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A B S T R A C T   

Shared mobility is an essential component of the larger sharing economy. Ride-hailing, bike-sharing, e-scooters, 
and other types of shared mobility continue to grow worldwide. Among these services is microtransit, a new 
transport mode that extends transit coverage within a region. Mobile devices enable microtransit services, 
aggregating riders and using real-time routing algorithms to group customers traveling in similar directions. 
Meanwhile, the newly emerged coronavirus, COVID-19, has radically reshaped the ridership behavior of all 
transit services, including microtransit. While existing research evaluates the performance of microtransit pilot 
programs before the pandemic, there is no information concerning the spatio-temporal pattern of microtransit 
activities under the impact of COVID-19. The purpose of this paper is to apply eigendecomposition and k-clique 
percolation methods to uncover the spatio-temporal patterns of microtransit trips. Further, we used these ap
proaches to identify underlying communities using data from a pilot program in Salt Lake City, Utah. The 
resulting research offers insight into how COVID-19 altered travel behavior. Specifically, eigendecomposition 
delineated the homogeneity and heterogeneity of travel patterns across temporal dimensions. We identified first 
mile/last mile trips as a major source of variance in both pre- and post-COVID periods and that transit-dependent 
users prove to be inelastic despite the threat of COVID-19. The k-clique percolation method detected possible 
community formations and tracked how these communities evolved during the pandemic. In addition, we sys
tematically analyzed overlapping communities and the network structure around shared nodes by using a 
clustering coefficient. The workflow developed in this research broadly is generalizable and valuable for un
derstanding the unique spatio-temporal patterns of microtransit. The framework can also help transit agencies 
with performance evaluation, regional transport strategies, and optimal vehicle dispatching.   

1. Introduction 

Sustainable transport systems are crucial for interregional and 
intraregional mobility, commerce, and the socioeconomic stability of 
the communities they serve. Public transit is an essential component of 
modern multimodal transportation systems but suffers from various 
pressures (Wei et al., 2018; Zhou et al., 2020). For example, increasing 
operating costs and decreasing ridership continue to stress public transit 
systems throughout the United States (FTA, 2019). While many public 
systems continue to struggle, microtransit is emerging as an agile 
alternative for personal mobility. Microtransit is technology-enabled 
shared transportation that operates in-between fixed-route transit and 
ride-hailing. It leverages rider aggregation and routing algorithms to 

group customers traveling within the service zone in similar directions 
in real-time. Moreover, microtransit often expects customers to walk a 
short distance to common pick-up/drop-off locations. Thus, the service 
is transit-like but more nimble when compared to traditional public 
transit. As a technology-enabled on-demand service, microtransit shares 
many similarities with other services such as ride-hailing and para
transit. The platform collects requests from personal devices like 
smartphones then dynamically dispatches available vehicles to fulfill 
those requests. However, one substantial difference exists. The design of 
microtransit allows for integration into the current public transit system. 
Users often take advantage of microtransit to complete first mile/ last 
mile connections to the larger transit system. 

For similar on-demand services, studies of dispatching algorithms 
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are numerous. For example, there have been many tests of different 
optimization algorithms and heuristics for ride-sharing (Agatz et al., 
2011; Agatz et al., 2012; Aissat and Oulamara, 2014). Agatz et al. (2011) 
proposed an optimization framework based on a rolling horizon strategy 
to solve the dynamic ride-share problem. The authors tested this using a 
simulation environment based on the field data from the Atlanta 
Regional Commission (Agatz et al., 2011). Agatz et al. (2012) system
atically reviewed the issues in ride-sharing and assessed relevant opti
mization models. Aissat and Oulamara (2014) modeled dynamic ride- 
sharing with intermediate locations and presented one enumerate al
gorithm and two heuristics to solve it. They later tested the approaches 
on real networks consisting of 3.5 million nodes and 8.7 million edges. 
Chen et al. (2019) designed an agent-based model to simulate dynamic 
ride-sharing in a multimodal network then tested it on the classic Sioux 
Falls network. 

For microtransit, the global launch of pilot programs during the past 
five years (Haglund et al., 2019; Westervelt et al., 2018) seeks to provide 
(and improve) first/last mile connections to fixed transit stops and sta
tions, replace underperforming bus routes, provide coverage in areas 
without fixed-route service, and extend the hours of operation for 
existing bus services. Many studies analyze the overall performance of 
microtransit pilot programs (Haglund et al., 2019; Volinski (2019) or 
microtransit vehicles (Ongel et al., 2019). For example, Haglund et al. 
(2019) systematically evaluated the performance of the Kutsuplus pilot 
in Helsinki, Finland. The evaluation framework used aggregated mea
sures and spatio-temporal metrics, including the average annual number 
of passengers, annual price per journey, user age class, distribution of 
hourly departure/arrival trips for analysis. Volinski (2019) provided a 
case-based review and synthesis of more than 20 transit agencies that 
had implemented or intended to launch a microtransit service. This re
view included evaluations of underlying motivations, planning, design, 
marketing strategies, technology, and performance metrics. Ongel et al. 
(2019) evaluated the impacts of novel vehicle technologies on vehicle 
acquisition costs. This evaluation included lifecycle and end-of-life cost 
estimates for electric microtransit vehicles and conventional buses 
operating in Singapore. 

Meanwhile, a new challenge has emerged for public transit. COVID- 
19, a novel coronavirus disease, became a global pandemic in, 2020. 
Nearly 90% of the American adults reported that COVID-19 impacted 
their personal lives, and 44% of them claimed their lives had changed 
dramatically (Pew Research Center, 2020). Due to its collective nature, 
public transit has been hit even harder (Liu et al., 2020; Wilbur et al., 
2020; Yi et al., 2021). In New York City, the average subway and 
commuter rail ridership declined by 80%, and bus ridership dropped by 
50% (Gao et al., 2020a, 2020b) in the first week of July 2020 compared 
to 2019. In Washington DC, subway and bus ridership declined by 90% 
and 75%, respectively, by the end of March, 2020 (WMATA, 2020) 
compared to their typical values. In Utah, three major public transit 
modes - bus, FrontRunner, and TRAX - have witnessed a massive decline 
in the total ridership upon the pandemic outbreak (Dillman and Pos
vistak, 2020). The week after the state of emergency was declared, 
average ridership has declined by 56% compared to the previous week 
(Dillman and Posvistak, 2020). Similarly, there was a substantial 
downturn in microtransit use throughout Utah after the COVID-19 
outbreak. 

Previous studies help deepen our understanding of microtransit and 
its dynamics. However, there is very little work concerning the spatio- 
temporal patterns of microtransit trips and the causal factors contrib
uting to these patterns, especially under the impacts of COVID-19. The 
purpose of this research is to leverage trip data from a microtransit pilot 
in the State of Utah for developing a methodological framework that 
unravels the spatio-temporal patterns of microtransit activities in the 
region. The framework utilizes eigendecomposition to uncover the 
rhythms and structures of microtransit trips. Using 7-months of micro
transit data, we constructed the spatiotemporal patterns of microtransit 
activities in pre- and post-COVID periods, respectively. Then, we 

systematically analyze how these patterns deviate from the average 
pattern in both periods and what possibly caused such variation. We use 
eigendecomposition to unravel the hidden temporal structures and k- 
clique percolation theory to explore the potential spatial communities 
formed in the service region. Also, for both periods, we intend to 
determine which locations are connected, how strong the connections 
are, what roles shared nodes (by different communities) play in different 
network structures, and how patterns evolve as COVID-19 progresses. 

This study is important for three reasons. First, because microtransit 
helps fill gaps between fixed-route systems and ride-hailing, it is 
essential to understand its underlying spatio-temporal patterns for a 
community. In short, does the service provide connectivity to the places 
that people want to go and when they want to get there? Second, the 
costs of delivering microtransit services can be substantial, and there are 
no guarantees that the service will attract riders. For example, the now- 
bankrupt Bridj service in Kansas City served only 1480 riders during its 
year of operation, with the Kansas City Area Transportation Authority 
(KCATA) spending $1.5 million to subsidize the service. Considering 
that the first ten rides were free for users of Bridj, this translated into a 
subsidy of $1000 per ride (Schmitt, 2018). Thus, there are real financial 
implications for communities offering microtransit services. Developing 
a framework that can provide the geospatial intelligence required for 
improving system performance is crucial for service sustainability. 
Third, while the influence of COVID-19 on microtransit is easily 
observable in Utah, there is no analysis of the overall effects. This 
research focuses on the underlying travel patterns associated with 
microtransit and their changes during the pandemic. Our findings could 
help transit agencies understand the decline in microtransit ridership 
and the relationships between public health crisis and microtransit 
demand. 

We organize the remainder of this paper as follows. Section 2 pre
sents a literature review where we discuss elements of the impacts of 
COVID-19, spatio-temporal analysis, the application of eigendecompo
sition, and k-clique percolation methods. Section 3 describes the data 
used in this study and its pre-processing. Section 4 presents our meth
odological framework for uncovering the spatio-temporal patterns of 
microtransit activities. Finally, we offer the results in Section 5 and 
conclude with a summary of our findings and key contributions of the 
study. 

2. Literature review 

2.1. COVID-19 related analysis 

COVID-19 has been transforming current society in various aspects. 
Recent studies have found that COVID-19 exerts a substantial impact on 
the global economy (McKibbin and Fernando, 2020), education (Pra
gholapati, 2020), mental health (Xiong et al., 2020), public transit (Liu 
et al., 2020; Wilbur et al., 2020), and many other domains. Researchers 
have also been studying the reasons why these impacts have taken place. 
Take public transit as an example. Before the pandemic, a significant 
motivation behind choosing public transit was self-interest (e.g., low 
cost, reliability, healthy lifestyle) and environmental consciousness 
(Hoang-Tung et al., 2015). However, after the pandemic, concerns for 
public health may dominate, resulting in usage reduction. Studies have 
also found that the declines in ridership are uneven across social groups 
(Liu et al., 2020; Wilbur et al., 2020). For example, Wilbur et al. (2020) 
found that in Nashville, Tennessee, public transit ridership declined up 
to 19% more in high-income neighborhoods than in low-income 
neighborhoods. Similarly, Tan et al. (2020) discovered that, under the 
influence of COVID-19, in cities with overall low public transit ridership, 
commuters consist of a higher percentage of the lower-income popula
tion due to the transit-dependent nature. 

In sum, much of the most recent research focuses on COVID-19's 
influence on the public transit systems, in general. However, very few 
studies focus on emerging modes, such as microtransit. Furthermore, 
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according to Utah Transit Authority (UTA), in Utah, 95% of microtransit 
trips are paid using UTA tickets (UTA on Demand, 2021) which can be 
considered a strong indication of transit dependency among micro
transit users. 

2.2. Related spatio-temporal analysis 

Microtransit offers demand-responsive service to customers to 
initiate any trip start and end within a designated service area (FTA, 
2021). This structure is similar to many mobility-based services, 
including bike-sharing and car-sharing programs. Given the fact that 
mobile devices enable all these programs and one can retrieve a large 
amount of trip data from these services, there have been a myriad of 
studies to analyze spatio-temporal trip patterns (Alonso-González et al., 
2018; Dong et al., 2018; Xu et al., 2019). For example, Xu et al. (2019) 
studied the spatio-temporal patterns of bike-sharing in Singapore. They 
associated the use patterns with built environment indicators such as 
floor area ratio (FAR) of residential buildings, FAR of commercial 
buildings, and land use mixture. In other work, Dong et al. (2018) 
studied both the service patterns and individual behavior patterns of 
internet-based ride-sharing services based on the record provided by 
DiDi, Inc. They applied a non-negative matrix factorization method and 
cluster analysis to study the spatial, temporal, and spatio-temporal ele
ments of ride-sharing trips, as well as divisions of commuting styles and 
detour patterns. When it comes to microtransit analysis, Haglund et al. 
(2019) demonstrated the average journeys in specific periods during the 
day and the distribution of hourly departure/arrival trips based on the 
microtransit project Kutsuplus. While useful, this analysis was limited 
because it did not address the processes concerning underlying pattern 
formation. Similarly, Alonso-González et al. (2018) studied the distri
bution of generalized journey time across service areas in both aggre
gated and disaggregated levels using empirical data from a pilot 
program named “Breng flex” in the Netherlands. Again, while previous 
studies mainly focused on assessing how demand-responsive transport 
can benefit the current transportation network, we are not aware of any 
studies that use actual network data and analytics to examine the spatio- 
temporal patterns of microtransit usage. This research fills the gap by 
quantifying the evolving patterns of microtransit activities and eluci
dating the underlying reasons for such patterns. 

2.3. Eigendecomposition 

Principle Component Analysis (PCA) or Eigendecomposition is a 
descriptive tool that extracts the major sources of variance to identify 
directions of variation in the dataset (Abdi and Williams, 2010), 
reducing dimensionality and facilitating prediction. For example, 
Horner and Grubesic (2001) applied PCA to generate an index of derived 
demand for rail usage based on the local demographics in Columbus, 
Ohio. Nagendra and Khare (2003) applied PCA to analyze an extensive 
multivariate data set containing traffic, emission, and meteorological 
data collected from an intersection in Delhi. Specifically, they utilized 
the loading matrix to assess the significance and correlation of meteo
rological and traffic characteristics variables. Melman et al. (2021) 
applied PCA to determine the driving metrics most strongly associated 
with fuel use. This information helped predict fuel consumption based 
on driving behavior measurement. The authors used PCA on a matrix of 
110 variables × 4617 laps to extract the significant sources of variance 
in scores and loadings. Wang et al. (2021) aimed to discover if personal 
habits or lack of accessibility dictated why some Salt Lake City residents 
rarely walk or cycle. During the process, they applied PCA to reduce the 
dimensionality of 40 attitudinal variables for better representation. Xu 
et al. (2019) incorporated eigendecomposition and seven built envi
ronment indicators to explore the spatio-temporal patterns of bike- 
sharing in Singapore. 

In sum, these existing studies demonstrated the usability of PCA or 
eigendecomposition to extract sources of variance in different scenarios. 

This research will explore its applicability for analyzing the spatio- 
temporal patterns of microtransit activities. 

2.4. K-clique percolation 

Broadbent and Hammersley (1957) were the first to introduce 
percolation theory. It describes the behavior of a network when existing 
linkages get eliminated. One can use percolation theory as a framework 
for community detection and measuring broader percolation phenom
ena or transition (Grimmett, 1999; Jiang et al., 2018; Li et al., 2015a, 
2015b) where the core structure of the original network is preserved. 
Various fields use percolation concepts and measures, including chem
istry, physics, and material sciences (Achlioptas et al., 2009; Goffri et al., 
2006; Majdandzic et al., 2014). That said, traditional percolation theory 
has its limitations. For example, where community detection methods 
are concerned, traditional percolation theory can only assign one node 
to a specific community. To explore overlapping communities on a large 
scale, Palla et al. (2005) proposed an efficient method to uncover the 
modular structure of complex networks (Palla et al., 2005), referred to 
as clique percolation or k-clique percolation theory. 

One can apply k-clique percolation theory to uncover the structure of 
communities based on a similar percolation transition when k-cliques 
organize into a gigantic community as the threshold exceeds a critical 
point (Derényi et al., 2005; Li et al., 2015a, 2015b; Palla et al., 2006). 
Thus, K-clique can explore large-scale and highly overlapped networks 
(such as social networks) without breaking the network into isolated 
clusters. It also naturally lends itself to the microtransit analysis in our 
study as popular origins or destinations (such as transit stations, su
permarkets, residential buildings) are likely to be the “pivot node” 
shared by multiple communities. 

3. Data 

3.1. Data source 

UTA partnered with Via transportation to launch a microtransit pilot 
program beginning November 2019 in South Salt Lake. Salt Lake County 
funded the project. This on-demand, shared-ride pilot is designed to 
expand access to the transit service throughout the service zone, 
improve mobility for all users, and provide a quality customer experi
ence. UTA conducted this pilot to see whether microtransit provides a 
valuable and cost-effective service and whether a future deployment of 
microtransit service is possible. The project experienced early success, 
meeting most goals and objectives before the COVID-19 pandemic, 
including ridership, cost, customer rating, and vehicle hours traveled. 

The microtransit program serves about 65 mile2 in the cities of 
Bluffdale, Draper, Herriman, Riverton, and South Jordan in Utah. Fig. 1 
shows the service area, including seven TRAX and FrontRunner Stations 
which are the main components of UTA's rail system. The program 
provides a corner-to-corner service in the region from 6:00 to 22:00 on 
weekdays only. It allows riders to be picked up and dropped off within a 
walkable distance (on average 0.1 miles) from their chosen origins and 
destinations. 

The trip data used in this research contains features related to each 
trip request, including rider ID, pick-up/drop-off coordinates, pick-up/ 
drop-off time, trip duration, trip distance, number of passengers, ride 
cost, payment type, request source, customer ratings, and wheelchair 
accessibility. We present the detailed description of the full feature set in 
Table 1. The study period spans January 1st, 2020 to July 31st, 2020, 
encompassing 31,199 trips from 1569 unique users. Among these 
31,199 trips, there are 2472 unique pick-up points and 2317 unique 
drop-off points. Apart from the seven TRAX and FrontRunner Stations in 
Fig. 1, common pick-up/drop-off locations include apartment com
plexes, single-family houses, supermarkets, churches, educational in
stitutions, private companies, and personal businesses (e.g., pet stores 
and liquor stores), among others. 
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3.2. COVID-19 in Utah 

The first confirmed COVID-19 case in Utah was reported on March 
6th, 2020. The patient was aboard the Grand Princess cruise ship and 
was later diagnosed (Utah Department of Health, 2020). This event, 
however, does not fully represent the community spread of COVID-19 in 
Utah. Fig. 2 presents the daily average confirmed COVID-19 cases in 
each months and daily average microtransit trips in different periods 

between January 1st and July 31st, 2020. Fig. 2a demonstrates how 
COVID-19 progressed within the service area and the entire State of 
Utah, respectively. The service area as mentioned above consists of 
Bluffdale city, Draper city, Herriman city, Riverton city, and South 
Jordan city. Fig. 2b shows the daily average microtransit trip counts 
within the study periods (January, February, March 1st – March 13th, 
March 14th – March 31st, April through July). We split March into two 
periods to highlight the comparison before and after the state of emer
gency declaration. (See Figs. 3 and 4.) 

As seen in Fig. 2a, at the state level, the daily average confirmed 
COVID-19 cases have increased dramatically since March 2020, with the 
largest increase during June 2020. However, within the service area, 
during March through May, the confirmed cases remained at a 
comparatively low level. Nevertheless, the cases increased sharply in 
June and July, suggesting a wide community spread of COVID-19. 

If we compared the trend of microtransit trips in Fig. 2b, there is 
some consistency. Before March 13th (state of emergency declaration 
date), daily average microtransit trips increased steadily as the user base 
of the pilot program was growing. However, between March 14th and 
March 31st, the daily average trip count dropped dramatically from 
325.4 trips per day to 94.4 trips per day. The trip count reached its 
lowest level in April and May, at 73.4 trips per day and 80.3 trips per 
day, respectively. The trend in March through May suggests the signif
icant impacts of COVID-19 on microtransit activities. Users were less 
inclined to use microtransit or stopped using it completely. Trip counts 
started to increase slightly in June and July, marking the recovery of 
microtransit activity or overall public transit usage. In the meantime, as 
we observed in Fig. 2a, a notable increase in COVID-19 cases happens 
during the same period in the service area. 

3.3. Preliminary processing 

Given the nature of corner-to-corner service, the actual origin of a 
trip is most likely within a walkable distance from the pick-up point 
(available in the trip data). The same applies to the drop-off locations. 
That said, the trip data shows a wide dispersion of pick-up and drop-off 
points, where multiple points might lead to identical origins and 

Fig. 1. Service area of UTA on Demand with Via (Source: UTA on Demand, 2021).  

Table 1 
Feature descriptions of raw data.  

Features Levels of 
Measurement 

Units Range 

Rider ID Nominal   
Pick-up lat Interval Decimal 

degree 
[40.464, 40.568] 

Pick-up long Interval Decimal 
degree 

[−112.071, −111.83] 

Drop-off lat Interval Decimal 
degree 

[40.463,40.568] 

Drop-off long Interval Decimal 
degree 

[−112.071, −111.83] 

Pick-up time Interval  [01/01/2020 08:24:00, 
07/31/2020 21:00:00] 

Drop-off time Interval  [01/01/2020 08:48:00, 
07/31/2020 21:06:00] 

Trip duration Ratio Minute [0, 437.817] 
Trip distance Ratio Mile [0.077, 11.104] 
Num. of 

passengers 
Ratio  [1, 5] 

Ride cost Ratio Cent [0, 1250] 
Payment type Nominal  UTA ticket, Apple Pay, Credit 

card, Free, Google pay, Ride 
credit, Waived 

Request source Nominal  App, Call center 
Customer 

rating 
Ordinal  1, 2, 3, 4, 5 

Wheelchair 
Accessibility 

Nominal  0: wheelchair-accessible 
vehicle 
1: non-wheelchair-accessible 
vehicle  
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destinations. Thus, this research applies hierarchical agglomerative 
clustering (HAC) to separately aggregate close-by pick-up and drop-off 
points to facilitate subsequent analysis (Murtagh and Contreras, 
2012). Agglomerative hierarchical clustering is a standard clustering 
method based on the distance of clusters. It is a bottom-up approach that 
assigns each unit to its cluster at the beginning. Then clusters are iter
atively merged with their closest neighbors. 

When applying HAC, one must determine the pruning parameter – 
height - representing the number of iterations (merging clusters). Larger 
values for height (iterations) yield fewer clusters. For this analysis, we 
select a value of 300 so that the average distance within clusters is close 
to 0.1 miles. This value is the average walking distance assumed by Uber 
Pool service (Pachal, 2018). Figs. 3 and 4 highlight the distributions of 
pick-up and drop-off locations, respectively. 

After merging pick-up and drop-off locations, we further divide the 
dataset into two periods, with a cut-off date of March 13th, 2020, 

corresponding to the declaration of the COVID-19 outbreak as a national 
emergency in the United States. This date and data partition helps 
distinguish the potentially heterogeneous spatio-temporal patterns as a 
result of the pandemic. Upon screening of missing values, the pre-COVID 
period consists of 17,980 trips, and the post-COVID period consists of 
13,188 trips. 

4. Methodology 

4.1. Eigendecomposition 

To uncover the spatiotemporal trip pattern for the microtransit 
program, we developed a methodological framework to delineate the 
variation and the homogeneity/heterogeneity in trips across spatial and 
temporal dimensions. Specifically, we employ eigendecomposition to 
achieve this. As detailed previously, eigendecomposition is well suited 

Fig. 2. Trends of COVID-19 Cases and Microtransit Trips.  

Fig. 3. Distribution of trip pick-up locations (a) before and (b) after merging.  
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for this as it is good at uncovering hidden structures of spatiotemporal 
patterns. Compared to other variation extraction methods, such as factor 
analysis and analysis of variance, eigendecomposition is advantageous 
because it does not assume any distribution, error term, or underlying 
statistical model. Eigendecomposition generates a series of directional 
vectors (i.e., principal components or PCs) based only on the data, each 
of which best explains variation while remaining orthogonal to other 
components. One orders the PCs by the amount of variance that they 
explain. For example, the first PC explains the most variance; the second 
PC explains the second most variance, and so on. Eigendecomposition is 
often used in statistical modeling to reduce dimensionality by projecting 
the data into a few PCs. One can also use eigendecomposition to explore 
the inherent variation within datasets. Our study uses eigendecompo
sition to unravel the deviation from (or resemblance of) the average 
pattern of microtransit usage within the service area in both pre- and 
post-COVID periods. 

We assume that microtransit arrival and departure patterns differ 
from each other. Therefore, all trips are further categorized into four 
groups: (a) pre-COVID departure; (b) pre-COVID arrival; (c) post-COVID 
departure; and (d) post-COVID arrival. During the study period, over 
800 pick-up and drop-off locations resulted from 31,168 unevenly 
distributed trips within the service area after merging close-by locations. 
For example, among the 892 trip pick-up locations, the most popular 
pick-up location generated 2633 trips, while over 50% of pick-up loca
tions generated less than 12 trips each. To ensure unbiased analysis, we 
use traffic analysis zones (TAZ) to aggregate the pick-up and drop-off 
locations and uncover the trip patterns' geographic dimensions. 
Among the 163 TAZs within the service area, those that produced over 
87 trips (median) and attracted over 85 trips (median) are labeled as 
active TAZs and used in this study. These 77 TAZs accounted for more 
than 91.7% of the total microtransit trips. 16,522 trips occurred pre- 
COVID, and 12,062 trips occurred post-COVID. 

Using pre-COVID departure trips as an example, we illustrate the 
basic structure of our eigendecomposition. We formulate departure trips 
as follows: 

N =

⎛

⎝
n1,6 ⋯ n1,21
⋮ ⋱ ⋮

n77,6 ⋯ n77,21

⎞

⎠# (1) 

In matrix N, ni,j represents the total number of departure trips 
originated from TAZ i (1 ≤ i ≤ 77) and in hour j (6 ≤ j ≤ 21). We ensure 
that the 16 variables (6:00– 22:00) contribute equally to the variance 

maximizing exercise during eigenvalue decomposition by normalizing 
matrix N by dividing each row by its summation N′. Correspondingly, 
ni,j′ represents the hourly percentage of departure trips during the pre- 
COVID period. Note that: 

∑j=21

j=6
ni,

′

j = 1∀i ∈ [1,77]# (2) 

We then average hourly departure trips across all TAZs to obtain the 
average temporal pattern of departure trips within the service area. Let 
dj denote the average departure trip percentage in TAZ j. 

dj =
∑i=77

i=1
ni,

′

j

/

77 j ∈ [6,21] (3) 

D = {d6,d7,d8,…,d21} represents the average temporal pattern of 
microtransit activities across the 77 active TAZs. We measure the de
viation of microtransit trips from this average pattern with matrix M, 
which we construct subtracting dj from column j of matrix N: 

M =

⎛

⎜
⎜
⎜
⎝

n′

1,6 − d6 ⋯ n′

1,21 − d21

⋮ ⋱ ⋮

n′

77,6 − d6 ⋯ n′

77,21 − d21

⎞

⎟
⎟
⎟
⎠

(4) 

We perform eigendecomposition by first calculating the covariance 
matrix, S, where: 

S =
1

n − 1
MTM# (5) 

As a result, we can derive eigenvectors v6,v7,v8, …,v21 with the 
corresponding eigenvalues λ6,λ7,λ8, …,λ21where vis are all column 
vectors. Also, the principal components that explain a large portion of 
the total variance (summation of eigenvalues) can help interpret the 
overall patterns of microtransit activities. Thus, by applying eigende
composition, we can uncover the spatio-temporal patterns of micro
transit activities at different locations and examine how they deviate or 
resemble the average pattern in pre-COVID and post -COVID periods. 

4.2. k-clique percolation 

k-clique percolation is a variant of the traditional percolation theory. 
Percolation theory aims to discover how networks behave when 
removing nodes or links. It is a method to gradually break down large 

Fig. 4. Distribution of trip drop-off locations (a) before and (b) after merging.  
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networks into smaller connected clusters or sub-networks. This method 
works because the removal of key nodes or links in any network creates 
disconnections. Generally, percolation theory starts with a weighted or 
unweighted graph and ends at a graph containing only isolated nodes. 
The nature of percolation theory makes it suitable for identifying 
strongly connected subgraphs in the network, also known as community 
detection (Fortunato, 2010). Most community detection algorithms, 
including percolation, classify one node into one cluster or community 
only. However, k-clique percolation identifies overlapping communities 
by assigning specific nodes to multiple communities. This methodolog
ical attribute is essential for understanding microtransit because many 
first mile/last mile trips will make the transit station a pivot node that 
belongs to multiple communities. This local transport context is the 
primary reason why we use k-clique percolation in this research. 
Moreover, the concept of k-clique is a good analogy to individuals' 
microtransit travel patterns. People frequently travel between a limited 
number of locations within a service region. 

Fig. 5 illustrates a 7-node unweighted and undirected network to 
highlight how k-clique percolation works. There are three key 
definitions: 

Definition 1. k-clique is a fully connected or complete subgraph of k 
nodes. 

Definition 2. Adjacent k-cliques are k-cliques that share exactly k-1 
nodes. 

Definition 3. A k-clique community is the union of all possible adja
cent k-cliques. 

The first step of k-clique percolation is to identify k-cliques. Here we 
choose k = 3 for illustration. There are three 3-clique in the example 
network: a – b – c, b – c – d, and c – f – g. The next step is to identify 
possible adjacent k-cliques which make up communities. Fig. 6 high
lights the results with each node corresponding to its assigned com
munity (by number). For example, Node c belongs to both community 1 
and 2, while node e does not belong to any community. For the weighted 
graph, there exists one additional intermediate step. In traditional 
percolation theory, a probability threshold determines whether two 
nodes are connected or not. Similarly, for the k-clique percolation 
method, we define an intensity threshold to determine whether a k-clique 
can be part of adjacent k-cliques. Specifically, intensity is a measure of 
the strength of connectivity of a clique. We define intensity as the geo
metric mean of the link weights of a certain k-clique: 

Intensity =

(
∑

1≤m≤n≤k
Wm,n

) 2
k(k−1)

(6) 

We denote the intensity threshold by I, and we do not consider cli
ques whose intensity is below the threshold value for adjacent cliques. In 
Fig. 7, we detail a weighted and undirected graph. The number on the 
link represents the link weight. Among the three 3-cliques identified in 
Fig. 5, two of them have an intensity value of 0.187 (a-b-c and c-g-f), and 
one of them has an intensity of 0.1 (c-b-d) according to Eq. (6). When 
one sets I as 0.01, all three cliques survive the threshold. According to 
Definition 2, clique a-b-c and c-b-d are considered adjacent. Thus, there 
are two communities detected in the network. One contains node a, b, c, 
and d, and the other contains nodes c, f, and g, where node c belongs to 
both communities and node e is an isolated node (Definition 3). When I 
¼ 0.18, cliques a – b – c and c –g – f survive, but we eliminate clique c-b- 
d. Likewise, cliques a-b-c and c-g-f now make two separate communities 
while nodes e and d are isolated nodes. When I ¼ 0.2, no clique survives. 
This type of network structure measurement is how k-clique percolation 
works for given values of I and k. However, an outstanding challenge 
remains – namely, determining optimal values for k and I. 

The criterion of choosing k and I is to find the most highly structured 
communities possible. Although different k and I values can generate 
various optimal subgraphs, there is still a need to set a global rule such 
that the overall structure and pattern can be analyzed. Derényi et al. 
(2005) highlight one way to do this. Specifically, as one continues to 
remove links in a graph, a gigantic component containing a large portion 
of the existing nodes will eventually emerge. Thus, a rule of thumb for 
determining I for each k (typically 3 to 6) is to choose an I that is smaller 
than the value that allows the emergence of the gigantic component 
(Derényi et al., 2005; Pallas et al., 2005). This value of I is considered the 
critical point for this network at a specific k. One can argue that the size 
of communities at the critical point follows a power-law. One can esti
mate this critical point of I by calculating the ratio between the size 
(number of nodes) of the largest community and the second-largest 
community. In Palla et al. (2005), the ratio is set to 2 so that there is 
neither a gigantic community that slanders the details of the network 
nor are there too many small communities making the network poorly 
structured. 

Moreover, to further study the connectivity of local cohesiveness, we 
apply the concept of a clustering coefficient (Barrat et al., 2004). As a 
measurement of inner-connectivity in the network, one can apply the 
clustering coefficient in two ways: 1) the clustering coefficient of a single 
node and 2) the average clustering coefficient of all nodes in the 

Fig. 5. An unweighted and undirected graph with 7 nodes.  
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network. For weighted networks, one can use the clustering coefficient 
to evaluate the importance of clustered structures based on the aggre
gated link weights of the local triplets. In this instance, a triplet refers to 
three nodes connected by either two (e.g., open triplet, examples: a-b 
and b-c in Fig. 7) or three (e.g., closed triplet, example: a-b, b-c, and a-c 
in Fig. 6) undirected links. Closed triplets are known as a 3-clique. In a 
network where one denotes a complete node set as N, the formula for 
calculating clustering coefficient for node i is: 

Ci =
1

si(ni − 1)

∑

j,k

(
wij + wik

)

2
aijajkaik j, k ∈ N (7) 

Where, aij,ajk and aik are binary indicators implying connection (aij, 
ajk,aik ¼ 1) or disconnection (aij,ajk,aik ¼ 0). wij is the weight between 
node i and j. ni is the degree of node i defined as ni =

∑

j
aij. si corresponds 

to node strength, which measures the network property of node i in 
terms of the weights obtained by extending the definition of node degree 

ni. We define this as: 

si =
∑

j
aijwij (8) 

Ci accounts for all triplets formed around i in terms of average link 
weight. We normalize this by 1

si(ni−1)
so that 0 ≤ Ci ≤ 1. Larger values for 

Ci, indicate more cohesiveness for nodes around i. This structure means 
that the nodes around i are more tightly connected. We define the 
average clustering coefficient Cavg is defined as: 

Cavg =

∑

i
Ci

|N|
i ∈ N (9) 

One can use Cavg to estimate the level of network overlap. Higher 
values of Cavg suggest more overlap. 

In the context of microtransit activities, our goal is to identify com
munities in pre-COVID and post-COVID periods to examine the pattern 

Fig. 6. Result of 3-clique percolation.  

Fig. 7. Weighted graph with 7 nodes.  
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within each period and how the pattern evolves. Again, we treat each 
pick-up or drop-off location as nodes in the network. Since the customers 
using microtransit programs tend to travel between a limited number of 
locales multiple times, the outflow and inflow of most nodes are almost 
equal to each other. Hence, we construct the network as an undirected 
and weighted graph. We measure link weights as the ratio between the 
trip count on each link and the maximal trip count across all links. We 
apply k-clique percolation to the built network to uncover the under
lying communities and how communities evolve. The preliminary 
analysis for both pre-COVID and post-COVID periods suggests a value of 
k = 3 will provide a good baseline for measurement. When k ≥ 4, the 
number of k-cliques is very limited, and more than 75% of the nodes 
became isolated even when I = 0. Also, less than 4% of the nodes will 
survive when reaching the critical point. In other words, k ≥ 4 elimi
nates a vast portion of the network before structure detection. After we 
fix k to 3, we explore a range of values for I to reveal different levels of 
information. When I = 0, one can treat the system as an unweighted 
network since any 3-cliques can survive the threshold. In this case, we 
fully preserve the topological structure. However, as we increase the 
values of I, cliques with less weight will continue to dissipate. Only the 
cliques with larger weights (more trips) will remain in the network. 

5. Results and analysis 

5.1. Eigendecomposition 

There are 16,522 pre-COVID trips and 12,062 post-COVID trips in 
the 77 active TAZs used for analysis. These counts translate to an 
average of 229.5 and 86.2 trips per day, respectively. Such daily usage of 
microtransit demonstrates a sharp decrease in activities since the 
outbreak of COVID-19. Fig. 8 presents the overall temporal patterns 
(sum of each hour) for departure and arrival trips in pre- and post- 
COVID regimes, respectively. Both regimes show a two-peak distribu
tion, one in the morning (7:00– 9:00) and one in the evening (16:00– 
18:00). Moreover, the departure vs. arrival trip patterns are very similar 
(with a small time lag) because the service region is limited, and the 
average trip duration is around 10 min. Apart from the overall decline in 

microtransit activities, it is interesting to note the pronounced drop in 
the morning peak (7:00–8:00) after the COVID-19 outbreak. 

Table 2 shows the total variance and the respective portions of 
variance explained by the first four PCs. Here, we apply three empirical 
rules to decide upon a suitable number of PCs (Jolliffe, 2002; Xu et al., 
2019): 

1. The chosen PCs cumulatively explain more than 70% of the total 
variation. 

2. The eigenvalues of the chosen PCs are larger than 0.7 times the 
average eigenvalue. 

3. The chosen PCs are to the left of the elbow points of scree plot, 
which shows the eigenvalues for each PC. 

Given these guidelines, we use the first four PCs for further analysis. 
Table 2 shows that the first four PCs explain more than 60% of the 

total variation for all four trip categories. While the results are largely 
homogeneous, each of the four categories displays its own temporal 
structure. For example, the variance of pre-COVID trips is smaller than 
post-COVID trips, generally speaking. This result suggests that micro
transit usage is more consistent in the pre-COVID period, but it is more 
diverse (from place to place) in the post-COVID period. 

Also, in the pre-COVID period, the variance of departure trips is 
significantly larger than that of arrival trips (by 21%). However, in the 
post-COVID period, their variance is quite similar. This result suggests a 
higher diversity in temporal patterns for departure trips when compared 
to arrival trips, pre-COVID. Nevertheless, this temporal signature dis
appeared in the post-COVID period. One possible explanation for this is 
that drop-off locations are often more connected (for trip purposes) than 
pick-up locations. This finding suggests that TAZs with similar social 

Fig. 8. Distribution of edges by the number of trajectories.  

Table 2 
Summary of eigendecomposition.   

Total Variance PC1 PC2 PC3 PC4 

Pre / Departure 0.088 37.4% 17.7% 11.8% 10.1% 
Pre / Arrival 0.073 36.4% 12.9% 11.1% 9.5% 
Post / Departure 0.098 23.9% 16.1% 15.5% 10.4% 
Post / Arrival 0.096 27.5% 15.8% 12.5% 9.1%  
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functions tend to generate similar microtransit usage patterns. As a 
result, the total variance is lower. 

In this research, first mile/last mile trips are important. This type of 
trip accounts for more than 58% of total trips in the pre-COVID period, 
resulting in a more uniform arrival pattern. However, after the outbreak 
of COVID-19, the percentage of first mile/last mile trips continues to 
decrease. For example, in July, the relative number of trips dropped to 
29%. Meanwhile, trip purposes have become much more diverse, 
making the variance of arrival trips close to departure trips. 

The first several PCs can help summarize the spatio-temporal pat
terns of microtransit activities. Fig. 9 displays the first 4 PCs for pre- 
COVID trips. In Fig. 9, the x-axis represents the 16 input variables that 
correspond to each hour when the service is in operation, and the y-axis 
demonstrates the loadings of the first 4 PCs associated with all the input 
variables. In other words, the y-axis is the coefficient of the linear 
combination between PCs and input variables. For example, PC1 of pre- 
COVID arrival trips explains 37.4% of the total variation and shows a 
clear two-peak pattern at 7:00–10:00 and 17:00–19:00 (Fig. 9a). This 
result suggests that microtransit activity during these two time periods 
varies considerably, especially when compared to the uniformity found 
in other periods. Fig. 9e, also suggests that PC1 for departure trips ex
plains 36.4% of the total variation and has a similar two-peak pattern, 
yet the graph shifts slightly to the left. The two-peak periods are 
6:00–9:00 and 16:00–18:00. Such a pattern is consistent with the 
morning and evening peaks of transit usage, indicating that both arrival 
and departure trips have the most diversified spatio-temporal patterns 
during these two peak periods. 

Of note are the results from Fig. 9a. In this instance, the coefficients 
of PC1 have opposite signs in the morning and evening peaks. This result 
suggests that if a TAZ attracts more microtransit trips during 7:00– 9:00, 
then arrivals trips are likely lower in that TAZ during 17:00– 19:00. In 
fact, of the top five TAZs that attract most trips in the morning peak, four 
of them attract a limited number of trips in the evening peak. The 
pattern holds true for departure trips as well. If more people departed 
certain TAZs during 16:00– 18:00, fewer customers tend to depart from 
those TAZs during 6:00– 9:00. 

While the coefficients of PC1 support these results, PC2, PC3, and 
PC4 combine to explain 39.6% of the variation for arrival trips and 
33.5% variation for departure trips. This explanatory power means that 
there are other significant temporal patterns that PC1 cannot explain (by 
itself) and that many TAZs do not follow the patterns shown by PC1. For 
example, PC2 explains 17.7% of the total variation for arrival trips, 
suggesting a notable shift in the morning and evening peaks (Fig. 9b). 
Further, Fig. 9b suggests that in some TAZs if more patrons arrive during 
17:00– 18:00, fewer customers will arrive at those TAZs during 18:00– 
19:00. Fig. 9f highlights a similar pattern for departure trips. The vari
ation of temporal patterns peaks during 7:00– 8:00 and 8:00– 9:00, yet 
in opposite directions. Moreover, PC3 and PC4 each explain around 10% 
of the total variation for both arrival and departure trips. The proximity 
of variance explained by PC1, PC2, PC3, and PC4 suggests a variety of 
underlying temporal patterns in pre-COVID microtransit activities, 
which, to some extent, uncovers the diversity of trip purposes. 

To deepen our understanding of the causal mechanisms for the pat
terns displayed in Fig. 9, we focus on the temporal pattern of first mile/ 
last mile trips. In this study, the first mile/last mile trips either start from 
or end at any transit station identified in Fig. 1. Fig. 10 shows the per
centage of first mile/last mile trips over total trips that start in each hour 
for the pre-COVID and post-COVID periods, respectively. The average 
value in Fig. 10 is the average percentage of total first mile/last mile 
trips over total trips for the pre-COVID and post-COVID periods, 
respectively. The percentage of first mile/last mile trips of both arrival 
and departure trips peaks between 6:00– 9:00 and 16:00– 19:00. This 
result means that many patrons travel to or from transit stations during 
those time periods. It is important to note that the first mile/last mile trip 
patterns are quite similar pre- and post-COVID. In other words, although 
there is an overall reduction (from 58.07% to 47.88%) in percentage, 

first mile/last mile trips still account for a large portion of the total trips. 
One can observe the same peaks in Fig. 9(a) and Fig. 9(e). This pattern 
implies that when the percentage of first mile/last mile trips is high, the 
variation in travel patterns is more extensive and vice versa. As we 
further examine PC3 and PC4 of arrival and departure trips, please note 
that the variation peaks between 6:00– 9:00 and 16:00– 19:00. These 
windows are when the percentage of first mile/last mile trips is above 
average (Fig. 10). It indicates that PC1, PC3, and PC4 all capture part of 
the variation caused by first mile/last mile trips. 

Fig. 11 presents the eigendecomposition of post-COVID trips. One 
focus of the eigendecomposition is to study how COVID-19 has altered 
the temporal patterns of microtransit activities. For example, Fig. 11(a) 
and Fig. 11(e) illustrate a similar two-peak pattern for arrival and de
parture trips. For arrival trips, the largest variation occurs during 8:00– 
9:00 and 18:00– 19:00. For departure trips, the peak periods are 6:00– 
7:00 and 16:00– 17:00. Thus, one might suggest that specific patterns 
emerged after the outbreak of COVID-19. However, the variance 
explained by PC1 for arrival and departure trips decreased from 37.4% 
and 36.4% to 27.5% and 23.9%, respectively. This decrease in variance 
explained by PC1 suggests that the temporal patterns of post-COVID 
trips are more diverse. Also, different patterns can be found based on 
the PCs. For instance, PC2 for post-COVID arrival trips demonstrates a 
different one-peak pattern. Specifically, for some TAZs, trip arrival is 
most active and diverse during 13:00– 14:00 (Fig. 11(b)). That said, PC2, 
PC3, and PC4 do not exhibit such a pattern for pre-COVID arrival trips. 
The difference between the two eigendecomposition results suggests a 
substantial pattern transition after the outbreak of COVID-19. 

Based on the results of eigendecomposition, the first mile/last mile 
trips are likely to be the primary source of variance, which PC1 explains 
in both pre- and post-COVID periods. Moreover, transit-dependent users 
remain inelastic despite the threats brought by COVID-19 (Fig. 10). 
However, the patterns are mutable. For example, there are reductions in 
microtransit activity along with first mile/last mile trips. In addition, 
there is a dispersive trend for pick-up and drop-off locations and the 
emergence of new travel patterns. In the next section, we analyze the 
coordinates of pick-up and drop-off locations to detect underlying 
community structures and compare the temporal patterns of these lo
cations to the service area averages. 

5.2. K-clique percolation 

5.2.1. Pre-COVID period 
There are 17,980 trips in the pre-COVID period from 1235 different 

users in 1163 pick-up and drop-off locations. The maximum number of 
trips is 348, while the minimum number is 1. We first vary I (Intensity 
thresholds) to see how communities progress. We present the evolving 
pattern of communities with increasing values of I in Fig. 12. Specif
ically, Fig. 12(a) displays the total number of communities in response to 
changes in I. Fig. 12(b) demonstrates the size ratio of the largest com
munity to the second-largest community. For higher values of I, com
munity formation decreases. This type of pattern is not always 
monotonic. For example, when I increases, cliques with lower levels of 
intensity will disappear. Simultaneously, these eliminations will 
dissolve large communities into smaller ones. For instance, in Fig. 12(b), 
the ratio is well above 2 when I is small, indicating a gigantic commu
nity, with a few small communities containing a minimal number of 
nodes. The formation of a gigantic community suggests a wide 
connection across the service region, apart from a few pick-up or drop- 
off locations. The vertical dashed line in Fig. 12 highlights the “critical” 
point, detailed in Section 4. Specifically, when I increases from 0, fewer 
3-cliques remain in the network. Until I reaches 0.031, the gigantic 
community that contains most of the nodes breaks down into two 
medium-sized communities with a ratio of 4.05. Thus, we identify I =
0.031 as the critical point for the pre-COVID microtransit network. 

We further explore the characteristics of communities using ten 
unique values for I: 0, 0.031, 0.047, 0.063, 0.079, 0.095, 0.111, 0.127, 
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Fig. 9. Eigendecomposition of pre-COVID arrival and departure trips.  
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0.143, 0.159. I = 0 represents the point when all 3-cliques remain in the 
network without any isolated node. I = 0.031 is the critical point. When 
I = 0.159, only one community remains in the network. The remaining 
seven values are interpolated at an increment of 0.016 from I = 0.031 to 
I = 0.159. We present these results in Table 3, along with the corre
sponding community attributes. When multiple communities have the 
same number of nodes, we break the tie by selecting the community with 
the highest trip rate. We select the two largest communities for illus
trative purposes because their size ratio is an important indicator of 
community structure. Also, the two largest communities account for a 
majority (≥ 85%) of the total trips. In Table 3, Size represents the 
number of nodes contained in the community. Trips are the indicator of 
the total amount of trips captured by the community. FMLM trips stand 
for first mile/last mile trips with a calculated percentage of total trips. 
Users are the unique number of customers who appeared across the trips. 
Avg. Trips equal to Trips divided by Users. Duration is the average trip 
length of all trips in the unit of minutes in that community. 

In general, the evolution of communities follows a hierarchical 
structure. As values of I increase, 3-cliques with lower values of Intensity 
begin to disappear. However, When I = 0, all 3-cliques survive. Again, 
this turns the network into an unweighted and undirected graph. This 
scenario means that one can consider any link as only connected or 
disconnected. The communities detected when I = 0 are a good reflec
tion of the connectivity across the region. There are 22 communities in 
the network, and the largest one is a gigantic community that contains 
601 nodes. The remaining communities contain only 3 or 4 nodes 
(Table 3). It is worth mentioning that the remaining 22 communities 
include 626 nodes in total, leaving 537 nodes forming no 3-cliques. In 
other words, 537 nodes do not belong to any clique. These isolated nodes 
demonstrate a commuting pattern for specific individuals. In other words, 
trips concerning the 537 pick-up or drop-off locations are user-centric. 
The locations are not likely to be shared across different users. 

When I = 0.031 (critical point), the gigantic component breaks down 
into two medium-sized communities (81 and 20). In this scenario, the 
community structure is strong, maximum information is present, yet it 
displays a distinguishable pattern. For example, Fig. 13 and Fig. 14 

demonstrate the spatial distribution of the two largest communities and 
the shared nodes when I = 0.031. Fig. 13 suggests that the spatial 
pattern of the network includes a distribution of nodes from the entire 
region, accounting for 6 of 85.7% (6 of 7) of the major transit stations. 
However, a new spatial pattern emerges in Fig. 14. The second-largest 
community contains a congregation of 20 nodes from the west side of 
the service area. The corresponding trips gravitate to the Daybreak 
Parkway station, with 81% of trips being first mile/last mile trips. This 
result suggests that the pick-up and drop-off locations surrounding 
Daybreak Parkway station maintain a connection, which provides 
valuable information for possible vehicle dispatching and routing 
optimization. 

Section 5.1 explored how first mile/last mile trips contribute to the 
spatio-temporal patterns of microtransit activities. Similarly, we observe 
a dominant percentage of first mile/last mile trips for different Is in 
Table 3. When I = 0, the largest community has 15,735 trips, with 62% 
being first mile/last mile trips, slightly higher than the average 
(58.07%). However, only 35% of trips occur outside of network com
munities, with the majority connecting isolated nodes. This difference 
suggests that first mile/last mile trips enhance the connectivity between 
popular pick-up and drop-off locations. Trips connecting isolated nodes 
are more user-specific and less dependent on transit. Further, at the 
critical point, first mile/last mile trips account for a large portion of the 
total trips in both the largest and second-largest communities with a 
minimum of 77% and a maximum of 100% (Table 3). Clearly, first mile/ 
last mile trips play a crucial role in connecting the entire region. 

We also explore 3-clique communities, their overlap, and levels of 
connectivity. We use the average clustering coefficient, Cavg, to measure 
local community cohesiveness. Without any processing, the Cavg of the 
original network is 0.169. This high value suggests significant overlap 
between communities in the pre-COVID period. Also, it means that when 
two communities overlap, they are likely to overlap with each other. 
Fig. 15 presents this trend graphically. As values of I increase, there is a 
removal of isolated nodes and 3-cliques with lower I values. This trend 
results in increasing values of Cavg, although there is some fluctuation. 
The results suggest that popular (i.e., large trip counts) pick-up and 

Fig. 10. Percentage of first mile/last mile trips.  
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Fig. 11. Eigendecomposition of post-COVID arrival & departure trips.  
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drop-off locations are tightly connected, resulting in high Cavg. 
Community structure is also important to consider, especially at the 

critical point. When I ¼ 0.031, there are nine shared nodes with clus
tering coefficients ranging from 0.017 to 0.32. Note that six out of these 
nine nodes with the lowest clustering coefficient correspond to major 
transit stations, while the top three correspond to an apartment, a pri
vate company, and a supermarket (Fig. 13 & Fig. 14). The average 
clustering coefficient of the six transit stations is 0.0275 - well below 
Cavg (0.169) of the original network. Moreover, among the six transit 
stations, Draper Station has the largest nodal degree, yet the smallest 
clustering coefficient, 0.017. In contrast, Kimballs Lane Station has the 
lowest nodal degree yet the largest clustering coefficient, 0.049. A 

similar pattern emerges for the top four nodes that are not transit sta
tions. All have smaller nodal degrees and larger clustering coefficients, 
with a maximal of 0.32. This result suggests a different distribution 
pattern between transit stations vs. non-transit stations. For transit sta
tions, a hub-and-spoke pattern best describes the system surrounding 
them. In short, traffic travels along the links connecting different nodes 
to a central distribution center (transit stations). However, those nodes 
themselves are not well connected. For apartments, private companies, 
and supermarkets, the underlying pattern better corresponds to a point- 
to-point structure. In these instances, riders can use microtransit to 
travel directly between those locations without going through a central 
hub. 

Fig. 12. Community summary under different Intensity thresholds: (a) the number of communities; and (b) the size ratio of the largest community to the second- 
largest community. 

Table 3 
The result of 3-clique percolation for the pre-COVID period.  

I Community Size Trips FMLM Trips 
(% of total trips) 

Users Avg. Trips 
(trips/person) 

Duration 
(minutes) 

0 1 601 15,735 9818 (62%) 1039 15.1 10.3  
2 4 13 11 (85%) 5 2.6 12.3 

0.031 1 81 4930 4330 (88%) 361 13.7 9.6  
2 20 699 564 (81%) 65 10.8 8.2 

0.047 1 42 3128 2835 (91%) 237 13.2 8.8  
2 8 441 400 (91%) 38 11.6 8.6 

0.063 1 26 2240 1992 (89%) 156 14.4 9.0  
2 6 336 319 (95%) 35 9.6 7.7 

0.079 1 15 1410 1338 (95%) 117 12.4 9.4  
2 5 291 231 (79%) 16 18.2 6.0 

0.095 1 5 471 466 (99%) 51 9.2 12.2  
2 4 321 306 (95%) 28 11.5 7.3 

0.111 1 4 321 306 (95%) 28 11.5 7.3  
2 4 244 189 (77%) 11 22.18 6.2 

0.127 1 4 321 306 (95%) 28 11.5 7.3  
2 3 409 409 (100%) 49 8.3 13.0 

0.143 1 4 321 306 (95%) 28 11.5 7.3  
2 3 409 409 (100%) 49 8.3 13.0 

0.159 1 3 239 224 (94%) 14 17.1 6.72  
2        
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5.2.2. Post-COVID period 
There are 13,188 trips by 794 unique users (334 new) between 1040 

pick-up and drop-off locations in the post-COVID period. The maximum 
number of trips is 221, while the minimum number is 1. We present the 
results of the 3-clique percolation in Fig. 16. In Fig. 16 (a), the same 
decreasing pattern with fluctuations is apparent. In Fig. 16 (b), the ratio 
is well above 2 when I is small, but the value has dropped slightly 
because of less microtransit activity in general. The vertical dashed line 
stands for the critical point in the post-COVID period. 

The characteristics of communities is further explored at ten values 

of I in the same manner: 0, 0.066, 0.087, 0.108, 0.129, 0.150, 0.171, 
0.192, 0.213, 0.234. Table 4 displays the results. 

When I = 0, the network yields a gigantic component that contains 
492 nodes while the remaining communities contain 6 or fewer nodes 
and 530 nodes in isolation. Compared to the pre-COVID period, there are 
more isolated nodes (51% vs. 46%). This result indicates that the user- 
centric pattern has become more distinct after the outbreak of COVID- 
19. 

When I = 0.066 (critical point), two medium-sized communities (25 
and 18) emerge from the gigantic network. Fig. 17 and Fig. 18 present 

Fig. 13. The largest community and shared nodes when I = 0.031 in the pre-COVID period.  

Fig. 14. The second-largest community and shared nodes when I ¼ 0.031 in the pre-COVID period.  
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the spatial distribution of both and the shared nodes. There are some 
significant spatial changes worth noting. First, the spatial distributions 
of the two communities became less distinct. The largest community 
contains Draper Station, Draper Town Center Station, and Crescent View 
Station. The second community contains Draper Station, Crescent View 
Station, South Jordan Station, and Daybreak Parkway Station. The 
major takeaway here is that both communities span around major 
transit stations across the region. Also, their Sizes and Trips (in Tables 2 
& 3) are similar, suggesting that these two communities are equally 
important in the post-COVID period. 

In addition, for all values of I, the number of users has decreased. 
This result is likely due to the overall decline in microtransit activity. 
However, the average number of trips per user increased compared to 
the pre-COVID period (Tables 2 and 3). There are two possible expla
nations. One is that less frequent users might have stopped using 

microtransit due to pandemic concerns. The other is that those who 
depend on microtransit remain riders (e.g., transit dependents and 
essential workers). Aside from these differences, similarities also 
emerge. For example, many trips remain in the network for different 
values of I, and the first mile/last mile trips account for a large per
centage of total trips for both periods. 

We are also interested in how the overlapping pattern changes. 
Fig. 19 presents the average clustering coefficients for different values of 
I. The Cavg of the original network decreased from 0.169 (pre-COVID) to 
0.129 (post-COVID). This result indicates that the level of network 
overlap decreased. At the critical point, we identify eight shared nodes. 
The three with the lowest clustering coefficient are transit stations with 
a minimal clustering coefficient of 0.029 (Draper Station) and a maximal 
clustering coefficient of 0.041 (Crescent View Station). The top five 
nodes contain four supermarkets and one residential node (Fig. 18) with 

Fig. 15. The average clustering coefficient at different I.  

Fig. 16. Community summary under different Intensity thresholds in the post-COVID period: (a) the number of communities; and (b) the size ratio of the largest 
community to the second-largest community. 
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a minimum coefficient of 0.073 and a maximal coefficient of 0.124. The 
hub-and-spoke distribution for transit stations and point-to-point dis
tribution for supermarkets and residential locations were also present in 
the post-COVID period. 

6. Conclusions 

The worldwide expansion of microtransit continues, bringing many 
opportunities and challenges for service providers. As a new demand- 
responsive transport mode, it has the advantage of increasing service 
coverage, flexible routing, and enhancing transit accessibility. With 
proper design and execution, microtransit can supplement traditional 
transport methods to help reduce road pressure and create first mile/last 
mile connections. However, microtransit projects often suffer from poor 
marketing and operational efforts, making them less cost-effective than 

they should be. Further, there is limited information concerning the 
spatio-temporal patterns of microtransit activities. This research fills the 
gap by unraveling the spatio-temporal structures of microtransit activ
ities utilizing empirical data from a pilot program in the Salt Lake City, 
Utah area, UTA Via. The results compare microtransit activity during 
pre- and post-COVID periods, highlighting how some use patterns persist 
and change after the outbreak. 

The results of the eigendecomposition suggest that first mile/last 
mile trips declined, but the hourly distribution remained nearly iden
tical. This finding suggests transit dependency for many riders. How
ever, several new patterns emerged (e.g., Fig. 9 and Fig. 11). 
Specifically, the explanatory power of PC1 decreased. This finding 
suggests a temporal dispersion trend for microtransit activity after the 
pandemic. Furthermore, by focusing on first mile/last mile trips, our 
results suggest that a higher percentage of first mile/last mile trips leads 

Table 4 
The 3-clique percolation for the post-COVID period.  

I Community Sizes Trips FMLM Trips 
(% of total trips) 

Users Avg. Trips 
(trips/person) 

Duration 
(minutes) 

0 1 492 10,948 5737 (52%) 610 17.9 9.5  
2 6 9 0 (0%) 2 4.5 8.4 

0.066 1 25 1549 1520 (98%) 82 18.9 6.3  
2 18 1042 919 (88%) 81 12.9 24.3 

0.087 1 11 820 809 (99%) 38 21.6 6.3  
2 11 817 712 (87%) 50 16.3 5.3 

0.108 1 9 750 748 (99%) 30 25.0 6.3  
2 7 630 621 (99%) 35 18 5.3 

0.129 1 7 630 621(99%) 35 18.0 5.3  
2 6 517 516 (99%) 24 21.5 6.3 

0.150 1 6 601 600(99%) 34 17.7 5.3  
2 5 468 468 (100%) 18 26.0 6.3 

0.171 1 6 601 600 (99%) 34 17.7 5.3  
2 5 468 468 (100%) 18 26.0 6.3 

0.192 1 5 551 550 (99%) 30 18.4 5.3  
2 3 162 162 (100%) 13 12.5 5.2 

0.213 1 5 551 550 (99%) 30 18.4 5.3  
2 3 157 157 (100%) 11 14.3 7.2 

0.234 1 5 551 550 (99%) 30 18.4 5.3  
2        

Fig. 17. The largest community and shared nodes when I = 0.066 in the post-COVID period.  
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to greater variation for PC1. This result means that first mile/last mile 
trips can be the major source of variation in both periods. 

We further apply k-clique percolation to identify the communities in 
two networks (pre-COVID and post-COVID). We vary threshold values of 
I for each network. As I increases, the gigantic component begins to 
break down into medium-sized communities. During this process, the 
results suggest that first mile/last mile trips account for most of the total 
trips captured by the network. However, Tables 2 and 3 suggest a 
decrease in unique users and a heavy dependency on microtransit for 
specific users. 

The application of a clustering coefficient revealed that network 
overlap decreased after the COVID-19 outbreak. Interestingly there was 
an emergence of two distinct communities, pre- and post-COVID. The 
communities surrounding transit stations take the form of hub-and- 
spoke systems, with transit stations serving as traffic distribution 

centers while the surrounding nodes are disconnected. For other popular 
locales, connections are more dispersed, demonstrating a point-to-point 
distribution style. 

This work aimed to reconstruct and understand the spatio-temporal 
patterns of microtransit activity in portions of Salt Lake City, Utah. The 
framework is generalizable and can provide additional insights for UTA 
Via as it grows or inspires applications to pilot programs in other cities. 
By understanding the patterns and possible causal factors for micro
transit network development, use, and underlying spatio-temporal pat
terns, one can enhance the transferability of microtransit programs 
without additional cost. Furthermore, spatio-temporal structures of 
microtransit usage reveal that the usage is uneven. For example, the 
connection between certain regions is significantly stronger than that of 
other places. Also, the two-peak temporal pattern demonstrates many 
variations resulting from first mile/last mile trips. Understanding these 

Fig. 18. The second-largest community and shared nodes when I = 0.066 in the post-COVID period.  

Fig. 19. The average clustering coefficient at different I.  
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structures of microtransit activity can help with possible customer seg
mentation and vehicle dispatching for all microtransit programs. Lastly, 
by comparing results between pre- and post-COVID periods, it is possible 
to inform transit agencies on people's behavioral changes and the evo
lution of their travel patterns to guide operational strategy adjustments 
further. 
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