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Abstract

Adding artificial patterns to objects, like QR codes, can
ease tasks such as object tracking, robot navigation, and
conveying information (e.g., a label or a website link).
However, these patterns require a physical application and
they alter the object’s appearance. Conversely, projected
patterns can temporarily change the object’s appearance,
aiding tasks like 3D scanning and retrieving object textures
and shading. However, projected patterns impede dynamic
tasks like object tracking because they do not ‘stick’ to the
object’s surface. Or do they? This paper introduces a novel
approach combining the advantages of projected and per-
sistent physical patterns. Our system projects heat patterns
using a laser beam (similar in spirit to a LIDAR), which
a thermal camera observes and tracks. Such thermal pat-
terns enable tracking poorly-textured objects whose track-
ing is highly challenging with standard cameras while not
affecting the object’s appearance or physical properties. To
avail these thermal patterns in existing vision frameworks,
we train a network to reverse heat diffusion’s effects and re-
move inconsistent pattern points between different thermal
frames. We prototyped and tested this approach on dynamic
vision tasks like structure from motion, optical flow, and ob-
Ject tracking of everyday textureless objects.

1. Introduction

Pattern matching is fundamental for navigating, under-
standing, and interacting with the world. In particular,
environment modeling and navigation require recognizing
the same patterns from different views and at different
times. But many parts of our environment, whether natu-
rally formed or man-made, have an appearance that makes
these tasks challenging. For instance, as seen in Fig. 1(Top),
visual navigation in a long hallway using a textureless wall
or highly repetitive floor tiling will be difficult. This prob-
lem worsens at night when distant landscape features are
not visible. Similarly, creating a 3D model of a smooth,
textureless object is hard using its natural appearance.

In computer vision, the absence of a ‘good’ texture can
be mitigated by adding artificial patterns to the object. Such
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Figure 1. Projecting trackable thermal patterns. Visual naviga-
tion is challenging in environments lacking distinct features, like
texture-less walls or highly repetitive tiling. (Top) A camera-
projector system can introduce distinct features, but these features
can not be used as a reference between frames because the pro-
jected pattern ‘moves’ along with the system. (Bottom) Our sys-
tem comprises a thermal camera and a colocated laser projector.
The laser ‘paints’ a temporary heat pattern that ‘sticks’ to objects’
surfaces and can, therefore, be tracked in the thermal domain.

patterns can be broadly classified into two categories: phys-
ical patterns directly imprinted on objects and projected pat-
terns applied remotely. Physical patterns are helpful for dy-
namic tasks like object tracking because they can be de-
signed with specific visual characteristics that make them
easy to detect and track (e.g., a QR code). However, apply-
ing such patterns requires direct contact with the object, and
they alter the object’s appearance. Conversely, projected
patterns can be applied remotely and changed at will, mak-
ing them ideal for 3D reconstruction and material property
acquisition [23,27]. However, projected patterns are inef-
fective for dynamic tasks because they do not ‘stick’ to the
object’s surface like physical patterns. This is illustrated by
the blue camera-projector system in Fig. 1(Top). The sys-



tem moves along the hallway while projecting a pattern on
the wall. However, the captured frames reveal no informa-
tion about the camera motion because the pattern ‘moves
along’ with the camera.

In this paper, we propose a novel approach that com-
bines the benefits of both pattern types. Our method uses a
laser to ‘draw’ a heat pattern on an object. The increase in
surface temperature, which forms the pattern, is minimal,
akin to a temperature rise from a hand imprint. While in-
visible to standard RGB cameras or human observers, these
heat patterns are visible to thermal cameras, which image
in the infrared spectrum. Thermal patterns can be applied
remotely, just like standard projected structured light pat-
terns, but have the advantage of remaining ‘stuck’ to the
object’s surface for a certain time duration. Therefore, ther-
mal patterns allow a navigating agent to ‘paint their own
texture’ on completely textureless object surfaces, thus aid-
ing localization and mapping (see Fig. 1(Bottom)). Finally,
these patterns vanish once the target surface returns to room
temperature, leaving the object’s appearance unaltered.

However, using thermal heat patterns presents unique
new challenges. Most tracking algorithms assume that the
appearance of tracked features remains consistent across
frames (e.g., optical flow). However, thermal patterns sig-
nificantly change over time due to heat diffusion and en-
tirely fade away after a while. This requires the continual
projection of new pattern points not existing in the previous
frames (red circles in Fig. 1), further complicating the track-
ing task between frames. To address these challenges, we
develop a learning-based approach that mitigates appear-
ance variation between frames, allowing thermal patterns
to integrate into existing vision frameworks seamlessly.

We introduce a new class of structured light methods in
the thermal regime, where the projected patterns ‘stick’ onto
object surfaces. We systematically explore the space of pos-
sible projected patterns and determine which patterns suit
dynamic vision tasks. We build a prototype and demon-
strate its effectiveness in tasks like structure from motion,
object tracking, and optical flow. This work opens a new
avenue in fusing physical and projected patterns, promising
novel possibilities in computer vision applications.

2. Related works

Thermal imaging has been adopted as a sensing modal-
ity for various ‘classic’ computer vision tasks, including
depth reconstruction [5,20,21,33,34], object segmentation
[7, 18], person detection, recognition and re-identification
[13, 14,32,41,42,44], people tracking and pose estima-
tion [0, 39], and more. Moreover, many works have fo-
cused on transferring thermal images into the visible-light
domain [, 12,38] and improving the thermal images’ qual-
ity via algorithmic means [25] or clever combinations of
algorithms and hardware [15,28].

Some researchers have also leveraged the unique prop-
erties of thermal radiation to accomplish novel vision tasks
beyond standard RGB cameras. Tomohiro et al. leveraged
thermal reflection for non-line-of-sight imaging [19], while
Liu et al. used reflections to reconstruct a human shape.
Tang et al. [36] used thermal images to infer past human po-
sitions while Brahmbbhatt ez al. inferred human grasping [4].

Finally, some past methods combined thermal imaging
with active illumination. Dashpute et al. imaged a laser
heating profile to classify materials [10], Tanaka ef al. ex-
ploited the temperature rise from a far IR light source for
light transport decomposition [35], and Erdozain et al. com-
bined an infrared source with an infrared sensor for 3D
scanning [1 1]. Our method goes beyond these prior works
by exploiting the inherent persistence of projected thermal
patterns, which we use to accomplish dynamic vision tasks.

3. Background
3.1. Thermal Imaging

Thermal cameras sense the light emitted from objects
in the infrared spectrum. The amount of radiation emit-
ted by an object, per wavelength, depends on the object
temperature 7' [22]. The exact relationship between T
and the signal measured by a Long Wave Infrared (LWIR)
camera S(T') is a function of the wavelength-dependant
emission and camera response, the object emissivity, at-
mospheric transmission, temperature of surrounding objects
and more [40]. Camera manufacturers usually model the
camera readings using the Sakuma—Hattori equation:

S(T) = ——g——. ()

[
exp c3T+cy

where ¢y, co, c3 and ¢4 are curve-fitting parameters [26]. In
this paper, we avoid the cumbersome procedure of calibrat-
ing the constants in Eq. (1). Instead, our method relies on
the spatial structure and the temporal difference between in-
dividual thermal frames, much like human vision, which is
mostly invariable to the absolute scene light intensity.

3.2. Laser heating
The heating of a surface by a laser can be described by:
10T (1 — p)Plasers
—— =AT+-————¢ % 2
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where P'#5¢" is the laser’s power [43], A is the Laplace op-
erator and z is the depth into the material. The constants
«, k, and § are the material’s thermal diffusivity, thermal
conductivity, and absorption coefficient, respectively. These
constants determine how ‘well’ the laser can heat a spot and
how fast the generated heat will diffuse. The exponent term
suggests that the laser exponentially decays into the mate-
rial (z > 0). Observe that the material’s albedo p at the
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Figure 2. Trackable thermal patterns. (a) Thermal image before
application. (b) A physically applied pattern by touching the ob-
ject surface with a warm metal branding iron. (c¢) Spraying water
yields an uncontrolled texture in the thermal domain, resulting in
high- or low-frequency textures. (d) We propose a practical, re-
mote, and completely controlled way for applying a heat texture
on scene surfaces by steering a laser at desired scene points.

laser’s wavelength determines the fraction of laser power
absorbed and converted to heat. Therefore, dark objects re-
quire less laser power to generate the same temperature rise.

4. Projecting Trackable Thermal Patterns

A trackable thermal pattern is a thermal pattern that sat-
isfies these two conditions: (a) it has a spatial structure that
yields trackable feature points, and (b) these feature points
remain trackable for at least two consecutive video frames
for a static object and camera. There are many ways to gen-
erate trackable thermal patterns. For example, a heat pattern
could be applied to an object’s surface via direct physical
contact (see Fig. 2(b)). Such patterns could be applied by a
robot’s manipulating arm or tracks, but their physical range
is limited to the robot’s reaching range. Moreover, physical
application limits the pattern’s programmability.

Another way to apply heat patterns is by spraying the
surface with a liquid (see Fig. 2(c)). Spraying a liquid cre-
ates a random arrangement of water droplets on the object’s
surface. However, the trackability of the resulting thermal
texture is inconsistent since it has a large variability in qual-
ity. Specifically, as seen in Fig. 2(c), the spraying may result
in ‘good’ high-frequency texture regions and ‘bad’ regions
lacking spatial contrast.

We propose a practical way for remotely creating
controllable, trackable thermal patterns using a camera-
projector system that can be fitted on autonomous vehi-
cles and robots. Specifically, the system consists of a ther-
mal camera and a steerable visible or near-infrared laser
in a coaxial configuration that can create and observe ar-
bitrary sequential patterns on environment surfaces energy-
efficiently (Fig. 2(d)). The laser ‘paints’ the patterns by con-
verting light energy to heat. Next, we describe the design of
our camera-projector system and the projected patterns.

4.1. Designing the Camera-Projector System

Fig. 3 shows a schematic of our system. A thermal cam-
era views the scene through an optical filter designed to re-
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Figure 3. Our system comprises a thermal camera co-located with
a dual-axis Galvo scanning mirror, which steers a laser beam at
scene surfaces. The laser locally heats up object surface points,
creating a trackable heat pattern in the infrared domain.

flect infrared light but transmit visible light. On the filter’s
second side, a projector consisting of a laser steered with a
dual-axis galvanometer mirror system illuminates the scene.
The camera and projector are temporally synchronized to
control the projected pattern during each camera frame.

We set the camera and projector in a coaxial configura-
tion (no baseline exists between the two). Thus, each cam-
era pixel can be mapped to a corresponding outgoing pro-
jector ray. Then, for a static scene, a pattern can be designed
in the thermal camera’s image domain and predictably illu-
minate the desired scene points regardless of scene geom-
etry. For a dynamic scene, the imaged pattern will deviate
from the projected pattern due to object or system motion.

Let I(x,t) denote the scaled image intensity at pixel co-
ordinates x € R2 and frame sample time ¢, where ¢t = 0
denotes the sample time of the video stream’s first frame.
We denote ¢ as the sample time because, as elaborated in
the supplementary, unlike standard visible-light cameras,
our thermal camera does not continuously collect light dur-
ing the frame exposure time but samples the incident power
of infrared light during continuous exposure [24]. During
the camera’s operation, the projector continuously projects
a series of ‘dots’ toward the scene having index n, where
n=0,1,.., N—1. Since the camera and laser are co-located,
we denote each dot’s projection direction using the cam-
era’s pixel coordinates x,. Each dot is steered to x,, at
time ¢,, and remains at x,, until time ¢, ;. Without loss
of generality, suppose that all dots have the same duration
T9°t = ¢, 1 — t,,Vn. Then, define the projector illumina-
tion pattern P as the sequence of all projected points

N-1

P= ((Xn,tn)) 3)

4.2. Which Patterns Fit Dynamic Vision Tasks?

n=0

The pattern definition in Eq. (3) can describe an ar-
bitrary sequential pattern. For example, when 79! is a
low-order fraction of the camera sample period 7°*™P the
resulting pattern will appear as a series of disconnected
dots (Fig. 2(d)). Conversely, using 75*™P > T9°t one
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Figure 4. Laser dot projection times. (Left) A thermal image
showing the relative intensity of laser dots projected at different
durations 7°*™P / K, where K is the number of points per frame.
Below is a plot of a single row over time (vertically). (Right) Dot
SNR over time for various K.

can ‘draw’ seemingly continuous patterns like a circle or a
square. Given this vast space of possible patterns, which
pattern should one use for dynamic vision tasks?

The pattern dot duration 79° is a key parameter that
guides the pattern selection process. Let /' denote the num-
ber of pattern points projected per frame,

K =T /790 4)

For simplicity, we constrain K to take positive integer val-
ues. In other words, we assume the system projects at least
one new point for each new video frame. The point duration
T9°t determines the temperature rise at the object’s surface,
which in turn determines the signal-to-noise ratio (SNR) of
each pattern dot over time.

Computing the exact temperature rise analytically using
Eq. (2) requires meticulous calibrations. Instead, we em-
pirically evaluate the SNR by projecting dots with different
Ks on a black object, which serves as the ‘best case sce-
nario’ for most environments. Fig. 4 shows the SNR of in-
dividual pattern dots over time for K = 1,2,..,10." The
plots in Fig. 4(Right) show that the SNR rapidly deterio-
rated for K > 2. This result suggests that to maintain the
patterns’ trackability for a reasonable duration, we must use
‘discrete’ patterns having only a few dots per frame as op-
posed to ‘continuous’ patterns where K is relatively large.

Different pattern types adhere to the mentioned con-
straint (e.g., discrete-point patterns). Since scene motion
can occur anywhere in the image domain, the frame must
be evenly covered by P. Moreover, given the unknown and
potentially changing direction of motion, a quasi-random
coverage of the image domain is preferred over a sequen-
tial one. We tested various random dot pattern types that
fit the demands above and concluded that Halton sequences
perform best for our applications [17]. Now that we have
determined which patterns to project, we must address the
challenge of heat diffusion inherent to thermal patterns.

I'The effective K in the experiment of Fig. 4 differs slightly from the in-
tended integer values due to camera-projector synchronization constraints
detailed in the supplementary.

5. Learning to Reverse Heat Diffusion

In the previous section, we showed how projected ther-
mal patterns diffuse and evaporate, changing their appear-
ance and thus requiring a constant influx of new points to be
added to the object. This continuous variation in the imaged
pattern can degrade the performance of vision algorithms
that assume a consistent visual appearance between frame
pairs (i.e., brightness constancy assumption). We now de-
scribe a learning-based approach to ‘undiffuse’ the thermal
frames and preserve their relative visual appearance.

Let f=0,1,... be the frame index, and I(x,ty) is the
frame corresponding to index f. For brevity, henceforth,
we drop the time symbol and denote I(x, f)=1I(x,ts). Let
Py ., denote the sub-sequence of pattern points projected
between the sample of frame f and f+m:

K

Pf,m = ((Xnatn)k | t, € [tf7tf+m)) ‘k:l. (5)

Namely, Py, tells us which new points will appear in
frame f+m that did not exist in frame f. For example, when
projecting K =3 points per frame, Py ; will contain exactly
three points whose projection start time are t7, t; + Tdot
and ty + 279°t  Similarly, Py, will contain mK points
that are projected between frames f and f+m. Then, the
difference in scene appearance between frame f and frame
f+m, for a static scene and static noiseless camera, is given
by the projection-diffusion operator D:

I(x, f+m) = D(I(x, f) | Pf.m, m). (6)

Here, D does two operations: (a) diffusing the appearance
of points existing in I(x, f) by the equivalent of m frames,
and (b) adding the newly projected points defined by Py ,,.>

5.1. Reversing the Projection-Diffusion Operator

We aim to match the appearance of I(x,f) and
I(x, f+m) before they serve as input to some dynamic vi-
sion task. But due to scene motion, we can not predict the
new point locations in frame f+4m, even given Ps ,,,. Thus,
we instead seek the inverse operator

I(x,f) =~ D' I(x, f + m) | Ppm, m). (]

The projection-diffusion reversal (PDR) operator D~ re-
verses the diffusion of points that exist in frame f and re-
moves the new points Py ,,. Eq. (7) is an approximation
since the physical heat transfer is generally irreversible [9].

Modeling D analytically requires calibrating not only
the material-specific parameters in Eq. (2), but also the cam-
era’s exact radiometric response in Eq. (1) and the signal’s
atmospheric attenuation. Moreover, the laser point’s ex-
act heat diffusion depends on the existing three-dimensional

2In Eq. (6), we neglect the newly projected points’ diffusion since, in
Sec. 5.1, we only seek D~ where the new points are removed.
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Figure 5. Reversing thermal projection-diffusion. Besides the effect of scene of camera motion, each successive thermal frame f + m
differs from the previous frame f in two additional ways: (a) it contains newly projected points not existing in frame f, (b) previously
projected points (existing in frame f) have undergone heat diffusion. To correct these non-motion-related deviations, we train a neural
network to reverse the projection-diffusion’s effect, yielding a corrected f+m frame with an appearance consistent with frame f.

heat profile, which is unobservable by the camera. Never-
theless, our applications only require reversing D for a few
frames (e.g., m = 1, 2), and each captured frame contains
many ‘data examples’ of point diffusion over time (from
recently projected points to points projected many frames
ago). This plurality of points in each frame holds relevant
cues about the diffusion-process parameters of the scene
materials. This insight motivates us to use a data-driven
solution and approximate D! using a neural network.

To approximate D~ we use a six-block Resnet [ 16,45,

], whose input consists of three channels (see Fig. 5). The
first channel is I(x, f+m), the second channel is an image
that represents P ,,, denoted by G(Pf.,), and the third
channel is a ‘constant image’ with value 0.1m. The second
and third channels encode information about the expected
position of new points (to be removed by the network) and
the amount of expected point diffusion, respectively. The
image G(Pf,,) is a heat map with values in [0, 1] which
‘tells’ the network the likely spatial positions of the new
points Py ,,,. But, as illustrated in Fig. 6, because the object
might be moving, the observed dots’ location will deviate
from their predicted positions in Py ,,. Moreover, the devia-
tion amount depends on the time difference between the dot
projection time and the frame sample time |t, —t ¢4, |. The
greater the time gap, the more likely it is to observe a more
significant deviation. To account for the deviation from
P 1, we construct G(Py,,,,) by assigning projection-order-
depended spatial uncertainty to each point as described in
the supplementary.

Frame scaling and object room temperature. Dynamic
tasks rely on the spatial distribution of the thermal frames
(i.e., the resulting imaged pattern), while the absolute tem-
perature readings are irrelevant. Therefore, we scale the
thermal frame’s pixel values to fit [0, 1] using:

I(X, f) = (Iraw(xv f) - a‘)/b7 (8)

®<— points existing
at frame f .

¢ projection loc.

for new points

frame f pattern points P frame f + 1
Figure 6. Motion during point projection. Three laser points in-
dexed 1,2 and 3 are projected between frames f and f+1. The
points’ image plane projection coordinates are shown in cyan.
However, the object moves to the right during the sequential point
projection, causing the imaged point locations in frame f+1 to de-
viate from the projection coordinates. Point 1’s deviation is larger

than point 3 because point 3 is closer to the sampling time of f+41.

where I"*V (x, f) is raw 16-bit frame, and a, b are constants.
But can our network learn to reverse dot diffusion at various
room temperatures from just a few examples? In the sup-
plementary, we show that for small variations around room
temperature (i.e., tens of degrees Kelvin), the camera re-
sponse is approximately affine with T":

C
S(T) = ———(4—— ~csT + c, ©9)
eXP e — 1

where c5 and cg are constants. At any pixel xg, combining
Eqs.(8-9) and derivating with respect to T yields:

6I(x0,.) & (1
%:ﬁ(f(csT—&-%—a)):% (10)

b

Eq. (10) shows that our scaling maintains the camera’s
affine response to 7', suggesting that the network can be
roughly invariant to the object’s ambient temperature under
the conditions above.



5.2. Training procedure

As training data, we gather sequences of static scenes
while projecting P. Each video provided many frame pairs
of I(x, f) and I(x, f +m). Because the scene is static, we
can define the loss function for a single pair as:

L =Ex|[I(x,f) = D" (I(x, f +m) | Pr.m,m)) |5, (11)
D7 ()= I(x, f +m) — Fo(I(x, f +m) | Prm,m)), (12)

where Fy() denotes the PDR network. Unlike in dynamic
scenes, the imaged pattern dot locations in static scenes
will never deviate from the predicted points given by Py ,,.
Therefore, training using the loss in Eq. (11) does not ex-
pose the network to examples representing scenes with mo-
tion. To correct for that, during training, we add a random
spatial shift to each dot location in Py ,, before generat-
ing image G(P%,,). The random spatial shift magnitude is
proportional to |¢,, — ¢4, | to account for the difference in
timing between point projection and frame sample—more
details in supplementary.

6. Application to Dynamic Tasks

In this Section, we detail how to employ the framework
presented in Sections 4-5 for two dynamic tasks: Structure-
from-Motion and computing optical flow. For both tasks,
the system continuously captures the dynamic scene while
projecting a dot pattern as described in Sec. 4.2. The opti-
cal flow is computed between pairs of temporally adjacent
frames I(x, f) and IP9"(x, f-++m), where IP9" is the output
of the projection-diffusion reversal operator *

PEx f4+m)=D" I(x, f+m)).  (13)

In SfM, the captured video frames are processed sequen-
tially to detect and track each projected point from its first
appearance until its visual quality drops below a predefined
threshold, as detailed in the supplementary. The point track-
ing yields a plurality of point correspondences between
temporally adjacent frames, which are manually fed into
an off-the-shelf multi-view stereo pipeline to generate the
camera trajectories and scene geometry (see Fig. 7).

Because the network’s raw output Fy(I(x, f +m)) is
subtracted from I(x, f+m) to reverse projection-diffusion,
the output image’s positive values belong to the newly
added points Py ,, (to be removed), while its negative val-
ues correspond to point intensity lost due to heat diffusion
(to be reinforced). Therefore, we use the image

I"V(x, f +m) = max(Fp(I(x, f +m)),0) (14

as input to a keypoint detector to add the newly projected
points for tracking. Similarly to the optical flow case, we
use the ‘fully-reversed’ frame [P (x, f +m) as input to
track points existing in (x, f) (see Fig. 7).

3We drop the conditional terms in D! (.. | Pf,m,m)) for brevity.

7. Prototype and Training Details

Hardware prototype. Our camera-projector system con-
sists of a green laser and a FLIR thermal camera with a res-
olution of 640x512. The laser is steered toward the scene
using a dual-axis galvo system with analog inputs generated
by a data acquisition device (DAQ). We used a 150 mW
for all experiments except the cart experiment of Fig 9,
where a 1 W was used. Despite the high wattage of the
latter laser, the power and temperature increase per surface
point remains small due to the rapid point cycling. We cap-
ture video at 30 Hz and synchronize the galvo and camera
by triggering both using individual but synchronized clocks
generated by an Arduino Due board. See supplementary for
a detailed part list, system image, and calibration details.

Projection-diffusion reversal network training. To
train the network, we gathered a dataset of 13 static scenes
with different materials and distances from the system.
Each scene was a video lasting between 20 to 45 s, in which
pattern projection is interleaved with periods having no pat-
tern. The pattern-free periods are designed to cool off the
accumulated surface heat caused by the continuous projec-
tion on the same object surface (as opposed to dynamic
scenes where the projected surfaces continuously shift). We
trained the network to reverse diffusion for one and two
frames (m = 1, 2). The scaling in Eq. (8) was computed by
finding the lowest and highest raw camera readings across
all dataset scenes. See more details in the supplementary.

8. Experimental Evaluation

We tested our method for various dynamic vision tasks,
projecting K =2, 3 or 4 new points per frame in all experi-
ments, depending on the material, the laser, and the distance
to the camera. In generating frame pairs, we used m =1 for
large scene motions or m = 2 for small motions. In SftM,
new points were detected using a Shi-Tomasi corner detec-
tor [31] and tracked using an ad hoc implementation based
on the Lucas-Kanade method [3].

In Fig 7, we compute SfM on low-albedo, mostly tex-
tureless objects for which applying SfM directly on RGB
frames fails. Nevertheless, our system generated accu-
rate point correspondences, which were manually fed to
COLMAP to yield precise camera motions and sparse
3D object shapes [29, 30].  Since generating ground
truth camera motion for our textureless objects is hard
(COLMAP failed on the RGB sequences), we assess the
recovered motions by computing the motion’s deviation
from the expected ‘perfect’ circle. Thus, Fig. 7’s yellow,
blue, and green results with PDR fit a circle with R? of
0.99996, 0.9991, 0.999, respectively. The blue and green
results without PDR yield a fitting of 0.94 and 0.99, each.
To assess shape recovery, we added texture to the plastic
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Figure 7. Structure from Motion. We scan dark, mostly textureless objects on a rotating stage. Our system continuously projects new ‘heat
points’ on the object’s surface during motion. The camera and projector lack any baseline, and the SfM relies solely on the tracked heat
points. (Top row) Velvet-like styrofoam head. The third and fourth subfigures show tracked points and newly projected points outputted
by the projection-diffusion reversal (PDR) operator, respectively. The stage rotates about 440°. The recovered camera positions are highly
accurate, fitting a circle with a coefficient of determination of R*=0.99996. (Middle row) Scanning a cylindrical can and a rectangular
planter. SfM without the PDR operator yields degraded results. (Bottom row) Black plastic head scan of about 160° rotation. Here, the
reconstruction without the PDR operator failed to generate a face and register all the frames. We texturized the head with paint to recover
a good reference mesh using COLMAP. After alignment, the maximum error between the reference and our recovery was 7.1 mm.

scene tracked points augmented scene

Figure 8. Augmented reality. Tracking the featureless plane’s 3D
pose enables superimposing a picture on the plane’s surface.

head of Fig. 7(Bottom) using paint and recovered its shape
with COLMAP. Post alignment and true-size scaling, the
mean and max MeshLabs’s Hausdorff distances between
the painted head and our recovered mesh were 1.5 mm
(0.8% w.r.t. shape scale) & 7.1 mm (3.7%), each [8].

In Fig. 8, we show an augmented reality application by
projecting on a featureless black sheet and using the tracked
points to superimpose a picture on the plane’s surface. In
Fig. 9, we put the system on a cart and use it for indoor lo-
calization. We direct the system towards the floor using a
mirror and traverse in a loop around the office desks span-
ning around 20m. Fig. 9 shows that our system provides

good camera motion tracking. The recovered motion shows
good loop closure despite the lack of any matches connect-
ing the first and last frames. For reference, we computed the
cart’s motion using a GoPro camera attached to the cart and
directed at the room. The GoPro was affixed on the cart’s
right, about 25 cm away from the thermal camera, which
explains the broader loop in Fig. 9. The mean absolute er-
ror compared to the reference was on the order of 14 cm.
Fig. 9’s recovery used our PDR network; The supplement
discusses the PDR performance gap in the cart experiment.

In Fig. 10, we apply our method to compute the optical
flow for both rigid (Top row) and non-rigid object motions
(Bottom row). We use RAFT to compute the pair-wise flow
[37], where the current frame is corrected with the PDR
network. Observe that the projected points yield sufficient
texture to compute the flow of otherwise textureless objects.
The recovered flow of Fig. 10(Top row) fits the expected
circular flow model with R?=0.98.

We tested the projection-diffusion network’s effect on
the downstream vision tasks. As expected, the network had
a significant effect in cases where the image pairs exhibited
a large appearance deviation. Such deviations occur for ma-
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Figure 9. Indoor localization. We loop around office desks while
pointing the system towards the floor. Our method yields accurate
tracks and loop closure, with no shared feature points between the
first and last frames. The blue reference camera poses stem from
a COLMAP reconstruction using frames from a GoPro camera af-
fixed to the cart’s outer end, pointed at the office.

terials that rapidly diffuse the heat or when the input frames
are further apart (i.e., m > 1). See Fig. 7 for visual compar-
isons. Conversely, the network had a negligible effect on
materials where the point diffusion was relatively slow and
the individual points had little overlay (e.g., Fig. 9).

9. Discussion and Limitations

Loop closure. The thermal patterns are transient and dis-
appear after a short time. Thus, at each frame, the existing
pattern is only consistent with temporally adjacent frames,
making feature-based loop closure impossible when relying
solely on the projected patterns. Nevertheless, most envi-
ronments should have some regions with sufficient natural
infrared texture to allow loop closure.

Laser illumination. When using a laser to generate
heat, unintended direct and specular reflection may pose
safety issues for applications involving humans and ani-
mals. However, an ‘eye-safe’ laser with emission wave-
lengths greater than 1.4 um may be used instead of a green
laser. See the supplementary for a laser safety discussion.
Material properties. We assume object materials that are
responsive to heat projection. This responsivity, which
manifests with pattern SNR and dot frame duration, de-
pends on the material’s absorption of the laser’s wavelength
(i.e. albedo), thermal conductivity and diffusivity, and emis-
sivity in the camera’s infrared range. Thus, our method will
exhibit degraded performance on some materials like glass,
metals, and more (see supplementary for examples).

Point density for 3D recovery. Our approach yields a
sparse point cloud of the scene. However, expanding the
model into a dense one using existing multi-view-stereo
(MVS) approaches is not straightforward using thermal im-

- NN \\\\\._,,/
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scene thermal frame

scene optical flow
(forward motion)
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Figure 10. Optical Flow. (Top row) A rotating stage is positioned
to face our system. We use RAFT to compute the optical flow
between every pair of consecutive frames. (Bottom row) Non-
rigid object motion (left plane folds while the right remains fixed).

ages. Nevertheless, future works may extend MVS ap-
proaches to handle the thermal domain and its particular
characteristics (e.g., heat diffusion and more).

Rapid scene motion. In this work, we assumed and ver-
ified experimentally that each dot projection time is short
enough such that the scene is approximately static per dot.
However, very rapid scene motions may smear the projected
dots into curves. Expanding our method to accommodate
these short curves can be achieved by including them in the
training set (e.g., by projecting short curves during training)
and making slight adjustments to the input G channel.

10. Conclusion

This paper introduces a new class of structured light
methods, where the projected patterns remain on the ob-
ject in the thermal domain, combining the advantages of
physical and projected patterns. By using a laser to project
controllable heat patterns onto objects, we can remotely im-
print patterns without altering an object’s appearance, facil-
itating dynamic vision tasks for textureless surfaces. Like
lidar, our system could be integrated into autonomous ve-
hicles and robots to ease navigation in challenging environ-
ments, both urban and industrial (e.g., inside pipelines or
tunnels). Our work also provides a pathway for encoding
digital codes into the thermal patterns, enabling communi-
cation between different agents [2]. Our approach could
facilitate other studies like recovering material properties,
structural analysis, medical imaging, and even artistic ex-
pression in fields such as computer graphics.
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