Journal of Transport Geography 97 (2021) 103226

Contents lists available at ScienceDirect

Journal of
Transport
Geography

Journal of Transport Geography

o %

ELSEVIER

journal homepage: www.elsevier.com/locate/jtrangeo

Check for

Unravel the impact of COVID-19 on the spatio-temporal mobility patterns  [&&s
of microtransit

Yirong Zhou?, Xiaoyue Cathy Liu ™", Tony Grubesic

@ Department of Civil & Environmental Engineering, University of Utah, 110 Central Campus Dr. RM 1650, Salt Lake City, UT 84112, United States of America
b Department of Civil & Environmental Engineering, University of Utah, 110 Central Campus Dr. RM 2137, Sdlt Lake City, UT 84112, United States of America
€ Research School of Information, The University of Texas at Austin, 1616 Guadalupe St Suite #5.202, Austin, TX 78701, United States of America

ARTICLE INFO ABSTRACT

Keywords: Shared mobility is an essential component of the larger sharing economy. Ride-hailing, bike-sharing, e-scooters,
Microtransit and other types of shared mobility continue to grow worldwide. Among these services is microtransit, a new
COV'ID-19 . transport mode that extends transit coverage within a region. Mobile devices enable microtransit services,
Spatio-temporal analysis . . . . . . e . .

: o aggregating riders and using real-time routing algorithms to group customers traveling in similar directions.
Eigendecomposition

Meanwhile, the newly emerged coronavirus, COVID-19, has radically reshaped the ridership behavior of all
transit services, including microtransit. While existing research evaluates the performance of microtransit pilot
programs before the pandemic, there is no information concerning the spatio-temporal pattern of microtransit
activities under the impact of COVID-19. The purpose of this paper is to apply eigendecomposition and k-clique
percolation methods to uncover the spatio-temporal patterns of microtransit trips. Further, we used these ap-
proaches to identify underlying communities using data from a pilot program in Salt Lake City, Utah. The
resulting research offers insight into how COVID-19 altered travel behavior. Specifically, eigendecomposition
delineated the homogeneity and heterogeneity of travel patterns across temporal dimensions. We identified first
mile/last mile trips as a major source of variance in both pre- and post-COVID periods and that transit-dependent
users prove to be inelastic despite the threat of COVID-19. The k-clique percolation method detected possible
community formations and tracked how these communities evolved during the pandemic. In addition, we sys-
tematically analyzed overlapping communities and the network structure around shared nodes by using a
clustering coefficient. The workflow developed in this research broadly is generalizable and valuable for un-
derstanding the unique spatio-temporal patterns of microtransit. The framework can also help transit agencies
with performance evaluation, regional transport strategies, and optimal vehicle dispatching.

K-clique percolation

1. Introduction

Sustainable transport systems are crucial for interregional and
intraregional mobility, commerce, and the socioeconomic stability of
the communities they serve. Public transit is an essential component of
modern multimodal transportation systems but suffers from various
pressures (Wei et al., 2018; Zhou et al., 2020). For example, increasing
operating costs and decreasing ridership continue to stress public transit
systems throughout the United States (FTA, 2019). While many public
systems continue to struggle, microtransit is emerging as an agile
alternative for personal mobility. Microtransit is technology-enabled
shared transportation that operates in-between fixed-route transit and
ride-hailing. It leverages rider aggregation and routing algorithms to
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group customers traveling within the service zone in similar directions
in real-time. Moreover, microtransit often expects customers to walk a
short distance to common pick-up/drop-off locations. Thus, the service
is transit-like but more nimble when compared to traditional public
transit. As a technology-enabled on-demand service, microtransit shares
many similarities with other services such as ride-hailing and para-
transit. The platform collects requests from personal devices like
smartphones then dynamically dispatches available vehicles to fulfill
those requests. However, one substantial difference exists. The design of
microtransit allows for integration into the current public transit system.
Users often take advantage of microtransit to complete first mile/ last
mile connections to the larger transit system.

For similar on-demand services, studies of dispatching algorithms
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are numerous. For example, there have been many tests of different
optimization algorithms and heuristics for ride-sharing (Agatz et al.,
2011; Agatz et al., 2012; Aissat and Oulamara, 2014). Agatz et al. (2011)
proposed an optimization framework based on a rolling horizon strategy
to solve the dynamic ride-share problem. The authors tested this using a
simulation environment based on the field data from the Atlanta
Regional Commission (Agatz et al., 2011). Agatz et al. (2012) system-
atically reviewed the issues in ride-sharing and assessed relevant opti-
mization models. Aissat and Oulamara (2014) modeled dynamic ride-
sharing with intermediate locations and presented one enumerate al-
gorithm and two heuristics to solve it. They later tested the approaches
on real networks consisting of 3.5 million nodes and 8.7 million edges.
Chen et al. (2019) designed an agent-based model to simulate dynamic
ride-sharing in a multimodal network then tested it on the classic Sioux
Falls network.

For microtransit, the global launch of pilot programs during the past
five years (Haglund et al., 2019; Westervelt et al., 2018) seeks to provide
(and improve) first/last mile connections to fixed transit stops and sta-
tions, replace underperforming bus routes, provide coverage in areas
without fixed-route service, and extend the hours of operation for
existing bus services. Many studies analyze the overall performance of
microtransit pilot programs (Haglund et al., 2019; Volinski (2019) or
microtransit vehicles (Ongel et al., 2019). For example, Haglund et al.
(2019) systematically evaluated the performance of the Kutsuplus pilot
in Helsinki, Finland. The evaluation framework used aggregated mea-
sures and spatio-temporal metrics, including the average annual number
of passengers, annual price per journey, user age class, distribution of
hourly departure/arrival trips for analysis. Volinski (2019) provided a
case-based review and synthesis of more than 20 transit agencies that
had implemented or intended to launch a microtransit service. This re-
view included evaluations of underlying motivations, planning, design,
marketing strategies, technology, and performance metrics. Ongel et al.
(2019) evaluated the impacts of novel vehicle technologies on vehicle
acquisition costs. This evaluation included lifecycle and end-of-life cost
estimates for electric microtransit vehicles and conventional buses
operating in Singapore.

Meanwhile, a new challenge has emerged for public transit. COVID-
19, a novel coronavirus disease, became a global pandemic in, 2020.
Nearly 90% of the American adults reported that COVID-19 impacted
their personal lives, and 44% of them claimed their lives had changed
dramatically (Pew Research Center, 2020). Due to its collective nature,
public transit has been hit even harder (Liu et al., 2020; Wilbur et al.,
2020; Yi et al., 2021). In New York City, the average subway and
commuter rail ridership declined by 80%, and bus ridership dropped by
50% (Gao et al., 2020a, 2020Db) in the first week of July 2020 compared
to 2019. In Washington DC, subway and bus ridership declined by 90%
and 75%, respectively, by the end of March, 2020 (WMATA, 2020)
compared to their typical values. In Utah, three major public transit
modes - bus, FrontRunner, and TRAX - have witnessed a massive decline
in the total ridership upon the pandemic outbreak (Dillman and Pos-
vistak, 2020). The week after the state of emergency was declared,
average ridership has declined by 56% compared to the previous week
(Dillman and Posvistak, 2020). Similarly, there was a substantial
downturn in microtransit use throughout Utah after the COVID-19
outbreak.

Previous studies help deepen our understanding of microtransit and
its dynamics. However, there is very little work concerning the spatio-
temporal patterns of microtransit trips and the causal factors contrib-
uting to these patterns, especially under the impacts of COVID-19. The
purpose of this research is to leverage trip data from a microtransit pilot
in the State of Utah for developing a methodological framework that
unravels the spatio-temporal patterns of microtransit activities in the
region. The framework utilizes eigendecomposition to uncover the
rhythms and structures of microtransit trips. Using 7-months of micro-
transit data, we constructed the spatiotemporal patterns of microtransit
activities in pre- and post-COVID periods, respectively. Then, we
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systematically analyze how these patterns deviate from the average
pattern in both periods and what possibly caused such variation. We use
eigendecomposition to unravel the hidden temporal structures and k-
clique percolation theory to explore the potential spatial communities
formed in the service region. Also, for both periods, we intend to
determine which locations are connected, how strong the connections
are, what roles shared nodes (by different communities) play in different
network structures, and how patterns evolve as COVID-19 progresses.

This study is important for three reasons. First, because microtransit
helps fill gaps between fixed-route systems and ride-hailing, it is
essential to understand its underlying spatio-temporal patterns for a
community. In short, does the service provide connectivity to the places
that people want to go and when they want to get there? Second, the
costs of delivering microtransit services can be substantial, and there are
no guarantees that the service will attract riders. For example, the now-
bankrupt Bridj service in Kansas City served only 1480 riders during its
year of operation, with the Kansas City Area Transportation Authority
(KCATA) spending $1.5 million to subsidize the service. Considering
that the first ten rides were free for users of Bridj, this translated into a
subsidy of $1000 per ride (Schmitt, 2018). Thus, there are real financial
implications for communities offering microtransit services. Developing
a framework that can provide the geospatial intelligence required for
improving system performance is crucial for service sustainability.
Third, while the influence of COVID-19 on microtransit is easily
observable in Utah, there is no analysis of the overall effects. This
research focuses on the underlying travel patterns associated with
microtransit and their changes during the pandemic. Our findings could
help transit agencies understand the decline in microtransit ridership
and the relationships between public health crisis and microtransit
demand.

We organize the remainder of this paper as follows. Section 2 pre-
sents a literature review where we discuss elements of the impacts of
COVID-19, spatio-temporal analysis, the application of eigendecompo-
sition, and k-clique percolation methods. Section 3 describes the data
used in this study and its pre-processing. Section 4 presents our meth-
odological framework for uncovering the spatio-temporal patterns of
microtransit activities. Finally, we offer the results in Section 5 and
conclude with a summary of our findings and key contributions of the
study.

2. Literature review
2.1. COVID-19 related analysis

COVID-19 has been transforming current society in various aspects.
Recent studies have found that COVID-19 exerts a substantial impact on
the global economy (McKibbin and Fernando, 2020), education (Pra-
gholapati, 2020), mental health (Xiong et al., 2020), public transit (Liu
et al., 2020; Wilbur et al., 2020), and many other domains. Researchers
have also been studying the reasons why these impacts have taken place.
Take public transit as an example. Before the pandemic, a significant
motivation behind choosing public transit was self-interest (e.g., low
cost, reliability, healthy lifestyle) and environmental consciousness
(Hoang-Tung et al., 2015). However, after the pandemic, concerns for
public health may dominate, resulting in usage reduction. Studies have
also found that the declines in ridership are uneven across social groups
(Liu et al., 2020; Wilbur et al., 2020). For example, Wilbur et al. (2020)
found that in Nashville, Tennessee, public transit ridership declined up
to 19% more in high-income neighborhoods than in low-income
neighborhoods. Similarly, Tan et al. (2020) discovered that, under the
influence of COVID-19, in cities with overall low public transit ridership,
commuters consist of a higher percentage of the lower-income popula-
tion due to the transit-dependent nature.

In sum, much of the most recent research focuses on COVID-19's
influence on the public transit systems, in general. However, very few
studies focus on emerging modes, such as microtransit. Furthermore,
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according to Utah Transit Authority (UTA), in Utah, 95% of microtransit
trips are paid using UTA tickets (UTA on Demand, 2021) which can be
considered a strong indication of transit dependency among micro-
transit users.

2.2. Related spatio-temporal analysis

Microtransit offers demand-responsive service to customers to
initiate any trip start and end within a designated service area (FTA,
2021). This structure is similar to many mobility-based services,
including bike-sharing and car-sharing programs. Given the fact that
mobile devices enable all these programs and one can retrieve a large
amount of trip data from these services, there have been a myriad of
studies to analyze spatio-temporal trip patterns (Alonso-Gonzalez et al.,
2018; Dong et al., 2018; Xu et al., 2019). For example, Xu et al. (2019)
studied the spatio-temporal patterns of bike-sharing in Singapore. They
associated the use patterns with built environment indicators such as
floor area ratio (FAR) of residential buildings, FAR of commercial
buildings, and land use mixture. In other work, Dong et al. (2018)
studied both the service patterns and individual behavior patterns of
internet-based ride-sharing services based on the record provided by
DiDi, Inc. They applied a non-negative matrix factorization method and
cluster analysis to study the spatial, temporal, and spatio-temporal ele-
ments of ride-sharing trips, as well as divisions of commuting styles and
detour patterns. When it comes to microtransit analysis, Haglund et al.
(2019) demonstrated the average journeys in specific periods during the
day and the distribution of hourly departure/arrival trips based on the
microtransit project Kutsuplus. While useful, this analysis was limited
because it did not address the processes concerning underlying pattern
formation. Similarly, Alonso-Gonzalez et al. (2018) studied the distri-
bution of generalized journey time across service areas in both aggre-
gated and disaggregated levels using empirical data from a pilot
program named “Breng flex” in the Netherlands. Again, while previous
studies mainly focused on assessing how demand-responsive transport
can benefit the current transportation network, we are not aware of any
studies that use actual network data and analytics to examine the spatio-
temporal patterns of microtransit usage. This research fills the gap by
quantifying the evolving patterns of microtransit activities and eluci-
dating the underlying reasons for such patterns.

2.3. Eigendecomposition

Principle Component Analysis (PCA) or Eigendecomposition is a
descriptive tool that extracts the major sources of variance to identify
directions of variation in the dataset (Abdi and Williams, 2010),
reducing dimensionality and facilitating prediction. For example,
Horner and Grubesic (2001) applied PCA to generate an index of derived
demand for rail usage based on the local demographics in Columbus,
Ohio. Nagendra and Khare (2003) applied PCA to analyze an extensive
multivariate data set containing traffic, emission, and meteorological
data collected from an intersection in Delhi. Specifically, they utilized
the loading matrix to assess the significance and correlation of meteo-
rological and traffic characteristics variables. Melman et al. (2021)
applied PCA to determine the driving metrics most strongly associated
with fuel use. This information helped predict fuel consumption based
on driving behavior measurement. The authors used PCA on a matrix of
110 variables x 4617 laps to extract the significant sources of variance
in scores and loadings. Wang et al. (2021) aimed to discover if personal
habits or lack of accessibility dictated why some Salt Lake City residents
rarely walk or cycle. During the process, they applied PCA to reduce the
dimensionality of 40 attitudinal variables for better representation. Xu
et al. (2019) incorporated eigendecomposition and seven built envi-
ronment indicators to explore the spatio-temporal patterns of bike-
sharing in Singapore.

In sum, these existing studies demonstrated the usability of PCA or
eigendecomposition to extract sources of variance in different scenarios.
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This research will explore its applicability for analyzing the spatio-
temporal patterns of microtransit activities.

2.4. K-clique percolation

Broadbent and Hammersley (1957) were the first to introduce
percolation theory. It describes the behavior of a network when existing
linkages get eliminated. One can use percolation theory as a framework
for community detection and measuring broader percolation phenom-
ena or transition (Grimmett, 1999; Jiang et al., 2018; Li et al., 2015a,
2015b) where the core structure of the original network is preserved.
Various fields use percolation concepts and measures, including chem-
istry, physics, and material sciences (Achlioptas et al., 2009; Goffri et al.,
2006; Majdandzic et al., 2014). That said, traditional percolation theory
has its limitations. For example, where community detection methods
are concerned, traditional percolation theory can only assign one node
to a specific community. To explore overlapping communities on a large
scale, Palla et al. (2005) proposed an efficient method to uncover the
modular structure of complex networks (Palla et al., 2005), referred to
as clique percolation or k-clique percolation theory.

One can apply k-clique percolation theory to uncover the structure of
communities based on a similar percolation transition when k-cliques
organize into a gigantic community as the threshold exceeds a critical
point (Derényi et al., 2005; Li et al., 2015a, 2015b; Palla et al., 2006).
Thus, K-clique can explore large-scale and highly overlapped networks
(such as social networks) without breaking the network into isolated
clusters. It also naturally lends itself to the microtransit analysis in our
study as popular origins or destinations (such as transit stations, su-
permarkets, residential buildings) are likely to be the “pivot node”
shared by multiple communities.

3. Data
3.1. Data source

UTA partnered with Via transportation to launch a microtransit pilot
program beginning November 2019 in South Salt Lake. Salt Lake County
funded the project. This on-demand, shared-ride pilot is designed to
expand access to the transit service throughout the service zone,
improve mobility for all users, and provide a quality customer experi-
ence. UTA conducted this pilot to see whether microtransit provides a
valuable and cost-effective service and whether a future deployment of
microtransit service is possible. The project experienced early success,
meeting most goals and objectives before the COVID-19 pandemic,
including ridership, cost, customer rating, and vehicle hours traveled.

The microtransit program serves about 65 mile? in the cities of
Bluffdale, Draper, Herriman, Riverton, and South Jordan in Utah. Fig. 1
shows the service area, including seven TRAX and FrontRunner Stations
which are the main components of UTA's rail system. The program
provides a corner-to-corner service in the region from 6:00 to 22:00 on
weekdays only. It allows riders to be picked up and dropped off within a
walkable distance (on average 0.1 miles) from their chosen origins and
destinations.

The trip data used in this research contains features related to each
trip request, including rider ID, pick-up/drop-off coordinates, pick-up/
drop-off time, trip duration, trip distance, number of passengers, ride
cost, payment type, request source, customer ratings, and wheelchair
accessibility. We present the detailed description of the full feature set in
Table 1. The study period spans January 1st, 2020 to July 31st, 2020,
encompassing 31,199 trips from 1569 unique users. Among these
31,199 trips, there are 2472 unique pick-up points and 2317 unique
drop-off points. Apart from the seven TRAX and FrontRunner Stations in
Fig. 1, common pick-up/drop-off locations include apartment com-
plexes, single-family houses, supermarkets, churches, educational in-
stitutions, private companies, and personal businesses (e.g., pet stores
and liquor stores), among others.
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Table 1
Feature descriptions of raw data.
Features Levels of Units Range
Measurement
Rider ID Nominal
Pick-up lat Interval Decimal [40.464, 40.568]
degree
Pick-up long Interval Decimal [-112.071, —111.83]
degree
Drop-off lat Interval Decimal [40.463,40.568]
degree
Drop-off long Interval Decimal [-112.071, —111.83]
degree

Pick-up time Interval [01/01/2020 08:24:00,
07/31/2020 21:00:00]

Drop-off time Interval [01/01/2020 08:48:00,
07/31/2020 21:06:00]

Trip duration Ratio Minute [0, 437.817]

Trip distance Ratio Mile [0.077, 11.104]

Num. of Ratio [1, 5]

passengers

Ride cost Ratio Cent [0, 1250]

Payment type Nominal UTA ticket, Apple Pay, Credit
card, Free, Google pay, Ride
credit, Waived

Request source Nominal App, Call center

Customer Ordinal 1,2,3,4,5

rating
Wheelchair Nominal 0: wheelchair-accessible
Accessibility vehicle
1: non-wheelchair-accessible
vehicle

3.2. COVID-19 in Utah

The first confirmed COVID-19 case in Utah was reported on March
6th, 2020. The patient was aboard the Grand Princess cruise ship and
was later diagnosed (Utah Department of Health, 2020). This event,
however, does not fully represent the community spread of COVID-19 in
Utah. Fig. 2 presents the daily average confirmed COVID-19 cases in
each months and daily average microtransit trips in different periods

between January 1st and July 31st, 2020. Fig. 2a demonstrates how
COVID-19 progressed within the service area and the entire State of
Utah, respectively. The service area as mentioned above consists of
Bluffdale city, Draper city, Herriman city, Riverton city, and South
Jordan city. Fig. 2b shows the daily average microtransit trip counts
within the study periods (January, February, March 1st — March 13th,
March 14th — March 31st, April through July). We split March into two
periods to highlight the comparison before and after the state of emer-
gency declaration. (See Figs. 3 and 4.)

As seen in Fig. 2a, at the state level, the daily average confirmed
COVID-19 cases have increased dramatically since March 2020, with the
largest increase during June 2020. However, within the service area,
during March through May, the confirmed cases remained at a
comparatively low level. Nevertheless, the cases increased sharply in
June and July, suggesting a wide community spread of COVID-19.

If we compared the trend of microtransit trips in Fig. 2b, there is
some consistency. Before March 13th (state of emergency declaration
date), daily average microtransit trips increased steadily as the user base
of the pilot program was growing. However, between March 14th and
March 31st, the daily average trip count dropped dramatically from
325.4 trips per day to 94.4 trips per day. The trip count reached its
lowest level in April and May, at 73.4 trips per day and 80.3 trips per
day, respectively. The trend in March through May suggests the signif-
icant impacts of COVID-19 on microtransit activities. Users were less
inclined to use microtransit or stopped using it completely. Trip counts
started to increase slightly in June and July, marking the recovery of
microtransit activity or overall public transit usage. In the meantime, as
we observed in Fig. 2a, a notable increase in COVID-19 cases happens
during the same period in the service area.

3.3. Preliminary processing

Given the nature of corner-to-corner service, the actual origin of a
trip is most likely within a walkable distance from the pick-up point
(available in the trip data). The same applies to the drop-off locations.
That said, the trip data shows a wide dispersion of pick-up and drop-off
points, where multiple points might lead to identical origins and
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Fig. 2. Trends of COVID-19 Cases and Microtransit Trips.

destinations. Thus, this research applies hierarchical agglomerative
clustering (HAC) to separately aggregate close-by pick-up and drop-off
points to facilitate subsequent analysis (Murtagh and Contreras,
2012). Agglomerative hierarchical clustering is a standard clustering
method based on the distance of clusters. It is a bottom-up approach that
assigns each unit to its cluster at the beginning. Then clusters are iter-
atively merged with their closest neighbors.

When applying HAC, one must determine the pruning parameter —
height - representing the number of iterations (merging clusters). Larger
values for height (iterations) yield fewer clusters. For this analysis, we
select a value of 300 so that the average distance within clusters is close
to 0.1 miles. This value is the average walking distance assumed by Uber
Pool service (Pachal, 2018). Figs. 3 and 4 highlight the distributions of
pick-up and drop-off locations, respectively.

After merging pick-up and drop-off locations, we further divide the
dataset into two periods, with a cut-off date of March 13th, 2020,

(a)

corresponding to the declaration of the COVID-19 outbreak as a national
emergency in the United States. This date and data partition helps
distinguish the potentially heterogeneous spatio-temporal patterns as a
result of the pandemic. Upon screening of missing values, the pre-COVID
period consists of 17,980 trips, and the post-COVID period consists of
13,188 trips.

4. Methodology
4.1. Eigendecomposition

To uncover the spatiotemporal trip pattern for the microtransit
program, we developed a methodological framework to delineate the
variation and the homogeneity/heterogeneity in trips across spatial and
temporal dimensions. Specifically, we employ eigendecomposition to
achieve this. As detailed previously, eigendecomposition is well suited

(b)

Fig. 3. Distribution of trip pick-up locations (a) before and (b) after merging.
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(2)

for this as it is good at uncovering hidden structures of spatiotemporal
patterns. Compared to other variation extraction methods, such as factor
analysis and analysis of variance, eigendecomposition is advantageous
because it does not assume any distribution, error term, or underlying
statistical model. Eigendecomposition generates a series of directional
vectors (i.e., principal components or PCs) based only on the data, each
of which best explains variation while remaining orthogonal to other
components. One orders the PCs by the amount of variance that they
explain. For example, the first PC explains the most variance; the second
PC explains the second most variance, and so on. Eigendecomposition is
often used in statistical modeling to reduce dimensionality by projecting
the data into a few PCs. One can also use eigendecomposition to explore
the inherent variation within datasets. Our study uses eigendecompo-
sition to unravel the deviation from (or resemblance of) the average
pattern of microtransit usage within the service area in both pre- and
post-COVID periods.

We assume that microtransit arrival and departure patterns differ
from each other. Therefore, all trips are further categorized into four
groups: (a) pre-COVID departure; (b) pre-COVID arrival; (c) post-COVID
departure; and (d) post-COVID arrival. During the study period, over
800 pick-up and drop-off locations resulted from 31,168 unevenly
distributed trips within the service area after merging close-by locations.
For example, among the 892 trip pick-up locations, the most popular
pick-up location generated 2633 trips, while over 50% of pick-up loca-
tions generated less than 12 trips each. To ensure unbiased analysis, we
use traffic analysis zones (TAZ) to aggregate the pick-up and drop-off
locations and uncover the trip patterns' geographic dimensions.
Among the 163 TAZs within the service area, those that produced over
87 trips (median) and attracted over 85 trips (median) are labeled as
active TAZs and used in this study. These 77 TAZs accounted for more
than 91.7% of the total microtransit trips. 16,522 trips occurred pre-
COVID, and 12,062 trips occurred post-COVID.

Using pre-COVID departure trips as an example, we illustrate the
basic structure of our eigendecomposition. We formulate departure trips
as follows:

Rig -+ Ni121
N= Y o # (€Y

N6 - N1

In matrix N, n;,j represents the total number of departure trips
originated from TAZ i (1 < i< 77) and in hourj (6 <j < 21). We ensure
that the 16 variables (6:00- 22:00) contribute equally to the variance

(b)

Fig. 4. Distribution of trip drop-off locations (a) before and (b) after merging.

maximizing exercise during eigenvalue decomposition by normalizing
matrix N by dividing each row by its summation N'. Correspondingly,
n;j represents the hourly percentage of departure trips during the pre-
COVID period. Note that:

j=21
> iy =1V € [1L77)# @
j=6

We then average hourly departure trips across all TAZs to obtain the
average temporal pattern of departure trips within the service area. Let
d; denote the average departure trip percentage in TAZ j.

=77
d; = Zn,»,_}/wj € (6,21] 3
i=1
D = {de,d7,ds, ...,d21} represents the average temporal pattern of
microtransit activities across the 77 active TAZs. We measure the de-
viation of microtransit trips from this average pattern with matrix M,
which we construct subtracting d;j from column j of matrix N:

/ ,
ny g —ds nyy —dn

M= : : (4

, ,
Ny —ds Ryp g —dn

We perform eigendecomposition by first calculating the covariance
matrix, S, where:

s— L M"M# )
n—1

As a result, we can derive eigenvectors vg,V7,Vg, ...,Vo1 with the
corresponding eigenvalues Ag,A7,Ag, ...,A21where v;s are all column
vectors. Also, the principal components that explain a large portion of
the total variance (summation of eigenvalues) can help interpret the
overall patterns of microtransit activities. Thus, by applying eigende-
composition, we can uncover the spatio-temporal patterns of micro-
transit activities at different locations and examine how they deviate or
resemble the average pattern in pre-COVID and post -COVID periods.

4.2. k-clique percolation

k-clique percolation is a variant of the traditional percolation theory.
Percolation theory aims to discover how networks behave when
removing nodes or links. It is a method to gradually break down large
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networks into smaller connected clusters or sub-networks. This method
works because the removal of key nodes or links in any network creates
disconnections. Generally, percolation theory starts with a weighted or
unweighted graph and ends at a graph containing only isolated nodes.
The nature of percolation theory makes it suitable for identifying
strongly connected subgraphs in the network, also known as community
detection (Fortunato, 2010). Most community detection algorithms,
including percolation, classify one node into one cluster or community
only. However, k-clique percolation identifies overlapping communities
by assigning specific nodes to multiple communities. This methodolog-
ical attribute is essential for understanding microtransit because many
first mile/last mile trips will make the transit station a pivot node that
belongs to multiple communities. This local transport context is the
primary reason why we use k-clique percolation in this research.
Moreover, the concept of k-clique is a good analogy to individuals'
microtransit travel patterns. People frequently travel between a limited
number of locations within a service region.

Fig. 5 illustrates a 7-node unweighted and undirected network to
highlight how k-clique percolation works. There are three key
definitions:

Definition 1. k-clique is a fully connected or complete subgraph of k
nodes.

Definition 2. Adjacent k-cliques are k-cliques that share exactly k-1
nodes.

Definition 3. A k-clique community is the union of all possible adja-
cent k-cliques.

The first step of k-clique percolation is to identify k-cliques. Here we
choose k = 3 for illustration. There are three 3-clique in the example
network: a—b — ¢, b—c-d, and ¢ - f — g. The next step is to identify
possible adjacent k-cliques which make up communities. Fig. 6 high-
lights the results with each node corresponding to its assigned com-
munity (by number). For example, Node ¢ belongs to both community 1
and 2, while node e does not belong to any community. For the weighted
graph, there exists one additional intermediate step. In traditional
percolation theory, a probability threshold determines whether two
nodes are connected or not. Similarly, for the k-clique percolation
method, we define an intensity threshold to determine whether a k-clique
can be part of adjacent k-cliques. Specifically, intensity is a measure of
the strength of connectivity of a clique. We define intensity as the geo-
metric mean of the link weights of a certain k-clique:
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Intensity = Z Woin (6)
1<m<n<k

We denote the intensity threshold by I, and we do not consider cli-
ques whose intensity is below the threshold value for adjacent cliques. In
Fig. 7, we detail a weighted and undirected graph. The number on the
link represents the link weight. Among the three 3-cliques identified in
Fig. 5, two of them have an intensity value of 0.187 (a-b-c and c-g-f), and
one of them has an intensity of 0.1 (c-b-d) according to Eq. (6). When
one sets I as 0.01, all three cliques survive the threshold. According to
Definition 2, clique a-b-c and c-b-d are considered adjacent. Thus, there
are two communities detected in the network. One contains node a, b, c,
and d, and the other contains nodes c, f, and g, where node c belongs to
both communities and node e is an isolated node (Definition 3). When I
=0.18, cliques a—b - c and ¢ —g - f survive, but we eliminate clique c-b-
d. Likewise, cliques a-b-c and c-g-f now make two separate communities
while nodes e and d are isolated nodes. When I = 0.2, no clique survives.
This type of network structure measurement is how k-clique percolation
works for given values of I and k. However, an outstanding challenge
remains — namely, determining optimal values for k and I.

The criterion of choosing k and I is to find the most highly structured
communities possible. Although different k and I values can generate
various optimal subgraphs, there is still a need to set a global rule such
that the overall structure and pattern can be analyzed. Derényi et al.
(2005) highlight one way to do this. Specifically, as one continues to
remove links in a graph, a gigantic component containing a large portion
of the existing nodes will eventually emerge. Thus, a rule of thumb for
determining I for each k (typically 3 to 6) is to choose an I that is smaller
than the value that allows the emergence of the gigantic component
(Derényi et al., 2005; Pallas et al., 2005). This value of I is considered the
critical point for this network at a specific k. One can argue that the size
of communities at the critical point follows a power-law. One can esti-
mate this critical point of I by calculating the ratio between the size
(number of nodes) of the largest community and the second-largest
community. In Palla et al. (2005), the ratio is set to 2 so that there is
neither a gigantic community that slanders the details of the network
nor are there too many small communities making the network poorly
structured.

Moreover, to further study the connectivity of local cohesiveness, we
apply the concept of a clustering coefficient (Barrat et al., 2004). As a
measurement of inner-connectivity in the network, one can apply the
clustering coefficient in two ways: 1) the clustering coefficient of a single
node and 2) the average clustering coefficient of all nodes in the

Fig. 5. An unweighted and undirected graph with 7 nodes.



Y. Zhou et al.

a

% ;

Journal of Transport Geography 97 (2021) 103226

Fig. 6. Result of 3-clique percolation.
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Fig. 7. Weighted graph with 7 nodes.

network. For weighted networks, one can use the clustering coefficient
to evaluate the importance of clustered structures based on the aggre-
gated link weights of the local triplets. In this instance, a triplet refers to
three nodes connected by either two (e.g., open triplet, examples: a-b
and b-c in Fig. 7) or three (e.g., closed triplet, example: a-b, b-c, and a-c
in Fig. 6) undirected links. Closed triplets are known as a 3-clique. In a
network where one denotes a complete node set as N, the formula for
calculating clustering coefficient for node i is:

C;

= "ijajka,«kj,k eN

Si (n,» - 1) I 2

Where, ajj,ajr and aj are binary indicators implying connection (ajj,

@jk,aix = 1) or disconnection (ajj,ajk,aix = 0). wjj is the weight between

nodeiandj. n;is the degree of node i defined as n; =  "a;. s; corresponds
J

to node strength, which measures the network property of node i in
terms of the weights obtained by extending the definition of node degree

n;. We define this as:
S$; = Zaywv
J

C; accounts for all triplets formed around i in terms of average link
weight. We normalize this by ﬁ so that 0 < C; < 1. Larger values for

(8

C;, indicate more cohesiveness for nodes around i. This structure means
that the nodes around i are more tightly connected. We define the
average clustering coefficient Cqyg is defined as:

>-Ci

Cog = W ieN )]
One can use Cgyg to estimate the level of network overlap. Higher
values of Cgyg suggest more overlap.
In the context of microtransit activities, our goal is to identify com-

munities in pre-COVID and post-COVID periods to examine the pattern
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within each period and how the pattern evolves. Again, we treat each
pick-up or drop-off location as nodes in the network. Since the customers
using microtransit programs tend to travel between a limited number of
locales multiple times, the outflow and inflow of most nodes are almost
equal to each other. Hence, we construct the network as an undirected
and weighted graph. We measure link weights as the ratio between the
trip count on each link and the maximal trip count across all links. We
apply k-clique percolation to the built network to uncover the under-
lying communities and how communities evolve. The preliminary
analysis for both pre-COVID and post-COVID periods suggests a value of
k = 3 will provide a good baseline for measurement. When k > 4, the
number of k-cliques is very limited, and more than 75% of the nodes
became isolated even when I = 0. Also, less than 4% of the nodes will
survive when reaching the critical point. In other words, k > 4 elimi-
nates a vast portion of the network before structure detection. After we
fix k to 3, we explore a range of values for I to reveal different levels of
information. When I = 0, one can treat the system as an unweighted
network since any 3-cliques can survive the threshold. In this case, we
fully preserve the topological structure. However, as we increase the
values of I, cliques with less weight will continue to dissipate. Only the
cliques with larger weights (more trips) will remain in the network.

5. Results and analysis
5.1. Eigendecomposition

There are 16,522 pre-COVID trips and 12,062 post-COVID trips in
the 77 active TAZs used for analysis. These counts translate to an
average of 229.5 and 86.2 trips per day, respectively. Such daily usage of
microtransit demonstrates a sharp decrease in activities since the
outbreak of COVID-19. Fig. 8 presents the overall temporal patterns
(sum of each hour) for departure and arrival trips in pre- and post-
COVID regimes, respectively. Both regimes show a two-peak distribu-
tion, one in the morning (7:00- 9:00) and one in the evening (16:00—
18:00). Moreover, the departure vs. arrival trip patterns are very similar
(with a small time lag) because the service region is limited, and the
average trip duration is around 10 min. Apart from the overall decline in

a Temporal Pattern in Pre-pandemic Period
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microtransit activities, it is interesting to note the pronounced drop in
the morning peak (7:00-8:00) after the COVID-19 outbreak.

Table 2 shows the total variance and the respective portions of
variance explained by the first four PCs. Here, we apply three empirical
rules to decide upon a suitable number of PCs (Jolliffe, 2002; Xu et al.,
2019):

1. The chosen PCs cumulatively explain more than 70% of the total
variation.

2. The eigenvalues of the chosen PCs are larger than 0.7 times the
average eigenvalue.

3. The chosen PCs are to the left of the elbow points of scree plot,
which shows the eigenvalues for each PC.

Given these guidelines, we use the first four PCs for further analysis.

Table 2 shows that the first four PCs explain more than 60% of the
total variation for all four trip categories. While the results are largely
homogeneous, each of the four categories displays its own temporal
structure. For example, the variance of pre-COVID trips is smaller than
post-COVID trips, generally speaking. This result suggests that micro-
transit usage is more consistent in the pre-COVID period, but it is more
diverse (from place to place) in the post-COVID period.

Also, in the pre-COVID period, the variance of departure trips is
significantly larger than that of arrival trips (by 21%). However, in the
post-COVID period, their variance is quite similar. This result suggests a
higher diversity in temporal patterns for departure trips when compared
to arrival trips, pre-COVID. Nevertheless, this temporal signature dis-
appeared in the post-COVID period. One possible explanation for this is
that drop-off locations are often more connected (for trip purposes) than
pick-up locations. This finding suggests that TAZs with similar social

Table 2
Summary of eigendecomposition.
Total Variance PC1 PC2 PC3 PC4
Pre / Departure 0.088 37.4% 17.7% 11.8% 10.1%
Pre / Arrival 0.073 36.4% 12.9% 11.1% 9.5%
Post / Departure 0.098 23.9% 16.1% 15.5% 10.4%
Post / Arrival 0.096 27.5% 15.8% 12.5% 9.1%
b Temporal Pattern in Post-pandemic Period
00
0
w
a
= type
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Fig. 8. Distribution of edges by the number of trajectories.
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functions tend to generate similar microtransit usage patterns. As a
result, the total variance is lower.

In this research, first mile/last mile trips are important. This type of
trip accounts for more than 58% of total trips in the pre-COVID period,
resulting in a more uniform arrival pattern. However, after the outbreak
of COVID-19, the percentage of first mile/last mile trips continues to
decrease. For example, in July, the relative number of trips dropped to
29%. Meanwhile, trip purposes have become much more diverse,
making the variance of arrival trips close to departure trips.

The first several PCs can help summarize the spatio-temporal pat-
terns of microtransit activities. Fig. 9 displays the first 4 PCs for pre-
COVID trips. In Fig. 9, the x-axis represents the 16 input variables that
correspond to each hour when the service is in operation, and the y-axis
demonstrates the loadings of the first 4 PCs associated with all the input
variables. In other words, the y-axis is the coefficient of the linear
combination between PCs and input variables. For example, PC1 of pre-
COVID arrival trips explains 37.4% of the total variation and shows a
clear two-peak pattern at 7:00-10:00 and 17:00-19:00 (Fig. 9a). This
result suggests that microtransit activity during these two time periods
varies considerably, especially when compared to the uniformity found
in other periods. Fig. 9e, also suggests that PC1 for departure trips ex-
plains 36.4% of the total variation and has a similar two-peak pattern,
yet the graph shifts slightly to the left. The two-peak periods are
6:00-9:00 and 16:00-18:00. Such a pattern is consistent with the
morning and evening peaks of transit usage, indicating that both arrival
and departure trips have the most diversified spatio-temporal patterns
during these two peak periods.

Of note are the results from Fig. 9a. In this instance, the coefficients
of PC1 have opposite signs in the morning and evening peaks. This result
suggests that if a TAZ attracts more microtransit trips during 7:00- 9:00,
then arrivals trips are likely lower in that TAZ during 17:00- 19:00. In
fact, of the top five TAZs that attract most trips in the morning peak, four
of them attract a limited number of trips in the evening peak. The
pattern holds true for departure trips as well. If more people departed
certain TAZs during 16:00- 18:00, fewer customers tend to depart from
those TAZs during 6:00- 9:00.

While the coefficients of PC1 support these results, PC2, PC3, and
PC4 combine to explain 39.6% of the variation for arrival trips and
33.5% variation for departure trips. This explanatory power means that
there are other significant temporal patterns that PC1 cannot explain (by
itself) and that many TAZs do not follow the patterns shown by PC1. For
example, PC2 explains 17.7% of the total variation for arrival trips,
suggesting a notable shift in the morning and evening peaks (Fig. 9b).
Further, Fig. 9b suggests that in some TAZs if more patrons arrive during
17:00- 18:00, fewer customers will arrive at those TAZs during 18:00-
19:00. Fig. 9f highlights a similar pattern for departure trips. The vari-
ation of temporal patterns peaks during 7:00- 8:00 and 8:00- 9:00, yet
in opposite directions. Moreover, PC3 and PC4 each explain around 10%
of the total variation for both arrival and departure trips. The proximity
of variance explained by PC1, PC2, PC3, and PC4 suggests a variety of
underlying temporal patterns in pre-COVID microtransit activities,
which, to some extent, uncovers the diversity of trip purposes.

To deepen our understanding of the causal mechanisms for the pat-
terns displayed in Fig. 9, we focus on the temporal pattern of first mile/
last mile trips. In this study, the first mile/last mile trips either start from
or end at any transit station identified in Fig. 1. Fig. 10 shows the per-
centage of first mile/last mile trips over total trips that start in each hour
for the pre-COVID and post-COVID periods, respectively. The average
value in Fig. 10 is the average percentage of total first mile/last mile
trips over total trips for the pre-COVID and post-COVID periods,
respectively. The percentage of first mile/last mile trips of both arrival
and departure trips peaks between 6:00- 9:00 and 16:00- 19:00. This
result means that many patrons travel to or from transit stations during
those time periods. It is important to note that the first mile/last mile trip
patterns are quite similar pre- and post-COVID. In other words, although
there is an overall reduction (from 58.07% to 47.88%) in percentage,

10
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first mile/last mile trips still account for a large portion of the total trips.
One can observe the same peaks in Fig. 9(a) and Fig. 9(e). This pattern
implies that when the percentage of first mile/last mile trips is high, the
variation in travel patterns is more extensive and vice versa. As we
further examine PC3 and PC4 of arrival and departure trips, please note
that the variation peaks between 6:00- 9:00 and 16:00- 19:00. These
windows are when the percentage of first mile/last mile trips is above
average (Fig. 10). It indicates that PC1, PC3, and PC4 all capture part of
the variation caused by first mile/last mile trips.

Fig. 11 presents the eigendecomposition of post-COVID trips. One
focus of the eigendecomposition is to study how COVID-19 has altered
the temporal patterns of microtransit activities. For example, Fig. 11(a)
and Fig. 11(e) illustrate a similar two-peak pattern for arrival and de-
parture trips. For arrival trips, the largest variation occurs during 8:00-
9:00 and 18:00- 19:00. For departure trips, the peak periods are 6:00—
7:00 and 16:00- 17:00. Thus, one might suggest that specific patterns
emerged after the outbreak of COVID-19. However, the variance
explained by PC1 for arrival and departure trips decreased from 37.4%
and 36.4% to 27.5% and 23.9%, respectively. This decrease in variance
explained by PC1 suggests that the temporal patterns of post-COVID
trips are more diverse. Also, different patterns can be found based on
the PCs. For instance, PC2 for post-COVID arrival trips demonstrates a
different one-peak pattern. Specifically, for some TAZs, trip arrival is
most active and diverse during 13:00- 14:00 (Fig. 11(b)). That said, PC2,
PC3, and PC4 do not exhibit such a pattern for pre-COVID arrival trips.
The difference between the two eigendecomposition results suggests a
substantial pattern transition after the outbreak of COVID-19.

Based on the results of eigendecomposition, the first mile/last mile
trips are likely to be the primary source of variance, which PC1 explains
in both pre- and post-COVID periods. Moreover, transit-dependent users
remain inelastic despite the threats brought by COVID-19 (Fig. 10).
However, the patterns are mutable. For example, there are reductions in
microtransit activity along with first mile/last mile trips. In addition,
there is a dispersive trend for pick-up and drop-off locations and the
emergence of new travel patterns. In the next section, we analyze the
coordinates of pick-up and drop-off locations to detect underlying
community structures and compare the temporal patterns of these lo-
cations to the service area averages.

5.2. K-clique percolation

5.2.1. Pre-COVID period

There are 17,980 trips in the pre-COVID period from 1235 different
users in 1163 pick-up and drop-off locations. The maximum number of
trips is 348, while the minimum number is 1. We first vary I (Intensity
thresholds) to see how communities progress. We present the evolving
pattern of communities with increasing values of I in Fig. 12. Specif-
ically, Fig. 12(a) displays the total number of communities in response to
changes in I. Fig. 12(b) demonstrates the size ratio of the largest com-
munity to the second-largest community. For higher values of I, com-
munity formation decreases. This type of pattern is not always
monotonic. For example, when I increases, cliques with lower levels of
intensity will disappear. Simultaneously, these eliminations will
dissolve large communities into smaller ones. For instance, in Fig. 12(b),
the ratio is well above 2 when I is small, indicating a gigantic commu-
nity, with a few small communities containing a minimal number of
nodes. The formation of a gigantic community suggests a wide
connection across the service region, apart from a few pick-up or drop-
off locations. The vertical dashed line in Fig. 12 highlights the “critical”
point, detailed in Section 4. Specifically, when I increases from 0, fewer
3-cliques remain in the network. Until I reaches 0.031, the gigantic
community that contains most of the nodes breaks down into two
medium-sized communities with a ratio of 4.05. Thus, we identify I =
0.031 as the critical point for the pre-COVID microtransit network.

We further explore the characteristics of communities using ten
unique values for I: 0, 0.031, 0.047, 0.063, 0.079, 0.095, 0.111, 0.127,
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0.143, 0.159. I = 0 represents the point when all 3-cliques remain in the
network without any isolated node. I = 0.031 is the critical point. When
I =0.159, only one community remains in the network. The remaining
seven values are interpolated at an increment of 0.016 from I = 0.031 to
I = 0.159. We present these results in Table 3, along with the corre-
sponding community attributes. When multiple communities have the
same number of nodes, we break the tie by selecting the community with
the highest trip rate. We select the two largest communities for illus-
trative purposes because their size ratio is an important indicator of
community structure. Also, the two largest communities account for a
majority (= 85%) of the total trips. In Table 3, Size represents the
number of nodes contained in the community. Trips are the indicator of
the total amount of trips captured by the community. FMLM trips stand
for first mile/last mile trips with a calculated percentage of total trips.
Users are the unique number of customers who appeared across the trips.
Avg. Trips equal to Trips divided by Users. Duration is the average trip
length of all trips in the unit of minutes in that community.

In general, the evolution of communities follows a hierarchical
structure. As values of I increase, 3-cliques with lower values of Intensity
begin to disappear. However, When I = 0, all 3-cliques survive. Again,
this turns the network into an unweighted and undirected graph. This
scenario means that one can consider any link as only connected or
disconnected. The communities detected when I = 0 are a good reflec-
tion of the connectivity across the region. There are 22 communities in
the network, and the largest one is a gigantic community that contains
601 nodes. The remaining communities contain only 3 or 4 nodes
(Table 3). It is worth mentioning that the remaining 22 communities
include 626 nodes in total, leaving 537 nodes forming no 3-cliques. In
other words, 537 nodes do not belong to any clique. These isolated nodes
demonstrate a commuting pattern for specific individuals. In other words,
trips concerning the 537 pick-up or drop-off locations are user-centric.
The locations are not likely to be shared across different users.

When I =0.031 (critical point), the gigantic component breaks down
into two medium-sized communities (81 and 20). In this scenario, the
community structure is strong, maximum information is present, yet it
displays a distinguishable pattern. For example, Fig. 13 and Fig. 14

12

demonstrate the spatial distribution of the two largest communities and
the shared nodes when I = 0.031. Fig. 13 suggests that the spatial
pattern of the network includes a distribution of nodes from the entire
region, accounting for 6 of 85.7% (6 of 7) of the major transit stations.
However, a new spatial pattern emerges in Fig. 14. The second-largest
community contains a congregation of 20 nodes from the west side of
the service area. The corresponding trips gravitate to the Daybreak
Parkway station, with 81% of trips being first mile/last mile trips. This
result suggests that the pick-up and drop-off locations surrounding
Daybreak Parkway station maintain a connection, which provides
valuable information for possible vehicle dispatching and routing
optimization.

Section 5.1 explored how first mile/last mile trips contribute to the
spatio-temporal patterns of microtransit activities. Similarly, we observe
a dominant percentage of first mile/last mile trips for different Is in
Table 3. When I = 0, the largest community has 15,735 trips, with 62%
being first mile/last mile trips, slightly higher than the average
(58.07%). However, only 35% of trips occur outside of network com-
munities, with the majority connecting isolated nodes. This difference
suggests that first mile/last mile trips enhance the connectivity between
popular pick-up and drop-off locations. Trips connecting isolated nodes
are more user-specific and less dependent on transit. Further, at the
critical point, first mile/last mile trips account for a large portion of the
total trips in both the largest and second-largest communities with a
minimum of 77% and a maximum of 100% (Table 3). Clearly, first mile/
last mile trips play a crucial role in connecting the entire region.

We also explore 3-clique communities, their overlap, and levels of
connectivity. We use the average clustering coefficient, Cqyg, to measure
local community cohesiveness. Without any processing, the Cgyg of the
original network is 0.169. This high value suggests significant overlap
between communities in the pre-COVID period. Also, it means that when
two communities overlap, they are likely to overlap with each other.
Fig. 15 presents this trend graphically. As values of I increase, there is a
removal of isolated nodes and 3-cliques with lower I values. This trend
results in increasing values of Cgyg, although there is some fluctuation.
The results suggest that popular (i.e., large trip counts) pick-up and
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Table 3
The result of 3-clique percolation for the pre-COVID period.
1 Community Size Trips FMLM Trips Users Avg. Trips Duration
(% of total trips) (trips/person) (minutes)
0 1 601 15,735 9818 (62%) 1039 15.1 10.3
2 4 13 11 (85%) 5 2.6 12.3
0.031 1 81 4930 4330 (88%) 361 13.7 9.6
2 20 699 564 (81%) 65 10.8 8.2
0.047 1 42 3128 2835 (91%) 237 13.2 8.8
2 8 441 400 (91%) 38 11.6 8.6
0.063 1 26 2240 1992 (89%) 156 14.4 9.0
2 6 336 319 (95%) 35 9.6 7.7
0.079 1 15 1410 1338 (95%) 117 12.4 9.4
2 5 291 231 (79%) 16 18.2 6.0
0.095 1 5 471 466 (99%) 51 9.2 12.2
2 4 321 306 (95%) 28 11.5 7.3
0.111 1 4 321 306 (95%) 28 11.5 7.3
2 4 244 189 (77%) 11 22.18 6.2
0.127 1 4 321 306 (95%) 28 11.5 7.3
2 3 409 409 (100%) 49 8.3 13.0
0.143 1 4 321 306 (95%) 28 11.5 7.3
2 3 409 409 (100%) 49 8.3 13.0
0.159 1 3 239 224 (94%) 14 17.1 6.72
2

drop-off locations are tightly connected, resulting in high Cqyg.
Community structure is also important to consider, especially at the
critical point. When I = 0.031, there are nine shared nodes with clus-
tering coefficients ranging from 0.017 to 0.32. Note that six out of these
nine nodes with the lowest clustering coefficient correspond to major
transit stations, while the top three correspond to an apartment, a pri-
vate company, and a supermarket (Fig. 13 & Fig. 14). The average
clustering coefficient of the six transit stations is 0.0275 - well below
Cayg (0.169) of the original network. Moreover, among the six transit
stations, Draper Station has the largest nodal degree, yet the smallest
clustering coefficient, 0.017. In contrast, Kimballs Lane Station has the
lowest nodal degree yet the largest clustering coefficient, 0.049. A
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similar pattern emerges for the top four nodes that are not transit sta-
tions. All have smaller nodal degrees and larger clustering coefficients,
with a maximal of 0.32. This result suggests a different distribution
pattern between transit stations vs. non-transit stations. For transit sta-
tions, a hub-and-spoke pattern best describes the system surrounding
them. In short, traffic travels along the links connecting different nodes
to a central distribution center (transit stations). However, those nodes
themselves are not well connected. For apartments, private companies,
and supermarkets, the underlying pattern better corresponds to a point-
to-point structure. In these instances, riders can use microtransit to
travel directly between those locations without going through a central
hub.
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Fig. 13. The largest community and shared nodes when I = 0.031 in the pre-COVID period.
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5.2.2. Post-COVID period

There are 13,188 trips by 794 unique users (334 new) between 1040
pick-up and drop-off locations in the post-COVID period. The maximum
number of trips is 221, while the minimum number is 1. We present the
results of the 3-clique percolation in Fig. 16. In Fig. 16 (a), the same
decreasing pattern with fluctuations is apparent. In Fig. 16 (b), the ratio
is well above 2 when I is small, but the value has dropped slightly
because of less microtransit activity in general. The vertical dashed line
stands for the critical point in the post-COVID period.

The characteristics of communities is further explored at ten values

15

of I in the same manner: 0, 0.066, 0.087, 0.108, 0.129, 0.150, 0.171,
0.192, 0.213, 0.234. Table 4 displays the results.

When I = 0, the network yields a gigantic component that contains
492 nodes while the remaining communities contain 6 or fewer nodes
and 530 nodes in isolation. Compared to the pre-COVID period, there are
more isolated nodes (51% vs. 46%). This result indicates that the user-
centric pattern has become more distinct after the outbreak of COVID-
19.

When I = 0.066 (critical point), two medium-sized communities (25
and 18) emerge from the gigantic network. Fig. 17 and Fig. 18 present
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the spatial distribution of both and the shared nodes. There are some
significant spatial changes worth noting. First, the spatial distributions
of the two communities became less distinct. The largest community
contains Draper Station, Draper Town Center Station, and Crescent View
Station. The second community contains Draper Station, Crescent View
Station, South Jordan Station, and Daybreak Parkway Station. The
major takeaway here is that both communities span around major
transit stations across the region. Also, their Sizes and Trips (in Tables 2
& 3) are similar, suggesting that these two communities are equally
important in the post-COVID period.

In addition, for all values of I, the number of users has decreased.
This result is likely due to the overall decline in microtransit activity.
However, the average number of trips per user increased compared to
the pre-COVID period (Tables 2 and 3). There are two possible expla-
nations. One is that less frequent users might have stopped using
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microtransit due to pandemic concerns. The other is that those who
depend on microtransit remain riders (e.g., transit dependents and
essential workers). Aside from these differences, similarities also
emerge. For example, many trips remain in the network for different
values of I, and the first mile/last mile trips account for a large per-
centage of total trips for both periods.

We are also interested in how the overlapping pattern changes.
Fig. 19 presents the average clustering coefficients for different values of
I. The Cgyyg of the original network decreased from 0.169 (pre-COVID) to
0.129 (post-COVID). This result indicates that the level of network
overlap decreased. At the critical point, we identify eight shared nodes.
The three with the lowest clustering coefficient are transit stations with
a minimal clustering coefficient of 0.029 (Draper Station) and a maximal
clustering coefficient of 0.041 (Crescent View Station). The top five
nodes contain four supermarkets and one residential node (Fig. 18) with
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Table 4
The 3-clique percolation for the post-COVID period.
1 Community Sizes Trips FMLM Trips Users Avg. Trips Duration
(% of total trips) (trips/person) (minutes)
0 1 492 10,948 5737 (52%) 610 17.9 9.5
2 6 9 0 (0%) 2 4.5 8.4
0.066 1 25 1549 1520 (98%) 82 18.9 6.3
2 18 1042 919 (88%) 81 129 24.3
0.087 1 11 820 809 (99%) 38 21.6 6.3
2 11 817 712 (87%) 50 16.3 5.3
0.108 1 9 750 748 (99%) 30 25.0 6.3
2 7 630 621 (99%) 35 18 5.3
0.129 1 7 630 621(99%) 35 18.0 5.3
2 6 517 516 (99%) 24 21.5 6.3
0.150 1 6 601 600(99%) 34 17.7 5.3
2 5 468 468 (100%) 18 26.0 6.3
0.171 1 6 601 600 (99%) 34 17.7 5.3
2 5 468 468 (100%) 18 26.0 6.3
0.192 1 5 551 550 (99%) 30 18.4 5.3
2 3 162 162 (100%) 13 12.5 5.2
0.213 1 5 551 550 (99%) 30 18.4 5.3
2 3 157 157 (100%) 11 14.3 7.2
0.234 1 5 551 550 (99%) 30 18.4 5.3
2
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Fig. 17. The largest community and shared nodes when I = 0.066 in the post-COVID period.

a minimum coefficient of 0.073 and a maximal coefficient of 0.124. The
hub-and-spoke distribution for transit stations and point-to-point dis-
tribution for supermarkets and residential locations were also present in
the post-COVID period.

6. Conclusions

The worldwide expansion of microtransit continues, bringing many
opportunities and challenges for service providers. As a new demand-
responsive transport mode, it has the advantage of increasing service
coverage, flexible routing, and enhancing transit accessibility. With
proper design and execution, microtransit can supplement traditional
transport methods to help reduce road pressure and create first mile/last
mile connections. However, microtransit projects often suffer from poor
marketing and operational efforts, making them less cost-effective than
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they should be. Further, there is limited information concerning the
spatio-temporal patterns of microtransit activities. This research fills the
gap by unraveling the spatio-temporal structures of microtransit activ-
ities utilizing empirical data from a pilot program in the Salt Lake City,
Utah area, UTA Via. The results compare microtransit activity during
pre- and post-COVID periods, highlighting how some use patterns persist
and change after the outbreak.

The results of the eigendecomposition suggest that first mile/last
mile trips declined, but the hourly distribution remained nearly iden-
tical. This finding suggests transit dependency for many riders. How-
ever, several new patterns emerged (e.g., Fig. 9 and Fig. 11).
Specifically, the explanatory power of PC1 decreased. This finding
suggests a temporal dispersion trend for microtransit activity after the
pandemic. Furthermore, by focusing on first mile/last mile trips, our
results suggest that a higher percentage of first mile/last mile trips leads
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to greater variation for PC1. This result means that first mile/last mile
trips can be the major source of variation in both periods.

We further apply k-clique percolation to identify the communities in
two networks (pre-COVID and post-COVID). We vary threshold values of
I for each network. As I increases, the gigantic component begins to
break down into medium-sized communities. During this process, the
results suggest that first mile/last mile trips account for most of the total
trips captured by the network. However, Tables 2 and 3 suggest a
decrease in unique users and a heavy dependency on microtransit for
specific users.

The application of a clustering coefficient revealed that network
overlap decreased after the COVID-19 outbreak. Interestingly there was
an emergence of two distinct communities, pre- and post-COVID. The
communities surrounding transit stations take the form of hub-and-
spoke systems, with transit stations serving as traffic distribution
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centers while the surrounding nodes are disconnected. For other popular
locales, connections are more dispersed, demonstrating a point-to-point
distribution style.

This work aimed to reconstruct and understand the spatio-temporal
patterns of microtransit activity in portions of Salt Lake City, Utah. The
framework is generalizable and can provide additional insights for UTA
Via as it grows or inspires applications to pilot programs in other cities.
By understanding the patterns and possible causal factors for micro-
transit network development, use, and underlying spatio-temporal pat-
terns, one can enhance the transferability of microtransit programs
without additional cost. Furthermore, spatio-temporal structures of
microtransit usage reveal that the usage is uneven. For example, the
connection between certain regions is significantly stronger than that of
other places. Also, the two-peak temporal pattern demonstrates many
variations resulting from first mile/last mile trips. Understanding these
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structures of microtransit activity can help with possible customer seg-
mentation and vehicle dispatching for all microtransit programs. Lastly,
by comparing results between pre- and post-COVID periods, it is possible
to inform transit agencies on people's behavioral changes and the evo-
lution of their travel patterns to guide operational strategy adjustments
further.
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