q

Check for
updates

Robust Neural Network Approach
to System Identification
in the High-Noise Regime

1)@, Giovanna Citti2, and Luca Capogna®

Elisa Negrini
! Department of Mathematics, University of California Los Angeles,
Los Angeles, USA
enegrini@ucla.edu
2 Department of Mathematics, University of Bologna, Bologna, Italy
giovanna.citti@unibo.it
3 Department of Mathematical Sciences, Smith College, Northampton, USA
lcapogna@smith.edu

Abstract. We present a new algorithm for learning unknown gov-
erning equations from trajectory data, using a family of neural net-
works. Given samples of solutions z(¢) to an unknown dynamical system
z(t) = f(t,z(t)), we approximate the function f using a family of neural
networks. We express the equation in integral form and use Euler method
to predict the solution at every successive time step using at each iter-
ation a different neural network as a prior for f. This procedure yields
M-1 time-independent networks, where M is the number of time steps at
which z(t) is observed. Finally, we obtain a single function f(t,z(t)) by
neural network interpolation. Unlike our earlier work, where we numer-
ically computed the derivatives of data, and used them as target in a
Lipschitz regularized neural network to approximate f, our new method
avoids numerical differentiations, which are unstable in presence of noise.
We test the new algorithm on multiple examples in a high-noise setting.
We empirically show that generalization and recovery of the governing
equation improve by adding a Lipschitz regularization term in our loss
function and that this method improves our previous one especially in
the high-noise regime, when numerical differentiation provides low qual-
ity target data. Finally, we compare our results with other state of the
art methods for system identification.

Keywords: Deep Learning - System Identification - Network
Regularization

1 Introduction

System identification refers to the problem of building mathematical models
and approximating governing equations using only observed data from the sys-
tem. Governing laws and equations have traditionally been derived from expert
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 165-178, 2023.
https://doi.org/10.1007/978-3-031-44505-7_12

166 E. Negrini et al.

knowledge and first principles, however in recent years the large amount of data
available resulted in a growing interest in data-driven models and approaches
for automated dynamical systems discovery. The applications of system identifi-
cation include any system where the inputs and outputs can be measured, such
as industrial processes, control systems, economic data and financial systems,
biology and the life sciences, medicine, social systems, and many more (see [3]
for more examples of applications).

In this work we train a family of neural networks to learn from noisy data a
nonlinear and potentially multi-variate mapping f, right-hand-side of the differ-
ential equation:

(t) = f(t,z) (1)

The trained network can then be used to predict the future system states.

In general, two main approaches can be used to approximate the function f
with a neural network. The first approach aims at approximating the function
f directly, like we did in our previous paper [11], which we refer to as splines
method. In this work, inspired by the work of Oberman and Calder in [12], we
use a Lipschitz regularized neural network to approximate the RHS of the ODE
(1), directly from observations of the state vector z(t). The target data for the
network is made of discrete approximations of the velocity vector #(t), which
act as a prior for f. One limitation of this approach is that, in order to obtain
accurate approximations of the function f, one needs to obtain reliable target
data, approximations of the velocity vector, from the observations of z(t). This
proved to be hard when a large amount of noise was present in the data. The
second approach aims at approximating the function f implicitly by expressing
the differential equation (1) in integral form and enforcing that the network
that approximates f satisfies an appropriate update rule. This is the approach
used in [18], which we refer to as multistep method, where the authors train the
approximating network to satisfy a linear multistep method. An advantage of
this approach over the previous one is that the target data used to train the
multistep network is composed only of observations of the state vector x(t).
However, noise in the observations of z(t) can still have a strong impact on the
quality of the network approximation of f.

In this work we build on the second approach and introduce a new idea
to overcome the limitations of the methods mentioned above. Similarly to the
multistep method, we express the differential equation in integral form and train
the network that approximates f to satisfy Euler update rule (with minimal
modifications one can use multistep methods as well). This implicit approach
overcomes the limitations of the splines method, whose results were strongly
dependent on the quality of the velocity vector approximations used as target
data. Differently than the multistep method, our proposed approach is based on
a Lipschitz regularized family of neural networks and it is able to overcome the
sensitivity to noise. Later on we compare these methods and other methods for
system identification with our proposed approach and show that in the high-
noise setting our method produces more accurate results thanks to the use of
Lipschitz regularization and multiple networks.

Robust Neural Network for Noisy System Identification 167

The rest of the paper is organized as follows: Sect. 2 outlines relevant efforts
in the field of system identification. In Sect. 3 we describe in detail our proposed
method. Section 4 describes and discusses the experimental results. Finally con-
clusion and future research directions are outlined in Sect. 5

2 Related Works

In recent years many methods have been proposed for data-driven discovery of
nonlinear differential equations. Commonly used approaches are sparse regres-
sion, Gaussian processes, applied Koopmanism and dictionary based approaches,
among which neural networks. Sparse regression approaches are based on a user-
determined library of candidate terms from which the most important ones are
selected using sparse regression [4,20-22]. These methods provide interpretable
results, but they are sensitive to noise and require the user to choose an “appro-
priate” sets of basis functions a priori. In contrast, since neural networks are
universal approximators our method allows to accurately recover very general
and complex RHS functions even when no information on the target function
is available. Identification using Gaussian processes places a Gaussian prior on
the unknown coefficients of the differential equation and infers them via maxi-
mum likelihood estimation [16,17,19]. The Koopman approach is based on the
idea that non linear system identification in the state space is equivalent to lin-
ear identification of the Koopman operator in the infinite-dimensional space of
observables. Since the Koopman operator is infinite-dimensional, in practice one
computes a projection of the Koopman operator onto a finite-dimensional sub-
space of the observables. This approximation may result inaccurate in presence
of noise and has proven challenging in practical applications [5,9,10]. In con-
trast our proposed method is able to overcome the sensitivity to noise thanks
to the use of Lipschitz regularization and multiple networks. Since neural net-
works are universal approximators, they are a natural choice for nonlinear system
identification: depending on the architecture and on the properties of the loss
function, they can be used as sparse regression models, they can act as priors on
unknown coefficients or completely determine an unknown differential operator
[2,6,7,11,13-15,18]. Our method is part of this category, but adds to the existing
literature thanks to the use of multiple networks and Lipschitz Regularization.
Moreover, since our proposed method is based on weak notion of solution using
integration it can be used to reconstruct both smooth and non-smooth RHS
functions. This is especially an advantage over models that rely on the notion of
classical solution like the splines method [11] and make it an extremely valuable
approach when working with real-world data.

3 Proposed Method

In this section we describe the architecture used in the experiments.
Our goal is to approximate a vector-valued RHS f(¢, x) of a system of differ-
ential equations #(t) = f(t,x), directly from discrete noisy observations of the

168 E. Negrini et al.

state vector z(t) € R?. We propose to do so using a neural network architecture
composed of two blocks: the target data generator and the interpolation network.
See Algorithm 1 for the full architecture algorithm.

The Target Data Generator: The target data generator is a family of neural
networks whose goal is to produce reliable velocity vector approximations which
will be used as target data for the interpolation network. The data is selected
as follows: given time instants t1,...,ty; and K trajectories, define

() €RY, i=1,....K, j=1,....M

to be an observation of the state vector x(t) at time t; for trajectory i. For
each time instant t;, j = 1,...,M — 1 we train a feed forward neural network
N;(z(t;)) to approximate the velocity vector (t) at time instant ¢;. Indicating
by 67 the network parameters, the loss function L; used for training forces each
Nj to satisfy Euler update rule and it is defined as:

K
o . ,
L;(¢7) = EZ AL Nj(wi(ty),07) + 2i(ty) — wi(ti)ll5 G=1...,M—1
=1

Once the networks N; are trained, they collectively provide a discrete approx-
imation of the velocity vector on the full time domain, which we indicate by

().

The Interpolation Network: The interpolation network N;,; is a Lipschitz
regularized neural network (as defined in [11]) which takes as input a time ¢ and
an observation of the state vector x(t) and uses as target data the approxima-

tion of the velocity vector &(t) given by the target data generator (this acts as
a prior for the unknown function f(¢,z)). Once trained the interpolation net-
work N,,; provides an approximation of the RHS function f on its domain, that
is Nint(t,x) =~ f(t,x). The loss function L(6;,:) minimized to train the inter-
polation network contains two terms. The first one is the Mean Squared Error
(MSE) between the network output and the target data: this forces the network
predictions to be close to the observed data. The second term is a a Lipschitz
regularization term which forces the Lipschitz constant of the network N;,; to be
small (the Lipschitz constant is a proxy for the size of the network’s gradient):

L(0;n;) = MSE (5(?) Nina (£, z(2); emt)) + aLip(Nine).

Here o > 0 is a regularization parameter and Lip(V;y:) is the Lipschitz constant
of the network Nj,,;. Inspired by the work of Jin et al. in [8] the Lipschitz constant
of network is computed as:

Lip(Nint) < Wik l2Willz - - Wiy l2. (2)

Since this is an explicit constraint on the network weights, the computational
cost for this approximation is low. This is in contrast with the approximation we
used in our previous paper [11], (Section3.1) based on Rademacher’s theorem,
which requires to compute the gradient of the network at each iteration.

Robust Neural Network for Noisy System Identification 169

Algorithm 1. Full Architecture Algorithm

Require: ¢t = (t;), z(t) = (z:i(¢;)), t=1,...,K, j=1,....M

Train Target data generator
forj=1: M —1do _

0 — argming MSE(At N;(z(t;); 07) + z(t;), x(tj+1))
end for

Obtain #(t) := (N;(z(t;)), j=1,...,M —1

Train Interpolation Network

Oint — argming, (MSE (:c(t), Nint(t, z(t); Gmt)) + aLip(Nmt))

Obtain Nin(t, ©(t); int) = f(t, z(t))

4 Experimental Results and Discussion

In this section we propose numerical examples of our method and comparisons
with other methods for system identification. In the examples we use synthetic
data with noise amount up to 10%. In this paper we only show one dimensional
examples, but we explicitly notice that, since our method is applied component-
wise, it can be used for data of any dimension. Three different metrics are used
to evaluate the performance of the our method:

1.

Mean Squared Error (MSE) on test data which measures the distance of
the model prediction from the test data. We also report the generalization
gap (difference between test and training error) obtained with and without
Lipschitz regularization in the interpolation network. The smaller the gener-
alization gap the better the network generalizes to unseen data (for a more
precise description see [1]).

. Since we use synthetic data, we have access to the true RHS function f(t, z).

This allows to compute the relative MSE between the true f(t,z) and the
approximation given by our architecture on arbitrary couples (t,z) in the
domain of f. We call this error recovery error.

. Since our method produces a function N;,.(t,), it can be used as RHS of a

differential equation & = N;,;(t, x). We then solve this differential equation in
Python and compute the relative MSE between the solution obtained when
using as RHS the network approximation Nj,:(t,) and when using the true
function f(t,z). We call this error in the solution.

4.1 Smooth Right-Hand Side

The first example we propose is the recovery of the ODE

& = xe' +sin(z)? — 2 (3)

170 E. Negrini et al.

We generate solutions in Python for time steps ¢ in the interval [0,0.8] with
At = 0.04 and for 500 initial conditions uniformly sampled in the interval [-
3,3]. The hyperparameters for our model are selected in each example by cross
validation: the interpolation network N;,; has L = 8 layers, each layer has
20 neurons, while each network N; of the target data generator has L; = 3
layers with 10 neurons each. The target data generator is made of 20 networks.
In Table 1, we report the training MSE, testing MSE, Generalization Gap and
estimated Lipschitz constant when 5% and 10% of noise is present in the data.
Since our goal here is to compare the performance on test data of the networks
with and without regularization, we select the number of epochs during training
so as to achieve the same training MSE across all the regularization parameters
choices and compare the corresponding Testing errors and Generalization Gaps.
We report here only the results obtained for the non-regularized case and for the
best regularized one when 5% and 10% of noise is present in the data. We can
see from the tables that Lipschitz regularization improves the generalization gap
by one order of magnitude for all amounts of noise, that a larger regularization
parameter is needed when more noise is present in the data and that, as expected,
adding Lipschitz regularization results in a smaller estimated Lipschitz constant.
This confirms the findings from our previous paper that Lipschitz regularization
improves generalization and avoids overfitting, especially in presence of noise.

Table 1. Test error and Generalization Gap comparison for 5% and 10% noise.

& = ze' +sin(x)? — z, 5% Noise

Regularization | Training | Testing Generalization | Estimated Lipschitz
Parameter MSE MSE Gap Constant

0 0.618% 0.652% 0.034% 7.09

0.004 0.618% |0.619% | 0.001% 6.33

i = ze' + sin(x)? — 2, 10% Noise

Regularization | Training | Testing Generalization | Estimated Lipschitz
Parameter MSE MSE Gap Constant

0 2.01% 2.32% 0.310% 7.72

0.015 2.01% 2.03% 0.030% 6.38

In Table 2 we report the error in the recovery for the RHS function f(¢,z) =
xe! +sin(x)? — x and the error in the solution of the ODE when using the inter-
polation network as RHS. We can see that for all amounts of noise in the data,
both the reconstruction error and the error in the solution are small, respectively
they are less than 0.7% and 0.04%. For larger amounts of noise, the method still
works, but provides less accurate approximations. For example with 20% noise
the recovery error is approximately 3%. Making the method more robust in
higher noise regimes will be object of a future work.

Robust Neural Network for Noisy System Identification 171

Table 2. Left: Relative MSE in the recovery of the RHS for up to 10% of noise. Right:
Relative MSE in the solution of the ODE for up to 10% of noise

Relative MSE in the recovery of the RHS of Relative MSE in the solution of
& = wet + sin(x)? — = ze! +sin(z)? — =

0% Noise 0.100% 0% Noise 0.016%

5% Noise 0.144% 5% Noise 0.025%

10% Noise 0.663% 10% Noise 0.038%

The left panel of Fig. 1 shows the true and reconstructed RHS and recovery
error on the domain on which the original data was sampled for 5% of noise
in the data. In the error plot a darker color represents a smaller error. We can
see that the largest error is attained at the right boundary of the domain: by
design of our architecture the target data generator only generates target data
up to the second-last time step. As a consequence the interpolation network has
only access to observations up to the second-last time step and so it is forced to
predict the value of the RHS function at the last time step by extrapolation. It is
then reasonable that the largest recovery error is attained at the right boundary
of the domain. In the right panel of Fig.1 we report the true solution (red line)
and the solution predicted when using the interpolation network as RHS (dashed
black line) for multiple initial condition and for 5% noise in the data. We notice
that the prediction is accurate for all the initial conditions selected, but that
it gets worse towards the end of the time interval because of the inaccurate
approximation of the RHS at the right boundary of the time interval.

Pregiction L2 Error
True flt,x) s Ensemble Network . Ensemble Network True v.s. Approximated Solution

3

0200
— True -
0175 3| ——- Predicted Ensemble
0150
2
us | T e =
1 e
0100
——
0075 0
0050 .
0025 —
2] ———————————

DU 02 u4 06 00 01 02 03 04 05 06 07 08

3
2
1
I i x
e o .
-2
=3

00 02 04 06

00 02 04 06

Fig. 1. Left: True RHS, Predicted RHS and recovery error for 5% noise in the data.
Right: True and Predicted solution for 5% noise in the data

Finally, since the test error, the error in the recovery and the error in the
solution are all measured using MSE, it makes sense to compare such homoge-
neous measurements. The first thing to notice is that the testing errors are larger
than the recovery errors. This shows the ability of our network to avoid over-
fitting and produce reliable approximations of the true RHS even when large

172 E. Negrini et al.

amounts of noise are present in the data. In fact, the Test MSE is computed
by comparing the value predicted by the network with the value of the corre-
sponding noisy observation, while the recovery error is computed by comparing
the value predicted by the network with the value of the true function f. The
disparity between the test error and the recovery error then shows that the inter-
polation network provides results that successfully avoid fitting the noise in the
data. The second thing to notice is the disparity between the recovery error and
the error in the solution: the error in the solution is on average smaller than
the recovery error. This is due to the data sampling: when recovering the RHS
we reconstruct the function on the full domain, while the original data was only
sampled on discrete trajectories; for this reason large errors are attained in the
parts of the domain where no training data was available. On the other hand
the error in the solution is computed on trajectories which were originally part
of the training set, so it is reasonable to expect a smaller error in this case.

4.2 Non-smooth Right-Hand Side

We propose is the recovery of
& = sign(t — 0.1) (4)

and compare the results given by our proposed method and the splines method.
Both methods aim at learning a Lipschitz approximation of the right-hand side
function. The spline method is based on the notion of classical solution and it is
doomed to fail in such a non-smooth setting. In contrast, our proposed method
is based on weak notion of solution using integration and is able to accurately
reconstruct even non-smooth functions. We generate data for time steps ¢ in the
interval [0,0.2] with At = 0.02 and for 500 initial conditions uniformly sampled
in the interval [—0.1,0.1] for noise amounts up to 2%. We only use up to 2% of
noise since, the splines model can only provide reliable target data for small noise
amounts. The hyperparameters for the models in this example are as follows:
each network N; has L; = 3 layers with 10 neurons each, the interpolation
network and the network used in the splines method both have L = 4 layers, each
layer has 30 neurons. The target data generator is made of 10 networks. As seen
in Table 3, because of the low quality target data (approximation of the velocity
vector from noisy observations of the positions) obtained by the splines method,
this approach fails at reconstructing the non-smooth RHS, while our proposed
method is able to produce an accurate reconstruction even in this case. The
superior performance of our method over the spline method for this example can
also be seen from Fig. 2. From left to right we represent the true, reconstructed
RHS and the error in the reconstruction for the spline based method (top row)
and for our method (bottom row) when 1% of noise is present in the data. We
can see from the figure that the spline method in this case is not even able to
find the general form of the RHS function correctly because of the bad quality
of the target data. On the contrary, our proposed method, being completely
data driven and based on a weak notion of solution, is able to reconstruct RHS
functions like sign(t — 0.1) that are non-smooth in t.

Robust Neural Network for Noisy System Identification 173

Table 3. Relative MSE in the recovery of the RHS for up to 2% of noise for our method
and the splines method.

Relative MSE in the recovery of the RHS of i = sign(¢t — 0.1)
Ours

0.002%
0.004%

Splines
12.5%
12.9%

1% Noise
2% Notse

True f(t,x) Predicted Splines

oo

L2 Error Splines

0075

0.050

0025

> 0000

0075

0.050

0025

77777

0075

0.050

0025

77777

-0.050 -0.50 -0.050

-0.075 -0.75 -0.075

-0.100 -1.00
00 01

t

True f(t,x) Predicted Ours L2 Error Ours

0100 100 0100 100 0100 os
0075 075 0075 075 0075
0050 oso0 0050 o0so0 0050
0025 o025 0025 025 0025
= 0000 000 = 0000 000 < 0000
—0.025 —02s
~0.050 -050

-0.075 -0.75

—0.100 -1.00 -0.100 00
00 o1 00 01 00 01

t t t

Fig. 2. Top row: Spline method. Bottom row: Our proposed method. From left to
right: True RHS, Reconstructed RHS and Error in the reconstruction when 1% of noise
is present in the data.

4.3 Comparison with Other Methods

We compare our method with the methods proposed in [18] and in [4]. For com-
pleteness we also provide a comparison with the splines method [11]. The method
proposed in [18], (multistep method), is similar to ours: the authors place a neural
network prior on the RHS function f, express the differential equation in integral
form and use a multistep method to predict the solution at each successive time
steps. In contrast with our method they do not use a family of networks and
Lispchitz Regularization. The method proposed in [4], (SINDy), is based on a
sparsity-promoting technique: sparse regression is used to determine, from a dic-
tionary of basis functions, the terms in the dynamic governing equations which
most accurately represent the data. Finally, we compare with the splines method
described in Sect. 1. We report here the relative error obtained by the different
methods in the approximation of the true f as well as the computational time
for each method.
We generated the data by computing approximated solutions of

(5)

& = cos(3x) +a® —x

174 E. Negrini et al.

for time steps t in the interval [0,1] with A¢ = 0.04 and for 500 initial conditions
uniformly sampled in the interval [-0.7,0.9]. The interpolation network has L =
8 layers, each layer has 30 neurons, while each network IV; has L; = 3 layers
with 20 neurons each. The target data generator is made of 25 networks. We
compare the results obtained by our proposed method and the spline, multistep
methods, a polynomial regression with degree 20 and SINDy. The dictionary
of functions used for SINDy constraints polynomials up to degree 10 as well
as other elementary functions: cos(z),sin(x), sin(3z), cos(3z), e*, In(z), tan(x).
In Table4 we report the relative MSE in the recovery of the RHS function
f = cos(3x) + 23 — z for up to 10% of noise. We notice that when no noise
is present in the data, so that overfitting is not a concern, SINDy outperforms
all the other methods. However, when noise is present in the data our method
gives the best results. For example, when 5% noise is present in the data our
method obtains an error of 0.096% which is smaller than the errors obtained
by all the other methods by one order of magnitude or more. This shows that
our proposed method is able to overcome the sensitivity to noise. In terms of
computational time we can see that polynomial regression and SINDy are the
fastest at performing the reconstruction with computational time lower than
1s. This is expected since they have approximately 100 times less parameters
than the neural network methods. The neural network methods have higher
computational cost and our proposed method, while giving the most accurate
results for noisy data, is the slowest. This is because it requires training of
multiple networks, while the splines and multistep methods only require training
one network. Note, however, that our method, while being slower than the other
methods we compare with, provides the most accurate result in under 2 min.

Table 4. Relative MSE and computational time comparison in the recovery of the RHS
for up to 10% of noise for our method, the splines and multistep methods, polynomial
regression with degree 20, SINDy with custom library.

Relative MSE and computational time comparison for i = cos(3z) + z° — z

Ours Splines | Multistep | Polynomial Regression degree 20 | SINDy custom library
0% Noise |0.0505% |0.214% 0.116% | 6.3e-05% 5.7e-05%
5% Noise |0.0957% | 0.585% | 1.20% 3.33% 0.619%
10% Noise | 0.520% |1.90% |3.51% 17.0% 3.36%
Time (s) |119.5 34.6 26.1 0.60 0.54

In Fig. 3 we report the true (red line) and recovered RHS function (blue line)
when 5% of noise is present in the data. This figure confirms the findings shown
in the previous table: our method is able to reconstruct the true RHS most
accurately showing that our method is robust to noise. From the table above
we notice that, for noisy data, the worst accuracy was always attained by the
polynomial regression. In this case, even if a 20° polynomial has 100 times less
parameters than our neural network, increasing the degree of the polynomial

Robust Neural Network for Noisy System Identification 175

increased the error in the recovery. From this figure we can clearly see why that
happens: the polynomial regression with degree 20 is already overfitting the noisy
data and the largest errors are attained at the boundaries of the domain where
the polynomial is highly oscillatory. The other three methods are able to provide
approximations that capture the general form of the true RHS function, but only
our method is able to provide an accurate approximation even at the boundary
of the domain.

Prediction Ensemble network, 5% noise Prediction Splines, 5% noise Prediction Multistep network, 5% noise Prediction polynomial, 5% noise Prediction SINDy, 5% noise

— redced Ensentie

Fig. 3. From left to right, true and recovered RHS for 5% noise in the data obtained
by our method, splines method, Multistep Method, Polynomial Regression with degree
20, SINDy with custom library.

4.4 Improving Interpretability Using SINDy

In this section we show how we can improve the interpretability of our method
by combining it with SINDy. The strategy is as follows:

1. Given noisy x(t) we use our neural network architecture to find a network
Ni;nt which approximates the unknown function f.

2. We solve the differential equation &(t) = N;n:(t,) for multiple initial condi-
tions and obtain new solutions Z(t). These solutions are a denoised version
of the original observations since they were produced using the regularizing
neural network architecture.

3. The denoised data Z(t) is then given to SINDy to produce an interpretable
and sparse representation of N;,;.

We show the results of this strategy for the example proposed in Sect. 4.3. Recall
that our goal is to approximate the equation

& = cos(3x) +a® —x (6)

In Sect. 4.3 we showed that our neural network architecture is able to reconstruct
correctly the RHS and that, when noise it’s present in the data, the recovered
RHS function is more accurate than the one obtained by SINDy. In this section,
we use the network N;,; found in Sect.4.3 when 5% of noise is present in the
data and use it to produce denoised solutions Z(t) as explained above. We then
use SINDy with the same custom library of functions as in Sect. 4.3 to produce
an interpretable and sparse approximation of the original f. When using this
technique we obtain the following RHS approximation:

i(t) ~ 0.8982% — 1.055 sin(x) + 0.996 cos(3z) (7)

176 E. Negrini et al.

while applying SINDy directly to noisy data gave:
(1) ~ —9.4312° 4 28.1412° + 2.73028 + —18.66527 — 4.9022° — 7.477210 4 0.945cos(3z) (8)

We see that Eq. (7) is very close to the true Eq. (6). The main difference is
that instead of the term “—z” SINDy found “—1.055sin(x)”. This is reasonable
since for small values of x, like in this example, x ~ sin(z). On the contrary,
Eq. (8) obtained by applying SINDy directly to the noisy data results in an
approximated f containing high order terms: this is caused by the noise in the
data. As a consequence the MSE in the reconstruction improves from 0.619% to
0.0096%. This can also be seen in the figure below (Fig.4):

Prediction SINDy, 5% noise Prediction network then SINDy, 5% noise

—— Predicted SINDy 10
— Tue

—— Predicted SINDy
e

06 04 02 00 02 04 06 08 06 -04 -02 00 02 04 06 08
X X

Fig. 4. Left: SINDy reconstruction from 5% noisy data. Right: SINDy reconstruction
from denoised network data.

5 Conclusion

In this paper we use a Lipschitz regularized family of neural networks to learn
governing equations from data. There are two main differences between our
method and other neural network system identification methods in the litera-
ture. First, we add a Lipschitz regularization term to our loss function to force
the Lipschitz constant of the network to be small. This regularization results in
a smoother approximating function and better generalization properties when
compared with non-regularized models, especially in presence of noise. Second,
we use a family of neural networks instead of a single neural network for the
reconstruction. We show that this makes out model robust to noise and able
to provide better reconstruction than other state of the art methods for system
identification. To our knowledge this is the first time that Lipschitz regulariza-
tion is added to a family of networks to overcome the sensitivity to noise in a
system identification problem. More in detail, our numerical examples, which are
representative of a larger testing activity with several different types of right-
hand sides f(z,t), show multiple strengths of our method: when noise is present
in the data, the Lipschitz regularization improves the generalization gap by one
order of magnitude or more. Our architecture is robust to noise and is able to
avoid overfitting even when large amounts of noise are present in the data (up

Robust Neural Network for Noisy System Identification 177

to 10%). This robustness to noise is especially an advantage over methods that
do not use a family of networks such as [18]. The method is completely data-
driven and it is based on weak notion of solution using integration. For this
reason, it can be used to reconstruct even non-smooth RHS functions. This is
especially an advantage over models that rely on the notion of classical solution
like the Splines Method [11]. Since neural networks are universal approxima-
tors, we do not need any prior knowledge on the ODE system, in contrast with
sparse regression approaches in which a library of candidate functions has to
be defined. As shown in Sect. 4.3, direct comparison with polynomial regression
and SINDy shows that our model is a better fit when learning from noisy data,
even if it comes at the cost of increased computational time. Since our method
is applied component-wise, it can be used to identify systems of any dimension,
which makes it a valuable approach for high-dimensional real-world problems.
As shown in Sect. 4.4, combining our method with SINDy produces a more accu-
rate, intepretable and sparse reconstruction than using SINDy on the original
noisy data, thanks to the denoising properties of our architecture.

Future research directions include applying our methods to real world data
and extending our methods to the reconstruction of Partial Differential Equa-
tions (PDEs). More in detail, first we would like to use our method to reconstruct
an equation that approximately describes the evolution in time of COVID-19
infected people. Another interesting application would be to reconstruct the
Hodgkin-Huxley model from data. This is a ODE system that describes how
action potentials in neurons are initiated and propagated. Second, we would like
to generalize our models to the recovery of partial differential equations. Specifi-
cally, consider the parabolic PDE u; = f(t, z,u, Vu, D?u); given a finite number
of observations of u(¢, x) the goal is to reconstruct the function f.

Acknowledgements. E. N. is supported by Simons Postdoctoral program at IPAM
and DMS 1925919. L. C. is partially supported by NSF DMS 1955992 and Simons
Collaboration Grant for Mathematicians 585688.

G. C. is partially supported by the EU Horizon 2020 project GHAIA, MCSA RISE
project GA No 777822.

Results in this paper were obtained in part using a high-performance computing
system acquired through NSF MRI grant DMS-1337943 to WPI.

References

1. Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.T.: Learning from Data, vol. 4.
AMLBook, New York (2012)

2. Berg, J., Nystrom, K.: Data-driven discovery of PDEs in complex datasets. J.
Comput. Phys. 384, 239-252 (2019)

3. Billings, S.A.: Nonlinear System Identification: NARMAX Methods in the Time,
Frequency, and Spatio-Temporal Domains. Wiley, Hoboken (2013)

4. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from
data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad.
Sci. 113(15), 3932-3937 (2016)

178

5.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

E. Negrini et al.

Budisié, M., Mohr, R., Mezié, I.: Applied Koopmanism. Chaos: Interdisc. J. Non-
linear Sci. 22(4), 047510 (2012)

Champion, K., Lusch, B., Kutz, J.N., Brunton, S.L.: Data-driven discovery of coor-
dinates and governing equations. Proc. Natl. Acad. Sci. 116(45), 22445-22451
(2019)

Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary dif-
ferential equations. In: Advances in Neural Information Processing Systems, vol.
31 (2018)

Jin, P., Lu, L., Tang, Y., Karniadakis, G.E.: Quantifying the generalization error in
deep learning in terms of data distribution and neural network smoothness. Neural
Netw. 130, 85-99 (2020)

Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings
of nonlinear dynamics. Nat. Commun. 9(1), 1-10 (2018)

Nathan Kutz, J., Proctor, J.L., Brunton, S.L.: Applied Koopman theory for par-
tial differential equations and data-driven modeling of spatio-temporal systems.
Complexity 2018 (2018)

Negrini, E., Citti, G., Capogna, L.: System identification through Lipschitz regu-
larized deep neural networks. J. Comput. Phys. 444, 110549 (2021). https://doi.
org/10.1016/j.jcp.2021.110549. https://www.sciencedirect.com/science/article/
pii/S0021999121004447

Oberman, A.M., Calder, J.: Lipschitz regularized deep neural networks converge
and generalize. arXiv preprint arXiv:1808.09540 (2018)

Ogunmolu, O., Gu, X., Jiang, S., Gans, N.: Nonlinear systems identification using
deep dynamic neural networks. arXiv preprint arXiv:1610.01439 (2016)

Qin, T., Wu, K., Xiu, D.: Data driven governing equations approximation using
deep neural networks. J. Comput. Phys. 395, 620-635 (2019)

Raissi, M.: Deep hidden physics models: deep learning of nonlinear partial differ-
ential equations. J. Mach. Learn. Res. 19(1), 932-955 (2018)

Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlin-
ear partial differential equations. J. Comput. Phys. 357, 125-141 (2018)

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Machine learning of linear differential
equations using Gaussian processes. J. Comput. Phys. 348, 683693 (2017)
Raissi, M., Perdikaris, P., Karniadakis, G.E.: Multistep neural networks for data-
driven discovery of nonlinear dynamical systems. arXiv preprint arXiv:1801.01236
(2018)

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Numerical Gaussian processes for
time-dependent and nonlinear partial differential equations. SIAM J. Sci. Comput.
40(1), A172-A198 (2018)

Rudy, S.H., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Data-driven discovery of
partial differential equations. Sci. Adv. 3(4), €1602614 (2017)

Schaeffer, H.: Learning partial differential equations via data discovery and sparse
optimization. Proc. R. Soc. A: Math. Phys. Eng. Sci. 473(2197), 20160446 (2017)
Schaeffer, H., Caflisch, R., Hauck, C.D., Osher, S.: Sparse dynamics for partial
differential equations. Proc. Natl. Acad. Sci. 110(17), 6634-6639 (2013)

