¢-th rank is some
S; € S, and the set of all these S; (denoted by S*) is an exact
3-cover of X. First, the min-score of cin PU P is —g — 1
since c is ranked top in all votes in P’. Suppose S* is not an
exact 3-cover of X, then there exists an x; no covered by §*,
and the min-score of x; will be —¢q from S; > z;, which is
higher than ¢’s min-score. Therefore, c cannot be the winner.
Consequently, RXC3 is a YES instance with solution S*.
The full proof is in Appendix C. O

Theorem 4. For any constant L > 2, WAV-Maximiny, is
NP-complete.

The proof follows the top-¢ case by replacing ¢ with L.

7 Copeland

Theorem 5. For any constant £ > 2 and any o € [0, 1],
WAV-Cdy' is NP-complete.

W fe—c¢ W e— ¢
Q-1 1
b b
X A/x'evs\ S X /e;\ S
x; €511 ki;f;ég'j:i()iﬂ
+P'
WMG(P) WMG(P U P")

Figure 3: The WMG for Copeland. (Q = ﬁ.

Proof sketch. The membership of NP is held by running the
vote and checking the winner. For the hardness, we give a
reduction from RXC3. We apply a similar but slightly more
complicated construction as in Maximin’s proof. We present
the construction for @ < 1 (more precisely, o < qf;?’, which
converges to 1 as ¢ increases). The full proof including how
to modify the construction for & = 1 is in Appendix D. We
assume that ¢ can be divided by 6(¢ — 1).

Candidates. There are 2¢ + £ + 3 candidates: X U S U
{c, b} UW, where W = {wi, w2, ,wa,,}. W.lo.g, we

assume ry = Ty = ccc > Tg > C =Wy = oo = W in
tie-breaking.

__q
Absent votes. ¢ = 301

Known votes. The weighted majority graph (with weights
of some key edges) of P is in Figure 3. For edges inside S
and X respectively (not shown in the figure), each candidate
beats about half of the other candidates inside the group in
the head-to-head competition and is beaten by the other half.
The edges inside W will not affect the winner. The Copeland
score for each candidate in P is as follows: ¢ has ({ + 1);
x; has (¢ + 4 4 1); S; has at most (¢ + 4); w; has at most
(¢ + %):and b has (q + 2).
Intuition of construction. The only edges that can be flipped
by P’ are S; — cand z; — S; for z; € S;. We set the
weights so that ¢ needs to win every .S; to become the winner,
which requires every vote in P’ to include ¢. On the other
hand, every x; needs to be tied with or be beaten by some
S; 2 x; to make c the winner. Therefore, the rest % positions
in P’ will be taken by S; that forms an exact 3-cover.

Suppose RXC3 is a YES instance with solution S*. We
construct P’: ¢ is ranked the top and followed by ¢ — 1 of S;
in each vote, and the set of all the .S; ranked second to the
£-th in P’ is exactly S*. Then c becomes the candidate with
the unique highest score (¢ + 4 + 1) and becomes the winner.

Suppose WAV-Cdy'is a YES instance with solution P’.
We could first show that all votes in P’ must contain ¢. Then
all S; ranked in P’ must form an exact 3-cover of X. Oth-
erwise, there will be some x; not covered, and the Copeland
score of such x; will also be equal to c. Then according to the
tie-breaking rule, ¢ cannot be the winner.

The full proof is in Appendix D. O

Similar to STV and Maximin, this proof also applies to the
up-to-L setting by replacing £ with L.
Theorem 6. For any constant L > 2 and any o € [0, 1],
WAV-@% is NP-complete.
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Figure 4: An illustration of the network when M = {a,b,c}, t = 2,
and ¢ = 3.

8 Positional Scoring Rules (PSR)

For scoring rules §; = (a1, as, -+ ,ay), We show that the
WAV problem is in P for the special case as = - -+ = ay.
Theorem 7. For any ¢ > 2 and Sy such that ay = - -+ = ay,

WAV-5, can be determined in polynomial time.

Proof sketch. We convert the problem into a maximum flow
problem with a similar idea in [Baumeister et al., 2012].
Given an instance of WAV-5y, we construct the following net-
work flow. An illustration is in Figure 4.

Nodes: {s,t} UT UTM U M.

e 5 is the source node, and ¢ is the sink node.

e T contains (¢ — 1)t nodes. For each absent vote v, and
d=2,--- 4, there is a node vy for thed-th position of v.

e T'M contains ¢(m — 1) nodes. For each absent vote v and
each candidate a # c, there is a node (v, a) in TM.

e M contains m — 1 nodes, each representing a candidate
other than c.

Edges: El @] EQ U E3 U E4.

e For each node vy € T, there is an edge s — vg with
capacity 1.

e For each vote v, each position d, and each candidate a,
there is an edge vy — (v, a) with capacity 1.

e For each vote v and each candidate a # ¢, there is an
edge (v,a) — a with capacity 1.

eletay = -+ = a; = A. Let 5(P,a) be the score of
a from profile P. For each node a € M, there is an edge
a — t with capacity LWJ. (We assume the
capacities are non-negative. Otherwise, it is a NO instance.)
Interpretation of network. For a flow f:

e f(vg — (v,a)) = 1 stands for that a denotes that candi-
date a is ranked at d-th in vote v.

e f((v,a) — a) = 1 stands for that a appears in the top-£
ranking in v. The capacity ensures that every candidate ap-
pears at most once in v.

e A- f(a — t) stands for the total score a gets from P’.

The capacities in F, Fs, and E3 guarantee that the profile
P’ is valid. The capacities in E4 ensure that the total score of
a does not exceed the total score of ¢ from P U P’.

When the max-flow f is (¢/— 1)t (we assume f is an integer
flow without loss of generality [Ford and Fulkerson, 1956]),
it means that there is a way to fill all (¢ — 1)¢ positions (2
to £ in t votes) by some candidates and form a valid profile
P’ such that no other candidates’ scores exceed c. Therefore,
c becomes the winner in P U P’. When WAV-3, is a YES
instance with solution P’, we could assume that c is ranked
the top at all votes v € P’. Then we can construct a flow f of
(¢ — 1)t by setting the corresponding edge flows to 1.

The full proof is in Appendix E. O

Theorem 7 directly indicates that WAV-§y is in P for any
5y when ¢ = 2.

Corollary 1. WAV-55 can be determined in polynomial time
for any §5.

In the up-to-L setting, whether ¢ can be a winner under an
up-rounding scoring rule can be verified by checking the case
when all votes in P’ are [¢], i.e. rank c alone.

Proposition 3 ((Menon and Larson, 20171, Theorem 1). For
any constant L > 1 and any scoring vector 57, WAV-574 can
be computed in polynomial time.

For the down-rounding scoring rule, we show a similar re-
sult as the top-¢ setting.

Theorem 8. For any constant L > 2 and 57, such that ay =
-+ = ar, WAV-57, can be determined in polynomial time.

Proof Sketch. Firstly, if a solution P’ exists, we could assume
without loss of generality that P’ contains only top-1 ranking
and top-L ranking, and c is ranked the top in all the votes. If
this is not the case, we could substitute all non-top-L votes
into [c], and rank c the top of all the top-L votes while keep-
ing the order of other candidates unchanged. In this way, the
scoring of c is strictly increasing, while the score of all other
candidates is non-increasing.

Then we give the algorithm outline. First, we enumerate
the number of top-1 votes and top-L votes in P’. The sum of
two kinds of votes is t. Therefore, there are in total t+1 cases.
For each case, we set all top-1 votes to be [¢], and construct a
maximum flow instance as in the proof of Theorem 7. If there
is some case where the maximum flow is above the threshold,
then we output YES. Otherwise, when all cases the maximum
flow is below its threshold, we output NO. O

9 Conclusion and Future Work

We investigate the computational complexity of determining
winners with absent votes when the votes are top-truncated.
We have shown that the problem is in P when the number of
candidates or the quantity of absent votes is bounded. In the
unbounded cases, we show that the problem is NP-complete
for STV, Maximin, and Copeland. We also give a special
case of scoring rules where the problem can be computed in
polynomial time. Winner determination with absent votes is
closely related to the classic coalitional manipulation problem
in social choice, yet previous results on full rankings do not
directly extend to top-truncated settings.

A question that remains open in our paper is the complex-
ity of WAV for general positional scoring rules. In the full-
ranking setting, the complexity of coalitional manipulation is
regarded as a challenging task. There are hardness results
under an artificially constructed scoring vector [Xia et al.,
2010] and Borda [Betzler et al., 2011]. Another related topic
is to reduce the possible winners by eliciting extra informa-
tion from voters via, for example, a query model." We would
care about protocols that may predict the final winner most
accurately conditioned on query constraints.

"We thank an anonymous reviewer for proposing this idea
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