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Abstract

Actor-critic (AC) is a powerful method for learn-
ing an optimal policy in reinforcement learning,
where the critic uses algorithms, e.g., temporal
difference (TD) learning with function approxima-
tion, to evaluate the current policy and the actor
updates the policy along an approximate gradient
direction using information from the critic. This
paper provides the tightest non-asymptotic con-
vergence bounds for both the AC and natural AC
(NAC) algorithms. Specifically, existing studies
show that AC converges to an € + &g neigh-
borhood of stationary points with the best known
sample complexity of O(e=2) (up to a log fac-
tor), and NAC converges to an € + ecitic + v/Eactor
neighborhood of the global optimum with the best
known sample complexity of 0(6’3), where € itic
is the approximation error of the critic and €,ctor
is the approximation error induced by the insuffi-
cient expressive power of the parameterized pol-
icy class. This paper analyzes the convergence
of both AC and NAC algorithms with compatible
function approximation. Our analysis eliminates
the term e from the error bounds while still
achieving the best known sample complexities.
Moreover, we focus on the challenging single-
loop setting with a single Markovian sample tra-
jectory. Our major technical novelty lies in ana-
lyzing the stochastic bias due to policy-dependent
and time-varying compatible function approxima-
tion in the critic, and handling the non-ergodicity
of the MDP due to the single Markovian sample
trajectory. Numerical results are also provided in
the appendix.
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1. Introduction

Actor-Critic (AC) (Barto et al., 1983; Konda & Tsitsiklis,
2003) is a reinforcement learning algorithm that combines
the advantages of actor-only methods and critic-only meth-
ods by alternatively performing policy gradient update (ac-
tor) and action-value function estimation (critic) in an online
fashion. Specifically, the critic uses a parameterized func-
tion to estimate the value function of the current policy, e.g.,
temporal difference (TD) (Sutton, 1988) and Q-learning
(Watkins & Dayan, 1992). Then the actor updates the pol-
icy along an approximate gradient direction based on the
estimate from the critic using approaches such as policy
gradient (Sutton et al., 1999) and natural policy gradient
(Kakade, 2001). In contrast to critic-only methods, AC
methods, which are gradient based, usually have desirable
convergence properties when combined with the approach
of function approximation. However, critic-only methods
may not converge or even diverge when applied together
with function approximation (Baird, 1995; Gordon, 1996).
Moreover, AC methods also enjoy a reduced variance due
to the critic, and thus their convergence is typically more
stable and faster than actor only methods.

While the asymptotic convergence for AC and NAC has
been well understood in the literature, e.g., (Bhatnagar et al.,
2009; Kakade, 2001; Konda & Tsitsiklis, 2003; Suttle et al.,
2023), its non-asymptotic convergence analysis has been
largely open until very recently. The non-asymptotic analy-
sis is of great practical importance as it answers the ques-
tions that how many samples are needed and how to appro-
priately choose the different learning rates for the actor and
the critic. Existing studies show that AC converges to an
€ + Ecritic neighborhood of stationary points with the best
known sample complexity of O (6’2) (Chen et al., 2021;
Olshevsky & Gharesifard, 2023; Xu et al., 2020a), and NAC
converges to an € + Ecic + 1/Eactor N€ighborhood of the
global optimum with the best known sample complexity of
O(e=3) (Chen et al., 2022; Xu et al., 2020a), where it
is the approximation error of the critic and €,cor 1S the ap-
proximation error induced by the insufficient expressive
power of the parameterized policy class. In this paper, when
presenting sample complexity, we omit the log factors. In
these studies, the critic employs a fixed class of parameter-
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Table 1. Comparison of sample complexity of AC

Reference Single-loop | Sample size Error Comments
(Wang et al., 2020) X O (6’6) € + €eritic | Critic: neural
(Zhou & Lu, 2023) V O(e ) € LQR
(Chen et al., 2023) Vv O (e?9)
(Zhang et al., 2020Db) N Asymptotic
(Qiu et al., 2021) X O(e?) Actor:
(Kumar et al., 2023) X O(e73) non-linear, smooth
(Kumar et al., 2023) (Xu et al., 2020b) X O (e2? € + €critic | Critic: linear
(Xu et al., 2020a; Suttle et al., 2023) X O(e? function approx.
(Barakat et al., 2022) (Wu et al., 2020) v O(e?
(Olshevsky & Gharesifard, 2023) (Chen et al., 2021) Vv O (e?)
Our Work v O(e?) €

ized functions (typically linear function approximation with
fixed feature), which may not satisfy the compatible condi-
tion (Sutton et al., 1999) (see Section 2 for details). This
will result in a non-diminishing bias in the policy gradient
estimate, and therefore, an additional error term &g 1S in-
curred in the overall error bound. Several works (Cayci et al.,
2022; Wang et al., 2020) propose to use overparameterized
neural networks in the critic to mitigate this issue, where
Eeritic diminishes as the network size increases. However,
the convergence of the critic requires stringent conditions
that are hard to verify (Cayci et al., 2022; Wang et al., 2020),
and large neural network introduces expensive computa-
tional and memory costs. Actually, if the critic employs the
approach of compatible function approximation, which is
linear, then e vanishes without introducing additional
computational and memory costs (Sutton et al., 1999) (see
details in Section 2). Moreover, for NAC applied with fixed
function approximation in the critic, one needs to explicitly
estimate the Fisher information matrix and compute its in-
verse, which will be computationally and memory expensive.
Another advantage of compatible function approximation
when applied with NAC is that the inverse of the Fisher
information in the natural gradient will cancel out with the
policy gradient (see Proposition 2), and thus there is no need
to estimate the Fisher information matrix anymore.

1.1. Challenges and Contributions

Though AC and NAC with compatible function approxima-
tion enjoy no approximation error from the critic and no
need of estimating the Fisher information matrix (for NAC),
their non-asymptotic convergence analyses are much more
challenging than the ones with fixed function approximation.
To the best of the authors’ knowledge, this paper develops
the tightest non-asymptotic error bounds for AC and NAC
algorithms, and our analyses are for the challenging case
of single Markovian sample trajectory. We prove that AC
with compatible function approximation converges to an €
stationary point with sample complexity O(e~2), and NAC

with compatible function approximation converges to an
€ + \/Eactor Neighborhood of the globally optimal policy
with sample complexity O(e~3). Our non-asymptotic error
bounds outperform the best known AC and NAC bounds
in the literature by a constant e and achieve the same
sample complexity: O(e~2) for AC and O(e=3) for NAC
(see Tables 1 and 2). We note that this constant e is due
to the approximation error of the function class used by the
critic, and does not diminish with time.

One of the biggest challenges in the analysis is due to
the time-varying critic feature function. Specifically, the
critic with compatible function approximation employs an
w-dependent linear function class, where w is the policy pa-
rameter. As the actor updates the policy, the feature function
of the critic also changes with w. Therefore, the critic is us-
ing a linear function with time-varying w-dependent feature
to track the value function of the current policy 7,,, which
is also time varying. This makes the analysis of the tracking
error, i.e., the error between the ideal limit of the critic given
the current policy and its current estimate, challenging. In
this paper, we design a novel approach to explicitly bound
this error. The central idea is to construct an auxiliary eligi-
bility trace with fixed feature to approximate the eligibility
trace with time-varying feature (in the critic, we use k-step
TD with compatible function approximation).

In this paper, we focus on the challenging single-loop setting
with a single Markovian sample trajectory. Some studies
tried to decouple the updates of the actor and the critic
using approaches, e.g., nested loop (Qiu et al., 2021; Agar-
wal et al., 2021; Chen et al., 2022; Xu et al., 2020a; Suttle
et al., 2023), and to further develop the non-asymptotic
analysis. Specifically, after the actor updates the policy,
then the policy is fixed and the critic starts an inner loop
to iterate sufficient number of steps until it gets a perfect
evaluation of the current policy. This decoupling approach
makes it easier to analyze as there is no need to analyze the
interaction between the actor and the critic. However, this
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Table 2. Comparison of sample complexity of NAC

Reference Single-loop | Sample size Error Comments
(Khodadadian et al., 2022) V4 (] (6’6)
(Khodadadian et al., 2021) X O (e77) € Tabular case
(Wang et al., 2020) X (%) € + Ecritic
(Cayci et al., 2022) X O(e7?) +/Eactor | Critic: neural
(Agarwal et al., 2021) X @] (e_f’) Actor:
(Xu et al., 2020a) X O(e?) € + €uitic | non-linear, smooth
(Xu et al., 2020b) X O(e ) +/Zactor | Critic: linear
(Chen et al., 2022) x O(e?) function approx.
Our Work v O(e73) € + \/Eactor

decoupling approach does not enjoy benefits from the two
time-scale structure in the original AC and NAC algorithms
(Konda & Trsitsiklis, 2003; Bhatnagar et al., 2009), e.g., algo-
rithmic simplicity and statistical efficiency, and techniques
therein cannot be generalized to analyze the single-loop
single-trajectory two time-scale AC and NAC algorithms.
Moreover, analyses therein require some kind of i.i.d. as-
sumptions or require trajectories starting from any arbitrary
state, which might be difficult to guarantee in practice. To
develop the tightest bound, we develop a novel approach
that bounds the tracking error as a function of the policy
gradient norm (for AC) and the optimality gap (for NAC).
We also note that our analysis for NAC does not need the
smoothness assumption on the parameterized policy, which
is typically required in existing NAC and AC analyses (Chen
et al., 2021; Olshevsky & Gharesifard, 2023).

1.2. Related Work

In this section, we review recent relevant works on non-
asymptotic analyses on reinforcement learning algorithms
with function approximation. We provide a detailed com-
parison between our results and existing studies on AC
and NAC in Tables 1 and 2. The "Sample complexity"
in the table is the one needed to guarantee the gradient
norm/optimality gap less than or equal to the "Error".

Actor-critic analyses. We list recent works on non-
asymptotic analyses for AC in Table 1. Based on whether
the updates of actor and critic are decoupled, the results can
be grouped into "single-loop" and "nested-loop/decoupling”
approaches. For a general MDP, the best known sample
complexity for both single-loop and nested-loop approaches
is O(e72) (Chen et al., 2021; Olshevsky & Gharesifard,
2023; Xu et al., 2020a; Suttle et al., 2023). The only ex-
ception is (Zhou & Lu, 2023), which is due to the special
structure of the LQR problem. These studies all use a fixed
function class in the critic, and therefore, the convergence
error consists of a non-diminishing constant term of ejgic.
In this paper, we analyze the AC with compatible function
approximation, and we obtain a strictly tighter error bound

without eiiic. Our analysis is also much more challenging
than the ones in the literature, which is mainly due to that
the function class in the critic varies with the policy in the
actor.

Natural actor-critic analyses. We list recent works on non-
asymptotic analyses for NAC in Table 2. The best sample
complexity for single-loop NAC is O (6’6) and it is for
the tabular case (Khodadadian et al., 2022), whereas the
best sample complexity for nested-loop/decoupling NAC is
O (€7?) with an error of € + &cigc + y/Eactor (Chen et al.,
2022; Xu et al., 2020a). There exists a gap of O (6’3)
between these two approaches, which is mainly due to the
challenge in bounding the tracking error for NAC in the
single-loop setting. In this paper, we close this gap and
show that NAC in the single-loop setting can also achieve
the sample complexity of O(¢~2), and more importantly
with a reduced error of € + /€actor-

Actor/critic only analyses. Non-asymptotic analyses for
critic only methods have been extensively studied recently,
e.g., TD (Srikant & Ying, 2019; Lakshminarayanan &
Szepesvari, 2018; Bhandari et al., 2018; Cai et al., 2019; Sun
etal., 2020; Xu & Gu, 2020), SARSA (Zou et al., 2019), gra-
dient TD (GTD) method (Dalal et al., 2018; Xu et al., 2019;
Wang et al., 2021; 2017; Liu et al., 2015; Gupta et al., 2019;
Kaledin et al., 2020; Ma et al., 2020; 2021; Wang & Zou,
2020). There are also non-asymptotic analyses for actor
only method, e.g., (Bhandari & Russo, 2021; 2024; Agar-
wal et al., 2021; Mei et al., 2020; Li et al., 2021; Laroche
& des Combes, 2021; Zhang et al., 2022; Cen et al., 2021;
Zhang et al., 2020a; Xiao, 2022). In this paper, we focus on
AC and NAC algorithms, where how the errors in the actor
and the critic affects the other needs to be analyzed.

2. Preliminaries

Markov Decision Processes Consider a general reinforce-
ment learning setting, where an agent interacts with a
stochastic environment modeled as a Markov decision
process (MDP). An MDP can be represented by a tuple
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(S8, A, P, R), where S denotes the state space, A denotes
the discrete finite action space, R(-,-) : S X A — [0, Riax]
is the reward function. The transition kernel P (+|s, a) de-
notes the distribution of the next state if taking action a at
state s, Vs € S,a € A.

A stationary policy 7 maps a state s € S to a probability
distribution 7 (+|s) over the action space .A. Then the ex-
pected long term average reward for a policy 7 is defined as
follows:

1 Non
J(m) = ]\}Ego NE[ 2 R(Suat)ﬂ}

= Es~0h,,a~7r(-|s) [R(S, a)] )

where we denote by d, the stationary distribution

=z

1
lim —

dﬂ-(s) - N—ooco N
t

P (st = s|m).

Il
<}

Denote by D,. = d x 7 the state-action stationary distribu-
tion. We rewrite R; := R(s¢, a:). For a given policy 7 and
an initial state s, the relative value function is defined as

V™(s) = E{ZRt — J(n)|sg = s,w},Vs €.
t=0

Given initial state s and action a, the relative action value
function (@ function) for a given policy 7 is defined as

@ (s.0) = E| 3 R = I(mlso = 50 = a7,

t=0

Y(s,a) € S x A.
The relative advantage function is defined as
A" (s,a) = Q7 (s,a) — V™ (s),¥(s,a) € S x A.

The goal is to find the optimal policy 7* that maximizes the
long term average reward: max, J().

(Natural) Actor-Critic with Compatible Function Ap-
proximation Consider a parameterized policy class 11, =
{7, : w € W}, where W C R?. Then the problem in Sec-
tion 2 can be solved by optimizing over the parameter space
W. Specifically, the actor updates the policy via the ap-
proach of (natural) policy gradient, where the policy gradi-
ent is given by (Sutton et al., 1999)

VJ(TF) = IE:D,r“, [Qﬂ—w (S, a) ¢w(sv a)] ) (D

where ¢,,(s,a) = V,, logm,(als). We further let &, de-
note the feature matrix, which is the stack of all feature
vectors. Specifically, ®,, € RISIMI*X4 and the (s, a)-row
of ®,, is ¢/ (s,a). On the other hand, the critic estimates
the @ function in Equation (1) via the approach of TD

learning, and the @ function is usually parameterized using
linear function approximation in the existing literature, i.e.,
Q = {Qo(s,a) = ¢(s,a) 70,0 € O} where ¢ denotes the
feature vector and © C R%. However, as summarized in
Tables 1 and 2, using a fixed ¢ introduces an additional
non-vanishing error term e to the gradient estimate.

To avoid the critic’s function approximation error, (Sutton
et al., 1999; Konda & Tsitsiklis, 2003) proposed a smart
idea of compatible function approximation, which uses the
compatible feature vector ¢, that depends on the policy
parameter w. To explain, in order to approximate the value
function Q™ associated with policy m,, we can set the
feature vector as ¢, (s, a) := V,, log 7, (als) and solve for
the best linear approximation parameter 6% via the following
optimization problem.

0 € arg mginIEDm {(Q”W(s,a) — qﬁI(s,a)G)Q} .2

Proposition 1 ((Sutton et al., 1999)). With compatible func-
tion approximation, the policy gradient V J(m,,) can be
rewritten as:

VJ(n,) =Ep,  [Vlogm,(a|ls)Q™ (s,a)]
=Ep,, [bu(s,0)(¢] (5,0)02)] . 3

This implies that as long as we can solve the finite dimen-
sional problem Equation (2), linear function approximation
with the compatible feature ¢, and parameter 67 does not
induce any function approximation error. This approach is
referred to as compatible function approximation (Sutton
et al., 1999), i.e., estimating Q™ using an w-dependent
linear function class: Q,, = {¢] (s,a)0,6 € ©}. To solve
Equation (2) for the compatible function approximation pa-
rameter, we use the k-step TD algorithm with compatible
feature ¢, (Sutton et al., 1999).

The actor can also use the following natural policy gradient
to update the policy (Kakade, 2001):

VJ(n,) = F;'VJ (),
where the matrix F, denotes the Fisher information matrix:
F,=Ep,, [V log 7, (als) (Vlog mo(als)) " | .
Proposition 2 ((Peters & Schaal, 2008)). With compatible

Sfunction approximation, natural policy gradient is reduced
to:

VJ () =65

That is, there is no need to estimate the Fisher information
matrix and compute its inverse, which is typically computa-
tionally expensive.
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Algorithm 1 (Natural) Actor-Critic with Compatible Function Approximation

1: Imitialization: &, g, wg, T = 7TWO,90, oo = Vlogmo, sg, a0 ~ 71'()("80), z0=0

2: fort =0,...,T —1do

3: Observe Rt; Sample St4+1 ™~ P('|S{;7 Clt); i1 ~ 7Tt('|3t+1)

oi(s,a) = V,, logm(als)

2= i(sj,a5)

Ne+1 = M + e (Re — me)

01 =TIy p(0: + s64(6:)2¢)

9: Option I: W41 = W + ﬁtgb:(st, at)thﬁt(st, at)
10: Option 1I: Wil = Wy + ﬁtet

11: end for

RSN

Critic: 5t(9t) = Rt — Nt + ¢;r(5t+1, at+1)9t — Qb;r (St7 at)9t

/+Compatible function approximationsx/
/+xTD errorx/
/*eligibility tracex/
/+xaverage reward updatex/
/*TD updatex/

/*Actor update in AC«*/
/+*Actor update in NACx*/

3. Main Results

The detailed AC and NAC algorithms with compatible func-
tion approximation is summarized in Algorithm 1. In the
critic update, o is the stepsize, and denote by Il p(v) =
argmin |, <p [|v — wl|, for any v € R the project opera-
tor, and B is the radius. Next, we present the non-asymptotic
bounds for the AC and NAC with compatible function ap-
proximation in Algorithm 1.

Assumption 1. (Uniform Ergodicity) Consider the MDP
with policy m,, and transition kernel P, there exists con-
stants m > 0, and p € (0,1) such that

Sup [P (s, € 50 = 5) — D, ()l < ',
SES

Here |[|-||.-, denotes the total variation distance between two
distributions. Assumption 1 is widely used in the literature
to handle the Markovian noise, e.g., (Srikant & Ying, 2019;
Zou et al., 2019; Bhandari et al., 2018). We further assume
that the d feature functions, ¢, ;,7 = 1, ...,d, are linearly
independent, i.e., the feature matrix ®,, is full rank when
|S||A| > d. This is also commonly used in the literature of
analyzing RL algorithms with linear function approximation
(Srikant & Ying, 2019; Zou et al., 2019; Bhandari et al.,
2018).

3.1. Critic:k-step TD

Consider the critic update, where the TD method is used to
learn the relative value function under the average-reward
setting. It is known that the feature function needs to satisfy
certain condition (Assumption 2 in (Tsitsiklis & Van Roy,
1999)) so that the limit of the TD method is unique. In the
following proposition, we show that compatible function
approximation automatically satisfy the assumption needed
in (Tsitsiklis & Van Roy, 1999), and therefore guarantees the
convergence of the critic without the need of any additional
assumptions.

Proposition 3. For any w € W and 0 € 6, ¢,0 # e,
where e € R? is an all-one vector:

We note that the results in (Wu et al., 2020) use a different
assumption from the one in (Tsitsiklis & Van Roy, 1999)
to guarantee the convergence of the critic in the average-
reward setting (Assumption 4.1 in (Wu et al., 2020)): the
matrix E[¢(s)(é(s") — ¢(s)) "] is negative definite, where
¢ is the fixed feature function, s is the current state and s’ is
the subsequent state.

As discussed in Section 2, we would like the critic to find
the solution of Equation (2). However, the objective in
Equation (2) requires the knowledge of )™+, which is un-
available. Therefore, in the critic, we propose to use the
method of k-step TD, so that as k enlarges, the solution from
the k-step TD converges to the solution of Equation (2). We
present the k-step TD algorithm in Algorithm 2. Here, the
AC and NAC algorithms in Algorithm 1 are single-loop,
single sample trajectory and two time-scale. We introduce
the k-step TD algorithm in Algorithm 2 only to illustrate
the basic idea.

Based on Proposition 3, Assumption 1, and the assumption
that ®,, is full rank, from (Tsitsiklis & Van Roy, 1999,
Theorem 1), we can show that the k-step TD algorithm in
Algorithm 2 has a unique solution, denoted by 6

Ep., [60(s.0) (T (61 (s,0)0) = 61 (s,0002)] = 0,
“

where T2 (Q(s,a)) = E[XF5(R
Q(sk, ax)]so = s,a0 = a, 7).

- J(nw)) +

Assume that Ep, [¢u(s,a)¢,, (s, a)] is positive definite
with the minimum eigenvalue A;, > 0. This is to guar-
antee that the solution to Equation (2) is unique. We can
remove this assumption by adding a regularizer \||0||3 to
Equation (2) to guarantee the solution to the regularized
Equation (2) is unique, and bounding the difference.

Then we bound the difference between the solution to Equa-
tion (2) and the solution to the k-step TD algorithm in the
following proposition.
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Algorithm 2 Compatible k-step TD Algorithm
Initialization: %, 7,0y, ¢ =
7w (-|80),20 =0
fort=0,...,T —1do

Observe R;
se41 ~ P(|se, ar); a1 ~ mo(-[se41)
6(0)) = Ry =1+ ¢ (se41,a141)0: — &' (s¢,04)0;

/*TD errorx/
t

2t = Zj:tfk b(s5,a;)

/xeligibility tracex/
n=mn+v(R—mn)
/*average reward updatex/
0t+1 = H2,B(0t + at6(9t)zt) /*TD update*/
end for

Vlogm,, so,a0 ~

Proposition 4. For any w € W, the difference between 0,
and 07, can be bounded as follows:

Coapmp®

oz -8z, < S,

w
where Cyqp, is a constant defined in Appendix A.2.

It can be seen that the bound diminishes exponentially with
k. Therefore by picking a large k, the k-step TD is expected
to solve Equation (2) to a desired accuracy.

3.2. Non-asymptotic Bound for AC

Assumption 2. (Smoothness and Boundedness) For any
w,w’ € RY and any state-action pair (s,a) € S x A, there
exist positive constants Ly, Cy, Cr and Ls such that

D) [¢u(s,a) = ¢ur (s, a)lly < Lg [l — w'lly;

2) |m (-[s) = mur (18) |y < Cr [l = &'l 5
3)|dw(s, a)lly < C;

4) HV271'W(a|s)||2 < Cy;

5) 00,0, 0, (als)| < Ls, for 1 <i,§,1 < n.

The first three assumptions in Assumption 2 assume the
policy and feature function ¢, is smooth and bounded.
The fourth and fifth assumptions in Assumption 2 are only
needed for the AC analysis. For the NAC analysis, it is
not necessary. We note that these assumptions can be
easily satisfied by choosing a proper policy parameteriza-
tion. For example, if the policy is parameterized using
neural network, then these assumptions can be satisfied
(Du et al., 2019; Miyato et al., 2018; Neyshabur, 2017)
if the activation functions are analytic functions and have
bounded each-order derivative, (e.g. logistic, hyperbolic
tangent and softplus). With these proper policy parameter-
izations, the fifth one in Assumption 2 can be deduced by
V27 (als) — V27 (als)|], < Ls o — o'l

We first present the bound on the tracking error, which
measures how the critic tracks its ideal limit:

1 T-1
=S E [l - 0u03]
t=0

Here, 0 is the critic parameter at time ¢ of Algorithm 1, and
we rewrite 0 = 0 and J(w;) = J(7,,) for convenience.
In the AC algorithm, we set oy = «, B = B, v+ = 7,
and k = O (logT) such that v > a > 8 > mp*. Note
that we use a projection in Line 8 in Algorithm 1. In order
for convergence and optimality, we require that all ||0 || <
B. A sufficient condition to guarantee this is to set B =

) (Zf‘:xg%’ dmpt) (see Appendix A for the proof).

Proposition 5. The tracking error of the AC algorithm in
Algorithm I can be bounded as follows:

1 T—1
= > E[l6; — 61l3]
t=0
< (Gl b 1TZ_11E[||VJ(W)||2}+O L
“\ « v )T = L Ta

10g2T 9 3
+(9< T >+(9(alog T)+O(ﬁlog T)

2log? T 2log T
+O('ylog3T)+0<ﬂ(:f) +O(ﬂf;g)

+0 (i(mpk)) +0 ((mp*)1og” T) + 0O (W) )

where c,, and c,) is a positive constant defined in Appendix B.

Set’y:O(%),a:O(ﬁng),ﬁ: (m), we
have
1 T-1
* 2
=SBl 62
t=0

1 T-1

2 10g3T
< g 2 IVl +0 (=) o

For simplicity, we only present the order of the bound here,
and the detailed non-asymptotic bound can be found in the
Appendix B. The key novelty in the analysis is that we
bound the tracking error as a function of the policy gradient,
and we also bound the policy gradient as a function of
the tracking error. By applying the bound recursively, we
get a tight bound on the tracking error in Proposition 5.
Many existing studies in the two time-scale analysis upper
bound the policy gradient in the tracking error using its
maximum norm, which is constant-level. However, as we
see in the following theorem, the policy gradient shall also
decrease to zero. Therefore, the above approach does not
obtain the tightest bound, and leads to a higher-order sample
complexity.
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Theorem 1. Consider the AC algorithm in Algorithm 1. It
can be shown that

- 2045 2 ,
Z [Iv@ol] < =2 S E[I6; - 0il3]
t=0 t=0
1
+0 <T6> +0 (B log? T) + O(mp")

Theorem 1 implies that the AC algorithm with compatible
function approximation converges to an e-stationary point
with sample complexity ¢ ~2. This improves the best known
error bound by a constant £ (Wang et al., 2020; Zhang
et al., 2020b; Qiu et al., 2021; Kumar et al., 2023; Xu et al.,
2020b; Barakat et al., 2022; Wu et al., 2020; Chen et al.,
2021; Olshevsky & Gharesifard, 2023; Xu et al., 2020a),
and matches the best known sample complexity (Chen et al.,
2021; Olshevsky & Gharesifard, 2023; Xu et al., 2020a;
Suttle et al., 2023).

3.3. Non-asymptotic Bound for NAC

In this section, we present the non-asymptotic bound for the
NAC algorithm in Algorithm 1. It was shown in (Agarwal
et al., 2021) that due to the parameter invariant property of
the natural policy gradient update, natural policy gradient is
able to converge to the globally optimal policy with a gap
that depends on the capacity of the policy class. Define the
compatible linear function approximation error

Factor = X {“EH]EDM [HA’“(& a) — ¢} (s, a)9||ﬂ } .

ew

This error represents the approximation error due to the
insufficient expressive power of the policy parameterization,
and shall decrease if a large neural network is used.

Using the same idea as the one in AC, we can also develop a

tight bound on the tracking error: O (T‘ 3 ) , where now we

bound the tracking error as a function of the optimality gap
instead of the gradient norm. We then also develop bound
of the optimality gap as a function of the tracking error.
Applying them recursively, we obtain the tightest bound on
the tracking error and the tightest bound on the optimality
gap in the following theorem. We set oy = «, B = [,
v =,and k = O (log T) such that vy > o > 8 > mpF.

Assumption 3. There exist a constant Co, < 00 such that
SUP,ew H D+ (s,a) < Coo

Do, (s.0) ||

Assumption 3 guarantees that the policy is sufficiently ex-
ploratory, and is commonly used in NAC analyses, e.g.,
(Cayci et al., 2022; Xu et al., 2020a; Agarwal et al., 2021).
Approaches to guarantee this assumption were also studied
in (Khodadadian et al., 2021; 2022).

Theorem 2. Consider the NAC algorithm in Algorithm 1.
Then, we have that

min B [J(77) = J(w)] < O (107%?) +0 (1?;)

o(2B7) () so({)
57 {52) o)

TVap

+0

Ifwesety = O(T 3 logT), 0 = O(T 3 log™'T),B =

O(T~ 3 log™ ' T), we have

min E[J(7*) —

min J()) <O (T3 108" T) + O (v/ewar)
Remark 1. Unlike the results for AC in Theorem 1, The-
orem 2 for NAC only needs the first three assumptions in
Assumption 2. This is one advantage of using compatible
function approximation in NAC. As we can see from Line 11
in Algorithm 1 and Proposition 2, the inverse of the Fisher
information matrix is cancelled out. Therefore, there is
no stochastic noise from using ¢,,(s¢, ar)¢) (st, az) in the
analysis of NAC. However, in AC, we need to handle this
noise, and therefore, the fourth assumption in Assumption 2
is needed for the AC algorithm.

Theorem 2 implies that NAC with compatible function ap-
proximation converges to an €+ /€,cior-neighborhood of the
globally optimal policy 7* with sample complexity O(e~3).
Compared to existing studies, our work eliminate the ap-
proximation error of the critic, €.itic, from the overall error
bound (Wang et al., 2020; Cayci et al., 2022; Agarwal et al.,
2021; Xu et al., 2020a;b; Chen et al., 2022). Moreover, as
summarized in Table 2, the best known sample complexity
of NAC is ¢—3, which however is for the nested-loop NAC
variant (Xu et al., 2020a; Chen et al., 2022). Our results
achieves this sample complexity, and is for the challenging
single-loop NAC algorithm with a single Markovian sample
trajectory.
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Here we provide a proof sketch for the NAC algorithm to
highlight major challenges and our technical novelties. The
analysis of NAC contains of most major technical novelty
in the AC analysis.

Proof sketch. For simplicity of presentation, we set t =
(@] (M) and T = [ ; g;;T]. We denote by

« tl
My = E[[|6; — 67 [3] + E[(n: — J (wr))?]

the sum of the tracking error and the estimation error of the
average reward. Denote by KL(w;) = K L(7*|n;) the KL
divergence between policy 7* and 7.

Step 1 (Error decomposition): According to the smooth-
ness property of KL(w) with respect to w, we bound the
performance gap between the current policy and the optimal
policy (optimality gap) as follows:

1 t+T—1 § KL( ~) _ KL( )
T ;;: E[J(7*) — J(w;)] < wHTTﬁ -
+0 ( % ST Mj> + O(Coor/Zactor + B +mp").

Step 2 (Estimation error in the average reward): In this
step, we analyze estimation error in the average reward:
nt — J(wy). We provide a tight characterization of this
error:

E[(nt4+1 — J(wt+1))2]
< (1= 7)E[(m — J(wi))?] + O(BE[[| V. (wi)][3])
+ O(mphy + K27* + k4B + B?).

One of our key novelties lies in that we bound this estimation
error using the gradient norm E[||VJ(w;)||3]. The above
bound itself is tighter than the existing one in (Wu et al.,
2020).

Step 3 (Tracking error): In this step, we bound the tracking
error in the critic: ||, — 67||3. By the TD error step in
Algorithm 1, we decompose the term ||6,1.1 — 67 ||3 as
follows:

10241 — 071413
< 110: = 07113 + 1107 — 0741113 + 010,23
— t t 112 t t+1112 t<t]]2
+ 2Q<0t — 6:75t2t> + 20[(9: — :+175tzt>
+2(0; — 07,07 — 0714).

Another key challenge lies in how to bound the term
E[(0: — 07, 6:2:)]. We develop a novel technique of auxil-
iary Markov chain to decompose this error into two parts:
1) error due to time-varying feature function and 2) error

due to time-varying policy. Specifically, consider the first
Markov chain generated from the algorithm:

ToX P e X P
Sp, a0 — 81,41 —> ... = St,Qt —> St41,0¢41,

where at each time j, the action is chosen according
to m; and the transition kernel is P. Here z; =
Z;zt_k ¢;i(s5,a;) is the eligibility trace used in the al-
gorithm. It can be seen that in z;, the feature ¢; changes
with j, and the distribution of s;, a; depends on the time-
varying policy 7;. We then design an auxiliary eligibility
trace 2, = Z;:F x 91(35,a;), where the feature is fixed to
be ¢, and only the the distribution of s, a; depends on the
time-varying policy ;. To further handle the time-varying
distribution of s;, a;, we design an auxiliary Markov chain
(denoted by A1) as follows:

. ~ TeXP ~ ~ ~ ~ mXP ~ ~
Al: (sg,a0) ~ 7 = §1,01—>...5t, 0 — Sti1,de41,

where the action at each time j is always chosen accord-
ing to a fixed policy 7;. Based on this auxiliary Markov
chain, we introduce another auxiliary eligibility trace z; =
Z;zt_k ¢+(5;,a;), where it uses a fixed feature ¢;, and
samples from this auxiliary Markov chain. Lastly, we de-
sign a second auxiliary Markov chain (denoted by A2):

_ X P o _ _ mxXP _ _
A2 : (50,a0) ~ Dy "5 81,a1—...8¢,0r > Spi1, 041,

where the only difference between A2 and Al lies in the
initial state distribution. Then we define the last auxiliary

eligibility trace as Z; = Z;‘:t—k (55, a;).

The difference between z; and Z; measures the error due to
the time-varying compatible feature function. We bound this
error using the Lipschitz continuity of the feature function.
The difference between Z; and Z; measures the error due to
the time-varying sampling policy. The difference between
z: and Z; measures the error due to the difference between
the stationary distribution and the actual distribution of the
samples, which can be bounded based on Assumption 1. By
such a error decomposition, we can show that

E|0s+1 — 0741113 < (1 — Aminc/2)E[||6; — 6;]13]
+ O(K*aE[(n: — J(wi))?]) + O(BE[|[V T (wr)]]3))

k)2
+0 (k3a2 + EaB + B2 + mpFa + (mg ) ) .
Step 4 (Bound on gradient): As we can see from Steps 2
and 3, we bound the estimation error of the average reward
and the tracking error using the gradient norm ||V.J (w;)]|3.
Therefore, in order to derive the tightest bound, we further
develop a novel bound on the gradient norm ||V.J(w;)]|3.
Note that the idea is novel as it serves as a pivotal link
connecting the analysis of the tracking error/estimation error
in the average reward and the optimality gap. Specifically,
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we bound the gradient norm using the estimation error in
the average reward and tracking error. By the smoothness
of J(w), we have that

t+T—1 "
3 E[|VJ (w;)I[3] < 902 W) = Bl (wh)]

é Fia

j=t T
t+T—1

+0(2 X Ell6; - 05181) + OGms* +5).
Jj=t

We also note that we bound the gradient norm using the
optimality gap, and this is of great importance to establish
the tight bound in this paper. In previous works, this term
E[J(w,, 7)] — E[J(w:)] is bounded by a constant, and thus
the overall complexity is not as tight.

Step 5: Combining steps 1-4, we conclude the proof. [

4. Conclusion

In this paper, we develop the tightest non-asymptotic con-
vergence bounds for both the AC and NAC algorithms with
compatible function approximation. For the AC algorithm,
our results achieve the best sample complexity of e~2 with
a reduced error from € + eic tO €, where ¢ 1S a non-
diminishing constant. For the NAC algorithm, our results
is the first one in the literature that analyze the single-loop
NAC with a single Markovian trajectory, and we achieve the
best known sample complexity of ¢ ~3 also with a reduced
error of € + /Exctor. Our results demonstrate the advantage
of compatible function approximation when applied in AC
and NAC algorithms, including relaxed technical condition
to guarantee convergence, no need of estimating Fisher in-
formation matrix, and no approximation error from the critic.
Our technical novelty lies in analyzing the error due to use
of a time-varying and policy dependent feature in the critic.

Impact Statement

This paper presents work whose goal is to advance the field
of Reinforcement Learning. There are many potential soci-
etal consequences of our work, none which we feel must be
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A. Supporting Lemmas and Proofs for Propositions 3 and 4

In this section, we provide a number of supporting lemmas, and proofs for Propositions 1 to 4. In the following proofs, ||z||2

denotes the ¢2 norm if x is a vector; and || X||2 denotes the operator norm if X is a matrix.

A.1. Supporting Lemmas

For convenience, we denote J(w) = J(m,,). We first prove a lemma showing that both J(w) and V.J(w) are Lipschitz in w.

Lemma 1. Under Assumptions 1 and 2, for any w,w’ € W, we have that

VI (@)l < Cy,

where Cj = Ci (B + C‘/\mek), and

Rmax — -
where Lj = % (4L-Cy + Ly) and L, = %C’ﬂ (1 + [logm 1] + liﬁ)
Recall Equation (2). The solution §* given the feature function satisfies that

0 = argm&nEDw [HQ’T“(S:G) - ¢I(5>a)0”ﬂ :

We show that the solution 8% is Lipschitz in w in the following lemma.

min

IVJ(w) = VI(@)]ly < Ly llw —olly,
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Lemma 2. For any w,w’ € W, it holds that

62 — oz,

, < Co lw—w'lly, (10)

where Cg = C’ (20¢L¢ + C;L,r) + L

A2, Amin *

For any w € W, let

Ho(s,a) = E |9 (50, a0) (u(sk, ax) = (50, 00)) " lso = 5,0 = @,
H,=Ep, [Hu(s,a)]. (11)

log(mdC3)—1og Amin

Lemma 3. Fork > [ s

], it holds that

H,+H' _
>\max (42_(‘)) S C;dmpk — )\min = _)\min < 0,

where Amax (X) is the largest eigenvalue of symmetric matrix X.

log(dei)flog Amin
1-p

When k > { —‘ , we have that

Amin = )\min - C;dmpk
> A\min — C;dme_k(l_p)

mdc?

> Amin — C’idmeilog<Ti“¢> =0, (12)

and therefore Ay, is positive.

The following lemma bounds the distance between the stationary distribution induced by 7, and the distribution of s;, a; in
Algorithm 1. Define F; to be o-field generated by all the randomness until the j-th time-step. For simplicity, we write D,
as Dy.

Lemma 4. For any 0 < k < t, it can be shown that

t—1

IP (51, aelFir) = Dillry < Cr Y llwr — wjl, +mp. (13)

j=t—k

We rewrite 0} = 0, , where 6, is the solution to Equation (4).

Lemma 5. Consider the term E [(0; — 0}, 8;2¢)]. It can be shown that

)\min *
E[(6: — 07, 6120)] < — “22E [0, — 07 3]

(k+1)2C7 2
Tm(ﬁ]E {(J(Wt) — 1) } + Gy, (14)
where Us = Rpnax + 2CyB. For AC,
t t—1 t j—1 j5—-1 t—1
Gy =2B2C2UsCr > > Bi+4BCyUs > | BC2C: Y N B +mp* + BCIL, > B;
j=t—k i=j j=t—k i=j—k 1=i i=j

t—1 t—1 X
2C,pmp*
+2(k+ 1D)CUs | (k+1)CsUs S a; +CoC3B Y 6+ 2P

j=t—2k j=t—2k

; 5)

)\min

14
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and for NAC,
t -1 t j—1 j—1 t—1
Gy =2B2UsCr > N Bi+4BCyUs > | BC: Y. S Bi+mpt +BL: > B;
j=t—k i=j j=t—k i=j—k =i i=j
t—1 t—1 2C m k
+20k+ 1)CUs | (k+1)CsUs Y. a;+CeB Y. B+ —rb (16)
j=t—2k j=t—2k mm
In the following, we prove that 8}, defined in Equation (4) is bounded.
Lemma 6. The solution 0}, to Equation (4) is bounded:
. 1 MmCyRmax  MCyRmax
16512 < 5 ST ¢ S . (17)
min — AL LMP 1—p Amin (1 —p)
Lemma 7. Under Assumption 2 and 1, for any w,w’ € W,
[V2J(w) = V2J(W)|, < Le lw — /|, (18)
603 m3 et fimax 6m2C,, CsedRmax mLse2Rmax
where Lg = d? < g + = g )
The proof of above Lemmas could be found in Appendix D.
A.2. Proofs for Propositions 1 to 4
We include the proof of Proposition 1 and Proposition 2 for completeness.
Proof. By the Equation (2), #; satisfies that
Ep,. [(Q™(s,a) — ¢/ (s,a)0)bu(s,a)] = 0. (19)
Since ¢, (s,a)0} is a scalar, we can get that
Ep,, [Q™(5,0)¢u(s,a)] = Ep,, [¢u(s,a)g, (s,0)0] (20)
For the policy gradient V.J(7,,), we get that
VJ(n,) =Ep, [Vlegn,(als)Q™ (s,a)]=Ep, [quw(s,a)(QSI (s,a) 9_:)} . 21
Furthermore, we have that
VJ(m,) = F;'Ep, [bu(s,a)bu(s,a) "6}
=F;'Ep,_ [¢u(s,a)¢u(s,a)"] 0 =05, (22)
This conclude the proof. O

We present the proof of Proposition 3.

Proposition 6. (Restatement of Proposition 3) For any w € W and 6 € ©, ®,0 # e, where e € RIS is an all-one
vector.

Proof. Assume that there exists 6. € © such that 0. = e, then Ep_ [QSI (s, a)@c] =1.

15
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However, note that

Ep,. [60(5,0)60.] = 3 do. (5) S o (als)6] (5, )P
= de (s) Zﬂ'w(a|s)V10g7rw(a\s) 0

=2 dn.(5) 2 mulals) ‘”M(T|>) v
= de s vaﬂw(a|s

= dr (5)V. (mes)) 0.

=0, (23)

where the last equation is from the fact that ) 7., (als) = 1, and hence the gradient of it is 0. This hence results in a
contradiction, which completes the proof. O

We then present the proof of Proposition 4.

Proposition 7. (Restatement of Proposition 4) For any w € W, denote the fixed point of k-step TD operator by 07, and the
solution to Equation (2) by 07, then

k
oz -z, < S5 o
where Cyqp = C3B + %x;ax.
Proof. From the definition, it holds that
02 = (Ep., [u(5:000(5:0)]) ™ (Epe, [duls.0) (T00 s 00) ). @s)
and
0, = (Ep., [¢u(5:0)0(5,0)])  (Ep,, [bu(s, Q™ (s,0)]) 6)

Thus, we have that
62, =621l
— ||Eb.. (65,0081 (5,0)])) " (Ep., [duls,0) (TP0] (5,000 - @™ (5,0)] )|

1
(k) 4T T
<5 Ep,. [u(s,0) (T (5,00, - @™ (s.))] |
1 (k-1 -
IR %(S’“)@ S By — ) + Gl o) B0 = 5,00 = .7 _Qws,a>>w
min Jio |
1 = -
" A Ep., |du(sa) <E ]ZRy w) + du(sk, ar) 05|50 = 5,a0 = a, 7,

—-E Z:Rj—J(w)LSO=$7a0=a,7roJ )

=0

2

16
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1 [e o]
= N ]EDWW ¢w(saa) E ZRJ - J(w) + ¢w(5k7ak)—r9:‘30 = 38,00 = A, Ty
min = )
., E|S R —J D
< 5 B |0 (B |38 - s or00) ~ D
- 2

o [Ep [6(5,) (B [pulora0) 65 k000) ~ D)),

1
. C3BEp,  [IIP (sk,ak|so = s,a0 = a,m,) — D, |l 1))
1 o0
+ Amin Co .ZkRmaxEDm [”P(Sj»aj‘SO = s,a9 = 8,m) — Dr, HTV]
i=
(? ! E E 3 R;—J D
- )\min Dr,, ¢w($’a) Zk J (W) (Sk’ak) ~ Ug,, Tw
i=

2

+ o (o, [6u(s,0) (8 [uor a1) 765 |(s0. 1) ~ Do )],

C o )
+ /\mq; CyBmp" + Zk Rupaxmp?
e

(9 1

1 > .
B, [6u(sa) (b, [bu(s,a)TO])]lly + 3——Co | CoBmp" + 3 Rumaxmp?

A
min =k

@ 1 k
<= <C§Bmp’“+c¢Rmax”“’p>
_ Cgapmpk’ 27)

)\min

s
Py and P,, and any random variable X, s.t. | X| < Xpax, [Ep, [X] — Ep, [X]| < Xmax |[|[P1 — P2||TV’ (b) follows from
Assumption 1, (c) follows from J(w) = Ep,_[R(s,a)], and (d) follows from Ep,__ [¢w.(s,a) (Ep,_ [¢w(s,a)T05])] =
0. O

where Cyop = CiB +CyRmax 1 it (a) follows from the triangular inequality and the fact that for any probability distribution

B. AC Sample Complexity Analysis

In this section, we provide the sample complexity analysis for our single-loop AC algorithm.

B.1. Bound on Gradient Norm in AC

In this section, we first present a preliminary bound on the gradient norm | V.J(w)]].
Lemma 8. It holds that

A [IV7@0IE] < Bl @) ~ B ) + CLBE [0 0713 +6¥, (28)
where
G;QZLJC;‘)QBQ/BE (C;%cg},.,mpk +cjch> sumeh + 203 L1, i 5
+CICLB?CaB Y > B (29)
j=t—k i=j

17
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Proof. Recall that in the update of AC algorithm, wy 1 — w; = Bi@, (¢, at)0sd¢(s¢, ar). Following Lemma 1, it can be
shown that

L,
J(wir1) > J(wi) + (VI (wi), wep1 — wi) — 7] w1 — well

= J(wi) + B (VI (wy LJBt

= J(we) + B (VI (wy

)s (Stvat)9t¢t(3taat)> ||¢t (81, a¢)0:Pe (51, ar) H2

)
"r‘ﬂt <VJ UJt EDt [

[

)

o
o) (Stvat)9t¢t(5t:at) Ep, [¢t (s,a)0;¢i(s,a)])
o/ (s,

s,a) (6 — 0F) ¢e(s,a)] ) + B (VI (we), VI (wy))
LJ/Bt

+ﬁt <VJ (JJt EDt S, a 9*(2575 S a)] VJ t)> - H¢t (st,at)ﬁt(j)t St, Qg ||2
> J(we) + Be (VI (wr), &) (s¢,a1)0:04(se,a0) — Ep, [/ (s, a)9t¢t(5a a)l)

BT T@IE ~ T I ~ B [Bo, (6] (5,0) 00— 65) ou(s, )]

C4B?
B IS = B B, [67 (5,007 61 (5.)] = V)2 - 22

@ J(we) + Bt (VI (wi), & (51, a1)0:¢¢(se,ar) — Ep, [¢:(S>a)9t¢t(s7a)}>

part I

B

2 L 0432
+%||w(wt>||§—/3t||EDt [67 (5,a) (0, — 07) by (s, )] ||2 — =232

— B¢ |Ep, [¢] (s,0)(6; — 67):(s,a)] |5 (30)

where we write 67 as 0} for convenience, (a) follows from Equation (3) that VJ (w;) = Ep, [¢/ (s,a)0; ¢:(s, a)].

We then bound part I in Equation (30). Note that

|IE [<VJ(wt)7qth(st,at)Ht(bt(st,at) —Ep, [qth(s, a)thbt(s,a)]}] }
< |IE [(VJ(wt) - VJ(wi—r), ¢tT(3t, a¢)0:de(s¢,ae) — Ep, [¢1&T(87a)9t¢t(5va’)]>“
+ |IE KVJ(wtfk)a¢;r(8t7at)0t¢t(staat) —Ep, [(bj(s’a’)gtét(saa)]ﬂ!
<E[|VI(w) = VI (wi—i)|ly |87 (51, a0)0:0:(se,ar) — Ep, [¢) (s,a)0:¢:(s,a)] 5]
+ |E [V J(wi—i)E @] (51, a:)0:0¢(se,at) — Ep, [¢] (s,0)0:¢¢(s,a)] | Fizr]]|

202BLJE [Hwt — wt_k||2] =+ CJE H“P) (St7 at|./_‘.t_k) — DfH ] CZB
[ TVIYe

t—1 t—1
2C4B°L; Y B;+C,CiB (ar > E [flwr — wjlly)] +mpk>

j=t—k j=t—k

—
INg

—
INS

t—1 t—1 t—1
<2C$B°L; Y B;+C,CiB (C,rch Y’ +mpk) , 31

j=t—k j=t—k i=j

where (a) is from the L j-smoothness of .J, and (b) is from Lemma 4. On the other hand, from Proposition 4, we can show
that

_ Coanmp®\ >
20, 67 () 55 = 07) ] [ < 507 =G < €2 (3 ) o

Thus, combining Equation (30),Equation (31) and Equation (32) completes the proof,

ﬁt LJC$B2

E[J(wisn)] 2 E[T(w)] + SE[IVI@0lF] - =567 - 388 |16 - 0;13]

18
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Clut BN 2 t—1 t—1 t—1
— C3By (g/\"p) —2C4B’L;B; > Bj—CyC3BB | CxC3B > > Bit+mp|.  (33)
min j=t—k j=t—k i=j

O

B.2. Bound on |1 — J(w;)| in AC
In this section, we bound the error between 7; and J(w;), where J(wi) = limy 00 E {% iV: 61 R, |7th} is the average-

reward for policy 7.
Lemma9. Ify; —v2 > 3, then it holds that

E (1 = Jwe))?] < (1= ) E [ = T@0)?] + CLB*BE [V @o)3] + G, (34)

where

t—1 t—1 t—1 t—1
Gl = 2, (anaxcﬂch SN B+ REmpt + B2 > % + RinaxCiCEBB: + RunaxCsCiB Y @)

j=t—k i=j j=t—k =tk
+ R2,. 7 4+ C5C3B?BE + 2Rmax Ly Cy B BL. (35)

Proof. Recall the update rule in Algorithm 1. Then we have that
N1 — J (W) = me+ v (Re — i) — J(wi) + J(wr) — J(wig1). (36)

It then follows that

(M1 — J(wi1))? = (L= ) (0 — J(wi)) + 72 (Re — J(wy)) + J(wp) = J (wir1))?
<1 =3)% (= (@) + 77 (Re = J(@0)* + (J(wr) = J(wi41))?
+27 (R — J(wi)) (J(wi) = J(weg1)) +27 (1 =) (e — J(wi)) (Re — J(wr))
+2 (L =) (e — J(wr)) (J(wr) — J(wig1)) - (37)

The term (J(w;) — J(wy4+1))? can be bounded by Lemma 1:

| J(wi) — J(wis1)] < O [|wr — wigally < CrCEBB;. (38)
[

Term I in Equation (37) can be bounded as follows:

E(Re = J(we)) (J(wr) = J(wern))]| < B[Ry = T ()| [T (wr) = I (wi1)]
< RmaxCJE [||wt+1 - wt”Q]
< RinaxCsCIBp:. (39)

Term II in Equation (37) can be bounded as follows:

[E[(ne = J(wr)) (B = J(wi))]|
SB[k = J(wir)) (B = J(@)]] + [E[(ne = mu—r = J(wi) + S (wi—r)) (Re = J(wi))]|

(%) [EE [(ne—k — J(wi—r)) (B = J (@) |Feil] = Ep, [(ne—r — J(wi—)) (R(s,a) = J(wi))]l
FEne —m—r — J(we) + J (@) [[Re = J(wi)]

19
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(©]
< RELE(IP (st, ael Feoi) , Diell ] + BunaxE [0 — me—i| + | (we) — J(wi—p)l]

(c) t—1 t—1
< Rl [ O D0 Efllwe = wjlly] +mp* | + Bimax | Rmax Y 75 + CoE [lwr — we—gll,]
j=t—k j=t—k
t—1 t—1 t—1 t—1
< R CxC3B > N Bi+ REmpb + B2 > v+ RuaxCuC3B > B, (40)
j=t—k i=j j=t—k j=t—k

where (a) follows from Ep, [R(s,a) — J(w:)] = 0, (b) follows from that 0 < 7 < Rpax, 0 < J(wi) < Rpaxs
0 < R; < Rumax and (c¢) follows from Lemma 4.

Term III in Equation (37) can be bounded as follows:
E [ — Te) (Ie) — T
Q1. [0 - Jw0) (VT I it — )]
B [on = T et =™ I s — )]

= [ ‘E [(7715 — J(wr)) VTJ(Wt)(QS;r(St,at)9t¢t(5t7 at))”

2 ~
+ 67 |E [(m — J(w0) (8] (51, a0)0uu(st, ) | %w (¢:(Staat)9t¢t(5tv“t))”
() C4BZ
% %E [(m — J(Wt))2:| + 2 BE {HVJ(Wt)Hg} + RmaXLJCgBQﬁtz’ @D

where (a) follows from the Lagrange’s Mean Value Theorem and Lemma 1 for some &; = Awy + (1 — Nwiyq with
2 2
X € [0,1]; (b) follows from (a, b) < LI and Lemma 1.

Combining Equation (37), Equation (39), Equation (40) and Equation (41) implies

E (1 = I (@)’ < (1 =77 + B) B [ = J@)*] + BCIBE [| VI w0) 3]

t—1 t—1 t—1
+ 29 | B2 CrC3B Y 37 B+ B2 omd® + B2 Y 45 + RuaxCsC2 BB,
j=t—k i=j j=t—k
t—1
+ B2 7 + C3CB B} + 2RinaxCyCEBY: Y B + 2RmaxLsCyB*B7, (42)
j=t—k
which completes the proof. O

B.3. Tracking Error Analysis of AC

In this section, we bound the tracking error [|6; — 60} ||2. Recall that we write 6; = 6, and 6, is the solution to Equation (4),
i.e.,

Ep., [6](s,a) (TY (6 (s,0)02) = 61 (s, )0 ) | = 0. 3)

We then present a recursive bound on the tracking error in the following lemma.

Lemma 10. Set the step sizes such that

Amin & BC?’ (C¢Lﬂ- + 2L¢) —+ )\min(LJ =+ 20¢) + 2)‘r2nin
5 Ly 22 2 Br, (44)

min

20
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then it holds that

* 5\min * L )‘min + BC& (C L7-r + 2L )
B [|[61s1 = 071 3] < (1 - ;“)E (6. - 6712] + = o T g (19w ]

A2
k+1)2C?
+ (_#OétE [(T]t — J(wt))2:| + Gf, (45)

where
4(k+1)BC3UsL; =4
B Yt 2(k 4 )CEBUsCeab;

j=t—k

GY = (k+1)’U3Cha7 +

4B2C* i
)\Tqﬁﬁt Z Bj +QC§>BQC%)»8?

min j=t—k

ABC2L; (3C,u + Amin Ak +1 mpk 2 e\
n o ( gap )mpkﬁt + ( + )C¢U50g pTMP o + (6 i 8) <Cg)\pmp >
t min

+ (2BC¢LJ (C¢Lﬂ— + 2L¢) + 2BLG)\min + CG/\Inin)

>\2 >\min

4B3CWC4LJ t—1 t—1
quﬁﬁt Z Zﬂi+zath~ (46)

j=t—k i=j
Proof. From Algorithm 1, it holds that
01 = 045 = 1L B+ cudiz) — 07

(a) 2
< |0 + audize — 074 |
= |6 + bz — 0 + 67 — 9:+1H;
= 1160 — 07115 + o2 G213 + 1|67 — 074 |15 + 200 (61 — 67, 0,22)
+ 20 (20,07 — 071 ) +2(0, — 07,07 — 07,1), 47)

< B.

where (a) follows from the fact [T (z) — y||, < ||z — y||, when [y, < B and ||6;,, ||, <

Taking expectations on both sides further implies that

E {10001 = 021 [15] <E [16: = 07 13] + aZE [lsezel3] +E [10; = 02,
+ 20[,5 E [<9t — 9:, 6tzt>] +20&t E |:<6tzt7 9: - 9:+1>:| —|—2]E [<0t - 9:, 9: - 9:—}—1 ] . (48)

I 1T 11

Firstly, we can get that

oZE [6,]13] < a?(k +1)2C3U2. (49)

The term HO;“ -0 H2 can be bounded as follows:

167 = 621l = 198 = O5s + 67 = 07 = 0710 + 674
< 1167 =674, + 1167 = 62l + (16741 — 074l

(a)  _ B k k
2118 Bl + Sy G

(®) 2C gapmph
< Gl [lwe = wrpal, + =22
min

21
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2C aymp”
= BiCo ||¢:(Staat)9t¢t(5t7at)”g + )g\#_p
20 pmp*
< CoC3Bp; + —20b, (50)

where (a) follows from Proposition 4; and (b) follows from Lemma 2. Equation (50) further implies that

02
* * 2 a
E ([0 - 61paly) < 203038282 + 754;2 : 51)
By Lemma 5, we can bound term I in Equation (48) as follows:
* S\min % (k + 1)202
E ({0 — 67, 620)] < — 2R (16— 0712] + 2 (@) = m)*] + GE. (52)

For term II in Equation (48), we have that

E [(6:20. 07 — 0741)] <E [I6e2ello [16; — 05111,)
<E[Idezelly (167 = Orially + N0 = 07, + 116741 — Or1al,)]

2Cgapmp”
< (k+1)CyUs (c@chﬁt + i"””’)
2(]{1 + 1)C¢U50gapmpk
Amin ’

= (k+1)C3BUsCef; + (53)

where the last inequality is from Lemma 2 and Proposition 4.
To convenience, we rewrite F; = F,,,. To bound term III in Equation (48), note that

E (0 - 07,05 — 05,1)]
=B L0005 = 02)] +E L0 =010 )] (00500~

<E[(0 — 07, F; VT (wr) ;ﬁvawﬂnk+%ﬁhm 0713) + 55, [l 5 ]
T 16 - 0713] + 5 (167 — G2l
B [0, - 0. Fh (V) - V)] + B (007, (F ) 9]

+BiE 0, - 0713] + (mp>

OB (6, — 07, 3L V2T (6) (w1 — wis1))] +E[< — o (BT = L) V(@)
m k
+ﬁtE |:||9t 0*|| i| < gap P
)

I]'ll]’l

(c)
< E[(0 — 07, Fy V2 I (@) (e — wesn))] + 52 Elll6r = O¢lly 15 = Feralla [V (@r)l)
" Coapmp
+ BE {H@t 07| } B <g)\p>
(@ BC3 (CyLr +2Ly)
< —BE [< 9:7 t+1V2J( ) (ébt (Styat)6t¢t(5taat))>] + : 2. BE [H@t - 9:“3}
BC3 (CyLx +2Ly) 1/ Comp®\°
¢ VP [ 2 2 L gapTlLp
i 19 IE] + i [0 - 1] + 5 (S
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=—BE [(0; — 07, F;\ VI (@)Ep, [¢/ (s,a)0;¢:(s,a)])]

(1)
— BB [(0: — 07, F V2T (@0)EDp, [¢f (5,a)(0) — 07)¢4(s,a)])]
(i7)
— B [(0: — 07, FL V2T (@0)Ep, [¢f (s,a)(0; — 07)¢1(s,a)] )]
(iii)
- BE [<9t — 07, Ft;11V2J(d;t) (qﬁ?(st, a;)0:d¢(st,a1) — Ep, [gb:(s,a)etq&t(s,a)]»]
(iv)
BC3 (CyLy +2Ly) BC3 (CyLn +2Lg) + 202, )
SBR[ IV l] + BE [0, - 612]
L Cgapmpk>2 54
* Bt < )\min . ( )

where (a) follows from Proposition 4, (b) follows from Lagrange’s Mean Value for some A € [0, 1], such that @, =
Awt + (1 = Nwit1, (¢) follows from the facts that for positive definite matrices X and Y,

(X =y, <X X Y)Y,
< XL IX =YL [y, (55)

and (d) is from that
||Ft+1 - Ft||2 = HEDt+1 [¢t+1(sva)¢2—+1(57 a)] - IEDt [d)t(sva)d):(svaﬂ HQ
<||Ep,y, [#e41(s,a)d/ 1 (s,a)] — Ep, [dre1(s,a)di (s, a)] I,
+ ||ED1, [¢t+1(saa)¢;r+1(8aa)] - EDr, [d)t(S?a‘)d);r(S?a‘)] ||2
<CZ i1 = Dilly + E[(ll¢e(5, a)lly + l@e1(s, a)ll) 625, ) = desa(s, a)ll,]
(a)
< O3 L lwesr = welly +2Co Ly [|lwitr — will,

= (C3Lr +2C4Ly) B |6 (56, a0)0: 04 (st at)”2
<BC} (CyLx +2Lg) By, (56)

where (a) follows from (Zou et al., 2019) and Theorem 1 in (Li et al., 2024), where L, = %C,, (1 + ﬂog m_lw + Tlp) R
and

[1De1 = Dilly < L flwrpr = willy - (57
We then consider the term (%),
(i) < BE [110: = 0¢ I, ([ F33 [, (V2T @o)]|, 1V (we)l]

L 1 1
i (E [16: = 6:15] + 3B [IIVJ(wt)IliD : (58)

- >\min 2

where the last inequality follows from Lemma 1.
Next, we consider the term (i),
(1) < BCFE 1162 = 07 115 | F33 [, (V2T (@) |, 1167 — 07 1,]
- 2BC§CgapLJmpkﬁt
< 2 )

min

(59)
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where the last inequality follows from Lemma 1 and Proposition 4.

Then, consider the term (4i%),
(i) < BCGE (100 = 0711y | Feii |, V27 @0l 160 = 07 1]

C3 LBy .
< 2 (6, - 6;13)

Amin
Consider the term (iv),
(iv) = =B [((FLAV2T(@0) T (0r — 07), 6/ (s1,a0)0:61(s1,a1) — Ep, [¢/ (s,0)0:04(s,a)])]

= —BE[(F A V2I(@) (0 — ;) — (F V2T (@—k1) T (Oe—i — 07 _4),
&/ (st,a1)0:0¢ (¢, ar) — Ep, [¢] (s,a)0:04(s, a)])]

— BE [(F, V2T (@r—k-1)) " (Br—k — 07 1), &) (st,a¢)0:0¢(se,a¢) — Ep, [¢/ (s,0)0:0¢(s,a)])]

< 203BBE [[|(FRh V7)) (60— 67) — (F V2T @) ok — 670,

+ BE(F, V2T (@—p-1)) " (Br—k — 07 1), &7 (5t,06)0:0¢(se,a¢) — Ep, [¢/ (s,0)0:04(s,a)])]

< G0 BAE[|| (AR @0)T (0~ 07) — (V2 i) s — 07

2320 Ly

7)\ IP (¢, ael Fir) — Dellry

+ BE

(b)
< 203 BAE [||(FEAV2I@0) (6~ 67) — (F VTG i) O — 07,

2B2C2L ;5 =t
e | O 3D E e —wglly] + mot

j=t—k

< 2C3BBE [|[(FAV2@) (0 — 6;) = (FAV2 @) Ok — 0

2B*C3L Lt
| 2B CeLab (C C2B B; + mp"
j=t—k

)\mm
i=j

where (a) follows from Lemma 1 and (b) follows from Lemma 4.

Consider the first term in Equation (61) and we have that

I tlllvz (@) " (0r = 07) = (F V2 I (@r-k-1)) T (e — 07_1)],

< [[(Fizy = F2) V2T @) T (0 = 00|, + (177 (V2T (@) = V2T @) (8 = 67)]

+1I( F V2T (@r—p—1)) " (00 — Op—i — 0 + 67 _},) ||2
B 2B ) A
<2BL;||Fh - t—lkHZ T Ao ”VQJ(M) = VI (@r—k-1)
L,

i (18— Oil; + Hf)* i)
(a) QBQLJCS (C¢L + 2L¢) 2B R ~
- N J;ﬁ F o 17270 = V2 @i,
L _ _ _
+ )\7J (Het — 0 k||2 + HG* ez—kHZ + ngﬁ - HZKH2 + Het*—k - 9:—1@”2)
® 2BL 03 (CyLx +2Lg) 2BLe . .
: W PRARTE .
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L 2C anmp”
325 (16 = O1-lly + Clo o — el + =52
Amin )\min
2BL ;03 (CyLr +2Lg) 2B°CiLe
< 8 > B+ > B
min — mm j=t—Fk
LJ = 2Cgapmpk
+3 (k+1)CyUs ZaJ+BC¢,C@ Zﬂg T
min jftfk j—tfk min
_ (k+1)CyUsL, ti oo 4 2CamLymp*
)\min . ! )‘2 i
j=t—k min
C?
+ 320 52 (2BCyL;(Cy Ly + 2Ly) + 2BLoAmin + CoAmin) Z B;, (62)
min j=t—k

where (a) follows from Equation (55) and Equation (56) and (b) follows from Lemma 7.

Therefore, the term (iv) can be bounded as:

_ 2(k+1)BC3UsL; =2
(iv) < B D
min J:t—k

2BC? Ly (2Cqp + BAmin) 2BC,CiL; 2 S
: )\Qgp mpkﬁt ﬂt Z ﬂz
min mm j=t—k i=j
204 t
+ o (2BOyLy(CsLn +2Ly) + 2BLoAwin + Codmin) B ), fj- (63)
min ] t—k

Combining the above bounds on terms (4), (i), (44¢) and (iv), we have that

BCB (C¢L + 2L¢) + )\mm(Ll + 2C¢) + 2)\

E[(6: — 07,0; — 07,,)] < i 5 [l — 67113

2>\12nm
LjAmin + BC’3 (CyLr+2Ly) 2BC2L; (3Cep + Amin)
+ el BE [||w(wt)||§} e mp* B,
2k + 1)BcgU5LJ =1 2B3C, C4LJ ot wmp\
+ )\min a] mm Z 51 < ; Ian >
j=t—k Jj=t—k i=3
B2C4 i
+ 2 (2BCyLy(CyLn +2Lg) + 2BLoAmin + Codmin) B > B;. (64)
min j=t—k
This bounds term III in Equation (48).
Plugging bounds on terms I, II, IIT in Equation (48) further implies that
_ BC3 (CyLy +2Lg) + Ain(Ly + 2Cg) + 202,
% 2 pLom [ min\&J @ mln *
o= 1] < (1= s+ 2% o b ) &[0, - 051
LjAmin + BC3 (CyLr + 2Lg) (k+1)2C3
+ > B [V ()5 + ol [ — T (w0))’]
4(k +1)BC3UsL; = =X
+ (k+ 1)°UiChof ( i : kit lcY > aj+2(k+1)C3BU;Coot 3y
min ] t—k
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204 t
2. 28 Y B +20,B°C3p;

min 7 t—k

ABC2L; (3Cau + A Ak +1 omp” wmpt\
n ey ( gap )mpkﬁt n (k+ )C¢U5Cg pImp a <52 n 8) (Cg pMp >
t

+ (2BC¢LJ(C¢L,T + 2L¢) 4+ 2BLoAnin + C®>\min)

2
)\mln )\min )\min

4B*CrCyL;

)\min

t—1 t—1
LYY B+ 204G (65)
t—k i=j

j=t—

BC’d)(C¢L,,+2L¢)+);mm(LJ+2C'/ )+2)\
A

min

Set the stepsize such that ’\"“2“” > min 3, and the proof ends. O

B.4. Sample Complexity of AC

We first present our proof of Proposition 5. For convenience, we set oy = «, 8 = 3, 7+ = < in following.

Proposition 8. (Restatement of Proposition 5) With the constant step sizes such that k = O (logT) and v > « > 3, the
tracking error of the AC algorithm in Algorithm 1 can be bounded as follows:

;TZE i — 1) < (%7 + &) 7 Z (1] + 0 () + o (%£T)

2 2 2 2
+0(010g3T)+O(510g3T)+0(710g3T)+O<Bl(fT> +0(5107gT>

+O (g(mpk)> + 0O ((mp*)1og? T) + O ((m;;)2> , (66)

2L j Amin+2BCS(Cy Lr+2Ly)
A2 i Amin

min

20711126
282 (k+1)°C5
(Amin)?

where ¢, = and c,; =

Proof. Recall that in Lemma 10, we showed

) Amin . LjAmin + BC3 (Cy Ly +2Ly)
e [l 012 < (1—2&)E[et—etnz]+" O 2 19 ]

min

(k + 1)2()2

Apply this inequality recursively and we have that
%12
E [l - 67 3]

j\mina ! * LJ)\miﬂ + BCS (C¢L7T + 2L¢ — mma et
< (12 - 0318] + 5 (1-2%2) B [Ive)i

)\2
min j=0
(k+1 202 = mlna et = rnma ot
p BV Z( ) e[ - ]+Z(1 ) g
mln ,7
" LJ)\min+BC3 (C¢Lﬂ+2L¢) =1 L
=(1-0)'E [I60 — 6513] + = By (1= E[IVIw))l3]
min j=0
(k+1 — i
. aZ ' 7 TE [(U) -] + 21— G, (68)
mm O ]=O
where we let ¢ = S““To‘
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Summing the inequality in Equation (68) above w.r.t. ¢ from 0 to 7" — 1 further implies that

1 T—-1
= > E[llo - 0;13]
t=0

T—1 3 T—1¢-1
1 " L jAmin + BC (C¢L7T + 2L¢>) B —Jj—
<= >0 (1—a)'E [0 - 6313] + = S -9 T E 19w
t=0 min t=0 j=0
(k+1)202 = | Tl o
T Zz(l ) TE {(J(wj)—ﬁj)ﬂﬂLf Y a-g G
min t=0 j=0 t=0 j=0
432 LJ)\IIliIl + BC& (Cqu‘n' + 2L¢)) ,6 fte 2 (k + 1)20425 « = 2
<ot o 7o 2B IV )l] + = D E [(7(w5) = my)’]
=
N (©9)
where the last inequality is from the double-sum trick: ZtT:_Ol Z;;E Y I < ( tT:_Ol Xt)(ZtT 01 yh) < ZT%;)Q for
X;>0,j=0,1,2,...,7T—landy € (0,1).
Recall that we showed in Lemma 9 that
E[(n41 = J @)’ < (1= E [(n = J(@))*] + CHB2BE IV I ()] + G7. (70)
Recursively applying this inequality implies that
E[(m = J()?]
t—1 _ t—1 _
< (1=9) (= J(wo) + CAB2BD_ (1= E[IVJ@plf] + Y (1 =)'
j=0 j=0
t—1 ' t—1 '
< R (1-9)' +CAB28Y (1= 9) 7 E[IVI @] + > (-2~ 6. an
j=0 §=0
We then sum the above inequality w.r.t. ¢ from 0 to 7" — 1, and have that
z (e = 7 (@0))?]
t=0
R2 - T 1¢—1 ] Izl
max 1 —i—1
Zu ) OB S ) TRV + 5 - e
t=0 j=0 t=0 j=0
R> -« 1
max 4 2 2
— Dmax | cap2 P { } 72
7 T O ZO IV (@)l +TWZG (72)
where we use the double-sum trick below Equation (69) again.
Plugging Equation (72) in Equation (69) further implies that
B2 2L Amin + 2BC3 (CyLr +2Ly) B <2
> E[lo -6 } 0 = S E[IVI@)l3]
Z LTS v it NinAmin 7o 2 IV
2(k + 1)20; 1 2 =
2]+ 5275
( m1n Z ) * Amin T ; K
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2L Amin + 2BC3 (CyLr +2Lg) 5 2(k +1)°B*CYp
< 2 =
< ( — ) 7 Z E |V (w0)ll3]

min
8B Ti 0, kJi 1)2C3R2,, LAk 1)QC§LT21 )
)\mmTa Ta =0 ¢ mm)QT’Y (>\min)2 T’Y =0 ¢

mm

T-1

_ (Ca L ) ZE [HW we)ll3 } wTa ' AmmTa ; o

20k +1)2C3R2,  2(k+1)? c¢ 1 -1
+ E G (73)
()\mln) T’Y ( mm)

2Ly Amin+2BCE (Cy Lr+2L 2(k+1)2 B2CC ' .
- X2 fr(mj *) and Cp = W By Equation (73), if we

min

where (a) follows from that ¢ = ’_\mQ‘“a, Co =

set the stepsize 3 = min Apin Amin: unin) then we can get that (£ 4 @) < L
16C2 (L Amin+BC3(CyLa+2Ly)) 7 16(k+1)2C0B> (° @ v ) = Acy

This completes the proof of Proposition 5. O

We are now ready to prove Theorem 1.

Theorem 3. (Restatement of Theorem 1) Consider the AC algorithm in Algorithm 1 with constant step sizes oy = «, 3y =
B,7¢ = . Then, it holds that

1 — 2 * 2 k

- ;E[HW(%)HQ] 20~ Z]E[w — 0 ] +O<Tﬁ> + 0 (Blog? T) + O(mp") (74)
If we further set k = H}ff—‘ ,720(%),&20(@%5 O(\Fl ) then we have that

T-1 3
log® T
1 Z]E {||VJ W) } < N ) . (75)
Proof. Recall Equation (28), and we have that
T-1 o4 T T-1
1 2] o 2(E[J(wr)] = J(wo)) Cs a2] L 2 w
T2 E N HE 7 =t 2:% (16— 6:112] + 75 > Gt (76)

Plug Equation (76) in Equation (73), and we have that

1 T-1
= > E 6 - 0;13]
t=0

T—-1 T—-1 2 P2 2,2 T—1
11 ) 8 B2 2 p  2k+1)°CIRY,..  2(k+1)°C3 1
< ——N"E||VJ G = - — ¥
S 4CIT & “' (wt)HZ] + MninTx )\mmTa Z et (Amin) 2Ty (Amin)? T ; '
T—-1
1 1 9 8B?
_ . E _ A* _ w
o775 V)] = Tn) + g7 3B (10 = 0715] + 5 + s 3 G
2(k +1)2C2 1 = 2 =
Il’ldX + G" + = E GQ' a7
()\mm)2 T’Y Y =0 ¢ )\minTa =0 ¢

This further implies that
= Z E [l — 6713 < C% (E [J(wr)] - J(w))
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T— 2 2 T—1
16 B2 4(k +1)°C3 [ R2 1
+ max L\ " GY GY. 78
Al’ﬂlﬂ C4T go Il'lll'l)2 T’Y T’y ; ¢ mln Z ¢ ( )
Next, we choose the stepsizes to minimize the tracking error and the gradient norm. We choose v = % and k =
2 g, _
[%—‘. Consider T > %, then we can get that A\, > A‘g‘“. We set « and 3 such that o = Wv and
i A A Ay It holds th
# = min (L Amim+ BCY(CyLn+2L )+ 2080) " 32CH (L Amimn+ BCY(CpLn+2Ly)) ) 64(R+1)2C5B2 T [ t holds that

1 1 1 1
1=0 (ﬁ) =0 (\/TlogQT> =0 <\/Tlog2T> 4=0 <\/Tlog2T) ' )

According to Equation (29), Equation (35) and Equation (46), the orders of the following terms are as follows:

;Tgl(l“ =0 ((mp*)B + k*p?%) = (12> ;

— Tlog? T
1= log T
TZG?=0((mp‘“)v+ﬂz+k25v+k‘72)=0( ¢ );
t=0
T-1
l 0 _ k k (mpk)2 3 2 3 202\ _ 1
T t:OGt —O<k(mp Ja+ (mp )/6’-1—75 + ko +kaB+k°5°) =0 TlogT ) (80)

Then Equation (78) can be bounded as follows:

— 2] log® T
T;} [@—Mb]—@(ﬁ)- 6D

Plugging Equation (78) in Equation (76) implies that

T-1 4 2 216 4 T-1
320;B 8(k +1)°Cy 8C
E VJ max L Gr} G9
t=0 |:H Wt H ] AHIIIITQ + ()\1’1’111’1)2 ( + Z ) HllllTa Z
© (B (wr)] — J(w0)) + o ZG“ (82
Tﬁ wT wWo
Plugging in the step-sizes above, we have that
T-1 3
1 2] log® T
TE IV l3] = 0< o ) (83)
which completes the proof. O

C. NAC Sample Complexity Analysis

In this section, we provide the sample complexity analysis for NAC.

C.1. Bound on Gradient Norm in NAC

Recall that in Algorithm 1, NAC updates the policy parameter as follows: wy41 — w; = 5.0y, which directly implies that

lwerr = welly < BellOelly < BBy (84)
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Consider the largest eigenvalue of the matrix F, = Ep, [¢:(s,a)¢/ (s, a)]. Note that for any vector z € R?
1Fezlly = [Ep, [¢1(s,a)eq (s, @)] |, < l|de(s, a)ly e (s, a)lly Il < CF [l - 35)
Thus, Apax (F}) < C’;. Then, by Lemma 1, we can show that

L
J(wiy1) = J(we) + (VI (wi), wip1 — wi) — 7" w1 — w3

BEL, 2
> J(wi) + B (VI (wi), 0r) — 5 110:115
e * * D* LJBQﬁt2
Z J(UJt) + 61& <VJ(wt),9t> + Bt <VJ(UJt),9t — 915) + 615 <VJ(wt),0t — 0t> — B
(a) —1
2 )+ 89, (B, [ of 5, 00)) ™ ) = 4 191G O35, 10— 071
5 * A% (|2 L BZﬂQ
=z IV @)l = €3 [l = o), - e
® B p " CgapCQmpkﬂt L;B?p3?
2 () + gz IVl — 5oz IV nllz = C3BlI6 — 07l = === = = =
CoapComp*B; L, B2p2
— (@) + o VT2 — C26 [, — o7 -~z P LaBB (86)
2C¢ Amin 2

where (a) follows from that (V.J (w;), 0; — 0;) > — 5= ||VJ(<JJ,5)H§—C’¢2s 16; — 05 ||§ and (b) follows from that Ayax (F3) <
s
1 _ ..
cz, <VJ(wt), (Ep, [6:(s,0)87 (5,0)]) VJ(wt)> = V(@) ()" V() = 2 [IVJ(wi)]l3  and Proposition 4.
Taking the expectation on both sides of Equation (86), we have that
E[J(wit1)] = E[J (w)]
B

QCgcgapmpk
Arnin

E [HW(M)H;] <202 + 200K [||et - 9;‘|\§} + +L,B2C28,. 87
C.2. Bound on |7; — J(w;)| in NAC

In this section, we bound the term 7, — J(w;) for the NAC algorithm.

Lemma 11. If we denote

t—1 t—1 -1 =l
G? = 2’Yt (BREﬂaXCn- Z ZBZ + R?naxmpk + RIQnax Z Vi + BCJRmaX Z 5j)

j=t—k i=j j=t—k j=t—k
+ R2 72 + C2B2B2 + 2BCy Runax Byt + Runax Ly B2 B2, (88)

and set vy, — %2 > B, then it holds that
2 2 2 2 ~n
E (1 = J@er))?] < (0 =30 E[Or = J@0))?] + BB%E [V (@03 + G- (89)

Proof. Similar to the AC analysis in Equation (37) in Appendix B.2, we have that

(41— J(@eg1))* = (1= %) (e = J(wr)) + (R = T (wr)) + J(we) = T (wr41))?
= (1= 7)" (0 = (@) + 77 (R = J(@0)* + (J(wr) = J(wi41))?
+ 27 (Re — J(wi)) (J(we) = J(wig1)) +27 (L= 72) (e — J(wi)) (Be — J(wy))
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+2(1 =) (e — J(we)) (J(wr) = J(wit1)) - (90)
11

The term |J(w¢) — J(wi+1)| can be bounded using its Lipschitz smoothness in Lemma 1:

|J(we) — J(wig1)| < Cyllwr — wegilly < CrBps. oD

Term I in Equation (90) can be bounded as follows:

[E[(Re — J(we))(J(wi) = J(wegr))]| S E[[Ry — J(wi)| | (wi) = J(we1)]] < BCyRinaxBr- 92)

Term II in Equation (90) can be bounded as follows:

[E[(ne — J(wi)) (R — J(we))]]
<E[(mt—k — J(wi—r)) (Be — J(@e))]| + [E [t — m—r — S (we) + J(wi—r)) (Bt — J (wi))]]
< |E[ (1 — J(wi—i)) (R — J(@) | Fe—r]ll + Elne — ne—r — J(wi) + J(wi—i)| [Re — T (wi)]]
‘E [E [k — J(@i—r)) Rel Fio] — E(s,ay, (-1 — J(wi—k)) R(s, a)| Fi—]]|
+E [ — e — J(we) + J(wi—)| [Re — J(wi)]]
< R E P (515 a0) | Feei) » Dillyy) + RunaxE [0 — ne—i| + | (wr) = J(wi—)]]
(c)

t—1 t—1
< R2,. (C’,r E [|lws — wjll,] + mpk> + Riax (Rmax Z v + CrE [||we — wt_kz])
j=t—k

j=t—k
t—1 t—1 t—1 t—1
< BR? > > B+ RLmp* + Rh Y v+ RumaxCyB : 93
max 7T i max p max 7j+ max ' J Z ﬁjﬂ ( )
j=t—k i=j j=t—k j=t—k

where (a) follows from E(, oy.p, [R(s,a) — J(w)|F] = 0, (b) follows from 0 < 7, < Rpax, 0 < J(wi) < Ruaxs
0 < R; < Rmax, and (c) follows from Lemma 4.

We then bound term III as follows:
[E[(ne — J(we)) (J(wi) = J(wi2))]]
a ‘E {(”‘f — J(wr)) <_VTJ(Wt)(Wt+1 —wp) + (Wep1 —wi) | %(Wf) (w1 — Wt))] '
| [(Ut (Wt))VTJ(wt)(thrl - Wt)”

B[O ) s — )T L)

B (wWit1 —wt)H

= B [E [(m — J(we)V " I (wi)6:] | + 57 |E

V2J(on)
[ne — J(wy)] M ||9t||§]

BB,
2

e
E [V ) ] + =287, ©4)

B
< DE [(n - J@))?] +
where the first equation is from the Lagrange’s Mean Value theorem for some w; = Aw; + (1 — XN)w;y1, A € (0,1).

Plug Equation (92), Equation (93), and Equation (94) in Equation (90), and we have that

E (1 = J(@i1)?] < (1= 2)? + B) E [0 = J(@))?] + B2BE [V 03]

t—1 t—1 t—1 t—1
+2’7t (BRgndxCTr Z Zﬂ? +R12ndxmp +Rmdx Z 7]+RmaxCJB Z 6])

j=t—k i=j j=t—k j=t—k
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+ Riai + C3B25} + 2BCy RuaxBrye + Ruax L B25;. (95)
In Equation (95), we use the fact that 1 — -, < 1. This completes the proof. O

C.3. Tracking Error Analysis of NAC

In this section, we bound the tracking error 6, — 6; for NAC. Define

~ 2 Capmpt\ A(k + 1)CyUsCopmp®
Gl = <8 gt &Ca) (g;pmp > + (k+1)2U3C3a? + (k1) N e,
t min min
+ 2(k + 1)Cy BU;CoB; + 20:GY + 203 B2 2. (96)
Lemma 12. If we set the step size satisfies that B; < mab then it holds that
* 2 j\minat *112
E s — 053] < (1- 2222 ) & 10, - 0712]
C, (k+1)%C? ~
+ )\276'61&]}3 {HVJ(Wt)Hg} + 5\7.4’04,&]}3 [(J(wt) —m)?| + G e
Proof. From the update rule of Algorithm 1, we have that
12 v |12
H9t+1 - 9t+l”2 = ||HB (0 + vedrze) — 9t+1||2
(a) . 112
< ||9t + 02 — 9t+1||2
* * * 2
< ||9t + at(stzt — Ht + Qt — 9t+1||2
* * * 2 *
=110, — 0715 + oF [|6e2e5 + 107 — 07,1 ], + 200 (0 — 07, 6124)
+ 200 (624,07 — 0f 1) +2(0: — 07,07 —07,1), (98)
where (a) follows from the fact |11 (z) — yl|, < [l — yl|, when [jy|l, < Band ||6;,,]|, < B.
Taking expectations on both sides of Equation (98), we have that
* 2 * * * 2
E (161 — 02 l3] < E [16 - 6:13] + oZE [louzl3] + E [[[o — 07,4 13)
+ ZOét E [<9t — 9:, 6tzt>] +2()ét E [<5t2t7 02( - 02(+1>:| —|—2]E |:<9t - 02;, 9: - 9:+1 ] . (99)

I I 11

For the term ||9;‘ — 0711]],> we have that

167 = 621l = 108 = Okes + 07 = 07 = 071 + 0714
<07 = 0l + 1167 = 07l + (1671 = 071,

< Co o, + 2o
= 8o I, + 22
< Conpy + L™ (100)
where (a) follows from Lemma 2 and Proposition 4. Hence we have that
E [Hag - 9;‘+1||§] <20LB232 + ch}gimgp% (101)
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By Lemma 5, term I in Equation (99) can be bounded as

j\mm k +1 202
E[(6, - 6;,6i20] < — “2E |16, - ;3] + %E [(T() = m)?] + 6. (102)
For term II in Equation (99), we have that
E [(0:21,0; — 0741)] S E[lI0ell, [|67 — 9311”2}
(k+1)C¢U5E[||9t+1 O; ||, + 116 — O[], + [|0741 — O24a]],]
2(k + 1)CyUsC, k
2 (b + 1)CuUsCoE [l — willy] + 2+ DT Cont
k

< (k+1)C, BUsCoy + 2 DCsUsCopmp” (103)

AInin

where (a) follows from Lemma 2 and Proposition 4.
For term III in Equation (99), we have that
E [(0: — 07,07 — 0711)]
=E[(6, — 07,0 —0;,1)] +E[(6, — 07.0; —6;)] +E[(0: — 67,671 — 6;,1)]
< E[l16: = 0712 |07 — 621 [1,] +E [ll6: — 6711, |67 — 6], ] +E[l16: = 67 Iz 0741 = 07

< Co [0, — 6, llons: — wtlb} + S (16 0118]) + 55 [lor - 52
+ 2 (o - 0713) + o [||9t+1 il
< COR[10: = 0l oss — wall) + B [16~0715] + <0Ammpk>
— CoBE[||6, — 67|, |6:]l,] + BE [H@t - QZ‘I@} + é (W)Q
< CaE {10~ 71 i 1] + CoBiE (10— 01 1E] + Cosik 10, 71, 0 ],

N 1 [ Capmp® ?
+BE (60— 6715] + 5 (’;")

< 5CoBiE [l — 6713] + 5CoBiE [I6:]3] + CoBiE 160 - 6713] + 3CoBE 100 - 67113]

1 * * * 1 Ca mpk ’
+ 5C@ﬁt]}ﬂ {HH H } + BE {Hgt —6; H;} + E (g)\pmin>

N[ —

g %c@m (AR SCoBE [H(E)1 VJ(Wt)Hz:| +CoBE [|16: — 6;13]

2
2 2
Ce X Cop apTp) " 1 [ Capmp®
25 (16— 6713 + ‘;(A ) + B [netet@]m(i‘?
a) . Ce Co 1Y (Capmpt\®
< (2Ca +1) 82 (101 - 0:18] + 52 s [Ivawolt] + (P52 + 2 (G222 qoy

where (a) follows from Lemma 2; (b) follows from Proposition 4; (c) follows from Proposition 1, Proposition 2, and
Proposition 4; (d) follows from that || F,~ ! H2

Amin

Plugging the above bounds in Equation (99), we have that

E ([0~ 67,413
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< C
< (1= Aminas + (4Co +2) B1) E [0, = 07 3] + 352 BE [V (wo)I3]

min

+ —(k +1°C Coapmp”

- o E [(J(wt) — 77t)2} + <8 + % + ,BtC'@> (
4(k + 1)CpUsCgapmp® N

)\min

2

)\min

+2(k +1)CyBUsCou By + 20,GY + 2C3 B*B;. (105)

This hence completes the proof. O

C.4. Sample Complexity of NAC

In the following, we set ax = a, 5z = (3, and v, = ~y for any ¢t > 0. We denote by KL (w;) = ~Ep,. [log WW‘(a‘s)} . Recall

7> (als)
that = [3 log T} We first have the following lemma.

Lemma 13. Denote by T = [fliT—‘tA > %, then for any t' < T — T, it holds that

InlnE[ (") — J(wy)]

t<T
KL(wy) — KL(w,,,5)  CyClgymp® 2eC3C\t [4B2 + R2
< (wr) 6T ( t+T) i ¢)\g;.7mp +20., T‘acmr-f—\/icqs( 2 M ) +\@C¢ %

t’+T 1 t—1
1 KL(wy KL(w,, , ~
+VEC, | = S Y a-gre 1(G“+G" el +20¢\/C20M€f () = KLy 7)

t=t"  j=t—t AT
GECQCM C Ca m k B2L B L Rmax
+2%\/ % < ol A 2¢5) Blog, T, (106)

Proof. Recall that 7* = arg max, J(m) and A™ = Q™ (s,a) — V™ (s). We first have that

KL(wr) — KL(wi+1) = Ep_. [log 11 (als) — log mi(als)

(a) L
> Ep,. [V logm(als)] (wrer — 1) = 5 Jwrsr = will

L

= 8Ep,. [o] (s8] - 27 0,13

T T * T T * BQL¢B2
> BEp,. [A(s,a)] + BEp,.. |87 (5,0)0F — A™(s,a)] + BEp,.. [¢¢ (s,0)(6: = 67)] — —
) * T * g T * BQL¢62
= BU(r") = J(m)) + BEp,.. [¢0 (5,0)0] — A™(s5,@)] +6Ep,. [¢/ (s,)(6 —07)] -—="—,  (107)

I 1l
where (a) follows from that
|VEp.,. [log7,(als)] — VEp_. [log 7, (als)]]l,
= |Ep,.[¢u(s,a) = ¢ (s,a)llly < Ep,.[Lg [l = &'[ly] = Lg llw — ']l , (108)

and (b) follows from the fact that
Ep,. [A™(s,a)] = Ep,. [Q™(s,a) = V™ (s)]
=Ep_. [R(s,a) — J(m) + VTi(s") = VT (s)]
=Ep_. [R(s,a)] = J(7) + E(s.a)D, - smP(|s,0) V()] —Ep_. [V™(s)]
=J(n") = J(m) + Ep,. V()] = Ep,. [V (s)]
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= J(7*) = J(m). (109)

To bound Term I, we first have that

|Ep,. [¢/ (s,a)0; — A™(s,a)]|
< |Ep,. [¢{ (s,a)0; — A™(s,a)]| + |Ep,. [¢{ (s,a)(0; —6;)]]

D . . o
< || _mo. 67 i a7+ Co 5 -1
(a) DT{‘* - C C a . .
= D, ‘OO \/]EDt {(¢;r(57a)9t* - A’”(s,a))z} + %ﬁnp
®) || D... .
< ‘Dﬂ' ’ m_,’_ M7 o
Dy o0 Amin

where (a) follows from that proposition 4, and (b) follows from the definition of §; in Equation (2), the definition of &,c(or
and the facts that

Ep, [(4);“(5,@)@;‘ - A’”(&@)ﬂ < Eactor- (111)

For term II, we have that

[Ep,. [0/ (s,a)(0: = 6;)]| < Cy [16: — 6], - (112)

Plug the two bounds on terms I and II in Equation (107), and we have that

B KL B KLare)] 280 B} = 8| | var = 592"
— BCSE (116 — 67 1l] ~ %ﬂZBQ, (113)
which implies
BI) ~ B w0) <BRLw0)] - BIRLGrs )] + 8] | v + 5925
+80sE N0, — 071 + D L2 (114

2

Set My,1 = E [||9t+1 — 07 ||ﬂ +E |:(77t+1 — J(wtﬂ))?} , and we now aim to bound M;. Combine the bounds we
obtained in Equation (89) and Equation (97), and we have that

Coe

2
)‘min

+(L=E (0 = J(@))’] + B28E [ VI (@0)3] + GI + G
= (1 - ;Amma) E (6. - 67113] + LADAL

S0 () = m)| + (1 =N E () —m)°]
# (2 +87) = IV @ol] + G2 + &

min

E2 D 8 [(w) — ]

1-
My < (1 - ZAmina) E[l19: - 07113] + 35> BE [IV T wo)ll3] +

)\min

min

(%) (1 — ;)\mina> E [H@t - 9:”3} + MQE [(J(wt) _ m)ﬂ T (1-9)E [(J(wt) B m)z}

)\min

35



Non-Asymptotic Analysis for Single-Loop AC/NAC with Compatible Function Approximation

2072
Co + BQ) B (;’ (E[J(wes1)] — E[J(w)]) + 2C4E [H@ o |l D

+QZ
Co Chmp* B ~ -
+ ( AZO + B2> <zcgap¢;_ +L,C}B*B* | + G} + G

1-
< <1 — 3 Aminar + QCgCM[j) E {||et - 0;‘||§} +2C5Cy (E[J(wig1)] — E[J(we)])
2Cg0p Cdmp*
bt e P + LJC£B2B2>

k+1)2C?
4 (1 ot (/_\.)‘ba) E [(J(Wt) *ﬁt)ﬂ +Cuy ( P

(115)

+GY+ Gy,
where (a) is obtained by Equation (87), and Cj; = )\C? + BZ2. For convenience, we set
_ 20,0, CEmpt
&% = Oy (W + LJC;B%Z) . (116)
min

1 \min. Furthermore, we set the step sizes such that = Ao >

20“’ such that M\, > 5 Ami
} Let ¢ = 2 Amina and 2 > ¢. Then the inequality in Equation (115) can

We set k = [lofT] and T >
lj\minO‘v %a .
G (117)

2C§CM6 and 7 > max{3

be written as

Misr < (1— q) My +2C3Cs (E [T (i) — E[J(@) + G + G2 + G-

Recall that = H log T—‘ = RlogT—‘ For t > 2k + £, we recursively apply Equation (117) for # times, and we have that
A t—1

M; <(1—q)' M,_;+2C30m Y (1= @) 7 (E[J(wj1)] — E[J (@)

j=t—t

t—1
+ Y (-t (éy +GY+ é;?)
j=t—t
(@ 4B° + R},
S 7+ 2C5Cy
j= =t—1%
(118)

t—1
+ > (1—gt? (67 +G%+ é;’) :

3 (1= 5 (B [Fwye)] ~ E [Twy)

j=t—t
where () follows from (1 — ¢)f < e79 < =187 = L and M; = E [H@L - 9;‘”5} +E [(77Z — J(w;))?| <4B*+ R2,.
fori =0,1,....,7T.
Denote the time length T= L I(QT-‘tA >3 <T-T together with Equation (114) we have that
1 t+T—1
= Y J@") —E[J(w)]
T =
KL(wy ) — KL(thrT) CyCl mp¥ 1 t'+T—1 Do
< + gap + = s oo
>\min T ; Dt 00 eer
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t'+T—1

1 . B%L
+Co= D Ell6:— 07l + =528
T t=t’
(@) KL(w) — KL(wy,7)  CyCapmpt 17| Dy
S ~ + &P + = il A/ Eactor
ﬁT Amin T tgt’ Dt ) ‘
t+T—1 9
1 B2L
+Coy| = > E[I0i—6:13] + =28
T t=t’
®) KL(wy) —KL(w, ) CyClunmp®
O KLlwr) - KLy yr) | L 4 CooEan
t’+T 1 9
L BL

where (a)

(b) follows from Assumption 3.

Moreover, for 2k +{ < ' < T — T, summing Equation (118) w.r.t. ¢ from ¢’ to t/ + T — 1 implies

t+T 1
Z M,
t=t’
f+T 1 t—1
<20¢CM~ S 1= T E [ (wis)] - E[J(w;)])
=t j=t—f
4B+ R2,, 1T o
s Y X -0 (G4 6+ )
T T = &
Jj=t—1
() i— lt+T 1
Da030n=Y Y (1= ) B (wn-0)] - E[Jwrin))
=0 t={—i
4B+ R2, 1V il e A
§o e 2 N N (1)t 1(Gj+G§+Gj.)
T T t:t/ . &
Jj=t—1
(b) i—1 )
®) 2(]¢C’MT S -0 (B[ 7 )] ~ EWwii1))
=0
AB2 4R 1 t4+T—1 t—1 i~ _
ey NN (1 gyt 1(Gj+G§+G;?)
T T = &
Jj=t—1
1 i—1
< QC¢CMTZ(1—(I) (J(7*) = E [J(wy—i-1)])
1=0
AB24 R 1 t'+T—1 t—1 e~ _
e DY B (GEYcENe
T T = &
Jj=t—t
1 i—1
< QCf,CM? > (J(*) = E[J(wr—i-1)])
=0
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4BZ+R12nax 1 R t—ji—1 ( Fw ~0 ~
e DD el (RNcENcH (120)

t=t'  j=t—%

where (a) follows from that we set i = t—j—1, (b) follows from the fact that Zt'J“T_i_l (E[J(wi—s)] — E[J(wi—i—1)]) =

t=t—i
E J(wt,+f_i_1) — E[J(wy—i—1)] and (c¢) follows from J(7*) > J(Wt,_@_i_l).

Lemma 14. We denote by Xy = 101 (J(n*) = E[J(w,)]) and Yy = %zfjf*l (J(*) = E[J(w;)]). We have

B =t/ —i
that there must existt' +t < ¢’ <t' + T s.t. X < Yy

Proof. We prove the lemma by contraction. Assume that there does not exist ¢’ 4 f<t" <t 4+Tst Xy < Yy. Then, for
anyt' +t <t" <t +T, Xy > Yy,

Next, recall T = LIL—‘ {, then we have that
ogT

r bl
t'+T—1 tlog T

0

1

. 1 t/ 4rt—1 .
Yt,:? Z:t/ (J(rm )—E[J(wt)])zw Z (J(7") = E[J(w)])

flogT-‘ =1 t=t/+(r—1)t

T
Tlog T

| =

T
Tlog T

1 (a) 1
=7 2 Xewsi > T 2 Yo=Y, (121)
tlog T 7=1 tlog T 7=1
where (a) follows from ¢/ 4+-¢ < t' + 7t < t/ +T, X i >Yyforr=1,.., [HOZT—‘ . This hence results in a contradiction,
which completes the proof. O

We then discuss the following two cases.

CASE 1:

[For any 2k + £ < ¢/ < T — T, it holds that Yy < X,.]

Then, for %vo = 2k + £, we have X;O > eY;O. Recall that T = [ T Wf < < r_ 4 1) i< 1ogT +i< % for large
(a) (b)

T. Then, % > logT > L%J Thus, there exist fo + ¢ < t; < to + T, s.t. X; <Y < %XE)’ where (a) follows

from Lemma 14 and (b) follows from the condition of case 1. Recursively applying the above argument, we have that for
j=0,1,.., LIO%TJ there exists t~] +1< t~j+1 < ?J + T, suchthat X7 = <Y; < %X;j. This further implies that

. . log T log T
Xp, > €Yy > eXp, > Yy > 2 Y >ty > > el JX;L¥J >el™ J+1Yt~t¥l. (122)
Then, by Equation (122), we can conclude that
. ?L#Jﬂ’ffl ) )
Y?L%J = ? ~Z (J(Tl' )— E[J(Wt)]) S @X?O S 7TX‘£0 (123)
t=t logT |
2
Note that X; < J(7*) < Ryax, hence we have that
?LMJ'*‘T*
12 Roa
Y- = = J(r*) —E[J(w < X 124
ey =5 2 ) El@) < T2 (124)
= 1o
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This further implies that

Rmax
minE[J(7") — J(w)] < N (125)

This hence completes the proof of Theorem 2 under Case 1.

CASE 2:

[There exists some 2k +f <t <T — T s.t. Xy < Y]

Define 7y = % Eiljt/T_l M. From Equation (120), we obtain that

1 t'+T—-1 1 i—1
Zy== Y M <203Cy=> (J(r*) —E[J(wy—i-1)])
T t=t’ T =0
AB? 4 R2 t'+T—1 t—1
n +7

L Z Zt:t q)t—j—l(éy+é§+é;7)
J

t=t’

t'+T—1 t—1
o2 t 432 + R%nax 1 t—j—1 (FAw | 0 | 7~
t=t"  j=t—i
(@) 1B2 +Rmax 1 t'+T—1 t—1 (e = _
< 20¢CMTth/ e 3 (1 q)—it (Gj + G +G;?), (126)
t=t" =t

where (a) follows from the condition of Case 2.

Next, from Equation (119), we have that

t+T 1
Yo=z > Jn")~ElJ(w)]
t=t/
KL(wy) —KL(w, ,5)  CyClapmp” t+T ! B?L
< ﬁf v+T) | ¢>>in[:np + Coov/Zactor + Co Z M, + 2¢>B
t=t'
KL(wy) — KL(w,,  ~ CyClon k
_ ( t) ﬁf ( t+T) n ¢>\g [,’mp + O TmoerC(ﬁ Zt’+75 (127)
Plug Equation (127) in Equation (126), and we have that
t+T 1
Zy = Z M,
t=t/
4BQ+Rmax 1 RS t—j—1 ( fAw ~0 ~ QGCithA C¢Cgapmpk BQL‘f)
S = Z > -9 (Gj+Gj+G;7)+ = ( ST B)
=t j=t— B min
KL (wy KL(w,,

+20¢CM~( () ~ KLy 7) + Cu ,/7€EC[OI+C¢\/ZH>

T BT

@ 4B+ R | 1 g U ml me oy 2eC2Chd [ CyCuomp® BL
S M LYY o (G ) - T (G Bheg)
t=t' j t— t min

A\ 2
2eC3C\t 1 C2 Euctor et (KL(wy)—KL(w,, 7
+<‘% ) +§Zt/+7°° ! +QC§CMT< (wr) ( ”T)>, (128)

2C2 BT
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where (a) follows from zy < #

Thus, it follows that

A\ 2
832 + 2R2 t+T—1 t—1 ) _ . _ 2€CBCA[t 02 c
7., < max 2 : § : t j—1 (Gw GG Gn) 2 QL oo Eactor
h T t=t’ Jj=t— i ’ ’ ’ " ’ ' T ’ 03)

KL(wy) — KL(w,, , ~ 4eC2C\ 1t k 2
+4O¢CA4T( () S t+T)>+ oM <C¢Cgapmp +B Ld)ﬁ). (129)

5T T Amin
Then, we get that

t/+T 1

KL(wi) = KL(w,, 7) | CyClpmp” BL
Y/ < ~ +T ¢ £8P COO actor C M ¢
v < i + =+ CooFucr + O tzt vt B
KL(wy) — KL(w, . %) CyClapmp® 2eC3Ct
< (’)ﬁf(”T)Jr ‘f’f’_’mp +2coom+c¢\/§<¢iM)

[T el AB? + R?
+OV2 | = Z > (=it (G + G+ G) + Cov2 e
t=t'  j=t—t

{KL(wy) — KL(w,, , etC2Cy [ C,C, ko B2L B2L
+20¢\/CQCM; () ~ 7 ( t+T)+20¢\/ ‘?LM( "f“’_’m” + ¢6>+ 28, (130)

which proves the claim under Case 2.
Thus, combine the Case 1 result in Equation (124) and the Case 2 result in Equation (130), we have that

minkE [J(7*) — J(w;)]

t<T

KL(wy) = KL(w,,_ 5) CyCla 2eCyC 0t 4B2 2
< Kulew) 7 Woir) %@mp 420 m+C¢W(TM>+C¢\/§,/+TRW

t+T11‘1 XL , <L —
TOV2 | % = > Y -9 1(G“+G9+G7’)+20¢\/C cMef (we) = KLwyy7)

t=t" j=t—% BT
etC2Cy [ CyCrapymp®  B2L B? L 2R
120 Ci ( ¢ gap + [ ) L L 4 Sitmax max 131
which completes the proof. O

Next, we prove Theorem 2.

Theorem 4. (Restatement of Theorem 2) Consider the NAC algorithm in Algorithm I with constant step sizes that v > « > f3,
then it holds that

rtx%i%ﬂE [J(7*) — J(we)] < O <IO§1T) +0 (%%;) +0 (%) +0 ( m;iT> +0 (@)
e (”51\/;“;2T> o <W\1/Oa?> e (f) e (\/alog3T> o (\/BlogsT)

+0< (mp’“)logT)+0< (mik)ﬁ>+(’)< (mgkh)JrO(%)Jro(V%).
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If we set v = O(T_% logT),a = O(T_% log™'T),8= O(T_% log™ ! T), we have

min J (1) — J(w;) < O (T*% log? T) + O (Veumr) - (132)

t<T

Proof. From Lemma 13, we have that

mink [J(7") — J(w)]

KL(wy ) — KL(w,, , = CyCos 2eCC’ t 4B2 + R2
o Kllow) = KLy 17) | CoClupmp” + 2C 0 /amr + CoV/2 [ 20 ) 4 /2y [ 22 fomax
ﬁT >\min T T
t4+T—1 t—1
1 t KL(wy KL(w,, , ~
VI = Y Y (it (G 4 G+ GY) 420, CQCMG () = Kby o7)
T t=t/ BT
Jj=t— i
efCZCM CyCoaymp” B2L B2L 2R
+2C ¢ ( o TP 4 ¢ >+¢ max 133
¢\/ )\min 5 5 \/T ( )
We then set the stepsize as follows:
v = T3 log T';
. j\min 3 o _2 —1 .
amm{(k—i—l)QC’i% 2/—\min} —(’)(T 3 log T),
. S\min j\min _2 -1
= = T 31 T . 1 4
p mm{4(20@+1)a’ 120;0Ma} 0T F1og7 1) (134)
Recall that
logT
k - |—1 _ p—|7
/_\min
q= 2 = - O (a) )
. 1
t= [logT—‘ =0 (logT> ;
q @
~ T 1. T
T=|——=|t=0 . 135
LlogT—‘ (logT> (133)
Applying the above stepsizes in Equation (134), for t < T, we can have that
GY = O ((mp*)y + B2 + Ky + ky?) = O (T3 10g° T) ;
éf =0 (k(mpk)a—f— (m Z i + k30 +k3a5+ﬁ2> = ( T3 logT) :
GY =0 ((mp*)p+52) =0 (T*% log =2 T) . (136)

(a)
Besides, we have that KL(w;) = Ep_. [log (: (&l‘?))} <Ep.,. [log (5"7((1‘2))} < log Cw, where (a) follows from
Assumption 3. '

Thus, it holds that

t+T—1 t—1

Z S (1 -q)in 1(G“+G9+G") —(’)(T’%log2T). (137)

t=t'  j=t—t

1
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Plugging the above equations to Equation (131) , we have that

minE [J(r) = J(w)) < (T3 10g* T) + O (VEsewr)

t<T
This concludes the proof.

D. Proof of Lemmas

Proof of Lemma 1. Recall the definition of V.J(w) in Equation (1):

VJ(W) = EDWW [Qﬂw (8, a)¢w (57 CL)] )

which implies that

IVI(@)lly = ||Ep,. [Q™(s.a)pu(s,a)]|,

DIEp,. [6] (s, )05 (s.a)] |,
SC (||9*H2+H9_:_0:)H2)

k
% c3 <B + Cgap:\np.> =Cy,

(138)

(139)

(140)

where (a) follows from Equation (3) and (b) follows from Proposition 4. It hence proves the first claim. The second claim is

proved in Lemma A.1 in (Wu et al., 2020).

O

Proof of Lemma2. Recall that F,, = Ep_ [¢.(s,a)¢/ (s,a)]. From the definition of 6}, in Equation (2), it can be verified

that

0z

=F;'VJ(w).

Hence
165 — 6l
= ||Fw 'WJ(w) - F,'VJ(w
<||FS'WVI(w) = F 'V (w

Ol

My + [[F51 VT w) = BV I,

< ), 1E Fully 19 7@l + [|(For) |, 197() — VI,

where (a) follows from Equation (55). Note that F, can be shown to be Lipschitz as follows:

1P = Furlly = |[Ep.. [6u(s,0)00(5,0)] — B, [bus(s. )0 (s, 0)]
< |[Eo.., [¢u(s. )6l (5,0)] ~ Ep.., [dur(s,a)0l (s, 0],

+||Ep.., [6u(s.0)00(s,0)] ~ b, , [0u(s,0)8] (s,0)]|

<20y Ly | = wlly + C3 | Dr, = D |

2

TV

(a)
< 204Lg W' = wlly + C3Lx lw — 'l
where (a) follows from (Zou et al., 2019) and Theorem 1 in (Li et al., 2024), that

|Dx., — D, < Lllw—w'l,-
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Hence combining Equation (142), Equation (143) and Lemma 1, we obtain that

~ & C L
165 — 5|, < (AQJ (2C4Lg + C3L,) + /\") lw— [l - (145)
This completes the proof.
O

Proof of Lemma 3. From the definition of H,, in Equation (11), we first have that

Ho = Ep,., [E [6u(50,a0) (6w (s, ar) = duls0,a0)) " |50 = 5,00 = @, |

@ Ep,, [6u(s,a)(E [¢I(sk,ak)|so =s,a0=a,m,] —Ep,_ [qb;r(s,a)])}

—Ep,_ [¢u(s,a)0, (s,a)], (146)

where (a) follows from ¢,,(s, a) = Vlogm,(a|s) and Ep,_ [¢/ (s,a)f(s)] =0, where f(s) is the function which is not
determined by action a.

Define AH, = Ep, [(ﬁw(s, a) (IE [¢I(sk,ak)|so =s,a9 = a,ﬂw} ~Ep,, [(bI(S, a)])] Thus,

H,+H) AH,+AH]
2 o 2

—Ep,_ [¢u(s,a)e/ (s,a)]. (147)

For any symmetric matrices X and Y, Apax (X +Y) < Apax (X) + Amax (Y). Thus, we have that

T T
A <M> < A (M) 4 Amax (—Eo._ [6u(s,a)6] (5,a)])

2 2
S C;E [HP(SIC7 ak‘SO =S5,a0 = S, 71-0.))7 Dﬂ'w ||TV] - )\min
S qu%mpk - )\min = 75\min7 (148)
where last inequality follows from Assumption 1. O

Proof of Lemma 4. Conditioned on (s;—g, a:—x), the sample trajectory in Algorithm 1 is generated according to the
following Markov chain:

Tk XP 7\'t-k+1><P

P
(St—ty @t—i) —— (St—kt1, Bt—kt1) (8t a) T (Se41, Qrgn)- (149)

Using the technique in (Zou et al., 2019), we construct an auxiliary Markov chain as follows. Before time ¢ — k, the states
and actions are generated according to Algorithm 1; and after time ¢ — k, all the subsequent state-action pairs, denoted by
(81, @), are generated according to a fixed policy 7; and transition kernel P:

P~ ~ P ~ - P~ ~
(St—ks Qt—1) ettt (St—kt1, Qp—41) Giltasat (8¢, ay) et (St41,Gyq1)- (150)

Denote by ft the filtration corresponding to the auxiliary Markov chain designed in Equation (150).

Then follow steps similar to those in (Zou et al., 2019, Appendix B) and (Li et al., 2024, Lemma 6), it can be shown that

t
P (s, aelFir) = Dellmy < mp" + > Collwr — wjl, - (151)
j=t—k
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Proof of Lemma 5. Define the sum of the feature along the trajectory as follows:

t t t
a= Y, Gilspay), 2= ) dulsja)andz= Y 4u(35,4;).

j=t—k j=t—k j=t—k

(152)

For every policy 7;, we construct another auxiliary Markov chain, denoted by {(5;,a;)}52,, which is under the stationary

distribution induced by policy 7; and transition kernel P, i.e.,

(507C_l()) ~ Dt»

and all the subsequent actions are generated by ;. Define

Z = Z be(55, ;).

j=t—k

Denote by 6;(5, as; 0, w) = R(5p,a¢) — J(wi) + &/ (041, 0e41)0 — ¢/ (54, ae) 0y
Lemma 15. It holds that

E [Etgt(ét,&t;&wt)\m] = Hwtﬁ + bwt'

From the definition in Equation (4), 8} is the fixed point of the k-step TD operator 7;@. Then, it follows that
Ho0; + b, = Ep, [0/ (s,0) (TS (6] (5,0)67) = 6] (5,0)6; ) | = 0.
Together with Lemma 15, we have that
E [Ztgt(gt, Elt; 0:, wt)] = 0

Thus we have that

E [<0t — 07, 2:64(5¢, ay; et,wt»] =E [<9t — 07, 204 (51, ag; O, wi) — 201 (51, dt;@,wt»]
=E[(0;, — 07, H,, (6, — 0))]

< A <M> E [Jo, - 0713]

A

2

-

where (a) follows from Lemma 3.

(153)

(154)

(155)

(156)

(157)

(158)

Then, recall 2; = Z;:t—k ¢+(s;,a;). Denote by 5 = R(s¢,ar) — J(wi) + @ (st41, ai41)0; — &/ (¢, ar)0;, we have that

E[(0; — 0f,0:2:)] = E [<9t — 05, 2,0,(5;, ay; 9t7wt)>} +E [<9t - 9:7%315 — 2,64(54, dt;et,wt)>]

+EK@—@J@—a&ﬂ

< A 10 011] + & [(00— 07,26 2850300 )]

+E[(0: — 07, 2 (J(wi) —m))]
— * 2 * S - = — —
< —AminE [Het - 9t ||2} +E [<9t - 915 , 20y — Zt(;t(Staat; 9t)>}
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k+1)2C?
(k+ 1203

j\mm *
+ 5RE (6, 0;15]) + o —E [(J(w) )] (159)

2

where (a) follows from Equation (158).

Consider the term E [<9t —0f, 207 — 204 (51, ay; Oy, wt)>} , and we have that

E [<9t — Qf,zt&s — 264(8¢, ar; 9t7wt)>}
=E [<9t — Or—op, — 07 +0;_5, 210y — Z:64(5¢, s 9t,wt)>}
B [(B1ak = 01 op 200 — 2084(51, 013 00,0) )|

<E [Het — 0ol + 1|07 — 07—k, (Hthz ‘ 5tH2 + 1|2l Hgt(gtﬁﬁ@tth)HQ)}

)
+E Ket,% I - 2t3t>}
@
+E [<9t_2k O 28y — 70,50, ans Oy, wt)ﬂ . (160)
an)

In AC algorithm, recall Us = Rmax + 2C4 B. Then, consider ||6; — 0;_2||, and ||9;" — 07 o ||,> we have that
t—1 t—1 t—1
16: = Or—oill < || D @idiz| < D a;ls |HZ;H2 < (k+ )CsUs Yy, (161)
j=t—2k ,  J=t—2k j=t—2k

where (a) follows from the fact that || z:||, < (k + 1)Cs.
Then, it can be shown that
Hef - gf—QkHQ = He_t* — 0 o +0; —0; +9t ok — O 2k||2
167 = O7—arell, + 1167 = 07 |, + 10721, — 672,

<
Coapm Coapm
< @Hwt_wt—2k||2+ £ ,0 + £ p
)\min )\min
2C gapmpk
<Ce Z 53 (s5,a3)05¢;5(s;,a;) +§\+
j=t—2k ) min
= 20 apmp®
<CoC3B Y g+ el (162)
. )\rnin
Jj=t—2k
Thus, from Equation (162), the term (¢) in Equation (160) can be bounded as follows:
t—1
(i) < 2(k +1)CyUs | (k+1)CyUs tz% a;+CeCiB tz% B + 2Cgp Amm (163)
J J

Then, for term (¢7) in Equation (160), it can be bounded as follows:

t
(i1) < E [||61—ar — 07_ai|, l12¢ — 201, 15:(6)]] < 2BUs | 3 y(s,a;) — du(s;,a5)

j=t—k 9
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t t t
< 2BUs Z CxE [”wt - ijQ} < 2BU;C; Z Z]E H|/87,¢;r($z7az)61¢7(877 ai)||2:|
j=t—k j=t—k i=j3
t t
<2B°C3UCr Y > B (164)

j=t—k i=j
Next, for term (i7¢) in Equation (160), we can show that

(i) = B [{B1-21 — 07_ou 2061 — 200050, 60) )
=E {E Ketfzk — 0ok 281 — 204 (51, a3 9t)> \«th%ﬂ

t
<4BCyUs > E[|[P(s), a5 Fi—2x) — Dill 1]
j=t—k
t
<4BCyUs > B[P (s;, a1 Fi—2x) = Dl + 1D; = Dill 1]
j=t—k
t

Jj—1
<4BCyUs Y | Cr > E[llwi — wjilly) + mp" + LaE [[Jwr — wjll,]

j=t—k i=j—k
t j—1 j5—1
<4BCyUs Y | Cr Y. > BCIB+mpt + Ly Zﬁlc(b . (165)
j=t—k i=j—k =1 i=j

Thus, combining Equation (163), Equation (164) and Equation (165), we can bound term as follows:

- k+1)2C3
10, ~07,0070) <~ 208 [j0, — 0712] + T [y -]
t t t j—1 j—1
+2B2C3UC, > N Bi+ABC,Us > | BC3C: > B +mpt + BC2L, Z,@g
j=t—k i=j Jj=t—k i=j—k t=1 i=j
= 2Cgapmp”
2(k 4+ 1)CyUs | (k+1)CyUs tZ%aJ+C’@C¢B tz%ﬁj | (166)
J J

In NAC algorithm, terms [|0; — 0;—ox|, and ||0; — 6;_,, ||2 can be bounded as follows:

t—1 t—1

100 — O —2klly < || Y bz < (B+1)CeUs > ay, (167)

j=t—2k ) j=t—2k

and

||9; - 9:—%”2 = ||§: —0f o)+ 07 — 0 +0; o, — 07 2kH2
<107 = O anlly + 1167 = 71, + 11672k — 07 okl
C’gapmp n C'gapmplC

< Co [|(wr — wi—2k)l5 +

)\min )\min
t—1
2C gy mp"
<Co| Yo 8| + b

Jj=t—2k 9
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t—1
2C gapymph
< C¢B Z B + %P
j=t—ok min

Thus, using Equation (168) and Equation (167), term (7) in Equation (160) can be bounded as

t—1 t—1
(1) <2(k+1)CyUs | (k+1)CyUs tZQk aj +CeB tzzk i+ 2Cuny Amm
J J

Next, we bound the term (4¢) in Equation (160) as follows:

t

(ii) <E {H@tﬁk = 0 _ap || 12 — 2l ‘&H <2BUSE ||| Y ¢5(s5,a5) — di(s5,a5)

j=t—k 9

t t—1

t t—1
< 2BUj Z CoE [lwe — wjll,] < 2BUCx Y D |IBibilly, < 2B°UsCr > > Bi.

Jj=t—k j=t—k i=j j=t—k i=j

Term (i7¢) in Equation (160) can be bounded as
(’L’LZ) =K |:<9t72k — 0:;2]@, ét5t(9t) — z;é;(@t»]
=E [E [(0:—2k — 0 ok, 2:6:(0:) — 2,0(01) ) | Fe—ox]]

t
< 2B2C4Us Z E [P (s;, aj|Fi—2x) — Dl 1]
"
t

<4BCyUs Y E[|P (55,51 Fi—2t) = Djlly + 1Dj = Dill ]

j=t—k
t j—1
<4BCyUs Y | Cr Y E[llwi — wjlly] + mp* + LiE [lwr — w;ll,]
j=t—k i=j—k
t j—1 j—1
<4ABCyUs > [ Cx D0 D Bi+mpt + Ly Zﬁ,
j=t—k i=j—k t=1

Combining the above bounds on terms (i), (i¢), (¢i%), term can be bounded as

E [(0; — 0f, 6121)]

j\min * (k' + 1)202 ¢ =
<= 22RE (16, - 03] + 5B () —m)] + 28700 Y Y4
min j:tfk) ’L:]
= 2C gapmph
+2(k+1)CyUs | (k+1)CyUs Y aj+CeB Z B+ =
j=t—2k j=t—2k min
t j—1 j5-1
+4BCyUs | BCx > > B+ mp" + BL, ZB,
j=t—k i=j—k t=1

This completes the proof.

Proof of Lemma 7. From V2 J(w) = Y, , V2 Dr (s,a)R(s,a), we can get that for any w,w’ € R

[V2J(w) — V2 J (W Z (V?Dy, (s,a)R(s,a) — V?Dy_,(s,a)R(s,a))

s,a

Hz =

2
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Denote by o (A) the spectral radius of matrix A € R™*". Recall the fact that o(A) < || 4|, = max; {Z ; |a¢j|} dfAds
symmetric matrix, || 4|, = o(A), and thus ||A|, < max; {Zj |aij|} .

It is clear that V2 Dy (s, a) is symmetric, and therefore Y- _ (V?Dxr, (s,a) — V>Dx_, (s,a))R(s, a) is also symmetric. It
then follows that

(VQDM(S a) — V2D, ,(s,a)) R(s,a)

2

< maX

6w18w3 Dr.,(5,a) = 80,00, Dr_, (s,a)) R(s,a)

< max Vo Z@wlaw]Dm(s a)R(s,a)

llw =l

2

(b)

< max ZZ

< max {d2

ll = [l

Zaw,a%awlpm(s a)R(s,a)

-
@ max{ V Z@wﬁw}D (s,a)R(s,a)) (w—u")

> " 04,0u,0, Dr (5,0)R(s, a)

S,a

,5,0

} Hw—w/HQ, (174)

where (a) follows from the fact that D is n times differentiable as long as the Theorem 4 in (Heidergott & Hordijk, 2003)
and the Lagrange’s Mean Value Theorem for some @ = A;jw + (1 — A;j)w’ with A;; € [0, 1], and (b) follows from that for
a vector a, ||lall, < |lall;.

Define a function v : S x A — R, denote by || f||, = sup, , m;z;ll the finite v-norm of function f. Set v(s, a) = /(%)
and we can get that

B0

<1. 17
P (s a)] = (17)

Moreover, v(s, a) = ef(#9) < efmax and v(s,a) > 1. If || f||, < 1, it implies that

sup | f(s,a)| < effmx, (176)

s,a

For a (signed) measure yu, the associated norm is

el = : s”up1 Z,u s,a)f(s,a)l. (177)
For a kernel P(s’, d’|s, a), its associated norm is
‘ZS,}G, f(s’7a’)P(s’,a’|s,a)‘
|P|l, =sup sup . (178)

s,a Hf||v§1 |'U(S,G/)‘

From the fact that sup, , |‘§((j’;’))|‘ < 1, we can get that || R||, < 1. This further implies that

> " 04,0,0, Dr (5,0)R(s, 0)| <

s,a

Zawlaw]aMDm(s a)f(s,a)

sup
lfil, <1
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= [0, 0,00, D |, - (179)

3)

Furthermore, we define ICSI.) (s,a), ICEJQ) ,(s,a) and K (s, a) as follows:

i,5,1

K&i)(s,a|s’, a') = Z@wﬂw(a|s) (P(s, =s,a, =also=5",a0 =a',7,) — Dx (5,0));
=0

[e.e]
/Cg)] (s,als’,a’) = Z@wi(?ijw(ab) (P(s, =s,a, =also =8,a0 =d,7m,) — Dx_ (s,0));
=0

K&%L,l(s,a\s’,a') = Zawawjawlm(ab) (P(s, =s,a, =also =8,a0 =ad',m,) — Dx_(s,a)). (180)
=0

Then, define the kernel T, (s', d’|s, a), s.t., T, (s, d|s,a) = D _(s',a’) for any s € S, a € A. It then follows that

(S0 £, Tuls' ]s,0)|

ITell, = sup sup

s,a | fll,<1 [u(s,a)l
]Z f(s',a") Dr, (s, a’)] (23]
=sup sup =5 v, (181)
sa ||f]l,<1 v(s, a)l sa [v(s,a)|
By Theorem 3 and proof in (Heidergott & Hordijk, 2003), we can get
1) 1 1 2). 2) __ 2 1 3
D, KV = KOKD + K2 0, KD = KD KL + KD . (182)
Combining with Theorem 4 and Section 4 in (Heidergott & Hordijk, 2003), we can have
9, Lo = TLKLY;
By, 00, Ty = (0, T0) KO + T80, KL = T, LDED 41, (ICE}.)ICS.) + /cgf))
=, KVKM 41,2,
Dy O, Do, Ty = Do, (zrw/cg}i);cg) n rwicgig_)
=20 L) KDL + 27 (0,1 ) KD 420K (8,60
+ (L) KP, + T (9,KE)
= 20 KVKDKD 21, (;cg}g KO + icfjg) KL + 2T, k) (;cgjg KO + /cfj,)l)
1 2 2 1 3
+TLKDED + T, (K2 KW + K8 )
=60, KVKED LD or, kKP4 or, kWK 4 o1, KDL 41, K3 (183)
whhvw Nowy Noay wwg Nwgy wrw, NMwgg Wity TMwiy wWi™wig

Then, according to the discussion in Section 4 in (Heidergott & Hordijk, 2003), it can be shown that

1D,
—2 = |04,00,; 0, n
WP foGs,a)] NP0l
3 2 1
< W, [0, |. + 2wl ||| |57
2 1 2 1
+ 2010w I |[£2| [[8)] +20meal, €] xS
v v v v
1 1 1
+ 60 1, K8 | kS [KS)
v v v
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1
- o e[
0 o,y 1Pl [, + 20Dl
+2||D7TL:’||1) @it U+2||D7hb||v
+6 D, ||K S? KGN IS )- (184)
o EIE Ly
Note that Ryax > R(s,a) > 0 and sup; , ‘v(sl o = € Rmax Then we have that
190000y 0 D ||, < 1Dl || K55, ||+ 2 1Pl {55 |
+2|Dy ], @)H ||| + 21w, HK&?HU
+6 D, @, (185)
Next, we bound the term || Dy, ||, as follows:
1D I, = S Zf $,a)Dr, (s, 0)| < S Zlf $,@)[ | D (s, a)|
fmex D, (5,0) | < effmem, (186)
where (a) follows from the Equation (176).
Then, we bound the terms in Equation (185) as follows:
(1)
[,
020 0 O malals) (P (s, = 5,0, = also = 5,00 = ', ) — Dr (5,a)) £(s,0)|
=sup sup —
s'.a’ || fll, <1 |v(s’, a’)]
(@) >
< sup ” Tp ZZawim(aw) (P(s, = s,a, =also =8 a0 = da',7,) — Dx_(s,0)) f(s,a)
sha |IfIl, <1, =5 s,a
< sup sup ZZ |0, T (a]8)| P (s, = s,a, = alsg = §",a0 = d',7,) — Dy, (s,0)||f(s,a)]
sha IF11,<1 =0 s.a
®) n
< supzmax{\a T (alS) [P (50, a,]s0 = 8y ag = a’,7y) — Da ||y €700
(c) meFmax
< max {[0,,m(als)]} (187)

where (a) follows from that |v(s,a)| > 1 forall s € S,a € A, (b) follows from Equation (176) and (c) follows from
Assumption 1.

Similar to Equation (187), by Assumption 1 and Assumption 2, we can further bound H ICLQ and HICL(A,SL as
follows: ° !
Rmax Rmax Rmax
H,C < mCpe, ‘,Cg) < mCsemm, ‘lCS?). < mLsem (188)
1-p g 1-p Ity 1-p
Plug Equation (186) and Equation (188) in Equation (185), and we have that
6C3m3 4 Rmax 6m20C..C's 3 Bmax [ se2Bmax
9,0, 8 D ||, < —2 m = gtec mese (189)

< + +
L (a—pp 1=
50
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Thus, we can further get that

(190)

6C3mBetBmx G207, (s 3 Rimax L5 e2Rmax
927 () - 72 !!2<d2< g ) [ PR

(1—-p)? (1-p)? 1-

Proof of Lemma 15. Consider the probability P (5;,a;, ¢, Gt—x) and term E [Et&(@, ag; 0, wy) |7rt]. We have that

Tt

Z ¢¢ (55,;) (R(5t,a1) — J(wi) + & (Se41,a041)0 — & (1,a:)0)

j=t—k

t
=K Z ¢ 5]» St»atﬁ Wt) Tt

j=t—k

t
=SS PG sea) o] (55,0050 a3 0,w0) | m

a | j=t—k

= Z ]P)(ghah§2t—j7aQt—j)¢2—(§t7dt)6t(§2t—j,a2t—j§0awt)‘7"t
s,a 1

k
@ Z [Zp(st»% Sttis Geti)) & (St, @) 0¢ (S Qosis 0&&)%}

K3

I
o

k
= E(s,.a,)~D, [@T(gtaat)Z5t(§t+i,@t+i;9,wt)‘m]

i=0
=Ep, [0 (s,0) (T (6] (s,0)9) = ¢/ (5.0)0)
= H,,0+b,,, (191)

where (a) follows from the fact that P (5;,a;) = IP (5¢, at) ~ Dy, and thus,

P (55,a;,5¢,a¢) = P (54, a4]55,a5) P (55, a;)

=P (Sot—j, a2t—;|5¢,ar) P (54, 1) = P (5, Gy, Sor—j, Goe—j) - (192)
O

Proof of Lemma 6. Recall b, = E [Z?:o B (s0,a0)(R(sj,a;) — J(w))|(s0,a0) ~ Dy, ,m,|. Recall the definition of
H,, in Equation (11). Then, the solution to Equation (4) can be written as

0r = —H_'b,,. (193)

First, b, can be bounded as follows:

k
[bully = [|B | D &l (50, a0) (R(s5,a;) = J(w))|(50, a0) ~ Dr,, s
=0 1,
k

=D _E[¢] (50, a0)(R(s;,a;) — J(@))|(s0, a0) ~ D, ]

=0
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k
=D _E[¢] (s0,a0) (R(s;,a;) — Ep, [R(s,a)]) |(s0,a0) ~ D, 7]

j=0 9

(@) &
< ZcqumaxE [ Dx., — P (s5,a5]s0, a0, 7w)|| 7, [(s0, a0) ~ D]
=0

®) >
< C¢>Rmax Zmpk <

Jj=0

Coltmaxm (194)
1-p

where (a) follows from the triangular inequality and the fact that for any probability distribution P; and P, and any random
variable X, s.t. | X| < Xax, [Ep, [X] = Ep, [X]| < Xumax [|[P1 — P27, (b) follows from Assumption 1.

From the following equation:

05T HL0% = 05T by, = (037h,) =0T H 07, (195)
it holds that
HW—'_H(I * (12 * HOJ+HLI * * *
o (1Y 10215 2 027 g = 02T >~ 02 - (196
Thus, we can bound 6, as follows:
) 1 ® 1 mCgRmax
1651, £~y Il €~y
)\max (ﬁ) )\max ( 2 “ )
(©) 1 C Rmax C Rmax
< e o mer (197)
Amin — dC’¢mp 1—0p Amin (1 — p)
where (a) follows from Equation (196), (b) follows from Equation (194) and (c) follows from Lemma 3. O
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E. Experiments

In this section, we conduct experiments to numerically verify our AC/NAC with compatible function approximation. We test
our algorithms in the Acrobot environment (Sutton, 1995). The environment involves a two-link linear chain with one end
anchored and a joint that can be actuated. The goal is to apply torques at this joint to swing the unanchored end of the chain
to a certain height from an initial position of hanging down. We parameterize our policy using a neural network and use
compatible function approximation in the critic part. We compare the performance between our AC/NAC with compatible
function approximation and the standard AC/NAC with linear function approximation.

We first compare the performance of AC algorithms. We run vanilla AC, 1-step AC with compatible function approximation,
and k-step AC with compatible function approximation (shortened as AC, 1-step CAC and k-step CAC); And then we
compare three NAC algorithms: vanilla NAC, 1-step NAC with compatible function approximation and k-step NAC with
compatible function approximation (shortened as NAC, 1-step CNAC and k-step CNAC).

In our experiment setup, we set k = 128, and design a 2-layer neural network with 16 hidden neurons to represent the policy,
which contains 163 parameters. We run the algorithms for 20 times. At each time step, after we obtain the policies from the
algorithms, we evaluate them and plot the average reward in Figure 1 and Figure 2 among 20 runs. We also plot the 90 and
10 percentiles of the 20 curves as the upper and lower envelopes of the curves.
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Figure 1. Vanilla AC with fixed feature function v.s. One-step AC Figure 2. Vanilla NAC with fixed feature function v.s. One-step
with compatible feature function v.s. 128-step AC with compatible NAC with compatible feature function v.s. 128-step NAC with
feature function. compatible feature function.

We observe that for both AC and NAC, our algorithms with compatible function approximation lead to better performances.
As our theoretical results showed, this performance improvement is due to the fact that the compatible function approximation
can avoid critic error, whereas the linear function approximation results in an inaccurate estimation of the value functions in
the critic part.
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F. Symbol Reference
Constants First Appearance
_ Rmaxc¢ :
= 00 = C i) Section 3.2
Co = 2LJ’\““‘“+ZBC§(C“’L nt2L) Proposition 5 expression in Equation (73)
_ 2(k+1)2B2CY" y o .
n = (/\7) Proposition 5 expression in Equation (73)
Coap = CQB + % Proposition 7
Cs Assumption 3
Cr Assumption 2
Cy Assumption 2
Cs Assumption 2
Ly Assumption 2
Ls Assumption 2
Amin Section 3.1
Constants First Appearance
Cy= Cé (B + Cgap;nTp:) Lemma 1
Cu = 5% + 1 B? Equation (115)
Co = el G (20¢L¢ + C’¢7 ) )\’ Lemma 2
Ly= mf"g;mx (4L.Cy + Ly) Lemma 1
L,=1C, (1 + [logm=] + flp) Lemma 1
6C3 m?3 et fimax 6m2C., Cse3max Lse2Fmax
L(—) = d2 ¢(1_p)3 ~ (41’_1252 n 616_p ) Lemma 7
Amin = Amin — dC;mpk Lemma 10
Us = Rimax +2C,B Lemma 5
Variable Appearance Order (set oy =, Bt = B, 7 =)
G? Lemma 5 O(K2a + k3B + k(mp*))
GY Lemma 8 O ((mp*)B + k*5%)
G} Lemma 9 0 mpk)fy + B2 + k2By + kry? )
GY Lemma 10 ( mp*)a + (mp*)B + (mp 4 kB + kaf + k2ﬂ2)
GV Lemma 11 O (( mpk)w + B2 + k2By + lm/ )
GY Lemma 12 o ( a+ (mp P ka2 ¢ ko + 52)
GY Equation (116) O ((mpk)ﬁ + ﬁ2))
q Equation (68) O («)
i=[LogT| Equation(118) © (5T

T T n : T
T—[mongt Equation (119) O (L.

M, Equation (115) -

54



