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Abstract. An annotation is a set of genomic intervals sharing a partic-
ular function or property. Examples include genes, conserved elements,
and epigenetic modifications. A common task is to compare two annota-
tions to determine if one is enriched or depleted in the regions covered
by the other. We study the problem of assigning statistical significance
to such a comparison based on a null model representing two random
unrelated annotations. To incorporate more background information into
such analyses and avoid biased results, we propose a new null model
based on a Markov chain which differentiates among several genomic
contexts. These contexts can capture various confounding factors, such
as GC content or sequencing gaps. We then develop a new algorithm for
estimating p-values by computing the exact expectation and variance of
the test statistic and then estimating the p-value using a normal approx-
imation. Compared to the previous algorithm by Gafurov et al., the new
algorithm provides three advances: (1) the running time is improved from
quadratic to linear or quasi-linear, (2) the algorithm can handle two dif-
ferent test statistics, and (3) the algorithm can handle both simple and
context-dependent Markov chain null models.

We demonstrate the efficiency and accuracy of our algorithm on
synthetic and real data sets, including the recent human telomere-to-
telomere assembly. In particular, our algorithm computed p-values for
450 pairs of human genome annotations using 24 threads in under three
hours. The use of genomic contexts to correct for GC-bias also resulted
in the reversal of some previously published findings.

Availability. The software is freely available at https://github.com/
fmfi-compbio/mcdp2 under the MIT licence. All data for repro-

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Ma (Ed.): RECOMB 2024, LNCS 14758, pp. 38-53, 2024.
https://doi.org/10.1007/978-1-0716-3989-4_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3989-4_3&domain=pdf
https://github.com/fmfi-compbio/mcdp2
https://github.com/fmfi-compbio/mcdp2
https://doi.org/10.1007/978-1-0716-3989-4_3

Efficient Analysis of Annotation Colocalization 39

ducibility are available at https://github.com/fmfi-compbio/mcdp2
-reproducibility.
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1 Introduction

Recent years have brought rapid growth in the number of different assays that
can extract genome-scale functional information. This has led to growing col-
lections of genome annotations; for example in the UCSC Genome browser, the
GRCh38 human genome assembly currently features 136 different annotation
tracks, many of which have multiple subtracks. In this work, we provide new
models and algorithms for annotation colocalization analysis, where the goal is to
determine if one input annotation is significantly colocated with regions covered
by another annotation. Such analyses may hint at possible connections between
biological processes governing individual annotations (e.g. histone modification
H3K4me3 sites are colocated with promoter regions, and H3K4me3 indeed plays
a role in gene transcription regulation [10]).

Mathematically, we view a genome annotation as a set of non-overlapping
chromosomal intervals. Given two annotations, query @ and reference R, we
consider two widely-used colocalization statistics. The overlap statistic is the
number of intervals in R that intersect with at least one interval in . The
shared bases statistic is the number of positions in the genome covered by both
R and Q. However, even randomly generated annotations will share bases or have
overlapping intervals by chance. In order to ascertain statistical significance of
the observed statistic, its p-value needs to be computed under a suitable null
hypothesis. Until very recently, all the methods [3,6,11,17-19] were limited by
having a null hypothesis that either does not properly model the data or its
p-value computation does not scale to annotations of human-sized genomes.

Recently, Gafurov et al. [5] proposed an alternative null hypothesis in which
the annotation is produced by a two-state Markov chain. The algorithm, called
MCDP, was a substantial improvement in time and memory over previous
approaches. However, it is quadratic in the number of reference intervals and
still takes several hours for the human exon reference annotation. It thus remains
time-prohibitive to compare many pairs of annotations against each other.

Another limitation of MCDP as well as other approaches is that two unrelated
annotations may appear to be colocalized because they are each colocalized
with another genomic feature [12]. For example, two annotations may appear
colocalized simply due to their prevalence in high-GC regions, even though they
are not related. More generally, different regions of the genome can be thought
of as providing different background to the null model, and we think of these
various backgrounds as partitioning the genome into contexts. Accounting for
contexts in calculating p-values is important to limit false associations, yet this
capability is limited or absent in existing tools.

In this paper, we propose a model and an algorithm to overcome these scal-
ability and accuracy barriers. Our first contribution is a new algorithm MCDP2
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for estimating p-values, which is linear in the number of reference intervals. To
demonstrate the scalability of our algorithm, we considered 10 reference anno-
tations, corresponding to different types of repeats in the human genome, and
45 query annotations, corresponding to epigenetic modifications in different cell
lines. MCDP2 computed p-values for all 450 pairs using 24 threads in under
2 hours for the number of overlaps and 3 hours for the number of shared bases.

Our second contribution expands the modeling capability of the Markov chain
null hypothesis so that it takes into account genomic context and thus captures
various confounding factors influencing annotation colocalization. Unlike previ-
ous approaches [11], our model is able to handle annotation intervals that span
class boundaries. We demonstrate the importance of modeling the genomic con-
text by re-analyzing colocalization of copy number deletions with various gene
classes [21] and find that adding a genome context in fact reverses some of
the previous conclusions. In one striking example, the set of all exons appears
enriched for overlap with copy number losses but enrichment turns into depletion
after taking into account gaps and GC content. We also compare the colocaliza-
tion of epigenetic marks with subtelomeric repeats on the new human telomere-
to-telomere assembly [8], using a genome context to compare enrichment between
two classes of repeats.

Related Work. Several null hypotheses for colocalization statistics have been
considered prior to the Markov chain model [5]. Some lend themselves to fast
and simple statistical tests (e.g. Fisher’s exact test) but do not capture rel-
evant properties of the data. For example, one can assume that all positions
in the query annotation are chosen uniformly at random [3,19]. However, this
does not capture either the integrity of intervals or their length distribution.
A more faithful option is the permutational null hypothesis (also called gold
null hypothesis [5]), which reshuffles the query intervals while maintaining their
lengths [6,11,17]. Computing the exact p-values for the overlap statistic in this
model is NP-hard [5], and the only known efficient algorithms are either inaccu-
rate or impractical for human-sized annotations [18]. Sampling approaches can
be used, but their accuracy is directly proportional to the number of samples,
making it difficult to estimate small p-values. With these limitations, it was
impossible to compute small p-values for human-sized genomes while having a
null hypothesis that is faithful to the data.

Accounting for genomic contexts has also been considered but most previous
approaches [3,6,15,19] are only able to account for contexts which are com-
pletely inadmissible to annotations (e.g. assembly gaps, which are unassembled
regions of the genome). A notable exception is GAT [11], which splits a genome
into multiple contexts and analyzes colocalization in each context independently.
However, this approach does not satisfactorily handle intervals that span context
boundaries, which become prevalent when the contexts are short.

2 Methods

In this section, we define our context-aware Markov chain null model (Hgo"*x")
and provide an overview of our algorithm for efficient estimation of p-values
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under this model. We first present our results on a single chromosome; an exten-
sion to multiple chromosomes is discussed in Sect. 2.5.

We will denote the chromosome length as L and use 0-based coordinates.
An annotation is a set of intervals contained in [0, L) so that each two intervals
are disjoint and separated by at least one base. By |Q| we denote the number
of intervals in annotation (). We will represent an annotation either as a list of
half-open intervals ordered from left to right @ = ([b1,e1),...,[bq|,€|q|)), or as
a binary sequence @ = (Qo, Q1,-..,Qr—1), where Q; is 1 if position ¢ is covered
by one of the intervals and 0 otherwise.

Let R and @ be two annotations, denoted as the reference and the query,
respectively. In this setting, a test statistic is a function that measures the extent
to which R and @ are colocalized. We will consider two concrete test statistics.
One is the number of overlaps K (R, @), which is defined as the number of inter-
vals in R that overlap some interval in (). The other is the number of shared
bases B(R, @), which is defined as the number of bases in the genome covered by
both R and Q. Let F' be the distribution of the query annotation under the null
hypothesis of the query being generated independently of the reference anno-
tation. Given some test statistic A(R, @), we are interested in computing the
p-value measuring the statistical significance of enrichment of () with respect to
R, that is, probability Pro/.p[A(R, Q") > A(R, Q)].

Our algorithm is based on the observation that the distribution of the test
statistics is in most realistic scenarios well approximated by the normal distri-
bution (see Sects.3 and 4). Therefore, instead of computing the full probability
mass function (PMF), we compute only its exact mean and variance and use
them as the parameters of the normal distribution. This means that we calcu-
late the p-value by first computing the Z-score, which is the number of standard
deviations that A(R, Q) is above the expected value, under the null. Formally,

A(R,Q) ~ Eq-p[A(R,Q)]
VVarg - [ACR. Q)]

Under the assumption that the statistic is normally distributed, the desired p-
value is then simply 1 — &(Z4(R,Q)), where @ is the cumulative distribution
function of the standard normal distribution. Analogously, the p-value for the
statistical significance of depletion is computed as &(Z4 (R, Q)).

In Sect. 2.1, we describe our context-aware Markov chain model for generating
random annotations and then use it to formally define the H{**** null model
in Sect.2.2. In Sects.2.3 and 2.4, we outline our algorithm for computing the
mean and variance of the overlap and shared bases test statistics. Finally, we
describe how our model naturally extends to multiple chromosomes (Sect. 2.5).

ZA(Rv Q) =

2.1 A Generative Model

An annotation of a chromosome of length L can be generated by running a
two-state Markov chain for L steps. The state at step ¢ indicates whether the
annotation includes position 7 on the chromosome. The lengths of the generated



42 A. Gafurov et al.

intervals and of the gaps between them are known to be geometrically distributed
in this model, and the transition probabilities of the Markov chain dictate the
expected values of these two distributions [13]. The Markov chain generative
model makes many properties easy to derive and fast to compute [5], and so we
build upon it in this work.

We want to use such a generative model to test if a given query annotation
@ behaves as if it was “randomly shuffled” on the chromosome. To this end, we
set the parameters of the Markov chain so that the expected interval lengths
and gaps between them match what is observed in the query Q. However, this
does not allow us to incorporate background knowledge of the chromosome; i.e.,
some regions of the genome may be a priori more likely to generate an interval.

We therefore introduce the notion of genome contexts. Given a finite set
of class labels A, a genome context is a mapping ¢ : {0,...,L — 1} — A
of each position on the genome onto a class label (e.g. A = {gap,non-gap}).
This mapping partitions the genome into several segments with the same class
assigned. We will refer to the positions where the class differs from the class
label at the previous position as to class boundaries. We assume throughout the
paper that a context is represented as a sequence of class boundary positions
with the corresponding class labels, sorted in an increasing order by positions.

Our generative model allows each context class to have its own Markov chain,
i.e. its own distribution of interval lengths and gaps. An annotation is then
generated by iterating over the genome positions from left to right, and at each
position ¢ transitioning to the next state of the Markov chain according to the
transition probabilities of the class at position i (see Fig. 1). A similar model was
proposed by Burge and Karlin [1] for gene finding; their hidden Markov model
uses different transition and emission probabilities based on GC content in the
current window of the genome.

Definition 1. A context-aware Markov chain is a pair (¢, T), where ¢ is a
genome context and T : A — R2*2 45 a mapping that provides a transition
probability matrix for each context class. The context-aware Markov chain (¢, T)
generates a sequence of states (s_1,80,...,51_1) € {0, 1Y+ with probability

L—-1
Pr((S_1,50,. ., 80-1) = (s-1,50,- -, sp-1)] = Fe_, - [[ T(S(0))s_y.001
=0

where T(¢(i))s,s is the probability of transition from state s to state s’ in context
class ¢(1), and s is the probability of state s in the stationary distribution of
the Markov chain with transition probabilities T(¢(0)). Namely,

P ( T(¢(0))1,0 1 —T(4(0))o,0 )
1 —T(¢4(0))o,0 + T(¢(0))1,0 1 —T(4(0))o,0+ T(¢(0))1,0

Note that we are indexing vectors and matrices starting from 0 in order
to make the formulas more readable. The produced binary sequence of states
(80,.--,8L—1) can be viewed as an annotation of a genome of size L. State s_;
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Fig.1. An example of a query annotation Q@ = {[1,3),[5,7),[9,14)} and the corre-
sponding sequence of states of the context-aware Markov chain that induces the anno-
tation. Genome context ¢ is shown with black and gray colors corresponding to two
distinct class labels. The same colors are also used on transition arrows between succes-

sive states of the Markov chain, as the transition probabilities depend on the genome
context.

is added to the start for notational convenience, as we will often refer to the
state preceding the start of an interval. The distribution of the random vector
of generated states (S_1,S0,...,Sr—1) will be denoted as C(¢, T). We will use
the same notation to denote the distribution of the induced annotation.

2.2 The Context-Aware Markov Chain Null Model

The generative model above serves as a basis for our null model, which we
call H§™e*t Given a context ¢ and a query annotation Q = (Qo,...,Qr_1),
we first need to find the transition probabilities Tg that would maximize the
probability of the context-aware Markov chain (¢, Tg) generating . This is
achieved through the standard approach of training Markov chains by counting
transition frequencies [4]. In particular, for each class, we count the number of
times each possible state transition occurs in Q). Formally,

n)\ss/*]-“i’z and (S*Ql 1) and( QZ))?

where 1 is the indicator function which evaluates to 1 if the logical expression
inside is true and 0 otherwise. A pseudocount 1 is added to avoid zero probabil-
ities [4]. The transition matrix is then defined from these counts as

1X,0,0 Tx,0,1
_ | ™x00 T 7x0,1 MA00 1+ NN0,1
To(A) = TA,1,0 nA1,1

nA1,0 1A 1,1 MA1,0 T 1AL

The mapping T is computable in time O(|Q| + ¢) and space O(]A|), where ¢ is
the number of class boundaries. We can now formally define the context-aware
Markov chain null hypothesis.

Definition 2. The context-aware Markov chain null hypothesis (H§™*") for
query annotation @ and context ¢ : {0,...,L — 1} — A is that the query anno-
tation Q is generated by the context-aware Markov chain (¢, Tq).
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Note that under context ¢ with a single class, the context-aware Markov
chain null hypothesis H™"**** reduces to the Markov chain null hypothesis by
Gafurov et al. [5], with a small difference that the initial state distribution 7
is set to the stationary distribution at position -1 instead of always starting in
state 0 at position 0.

When there is just one context class, H5*™** can be viewed as an approxi-
mation to the permutational null, i.e. shuffling the query intervals around in a
random fashion [5]. In the case of multiple classes, H™ " can be thought of
as an approximation to shuffling the query intervals around separately within
each class. However, H{°""*** also transparently handles intervals spanning one
or even multiple class boundaries.

2.3 Computing the Mean and Variance of the Overlap and Shared
Bases Test Statistics

Here, we state our main algorithmic result: fast computation of the mean and
variance of K (R, Q) and B(R, Q) statistics under H5*****. The mean and vari-
ance are then used to compute the p-values using the normal approximation.

Theorem 1. Let R and Q be two annotations and let ¢ be a genome context
with ¢ class boundaries. Let A be either the number of overlaps test statistic K
or the number of shared bases test statistic B. It is possible to compute the mean
Eg~c(g o) AR, Q)] and variance Varg: wco(p,1o)[AR, Q')] in space O(|R|+c)
and in time

- O(|R| + |Q| + ¢) when A is the overlap test statistic,

- O(|Q] + (|R| + ¢)logt) when A is the shared bases test statistic; here, t is the
length of the longest stretch of positions within a single reference interval with
the same context class in R.

Under the assumption that the test statistic is approximately normally dis-
tributed, this algorithm can be used to obtain the full probability mass function
of its distribution under the null, i.e. values Prgwc(g1y)[A(R,Q") = z] for
all values of x. Note that the previous MCDP algorithm for this problem only
works with a single context, only works for the overlap statistic K, and runs in
O(|R|? +|Q|) time [5]. However, it makes no assumption about normality.

In the next section, we provide a high-level description of the algorithm for
computing expectation and variance. The details and proof of correctness were
omitted due to space constraints.

2.4 Mean and Variance of Any Separable Statistic

We call a statistic separable if it can be expressed as a sum of contributions from
each reference interval and each contribution depends only on the part of the
query annotation inside this reference interval. For example, the contribution of
each reference interval in the overlap statistic K is 1 or 0, depending on whether
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there is an overlap with some query interval. In the shared bases statistic B, the
contribution is the number of bases that a particular reference interval shares
with the query intervals.

Thanks to linearity of expectation, the expected value of any separable statis-
tic can be computed for every reference interval separately and then summed
together. The simplest case is the shared bases statistic B, which can be
expressed as the sum of indicator variables for each base covered by R, and
in the case of single-class null model, the expectation can be computed simply
as the number of bases covered by R multiplied by the stationary probability
of state 1 of the Markov chain. Context-aware models complicate the situation,
as each base of the genome has its unique marginal distribution over states,
depending on the sequence of class labels preceding it.

Computing variance is more complicated, as the values of the statistic in
individual intervals of R are dependent, and therefore the overall variance is
not a simple sum of individual variances. However, in a sequence of Markov
chain states (Sp, ..., Sr—1), states S; and S} are conditionally independent given
Sy = sfori < k < j. Therefore, if random variable X is a function of .S;, ..., Sx_1
and random variable Y is a function of Sk,...,Sj_1, then Var[X +Y | Sy =
s] = Var[X | Sy = s] + Var[Y | Sk = s].

Our algorithm computes conditional variance in individual intervals of R
conditioning on states at both interval boundaries, and then combines them
using this formula. In order to remove conditioning on the boundary states, we
use the law of total variance, which for binary variable S can be written as
Var(X) = YL Var[X | Sy = s]Pr[S, = s] + XL E[X | S, = ]2 Pr[Sy =
s](1 — Pr[Sg = s]) — 2[1._, E[X | Sk, = s]? Pr[S}), = s].

The key data structure in our algorithm is a O(1)-sized vector called a two-
sided plumbus defined below. It contains the quantities that we need to compute
for every interval of R, conditioning on states at interval boundaries. In the
definition, function v expresses the contribution of a reference interval to the
separable test statistic.

Definition 3. Let (¢, T) be a context-aware Markov chain with state sequence
S_1,80,...8L=1, let [, j) be a subinterval of [0,L), and let v be a function on
a binary sequence of length j —i. We define the two-sided plumbus for interval
[i,7) as the collection of values

(i, g | zy) = E[’U(S' o Sic) | Sici =a,8-1 =)

oo(i,j | ,y) == Var[u(S;,...,Sj-1) | Sic1 = 2,551 =]
i— 1, 1
V(" y) = PrS; =y | S =1
for all combinations of (z,y) in {0,1}2.

The two-sided plumbuses computed for individual intervals of R and gaps
between them are then combined to plumbuses for successively longer inter-
vals, until we cover the whole chromosome and obtain the overall variance and
expected value of the statistic of interest (see Fig. 2).
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Fig. 2. Two-sided plumbuses for a reference annotation R. The plumbuses in the first
row correspond to the reference intervals, and the plumbuses in the second row corre-
spond to the gaps between the intervals. We highlight in black the boundary states on
which we condition the values in each plumbus. Note that the conditional means g,
and variances o2 in the gap plumbuses are constant zeroes, since gaps do not contribute
to the total test statistic.

In the algorithm, we compute Pr[S; = y | S; = z] and Pr[S; = S;y1 =
- = S5; = 0] in constant time, provided that interval [z, j] is labeled by the
same context class. This leads to a linear-time algorithm for K (R, Q) statistic.
For B(R, Q) statistic, we split an interval of R into subintervals of size 1, com-
pute plumbuses for them, and combine them in a similar manner, as we combine
plumbuses in the overall algorithm. However, within a single context class, corre-
sponding plumbus depends only on the interval length, and thus we can compute
plumbuses for interval sizes which are powers of two and combine them to obtain
a plumbus for any interval length within a single context in logarithmic time.

2.5 Multiple Chromosomes

Both our model and our algorithm can be extended to genomes with multiple
chromosomes in a straightforward way. We assume that the query annotation
is generated independently for each chromosome. The training of the context-
aware Markov chain is accomplished simply by counting transition frequencies
on all chromosomes. The test statistic for the whole genome is defined as the sum
of test statistic values for the individual chromosomes. This, in turn, allows to
compute the mean and variance of the total statistic by summing the means and
variances, respectively, for the individual chromosomes. Note that this simple
computation works for the variance thanks to the chromosome independence
assumption. Therefore, the time and space complexity of our algorithm remains
the same for the case of multiple chromosomes.

3 Experiments

The Normal Distribution Yields an Accurate p-value Approximation. Our
MCDP2 algorithm computes the exact expectation and variance of the null dis-
tribution and uses them to approximate the null distribution by the normal
distribution. Here, we first compare the accuracy of this approximation for the
K(R, Q) statistic with the exact distribution computed by the previous MCDP
algorithm [5]. The comparison was performed on synthetic data sets with genome
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Fig. 3. The comparison of the exact probability mass functions (PMFs) for the num-
ber of overlaps K statistic (MCDP*) with its normal approximation (MCDP2) on
synthetic data sets. Each column represents a different number of reference intervals
(IR| € {200,2000,20000}). The bottom plots show the quantile-quantile plot (Q-Q
plot) between the two distributions.

length L = 10® bp, query annotations with 50 000 randomly generated intervals
of length 500 bp each and reference annotations with up to 20000 intervals of
length 500 bp each. To understand the influence of the number of reference
intervals on the accuracy, we vary |R| from 200 to 20 000.

Figure 3 shows that the exact PMF in general agrees well with the normal
approximation. The approximation approach allows to estimate even very low
p-values accurately with the growing number of reference intervals. However,
for |R| = 200 the differences in the extreme tail of the distribution lead to
overly conservative p-values. Therefore, for small values of |R| we recommend
the use of the exact MCDP algorithm, which is not time-prohibitive. The new
MCDP2 tool includes a reimplementation of the exact computation of the PMF
and its extension to multiple context classes, and we use it in these experiments
under the label MCDP*. We have also conducted similar experiments for the
shared bases statistic B(R, Q) with similar results (results not shown due to
space constraints).

MCDP2 is Fast and Memory Efficient. The speed of our algorithm enables us
to apply our tools to large-scale comparisons, such as the data from a recent
study of ENCODE epigenetic modification enrichment for different repeat types
in the human genome [8], employing the Telomere-to-Telomere (T2T) human
genome assembly [14]. We use a context with two classes, one corresponding to
all repeats and one to the rest of the genome, leading to over 4 million class
boundaries. We use one of the 10 repeat types as the reference and one of the
45 available combinations of an epigenetic modification and a cell line as the
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Table 1. Data set sizes and average running times for comparison of repeat types (R)
with epigenetic modifications (Q), using all repeats as context. Averages are computed
across 45 different query annotations, each representing a specific epigenetic modifica-
tion in a specific cell line. Note that the running time grows with |R| + ¢, and in this
experiment, c is large even for inputs with small |R|.

Repeat type |R| time (s)

K(R,Q)| B(R,Q)
RNA 11139 220 160
Other 8835 220 157
Unknown 11229 226 159
Satellite 47041 229 202
Low-complexity | 102521 244 223
DNA 505 896 343 588
LTR 660 823 387 769
Simple 708 565 398 637
LINE 1440792 578 1477
SINE 1672984 640 1637

query. Using 24 CPU threads, MCDP2 computed p-values for all 450 pairs in
approx. 2 hours (wall clock) for the number of overlaps and approx. 3 hours
for the number of shared bases, using at most 4.2 Gb (2.3 Gb) memory per
comparison for overlaps (shared bases) statistic (see Table 1).

We compare the running time of MCDP2 to the quadratic-time MCDP*
algorithm on the synthetic data sets used for Fig. 3, with 20 pairs of R and @
generated for each setting (Fig. 4). Note that MCDP* is faster than the original
MCDP implementation [5], thanks to more extensive use of numpy library and
reimplementation of part of the algorithm in C++. For the overlaps statistic,
the MCDP* needs more than 1000 seconds for 20 000 reference intervals, while
our new approach MCDP2 only takes approximately 8 seconds on the same
inputs. Computation for the number of shared bases is slightly slower (23 seconds
for |R| = 20000), which is consistent with its quasi-linear time complexity (in
contrast to purely linear for the number of overlaps).

Genome Contexts Enable More Detailed Analysis of Colocalization of Copy Num-
ber Loss with Different Gene Groups. To illustrate the power of our context-
aware null model, we have reanalyzed the colocalization of exons of different
gene groups with copy number loss regions, originally performed by Zarrei et
al. [21]. Figureb shows the Z-scores for both K and B test statistics and for
three types of contexts. The first context function only uses a single class. The
second context function creates two classes by masking regions that are assem-
bly gaps; this is motivated by the fact that both copy number losses and exons
are annotated exclusively outside the gaps and, therefore, may appear colocated
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Fig. 4. Average running time on synthetic data for overlaps (MCDP2, MCDP*) statis-
tic and shared bases (MCDP?2) statistic. The vertical bars represent the standard devi-
ation over 20 samples. Both axes are in log scale. The calculations were performed on
a single thread on Intel(R) Xeon(R) Gold 6248R CPU.

even if they were independent (previously also studied by Domanska et al. [2]).
The third context function uses six classes: one for gaps and the other five for
discretization of the GC content in 1 kbp windows; this is motivated by the
fact that GC content is known to be a significant confounding factor in many
genomic analyses [1,7].

Figure 5 illustrates the importance of having a class in the context dedicated
to gaps. In one jarring scenario, the set of all exons is enriched for overlaps with
copy number losses (also observed by Zarrei et al.), but after accounting for
gaps, the exons become depleted. More generally, across all studied gene groups,
the Z-score decreases when the gaps are taken into account. This is expected
as neither exons nor copy number losses occur in gaps, and thus ignoring gaps
in the analysis may create spurious enrichments or lower the degree of observed
depletion compared with analysis that takes gaps into account.

The GC-aware context also proves crucial for an accurate analysis. For exam-
ple, the depletion of all exons for overlaps with copy number losses becomes much
more pronounced in the GC-aware context. In another striking example, genes
with no known phenotype appear enriched for overlap with losses (also in agree-
ment with Zarrei et al.) when using the gap-aware context, but enrichment turns
into slight depletion after taking GC content into account.

Other observations from Fig. 5 are generally consistent with biological expec-
tations. Protein-coding genes are only slightly depleted in the single-class context
but become significantly depleted when using gap-aware or GC-aware contexts.
This depletion is consistent with the expectation that protein-coding exons are
mostly evolutionarily conserved. Interestingly, the set of non-coding genes is
strongly enriched for copy number losses under all three context functions, and
the enrichment was also observed by Zarrei et al.

Differential Analysis of Non-telomeric and Telomeric TAR Elements. Com-
pletion of the previously inaccessible parts of the human genome [14] has
allowed Gershman et al. [8] to study telomere-associated repeats (TARs) and
their colocalization with epigenetic modifications. While TARs located in sub-
telomeric regions are presumed to be important for telomere length regulation,
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Fig.5. Z-scores for colocalization of exons of various gene groups (R, x-axis) with
copy number losses (@) under three different null models: single-class context, gap-
aware context, and GC—aware context. Left: overlap statistic K; Right: shared bases
statistic B. The green and red dashed lines stand for Z-score +3 and —3 respectively,
corresponding to p-value 0.00135 for enrichment/depletion. (Color figure online)

TAR copies have also been dispersed to other parts of the genome. Differences
between these two groups may further clarify mechanisms and functions of TARs
in subtelomeric regions. While Gershman et al. observe differences in enrichment
of some epigenetic marks, they do not assign statistical significance to their find-
ings.

We adapted our context-aware Markov chain model to perform such differ-
ential analysis of enrichment between two annotations. In general, consider two
references Ry C Rs. In our case, R; are non-telomeric TARs, Ry are all TARs,
and @ are regions with a particular epigenetic mark. One could compare the
enrichment p-value of @) in Ry with the enrichment p-value of ) in Ry; however,
this is not statistically sound [9,20]. Instead, we create a context ¢ with two
class labels {outside, inside}, where positions covered by Rs are labeled “inside”
and all other positions are labeled “outside.” We then use a test statistic to mea-
sure the significance of enrichment of @ in reference R; with context ¢ . This
context ensures that within R; the null model uses the parameters estimated
from intervals of @) that overlap Rs, thus comparing colocalization of @) in R
relative to colocalization of () in the whole R5. Note that the query intervals can
occur also outside of Ro, and their properties are summarized in the parameters
of the Markov chain for the “outside” class. These outside areas then influence
the distribution of the test statistic under the null only by influencing the initial
state distribution at the start of each interval of R;.

Figure 6 shows the result of this analysis. Similarly to Gershman et al. [§]
we observe relative enrichment of activating marks H3K27ac and H3K4me3 in
non-telomeric TARs using both K and B statistics. We can also see enrichment
of CTCF, which is significant only under the shared bases statistic, perhaps
due to the small number of intervals in R;. Gershman et al. were not able to
observe relative enrichment for CTCF on non-telomeric TARs, although they
do observe that CTCF is strongly enriched in both TAR classes compared to
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Fig. 6. Relative enrichment of telomere-associated repeats (TARs) located further than
20 kbp from chromosome ends (R;) with epigenetic modifications (Q) in comparison
to all TARs (Rz), using both the number of overlaps statistic K (left) and the number
of shared bases statistic B (right). The numbers in the parentheses denote the number
of cell lines available for each modification.

the background. This highlights usefulness of our context model in scenarios
requiring relative analysis of two reference annotations.

4 Discussion

We have introduced a novel model for annotation colocalization analysis, which
uses genomic contexts to capture confounding factors that may lead to false
significance results. Taking advantage of the Markovian properties of our model,
we have provided a general framework to compute the exact mean and variance
of a broad class of colocalization test statistics (which we named separable).
Using this framework, we were able to obtain linear and quasi-linear algorithms
to compute the Z-scores for the number of overlaps and the number of shared
bases. We have then proposed to convert the exact Z-score to approximate p-
values using the normal distribution.

Our algorithm computes the Z-score in O(|Q| 4 |R| + ¢) time for the overlap
number statistic and in O(|Q| + (|R| + ¢)logt) time for the shared bases statis-
tic, where |Q| and |R| are the number of intervals in the query and reference,
respectively, ¢ is the number of context class switches, and ¢ is an upper bound
on the reference interval length. This is in contrast to the previous best algo-
rithm, which did not account for genome contexts and took O(|R|? + |Q]) time
to compute the probability mass function of the p-values [5].

In our experiments, we have demonstrated that our algorithm is sufficiently
fast to allow large-scale studies comparing many pairs of annotations with large
reference sets and frequent context class boundaries. We have reanalyzed data
sets from two large-scale studies [8,21], and thanks to our new context-aware
model, we were able to further illuminate the nature of colocalizations discovered
in these works, in some cases reversing previously published findings.

We have experimentally shown that the normal approximation of the distri-
bution of the number of overlaps under H™*** yields accurate p-values, and
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the approximation gets tighter with increasing number of reference annotation
intervals. This behaviour intuitively follows from the representation of a separa-
ble statistic as a sum of contributions for individual reference intervals. If those
contributions were independent, their sum would converge to a normal distri-
bution with a growing number of reference intervals under the classical central
limit theorem. Though the contributions of individual intervals are dependent in
our case, the fact that the dependencies stem from a Markov chain makes it pos-
sible that the sum converges under some extensions of the central limit theorem.
In future, we hope to characterize sufficient conditions for such convergence.
Additionally, we would like to explore the possibility of providing lower and
upper bounds on the precision of the p-value estimation, possibly by applying
the Stein’s method [16].

On a more practical side, in our future research, we would like to explore
the possibility of using quantitative contexts, with numeric values such as GC
content, epigenetic mark density, sequence conservation etc. Some work in this
direction has already been done, particularly in HyperBrowser [17]. In MCDP2
this could be achieved for example by parameterizing the weights of the underly-
ing Markov chains with the context value at each position. The challenge would
be to keep the running time efficient for large genomes.

Another challenge is to provide statistical significance for statistics comparing
colocalization of query () with respect to two different references R; and Ra,
such as B(R1,Q)/B(R2,Q). This may in some situations be preferable to our
approach of comparing such colocalization through contexts, which we used for
the analysis of TAR elements.
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