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Abstract 

Parkinson9s disease (PD) is associated with multiple clinical motor and non-motor manifestations. Understanding of 

PD etiologies has been informed by a growing number of genetic mutations and various fluid-based and brain imaging 

biomarkers. However, the mechanisms underlying its varied phenotypic features remain elusive. The present work 

introduces a data-driven approach for generating phenotypic association graphs for PD cohorts. Data collected by 
the Parkinson9s Progression Markers Initiative (PPMI), the Parkinson's Disease Biomarkers Program (PDBP), and 

the Fox Investigation for New Discovery of Biomarkers (BioFIND) were analyzed by this approach to identify 

heterogeneous and longitudinal phenotypic associations that may provide insight into the pathology of this complex 

disease. Findings based on the phenotypic association graphs could improve understanding of longitudinal PD 

pathologies and how these relate to patient symptomology. 

Introduction 

Multiple identifiable and quantifiable phenotypic features are associated with Parkinson9s disease (PD), including 

motor manifestations (such as bradykinesia, muscle rigidity, tremor, and postural instability), non-motor 

manifestations (such as depression, cognitive decline, fatigue, and dysautonomia), and biomarkers. How these features 

are linked remains to be precisely understood, and heterogeneity among individual patients diagnosed with PD leads 

to further complexity. However, these features are related to the spatially, temporally, and molecularly complex 
pathologies of PD, and may therefore provide insight into underlying networks that are affected as PD progresses. 

There is therefore an urgent need to identify relationships among these heterogeneous phenotypic features to further 

uncover the underlying mechanisms of PD. Most existing cohort studies focus on a single specific feature and its 

relationships to other factors relying on statistical testing, univariate regression, or multivariate regression1-4. However, 

these approaches require hypotheses of the independent and dependent features to be tested, and hence may not be 

appropriate for detecting the complex correlations among the heterogeneous features of PD (Figure 1). Moreover, 

traditional univariate/multivariate regression methods require assumptions about the functional form of the 

relationships between variables (e.g., linearity, polynomiality). 

To address these limitations, we present a data-driven approach based on the PC (Peter-Clark) algorithm5. This 

algorithm takes all phenotypic features as inputs and produces an undirected graph, i.e., the phenotypic association 

graph, revealing the subtle relationships among the features (Figure 1). For cross-cohort validation, the phenotypic 

association graphs within three PD cohorts were computed. Moreover, by investigating the phenotypic association 
graphs generated at different stages of PD, we analyzed how feature relationships evolve as PD progresses. Finally, 

the obtained phenotypic association graphs are used to discuss the complex pathologies of PD. The supplemental 

materials are available at https://github.com/weishenpan15/pd-association-graph. 

Methods 

Study population. Publicly available data from two cohorts comprising individuals with PD and healthy control (HC) 

subjects were obtained: the Parkinson9s Progression Markers Initiative (PPMI) and the Parkinson9s Disease 

Biomarkers Program (PDBP). The Fox Investigation for New Discovery of Biomarkers (BioFIND) provides data for 

one additional cohort comprised of individuals with PD and no controls6-8. 

The PPMI study is a prospective longitudinal study of de novo PD patients who were untreated with medications at 

baseline and were enrolled at 33 sites internationally6. The institutional review board of the University of Rochester 
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(NY, USA) and each PPMI participating site approved the PPMI study protocol. Data downloaded from 

https://www.ppmi-info.org/data on July 01, 2020 under PPMI Data Use Agreement, were used for this analysis. At 

that time, enrollment was complete. 424 PD patients with available baseline data were included for analysis. Baseline 

and follow-up assessments included complete neuropsychological test data at 1-, 2-, 3-, 4-, and 5-year follow-up. 

 

 
Figure 1: An illustration of conventional phenotypic association identification methods (A), the proposed method for 

data-driven phenotypic association graph generation (B) and the illustration of the method (C). 

 

The PDBP study is a longitudinal study of PD patients with different severities at baseline who were enrolled at 11 

US sites7. The institutional review board of each PDBP participating site approved the study protocol for that site. 

Data of PDBP were downloaded via the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) platform 

(http://amp-pd.org) on Feb 01, 2020 under AMP-PD Data Use Agreement. Enrollment was complete at that time. A 

total of 836 PD patients with available baseline data were included for analysis. Patients9 data at baseline and 1- and 

2-year follow-up were used for analysis. 

The BioFIND study is a cross-sectional cohort of participants enrolled at 8 sites in the United States8. The average 
duration of PD in this cohort is 8.34 years, which is much longer than the PD duration of subjects in the PPMI, and 

enrolled patients were receiving symptomatic treatment. The institutional review board of BioFIND approved the 

study protocol. Data downloaded from https://biofind.loni.usc.edu on July 01, 2020 under BioFIND Data Use 

Agreement, were used for this analysis. A total of 126 moderate-advanced PD participants were included for analysis. 

Table 1. Summary of benchmark data sets. 

 Dataset and sample selected Features 

Setting1 PPMI, PD at baseline before symptomatic 

treatment, 135 years follow-up 

Features that are shared in all periods of PPMI 

Setting 2 BioFIND, PD Features that are shared among BioFIND, PDBP, 

and PPMI longitudinally 

Setting 3 PDBP, PD at baseline, 132 years follow-up Features that are shared among BioFIND, PDBP, 

and PPMI longitudinally 

Setting 4 PPMI, PD at baseline before symptomatic 

treatment 

Features included at baseline of PPMI 

 

Phenotypic features. A wide range of phenotypic features were included for analysis, including motor and non-motor 

manifestations based upon validated rating scales, CSF biomarkers, and MRI neuroimaging data. In addition, other 
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features including demographics, genetic risk score, and medications were included. The details of all features used 

for analysis are listed in Tables S1 and S2 of the supplementary material, in which we have matched features collected 

among PPMI, PDBP, and BioFIND when possible. Specifically, we used sub-scores of the Movement Disorder 

Society Unified Parkinson Disease Rating Scale (MDS-UPDRS) Part I, extracting responses to individual questions 

regarding fatigue, hallucinations, and apathy9. We also analyzed composite scores for tremor and postural instability 

and gait disturbance (PIGD) as motor features. 

Phenotypic association graph identification. The PC algorithm was used to generate the association graphs of 

selected PD features5. This algorithm starts from a fully connected graph, of which the nodes are all features studied 

and the undirected edges among them are candidate associations. The algorithm then determines which edges should 

be deleted by conditional independence testing. When the algorithm converges, we obtain the phenotypic association 

graph of the clinical features. An example with 4 variables is illustrated in Figure 1(C). A full description of the 

algorithm is shown in the supplementary materials.  

To compare the associations among features in different cohorts (PPMI, PDBP, and BioFIND) and PD durations 

(within the PPMI cohort), we ran the PC algorithm upon different combinations of datasets and features following the 

settings in Table 1. We first ran the PC algorithm on data from PPMI subjects at different time points to identify 

dynamic relationships among features (Setting 1). For cross-cohort comparison, we ran the algorithm on PDBP and 

BioFIND data with features shared in all three cohorts (Settings 2 and 3).  Features included in each cohort are listed 
in Supplementary Tables S1 and S2. The cerebrospinal fluid (CSF) biomarkers (A³1-42, total tau (t-tau), 

phosphorylated tau (p-tau), ³-synuclein) and brain imaging data (magnetic resonance imaging (MRI), single photon 

emission computed tomography using 131I-ioflupane (DaTscan])) are available in both PPMI-baseline. We ran the 

algorithm with Setting 4 in Table 1. For MRI features, we used surface area, cortical volume, and white matter volume 

from 34 brain regions defined by the Desikan-Killiany atlas, which is listed in Table S3 in supplementary materials. 

Feature grouping based on graph structure. When generating phenotypic association graphs with longitudinal data 

from the PPMI study, feature-level analyses are too fine-grained to overcome noise. For example, two features may 

be linked directly at baseline and 2 years after baseline, while the edge may disappear at 1-year follow-up. This is due 

to the limited number of subjects in the studied cohorts. To address this issue, phenotypic features were partitioned 

into different groups according to graph structure. This partitioning process facilitates the analysis of group-level 

relationships, which are more consistent than feature-level associations. Specifically, we first constructed a weighted 
summarization graph in which nodes are all clinical features (excluding demographics, medicine, biomarkers, and 

brain imaging features) and in which the weight of each connection is the frequency of occurrence of the connection 

over all periods. The Louvain community detection algorithm10, which aims at clustering nodes into densely intra-

connected yet sparsely inter-connected groups, was then utilized to group the features on the summarization graph 

(described in more detail in the appendix). Some groups obtained by the community detection algorithm were further 

separated into sub-groups consisting of clinical features from finer domains. 

Results 

Phenotypic association graphs from PPMI. The phenotypic association graphs from PPMI were generated based on 

Setting 1 in Table 1. Figure 2 illustrates the generated graph at baseline. Nine feature groups were identified, including 

Motor, Mood, Cognitive-Hopkin9s Verbal Learning Test (HVLT), Cognitive-Montreal Cognitive Assessment 

(MoCA), Cognitive-Executive, Cognitive-Visuospatial, Autonomic Dysfunction & Sleep Disorder (ADSD), 

Hallucinations, and Impulse Control Disorder (ICD) (Table 2). We observed that clinical features in similar medical 
domains are grouped together. For example, MDS-T (tremor score), MDS-P (postural instability and gait disturbance 

score), and Hoehn and Yahr (H&Y) stage were grouped under Motor, while Geriatric Depression Scale (GDS), State-

Trait Anxiety Inventory (STAI), MDS-apathy, and MDS-fatigue were grouped under Mood. Fine-grained (i.e., 

feature-level) graphs at 1- to 5-year follow-up of PPMI are shown in Supplemental Figures S1-S5.  If two features are 

independent of each other conditioned on other features, they will not be directly connected. In other words, an edge 

linking two features indicates that they are always dependent conditioned on any set of other features.  

By considering each feature group as a super-node, we generated the group-level association graphs of different 

periods in PPMI. As shown in Figure 3, connections between different groups are relatively sparse at baseline while 

more connections between groups emerge as PD progresses. To interpret these findings, we categorized the edges 

between features into two groups: (i) the stable edges occurring throughout the different time periods examined, and 

(ii) the longitudinal edges that change as the disease progresses.  
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Figure 2. The feature-level phenotypic association graph for the PPMI cohort at baseline. The selected samples and 

features follow Setting 1 in Table 1. Each node represents a feature, while node color represents the group to which a 

specific feature belongs. Nodes in white are those features that do not participate in any phenotypic grouping. 

Abbreviation:  MDS=Movement Disorder Society. MDS-T=MDS Tremor score. MDS-P=MDS Postural Instability 

and Gait Difficulty score. H&Y=Hoehn and Yahr. GDS=Geriatric Depression Scale. STAI=State Trait Anxiety 
Inventory. HVLT=Hopkin9s Verbal Learning Test. MoCA=Montreal Cognitive Assessment. SDMT=Symbol Digit 

Modalities Test. LNS=Letter Number Sequencing. BJLO=Benton Judgment of Line Orientation. 

QUIP=Questionnaire for Impulsive-Compulsive Disorders in Parkinson9s Disease. SCOPA-AUT=SCales for 

Outcomes in PArkinson9s disease-AUTomotic symptoms. ESS=Epworth Sleepiness Scale. RBDSQ=REM Sleep 

Behavior Disorder Screening Questionnaire. 

 

Table 2. List of the feature groups obtained from the phenotypic association graph of PPMI cohort.  

Group Features 

Motor MDS-T, MDS-P, H & Y stage 

Mood GDS, STAI, MDS-apathy, MDS-fatigue 

Cognitive-HVLT HVLT total recall, HVLT delayed recall, HVLT discrimination, recognition 

Cognitive-MoCA MoCA 

Cognitive-Executive Semantic Frequency, BJLO 

Cognitive-Visuospatial SDMT, LNS 

Autonomic Dysfunction 

& Sleep Disorder (ADSD)  

SCOPA-AUT, ESS, RBDSQ 

Impulse Control Disorder QUIP 

Hallucinations MDS-hallucinations 

 

Phenotypic association graph from PDBP and BioFIND. Phenotypic association graphs from the PDBP and 

BioFIND cohort data were generated based on Settings 2 and 3 in Table 1. Five shared feature groups were included, 

including Motor, Mood, Cognitive-MoCA, ADSD, and Hallucinations. The group-level association graphs are shown 
in Figure 4. The feature-level association graphs at baseline of PDBP are shown in Figure 5, while those at 1- and 2-

year follow-up are shown in Supplemental Figures S6 and S7. The feature-level association graph from BioFIND is 

shown in Figure 6.  

Except for feature groups of PPMI that are not available in the PDBP and BioFIND cohorts, the graphs derived from 

PDBP and BioFIND (Figure 4) are similar to those generated from the later-period data of PPMI (Figure 3). We also 

observed similar results on feature-level graphs (Figures 5, 6, and Supplementary Figures S6, S7), as PDBP and 

BioFIND subjects have a longer duration of PD at enrollment compared to PPMI. 
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Figure 3. Group-level longitudinal phenotypic association graphs for the PPMI cohort. The selected samples and 

features follow setting 1 in Table 1. Each node represents an extracted feature group. Stable edges (i.e., those that 

appear in all time points) are marked as solid black lines. Longitudinal edges are marked in dashed blue (i.e., those 

that appear in the early stage) or in dashed red (i.e., those that appear in the late stage). HVLT=Hopkin9s Verbal 

Learning Test. MoCA=Montreal Cognitive Assessment. 

 

 
Figure 4. Group-level phenotypic association graphs for the PDBP and BioFIND cohorts. The selected samples and 

features follow Setting 3 in Table 1. Each node represents an extracted feature group. MoCA=Montreal Cognitive 

Assessment. 

 

 
Figure 5. The feature-level phenotypic association graph for the PDBP cohort at baseline. MoCA=Montreal Cognitive 

Assessment.  
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Figure 6. The feature-level phenotypic association graph for the BioFIND cohort. MoCA=Montreal Cognitive 

Assessment. 

 

Phenotypic association graphs with CSF biomarkers and MRI features. To further investigate the correlations 
between CSF biomarkers and clinical features, we incorporated CSF biomarkers into our approach and generated the 

phenotypic association graphs of PPMI baseline data according to Setting 4 in Table 1. The resulting association 

graphs are shown in Figure 7, including only the MRI features which are directly connected with clinical 

characteristics. 

 
Figure 7. The feature-level phenotypic association graph at baseline of PPMI cohort, after incorporating CSF 

biomarkers and brain imaging. 

 

Discussion 

Stable phenotypic associations in PD. From the graphs shown in Figures 2-6 and Supplementary Figures S1-S7, we 

identified the following stable phenotypic associations. 

    (1) Stable associations were observed among Cognitive-Executive, Cognitive-Visuospatial, Cognitive-Hopkin9s 

Verbal Learning Test (HVLT), and Cognitive-Montreal Cognitive Assessment (MoCA) groups. This is consistent 

with the fact that features in the four groups all serve as measures of cognitive manifestations.  

    (2) Stable associations were observed among features in the Mood group (including depression, anxiety, apathy, 

and fatigue), and feature-level intra-group connections such as the associations between Geriatric Depression Scale 

(GDS) and State-Trait Anxiety Inventory (STAI), between GDS and MDS-apathy, and between MDS-apathy and 

MDS-fatigue. The potential reasons could be two-fold: on one hand, the measures of depression, anxiety, apathy, and 

³
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fatigue have overlapping content in their respective scale questionnaires; on the other hand, these PD symptoms likely 

overlap in pathology through association with the production of dopamine, serotonin, and other neurochemicals11-13. 

    (3) Stable associations were identified between Mood and Autonomic Dysfunction & Sleep Disorder (ADSD) 

features. These two groups contain common non-motor neurodegenerative features of PD: depression (GDS), anxiety 

(STAI), REM sleep behavior disorder (REM Sleep Behavior Disorder Screening Questionnaire, RBDSQ), excessive 
daytime sleepiness (Epworth Sleepiness Scale, ESS), and autonomic dysfunction (SCales for Outcomes in 

PArkinson9s disease-AUTomotic symptoms, SCOPA-AUT). These features have a critical impact on the patient9s 

health0related quality of life. Besides the group-level connections, there exist consistent feature-level connections, 

such as associations between GDS and SCOPA-AUT, ESS and SCOPA-AUT, as well as RBDSQ and SCOPA-AUT. 

Previous studies have reported that these features are correlated with the severity of PD and are mostly correlated with 

each other1-4. Based on the PPMI data, any two of these features are significantly associated with each other (p-value 

< 0.01). These findings could potentially be explained by the spread of neurodegeneration within the brainstem. Braak 

et al reported that Lewy pathology and neuronal loss have been identified in the locus coeruleus, raphe nuclei, dorsal 

motor nucleus of the vagus (DMV), and pedunculopontine nuclei (PPN) as PD processes14. These regions are 

implicated in the control of sleep, mood, and autonomic function3,4,15. Previous pathological studies have also supported 

such associations16,17. Our results add strength to the evidence that lesions in these regions can cause sleep, mood, and 

autonomic dysfunctions. In addition, we also detected stable associations between ESS and RBDSQ within the ADSD 

group, which could be explained by similar underlying pathologies18. 

    (4) Stable associations between mood and motor features were also observed. At the feature level, there are 

connections between MDS-P (MDS Postural Instability and Gait Difficulty score) and GDS. PD patients of the 

postural instability and gait difficulty (PIGD) subtype are more likely to have depression than those of the tremor-

dominant subtype19,20. In addition, the relationship between GDS and MDS-P could be explained by a common 

pathology affecting the locus coeruleus, since this structure is implicated in the control of mood and in features of the 

PIGD subtype (e.g., postural stability)3,21. 

    (5) The use of anti-PD medications is linked to features in the ADSD group. Though feature-level connections may 

not be very consistent, results suggest that ESS is connected to PD medication. This could potentially be explained by 

the side effect profile of PD medications, as they may lead to orthostatic hypotension, excessive daytime drowsiness, 

and sleep disruption22. 

Longitudinal phenotypic associations in PD. Based on the phenotypic association graphs generated at different time 

periods within PPMI, we identified associations that vary over time. 

    (1) An association between the features of the Motor, Cognitive-Visuospatial, and Cognitive-MoCA groups begins 

to occur at 235 years after baseline (Figure 3). At the feature level, there is an edge connecting MDS-P and Symbol 

Digit Modalities Test (SDMT)/MoCA at 235 years after baseline (Supplementary Figures S2-S5). This suggests that 

a common neurodegenerative process may cause cognitive dysfunction (especially processing speed and attentional 

dysfunction measured by SDMT) and the PIGD phenotype. Such neurodegenerative processes may include 

degeneration of dopaminergic systems affecting parallel basal ganglia-thalamocortical pathways and non-

dopaminergic degeneration within cholinergic systems23,24. 

    (2) Associations connecting motor symptoms to ADSD symptoms emerge at 3 years after baseline (Figure 3). At 

the feature level, there are connections between SCOPA-AUT and MDS-P (Supplementary Figures S3-S5). According 

to previous clinical studies, non-motor features comprising sleep and autonomic dysfunction are particularly related 

to the PIGD phenotype. The edge between SCOPA-AUT and MDS-P is likely due to degeneration within the 
noradrenergic and cholinergic systems. As noted above, the PIGD phenotype is associated with cholinergic 

degeneration and autonomic dysfunction in PD is also linked to cholinergic pathways that may include structures such 

as the DMV and PPN25. Connections between SCOPA-AUT and MDS-P suggest the existence of multiple non-

dopaminergic pathologies that are related to the noradrenergic and cholinergic systems. Although sleep problems (e.g., 

REM sleep behavior disorder and excessive daytime sleepiness) are also found to be correlated with the PIGD 

phenotype, RBDSQ, and ESS are individually independent of MDS-P and conditioned on other variables such as 

SCOPA-AUT. This suggests that there is likely no shared pathway between sleep problems and the PIGD phenotype. 

The correlation between them arises from parallel pathways, some of which affect autonomic functions and sleep and 

some of which affect autonomic functions and PIGD. 

    (3) Connections between the ADSD and Cognitive-Visuospatial groups were observed in the later periods analyzed 

(235 years after baseline), especially between SCOPA-AUT and SDMT. This finding is consistent with existing 
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clinical studies that reported correlations between autonomic dysfunction and cognitive impairment in advanced PD 

but not in early-stage PD patients26,27.  

    (4) There are relationships between hallucinations and ADSD, and Cognitive-relative groups in relatively late-stage 

patients. These associations include feature-level relations between hallucinations and SCOPA-AUT and between 

hallucinations and MoCA/SDMT/Benton Judgment of Line Orientation (BJLO). As for the connection between 
hallucinations and cognitive impairment, multiple structural and functional neuroimaging studies have reported 

overlap in brain region abnormalities in PD patients with hallucinations and those with cognitive impairment28. The 

correlation between autonomic dysfunction and hallucinations was also reported in earlier studies29,30. Although some 

previous studies explain severe autonomic dysfunction as reflecting more advanced PD29, our results suggest that there 

may exist a more direct pathology affecting both autonomic dysfunction and hallucination.  This may include 

pathology of the DMV and other brainstem nuclei, in addition to dysfunction of peripheral autonomic nerves30. 

Moreover, the connection between hallucinations and autonomic dysfunction is likely to be at least a partial 

consequence of cholinergic degeneration. 

    (5) A connection between the hallucinations and apathy groups is observed at the last time point in this study (5 

years after baseline). Though this correlation was reported in previous studies31, a lack of clear explanatory factors 

warrants further investigation. 

    (6) Although genetic risk score is a good predictor of PD, there is no significant correlation between genetic risk 
score and motor or non-motor features. Though genetic risk score is linked to cognitive features in the early stage of 

PD, this correlation disappears in more advanced periods (335 years after baseline). This might suggest that genetic 

risk score is associated with cognitive function32. However, other non-genetic factors affecting cognition arise as the 

disease progresses, obscuring the genetic effect such that it is not significant enough to be detected. 

    (7) An inconsistent association exists between the Mood group at baseline and the Cognitive-relative group at 1 and 

4 years after baseline. In the early stage, there exist feature-level connections between STAI and BJLO/Letter Number 

Sequencing (LNS), while in the later stage, the connection between GDS and MoCA emerges. The correlation between 

depression/anxiety and cognitive impairment has been frequently reported33. One possible mechanism underlying this 

relationship is striatal dopamine degeneration34. Another study reported an association between cognitive impairment 

and both depression and cholinergic deficits, suggesting that cholinergic deficits could underlie depression. Consistent 

with our findings are reported associations between cortical cholinergic denervation and depression in PD patients, 
independent of their cognitive functioning35. In particular, the connection between GDS and MoCA appears 4 years 

after baseline, coincident in time with the triangle connections among SCOPA-AUT, MDS-P, and MoCA/SDMT. 

Due to its early-stage emergence, the relation between anxiety and cognitive impairment suggests that these symptoms 

may arise from different pathways. However, this hypothesis merits further investigation. 

Cross-cohort comparison between PPMI, PDBP, and BioFIND cohorts. As shown in Figure 4 and Supplementary 

Figures S4-S5, the phenotypic association graph in BioFIND is similar to those graphs of PPMI at the later time points. 

For PDBP and BioFIND, there are edges between age/gender/years of education and cognitive function (MoCA), 

between MDS-depression and MDS-anxiety, between MDS-depression and MDS-apathy, between MDS- depression 

and MDS-fatigue, between MDS-depression and MDS-P, and between MDS-apathy and MDS-hallucinations. All of 

these edges are also presented as stable edges in PPMI. One inconsistent finding is that MDS-depression and RBDSQ 

are independent conditioned on MDS-apathy in BioFIND, while GDS and RBDSQ should be dependent conditioned 

on MDS-apathy with SCOPA-AUT excluded. If GDS is replaced with MDS-depression in PPMI, MDS-depression 
and RBDSQ are also found to be independent conditioned on MDS-apathy. This indicates that MDS-depression as 

measured with a single question may not be reliable relative to GDS. In addition, there are connections between MDS-

P and MoCA in PDBP, consistent with our findings within PPMI. Our results are therefore consistent, as BioFIND 

includes PD patients with more advanced disease. 

Phenotypic associations between CSF biomarkers, MRI features, and clinical features. As shown in Figure 7, we 

identified new associations after incorporating CSF-biomarker and brain imaging features for analysis in the PPMI 

dataset. Besides strong connections among different CSF biomarkers, there are relations connecting CSF biomarkers 

with RBDSQ and STAI. The relation between anxiety and CSF biomarkers has also been reported in previous work 

on PPMI and an Alzheimer's disease cohort36,37. This suggests that there is potentially a direct effect of ³-synuclein 

pathology on particular areas of the brain or that those neurochemical deficits (such as neurotransmitter deficits) are 

involved in anxiety36. The connection between CSF-A³1-42 and RBDSQ may indicate a potential ³-Amyloid pathway 
causing RBD, which has not been well-studied and merits discussion. Moreover, the path connecting the APOE gene, 

CSF-A³1-42, and RBDSQ suggests that APOE can be the genetic factor causing the RBD problem. 
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We also observed a connection between DaTscan-p (DaTscan Putamen) and H&Y stage. This is consistent with a role 

for DaTscan not only in diagnosis but also as a marker of severity of PD. DaTscan and olfaction are both predictors 

of PD, and the connection in our study between UPSIT and DaTscan-p suggests that dopamine transporter deficit and 

olfactory dysfunction are not independent factors of PD and they may be related by a complex pathway, or they may 

both act as surrogates for pathophysiological effects on dopaminergic cells38. 

From Figure 7, we also observed MRI features from brain regions of the left middle temporal and fusiform as 

important mediators between age/genetic risk scores and clinical features. These regions have been found to be 

associated with PD or PD-related clinical features39,40. Our findings show that they directly affect SCOPA-AUT, MDS-

P, and BJLO. Considering the connections between these features when we analyze the stable/longitudinal edges, the 

regions of the left middle temporal and fusiform region could be involved in the pathologies of these features. 

Conclusion 

This paper describes PD phenotypic associations using data from the PPMI, PDBP, and BioFIND cohorts. The 

proposed methodology presents an algorithm for data-driven feature association graph construction. Applying our 

approach to patient data at baseline and 1-, 2-, 3-, 4-, and 5-year follow-up of the PPMI cohort, we identify patterns 

of phenotypic associations indicating the clinical progression of PD. Through cross-cohort comparison, similar graph 

structures were observed for PDBP, BioFIND, and late-period (4- and 5-year follow-up) data from PPMI. We suggest 

that the associations detected provide insight into the spread of neuropathology and networks of affected structures, 

and that the presented methodology can support hypothesis generation for clinical data mining. 
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