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Abstract

Distributionally Robust Reinforcement Learning
(DR-RL) aims to derive a policy optimizing the
worst-case performance within a predefined un-
certainty set. Despite extensive research, previous
DR-RL algorithms have predominantly favored
model-based approaches, with limited availabil-
ity of model-free methods offering convergence
guarantees or sample complexities. This paper pro-
poses a model-free DR-RL algorithm leveraging
the Multi-level Monte Carlo (MLMC) technique
to close such a gap. Our innovative approach in-
tegrates a threshold mechanism that ensures finite
sample requirements for algorithmic implemen-
tation, a significant improvement than previous
model-free algorithms. We develop algorithms for
uncertainty sets defined by total variation, Chi-
square divergence, and KL divergence, and provide
finite sample analyses under all three cases. Re-
markably, our algorithms represent the first model-
free DR-RL approach featuring finite sample com-
plexity for total variation and Chi-square diver-
gence uncertainty sets, while also offering an im-
proved sample complexity and broader applicabil-
ity compared to existing model-free DR-RL algo-
rithms for the KL divergence model. The complex-
ities of our method establish the tightest results for
all three uncertainty models in model-free DR-RL,
underscoring the effectiveness and efficiency of
our algorithm, and highlighting its potential for
practical applications.

1 INTRODUCTION

Reinforcement learning (RL)[Sutton and Barto, 2018] aims
to find the optimal policy that maximizes cumulative re-
wards through interactions with the environment and has

witnessed demonstrated success in real applications, includ-
ing robotics[Kober et al., 2013], finance, and computer vi-
sion. However, in more practical scenarios, direct interaction
with the true environment is often unfeasible due to concerns
such as safety, resource constraints, and ethical considera-
tions. Consequently, a policy is initially learned within a
simulated environment and subsequently transferred to the
real environment. Yet due to reasons including unexpected
external perturbations and adversarial attacks, a model mis-
match between the simulation and the real environment
exists, meaning the simulation may not be identical to the
real environment. This model mismatch further leads to a
degradation in performance when attempting to directly ap-
ply the learned policy in the real environment [Zhao et al.,
2020].

One promising framework to address this issue is the DR-
RL [Iyengar, 2005, Nilim and El Ghaoui, 2004]. Unlike
conventional RL which optimizes performance under a spe-
cific environment, DR-RL constructs an uncertainty set of
environments and aims to optimize the worst-case perfor-
mance within this set. If the uncertainty set is designed to
encompass the true environment, DR-RL can learn a policy
robust to the model uncertainty and provide an optimized
lower bound on the true performance.

Numerous algorithms have been studied and proposed for
DR-RL, which can be broadly categorized into two groups:
model-based methods and model-free methods. Model-
based approaches, e.g., [Shi et al., 2023, Panaganti and
Kalathil, 2022, Yang et al., 2022, Wang et al., 2023d], in-
volve the collection of samples from a simulation environ-
ment to estimate an empirical robust MDP. Subsequently,
robust dynamic programming [Iyengar, 2005] is employed
on the empirical MDP to derive the optimal policy. In con-
trast, model-free methods [Wang and Zou, 2021, Liu et al.,
2022, Wang et al., 2023c, Liang et al., 2023] directly learn
the policy while collecting samples, bypassing the need for
model estimation and storage.

While model-based methods generally require fewer sam-
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ples to derive an optimal policy, storing the entire model
becomes prohibitively expensive or impractical for large-
scale problems. Conversely, model-free methods offer an
efficient alternative that adapts without the need to store
the model, facilitating more practical applications. Despite
extensive research on model-based methods, the model-free
DR-RL approaches remain relatively understudied. This is
primarily attributed to the challenge of the distribution shift
between the simulation that generates samples and the worst-
case environment within the uncertainty set. The utilization
of such biased samples introduces errors in each updating
step and can accumulate deviations from the accurate val-
ues through the model-free bootstrapping algorithms, thus
posing challenges in ensuring convergence and accurately
quantifying algorithmic complexity.

To address the challenge of biased estimated updating, [Liu
etal., 2022, Wang et al., 2023c] propose a Multi-level Monte
Carlo (MLMC) operator, renowned for its unbiased estima-
tion of worst-case performance, leading to asymptotically
convergent model-free algorithms. However, implementing
the MLMC estimator in these works necessitates an infinite
number of samples. Specifically, to construct the vanilla
MLMC estimator, the learner first generates a random level
number N following a geometric distribution and then gen-
erates 2V 1 samples. To ensure algorithm convergence, the
parameter of the geometric distribution is set to be less
than % resulting in an infinite expected total number of
samples required. Subsequently, in [Wang et al., 2023a], a
modified MLMC algorithm is introduced, requiring finite
samples for implementation under the KL divergence un-
certainty set. Nevertheless, their findings are constrained
by a restrictive assumption, limiting their applicability. In
this paper, we present a novel MLMC-based DR-RL algo-
rithm by incorporating a threshold design, referred to as
the threshold-MLMC (T-MLMC) algorithm. This design
ensures our implementation demands only a finite number
of samples for any general uncertainty set models. Further-
more, we provide complexity analysis for our T-MLMC
algorithm under three uncertainty sets without relying on
any restrictive assumptions. Our contributions are outlined
as follows.

1.1 MAJOR CONTRIBUTIONS

We introduce a model-free T-MLMC algorithm for DR-
RL with guaranteed implementation and convergence.
Unlike previous MLMC algorithms, which typically require
an infinite number of samples for implementation, our ap-
proach incorporates a threshold design on the level num-
ber during the construction of our MLMC estimator. This
design ensures that our estimator behaves similarly to the
traditional MLMC estimator when the level number remains
below the threshold. However, it adopts a simplified struc-
ture requiring fewer samples when the level number exceeds

the threshold. By implementing this threshold design, we
ensure that only a finite number of samples is necessary to
construct the estimator, albeit with the trade-off of introduc-
ing bias. Nevertheless, we demonstrate that our algorithm
converges to a close approximation of the optimal robust
value function, where the approximation error exponentially
diminishes as the threshold value increases. By setting a
suitable threshold value, our algorithm represents the first
model-free DR-RL algorithm applicable to general uncer-
tainty sets, providing assurances of both sample finiteness
and convergence. This characteristic renders our algorithm
practical for implementation and highlights its potential for
diverse applications.

We establish that our algorithm achieves the tightest
sample complexity across three distinct uncertainty sets
among model-free methods. Adapting our algorithm to ac-
commodate three uncertainty set models—defined by total
variation, Chi-square divergence, and KL divergence, we as-
certain their respective sample complexities. By fine-tuning
the threshold, we strike a balance between bias and sample
complexity, demonstrating that our algorithms effectively
identify the optimal robust policy with minimal samples.
Specifically, for both total variation and Chi-square diver-
gence uncertainty sets, our algorithms achieve e-optimality

with O (%) samples, where |S| and |.A| denote the
cardinality of the state and action space, respectively, and

~ represents the discount factor. For the KL divergence un-
certainty set, our algorithm exhibits a sample complexity

of O (( [S|IA]

1—~)5¢2p2
zero entry o)f theAnominal transition kernel. Notably, all our
results boast the most stringent parameter dependencies,
marking the first model-free complexity results for the total
variation and Chi-square divergence models, while signifi-
cantly enhancing previous findings for the KL divergence
model. Furthermore, our analysis requires no restrictive as-
sumptions, underscoring the practical applicability of our
model-free algorithms. A comprehensive comparison of
our results with prior ones is presented in tables Tables 1
to 3. Evidently, across all three uncertainty sets, our out-
comes achieve the most favorable sample complexity among
model-free methods.

), where p, signifies the minimal non-

1.2 RELATED WORKS

Model-based Methods for DR-RL When the environment
is fully known by the learner, robust dynamic programming
can be applied to obtain the optimal policy [Iyengar, 2005,
Nilim and El Ghaoui, 2004], which is shown to converge ex-
ponentially. When the environment is unknown, the learner
can first use samples obtained to construct an empirical tran-

"Due to space limitations, we only list part of the complexity
results from [Shi et al., 2023] for comparison. The complete results
can be found in Table 1 therein.



REFERENCE MODEL-FREE SAMPLE SIZE
[PANAGANTI AND KALATHIL, 2022] x O (‘1"’;‘?/‘)214!2
[YANG ET AL., 2022] x O,
[CLAVIER ET AL., 2023] x O <1‘fU)§L2
[SHIET AL., 2023] x O (1‘195;;‘52
[WANG ET AL., 2023C] v/ ASYMPTOTIC
OUR WORK v 0 ((1‘195;;‘52)

Table 1: Sample Complexity under TV Uncertainty Set

REFERENCE MODEL-FREE SAMPLE SIZE
[PANAGANTI AND KALATHIL, 2022] x O (k1
[YANG ET AL., 2022] x O (Ll
[SHI ET AL., 2023] x O dﬂ)ﬁ‘gz
[WANG ET AL., 2023C] v/ ASYMPTOTIC
OUR WORK v 0 ((1‘f5)§‘52)

Table 2: Sample Complexity under Chi-square Uncertainty
Set

REFERENCE MODEL-FREE SAMPLE SIZE

1
~ 2 T1—~
[PANAGANTI AND KALATHIL, 2022] x O (1S4~

[YANG ET AL., 2022] x  O(ISEIAL_
(1—=7)*pie
[WANG ET AL., 2023C] N4 ASYMPTOTIC
[LIANG ET AL., 2023] Vv ASYMPTOTIC
[LIU ET AL., 2022] Vv ASYMPTOTIC
[WANG ET AL., 2023A] Vv 4] G'LA‘H
~ PA(1—=7)%€
[WANG ET AL., 2023B] v O(1SAL
~ PA(1=7)%€
[WANG ET AL., 2023B] (VR) v 0 %
~ pA(1=7)%e
OUR WORK v 0 ISIIAl

P (1—7)%¢€?

Table 3: Sample Complexity under KL Uncertainty Set. VR
denotes the result obtained with variance reduce technique.

sition kernel and an empirical uncertainty set, and then apply
robust dynamic programming on this empirical model, e.g.,
[Panaganti and Kalathil, 2022, Yang et al., 2022, Shi et al.,
2023, Clavier et al., 2023, Zhou et al., 2021]. Although
model-based methods generally are more data efficient, they
require large memory space to store the data and model,
becoming impractical for large-scale problems.

Model-free Methods for DR-RL Model-free methods,
which learn the optimal robust policy while gathering sam-
ples, have been investigated in the context of DR-RL. In
[Wang and Zou, 2021], a model-free algorithm for a contam-
ination uncertainty set is devised, subsequently extended
to other uncertainty sets in [Liu et al., 2022, Wang et al.,

2023c] through the introduction and application of a multi-
level Monte Carlo (MLMC) estimator. Despite exhibiting
asymptotic convergence, these algorithms necessitate an in-
finite number of samples to construct the MLMC estimator,
thus lacking a quantified sample complexity. In [Wang et al.,
2023a], it is demonstrated that a finite sample complexity
for the MLMC algorithm for the KL divergence uncertainty
set can be attained under a restrictive assumption, limiting
the applicability of their findings. Under a similar assump-
tion, a variance reduction-based algorithm is proposed in
[Wang et al., 2023b] for the KL divergence model, and
sample complexity is obtained. On the other hand, [Liang
et al., 2023] introduces a stochastic approximation-based
model-free algorithm, achieving asymptotic convergence
without assurances on sample complexity. Despite all these
works, designing a model-free DR-RL algorithm with fi-
nite sample complexity under minimal assumptions remains
an open question. In this paper, we present a model-free
DR-RL algorithm, providing finite sample analysis under
various uncertainty set models without imposing additional
assumptions.

2 PRELIMINARIES AND PROBLEM
FORMULATIONS

2.1 MARKOYV DECISION PROCESSES

A Markov decision processes (MDPs) is specified by M =
(S, A, R,v,Rq,Pg), where S and A denote the state and
action spaces. R C [0, rmax] is a finite set of possible re-
wards; Po = {ps.o € A(S) : (s,a) € § x A} is the tran-
sition kernel, where p, , € A(S). Rg = {150 € A(R) :
(s,a) € S x A} is the reward distribution. At each time
step, the agent starts from state s; and takes an action a;.
The environment transits to the next state s;1; according
to the transition kernel ps, q,, and provides a reward signal
(8¢, ) ~ fis,.q, tO the agent.

A policy 7 : S — A(A)? denotes the probability of taking
actions under different state and represents the strategy of
the agent. The value function of a policy 7 is defined as the
expected cumulative reward the agent received by following
the policy starting from s:

VB, R, (s) =E lz Y'rilso = s,Po, Ro
=0

The @-function is defined as the cumulative reward starting
from s and action a:

o0

t
E Y're|so = s,a0 = a, Po, Ry
t=0

Q£07R0 (8? a) = E

>When 7 is a deterministic policy, i.e., 7(-|s) is a 0-1 distribu-
tion for all s, we denote the deterministic action chosen at state s
by 7(s).



The optimal Q-function Q* is defined as
QP R, (5,0) = max Qp, g, (s, a), ()

and it satisfies the Bellman equation:

Qi;o,Ro (8’ a) =K Ts,at7 (Ill/leaﬁ Q:*P(LRO (8/7 CI,/)

Moreover, t'he optimal policy Thy Ry = arg mafgr QP, Ry
can be obtained from the optimal Q-function: 75 g (s) =
arg maxee A Qp, R, (S, @)

2.2 DISTRIBUTIONALLY ROBUST MDPS

In the formulation of distributionally robust MDPs, both
transition kernel and reward distribution belong to (s, a)-
rectangular uncertainty sets P*(0) = @, , PL (o) and
RF(0) = @, , R ,(0). Namely, a robust MDP can be
specified as (S, A, R, v, R?(c), P*(c)), where PLa(o) =
{4€ AWS) : p(g,psa) < o} and RE (o) = {v € A(R) :
p(V, is.a) < o}. Here, p denotes any distance or divergence
between two distributions, and ¢ denotes the uncertainty
level. The centers of the uncertainty sets, p, o and p 4, are
called nominal distributions.

We consider three functions that can be used to define an
uncertainty set, total variation, Chi-square divergence, and
KL divergence. For two distributions p, g, the total varia-
tion between them is defined as prv (¢,p) == 3 [lg — pll; ;
The Chi-square divergence is defined as p,2(q,p) =

2
E, {(1 — ﬁ) ] ; And the KL divergence is defined as

p(-)

prL(e:p) = Ep [log %} :

DR-RL aims to optimize the worst-case performance among
the uncertainty sets, i.e., to optimize the robust value func-
tion:

75P%) = arg max V™r()
s

Vo, (@)

= arg max inf iy

T qePP(c),vERP(0)

It is also convenient to use notations of the robust state-
action value functions:

Qﬂ-’p(a) (s7a) = g’y(sva)a (3)

inf
qEPr(0),vERP(0)

and the optimal robust policy can also be derived from it:
74P(9) = arg max, Q™).

The optimal robust state-action value function is hence de-
noted as

Q"7 (s,a) = sup Q™) (s), )

and the optimal robust policy can be directly obtained from
it: 7°(7) (5) = arg max, Q**(7) (s, a).

It is further shown in [Iyengar, 2005] that the optimal robust
@-function satisfies the following robust Bellman equation:

Q") (s,a) = inf E,[rsq] ©)

vERP (o)

+ inf E,|maxQ**) (s, a

7 b B max Q""7(s', a')
Hence DR-RL aims to find the optimal robust policy, or
equivalently to solve the robust Bellman equation Equa-
tion (5).

2.3 STRONG DUALITY

For a general uncertainty set P, directly computing
infpep p' V for any vector V is computationally expen-
sive due to the set containing an infinite number of feasible
distributions. However, this optimization problem can be
equivalently solved using its dual form, which is a convex
optimization [Iyengar, 2005, Hu and Hong, 2013]. These
results play a crucial role in our algorithm design, there-
fore, we introduce the dual forms corresponding to the three
uncertainty sets as follows.

Lemma 2.1 (Total variation distance). [Iyengar, 2005] The
optimization problem:

Eq[v()]
subject to q € {prv (¢,p) <o,q€ A(X)}, (6)

minimize

is equivalent to

max {]Ep [v(z) — u(z)] — %Span(v — ), } %

u>0

where Span(X) = max; X (1) —min; X (i). If moreover set

e v(x) > a,

then, the optimization problem is also equivalent to
o

max {Ep [(v(x))a] — 5 (a — min v(x))} .®

a>0 T

Lemma 2.2 (Chi-square). [Iyengar, 2005] The optimization

problem:
minimize Eqv(z)]

subject to q € {py2(¢,p) < 0,9 € A(X)},

is equivalent to

max {E,, (o) — u(x)] — /o Var, [v(z) - u(x)]} :

u>0

= Iggéq {Ep [(v(z)a] — /o Var, [(v(x))a}} . )



Lemma 2.3 (KL divergence). [Iyengar, 2005] The opti-

mization problem
minimize Eqlv(x)]

subject to q € {pxr(q:p) < 0,0 € A(X)},

is equivalent to

e { -atos (5, oo ()]} o). 0

Remark 2.4. For convenience, we denote the objective func-
tions in the dual forms by f7(?)(p, a,v), i.e.,

121 (p, 0,0) = By [(0(2))a] = 2 (&= mino(z) ) ;

2 (p, @, 0) = By [(v(@)a] — /o Var, [(v(@))a];

1, .0) = o (5[ (~2Y])

We note that these objective functions correspond to the
second term of (5); For the first term, we similarly denote
their dual-form objective functions by () (u, '), whose
specific definition can be found in Appendix B.

3 MODEL-FREE THRESHOLD-MLMC
ALGORITHM

In this section, we present our design of the T-MLMC al-
gorithm. Our algorithm assumes a generative model, which
can generative i.i.d. samples following the nominal kernels
under arbitrary state-action pair (s,a) € S x A:

i t.a.d i t.a.d .
rs,a ~ /’(‘5;0«785,(1 ~ ps,aalzlv"',N' (]1)

In robust dynamic programming, one needs to update the
estimation of the robust value function by applying the
robust Bellman operator:

Qs,a) « T77(Q)(s,a)

= inf E,[rsa+7

. / /
et inf E,[Q(s',a")],

q€Pr (o)

which is shown to converge to the optimal robust value func-
tion. In our setting, we need to estimate the two worst-case
terms with the samples from the nominal distributions. How-
ever, due to the distribution shift between the nominal kernel
and the worst-case kernel, estimating them is challenging.
One potential approach is to first obtain an empirical nomi-
nal distribution p, and construct an uncertainty set centered
on it using the same function p and uncertainty radius o:
P = {q : p(q,p) < o}. However, unlike the non-robust
case, where p ' V' is an unbiased estimator of the expectation
E,[V], the term min,ep (p' V) is non-linear in the nominal
kernel, resulting in min 5 (pTV) being a biased empirical
estimator [Wang et al., 2023c].

To address this issue, a multi-level Monte Carlo approach
is proposed in [Liu et al., 2022, Wang et al., 2023c], which
is inspired by the MLMC method in statistical inference
from, e.g., [Blanchet and Glynn, 2015, Blanchet et al.,
2019, Wang and Wang, 2022]. Specifically, MLMC first
randomly generates a level number N following a geom-
etry distribution GEO(%)), and then generative 2V+1 sam-
ples. Using the these samples, an estimated operator ’7}\;
of level N is further constructed, and it is shown that
En[Tn (V)] = minyep(p'V) is unbiased. Hence by re-
placing the robust Bellman operator with the MLMC estima-
tor, we obtain an unbiased updating rule and the algorithm
is shown to converge to the optimal policy [Liu et al., 2022,
Wang et al., 2023c].

Although the MLMC algorithms are shown to asymptoti-
cally converge in these works, the parameter ¢ of the ge-
ometry distribution is set to be ¥ < %, which results in
an infinite expected number of samples required to con-
struct the MLMC estimator (E y.gro(y)[2"¥ '] = 00). To
address this issue, we modify the MLMC by designing a
threshold on the level number, to avoid numerous sample

requirements when the level number is large.

Specifically, we similarly set a fixed parameter v, and
sample two level numbers N1, No ~ GEO(%)). Instead
of directly sampling 2V: ! samples, we add a threshold
Nmax When generating samples. If V; < Npax, then we
generate 1 + 2Vit1 iid. samples; And if N; > Ny,
we only generate 1 samples instead. Our design ensures
that the number of samples required at each time step is
less than 1 + 2¥max*1 and hence finite. Specifically, if
Ni < Nuax, we independently draw 2V1 1 4+ 1 sam-
ples rsai ~ Hsa,i = 0,1,...,2M+1; And when Ny >
Nmax, we draw one sample 7540 ~ fs,q. Similarly, if
N3 < Npax. we independently draw 2V2+1 + 1 samples
Shai ™~ Psari = 0,1, ., 2N2F1 And when No > Npax,

we only draw one sample s{ , o ~ Ps.q-

We then combine this scheme with the MLMC estimator to
construct our estimation of the worst-case value as follows.

For the worst-case reward term, we set

r,p(0)

?p(”)(s, a):="Tea0+ Lle’ (12)
Pn,
where Py, = (1 — 1)Vt and

(522’(;)1 L= Sl;% {gp(o') (ﬁs,a121\71+1 y Oé)}
oz

1
— 5 Sup {gp(a) (ﬁSEa 2N1 a)}
2 050 ,a,

1 —~
— —sup {gP(U)(NJO 21\11,@)}
2 4>0 5
when N1 < Npax, and when N1 > Ny, 5:2(7\[)1 = 0.
Here, [ig ,ovi+1 denotes the empirical reward distribu-
tion obtained from the 1 + 2N1+1 samples {rs,; : i =



0,1,...,2M%1}; And denote by 11 aon, and i T a2n, the
emplrlcal reward distribution estlmated from the samples
with odd and even indexes.

Similarly, for the worst-case value function term, we set
B, ()

Py,
where V(s) = max, Q(s,a’) and Py, = (1 — ¢)N
When Ny > Npjax, set 55(;)1\[ (Q) = 0; Otherwise when
N < Niax, 55(;)]\, (Q) is defined as:

O (Q(s,)) : = V(5 00) + (42

55’(;)]\[2 (Q) : = sup {fp(a)(]/?\&aﬂN?'l'l , Q, V)}
a>0

1
— 7 sup {fp(g)(ﬁQENQ , O V)}
2 a>0

1
- 5 sup {fp(a)(ﬁgf\’2’a7 V)} )

a>0

(14)

where we similarly denote the empirical transition kernel
obtained from all samples {s} , ;,4 = 0,1, ..., 2Nz +11 sam-
ples with odd indexes, and samples with even indexes by
]/)\S,(L,QNQJA s ﬁga,QNQ and ﬁsE,a,QN‘z .

Combine the two terms above together, we obtain the esti-
mated robust Bellman operator through our T-MLMC frame-
work:

TE (Q)(s,a) = 7 (s,a) + 777 (Q(s, a)).

With this estimator, we propose our model-free T-MLMC
algorithm as in Algorithm 1.

Note that due to the threshold Ny, .y, the resulting T-MLMC
estimator becomes biased. However, as we will show in the
next section, the bias can be bounded and inversely depends
on N ax. That is, with the increase of N, .«, the bias term
tends to 0, and we recover the MLMC estimator from the
T-MLMC estimator, which however will result in increasing
sample complexity. We show in the following section that by
carefully designing the threshold V.« to balance the bias-
complexity trade-off, our T-MLMC algorithm converges to
the optimal robust policy with finite sample complexity.

4 SAMPLE COMPLEXITY

In this section, we present the sample complexity results of
our T-MLMC algorithms under different uncertainty sets.

As discussed above, the estimator Tp () \e constructed is a
biased estimation of the robust Bellman operator. However,
in the following result, we show that the operator reduces
to the vanilla MLMC estimator and the bias diminishes if
Npax — 00, and hence can be controlled by setting a larger
threshold.

Algorithm 1 T-MLMC Algorithm

Input: Parameter ¢ =
T ~
Initialize: Q) = 0
fort =0toT — 1do
for every s € S do
Set lA/tp(U)( ) = max, Qp(g)( ,a)
Set m;(s) = arg max, Q77 (s, a)
end for
for every (s,a) € S x Ado
Independently sample N1, No ~ GEO(¢))
Compute total sample sizes:
N =1+2MH 1y oy,

max)

No=1+2M 1 o
Independently draw N7 samples Ts,a,i ~ Ms,a
Compute 7°(?) (s, a) by Equation (12)

Independently draw N3 samples Ss,a,i ™~ Ps,a
0"?) (s, a)) by Equation (13)

(1-

%, stepsizes [, iteration number

Compute 5°(7)
Update synchronous Q-table: fol) (s,a) =
B)QL (s, a) + BT (QF7)) (s, a)
end for

end for
Output: Q57 (s, a)

max

Theorem 4.1. For any fixed Q € RISIAl s € S a € A,
for three uncertainty sets we considered, the estimation bias
can be bounded as:

up [E T4 (@)(s.0)] ~ T (@)(s.0)] - (15)
< 6 (Nowe2~22)
The variance can be bounded as:
Var (T3 (Q)(5.0)) < O (Nwax). (16)

The result hence suggests to set a larger value of Ny, to
diminish the bias. However, we note that the number of sam-
ples required for constructing the estimator and the overall
sample complexity increase as Np,x — o0. To balance
the trade-off between the bias and sample complexity, we
choose a suitable value of Ny,,x and present our complexity
results in the following sections.

4.1 TOTAL VARIATION DISTANCE

In this part, we provide the sample complexity analysis for
the total variation uncertainty set.

Utilizing results in Theorem 4.1, we obtain the following
sample complexity of our T-MLMC algorithm under the TV
uncertainty set.



Theorem 4.2 (Sample Complexity with TV Distance). Set

_ 1 _ 2logT . _
Y = 3, Npax = Tog 2 and set the stepsize as [y =

218 T Then the output from Algorithm 1 satisfies that:

-7
J=o ()

2

E [H@;TV(”) — Q*rrv(o)

To obtain e-optimality, i.e.,

B ||ag @ - Qe

}gé,
the expected sample complexity NPTV (9 (¢) is

N O() = IS ANnT < 0 ({20

(T=e
Our result presents the first finite sample complexity for
the model-free DR-RL algorithm for the total variation un-
certainty set, indicating the effectiveness and efficiency of
our T-MLMC algorithm. Compared to model-based DR-RL
algorithms [Yang et al., 2022, Panaganti and Kalathil, 2022,
Shi et al., 2023, Clavier et al., 2023], our algorithm results
in a sample complexity with a higher dependence on (1—+).
This aligns with findings from the non-robust setting [Li
et al., 2020] that the vanilla model-free algorithms(without
techniques including variance reduction) generally have
larger sample complexity. Our result is also expected to be
improved to align with the model-based complexity through
standard techniques like variance reduction.

4.2 CHI-SQUARE DIVERGENCE

We then present our results for DR-RL with a Chi-square
divergence uncertainty set.

Theorem 4.3 (Sample Complexity with x? Distance). Set
Npax = 211:ggQT and the stepsize as 5; = (211_05)7; Then the
output of Algorithm 1 satisfies that:

J=o (o)

2
]gﬁ,

o0

- D Q7 — e

To ensure

the expected total sample complexity N*x2(7) (¢) is,

py2(0) _ %) |S| ‘A| >
No () = IS AN T 2 6 (1)
Our result implies that our T-MLMC algorithm is the first
model-free algorithm for DR-RL under the Chi-square
divergence uncertainty set. Similarly, compared to the
model-based methods, our complexity presents an addi-
tional O((1 — ~)~!)-order dependence.

4.3 KL DIVERGENCE
We then present our results for the KL divergence uncer-
tainty set in this section.

Theorem 4.4 (Sample Complexity with KL. Distance). If
we set ) = % threshold

2
Ninax = max 21ogT7 log(1 + pi log(2|S]) log T) 7
log 2 log 2
3 _ 2logT
and the stepsize as By = a—)T" Then the output of Algo-

rithm 1 satisfies that:

S}
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oo

the expected total sample complexity NP51(7) (¢) is

NPEL@) (¢) = |S||A|NpaxT > O <|S||A) .

pA(l—7)°€
Our result implies that our T-MLMC algorithm also solves
the DR-RL problem for KL divergence uncertainty sets
effectively. Compared to other model-based methods [Shi
and Chi, 2022], our results are O((1 — v)~!)-order larger.
We also note that there are several previous works on the
sample complexity of model-free DR-RL approaches for
the KL divergence model [Wang et al., 2023b,a], and we
provide a discussion on the comparison of their works with
ours as follows.

In both previous works, an assumption is made regard-
ing the size of the uncertainty level o, specifically, py >
O (1 — e~ ?) assuming the uncertainty set cannot be too
large. This assumption significantly limits the applicability
of their results, as in many scenarios, the uncertainty set
must be designed relatively large to encompass a broader
range of environments, particularly when the nominal envi-
ronment is a low-fidelity model of the true environment. In
contrast, our approach does not rely on such an assumption
and can be applied to any uncertainty set.

On the other hand, our sample complexity result is less
than those in [Wang et al., 2023a] and the first complex-
ity in [Wang et al., 2023b]. In [Wang et al., 2023a], the
sample complexity of the vanilla MLMC DR-RL algo-

rithm is O (p%(lf‘—%
by O(px?), and we attribute this improvement to the design-
ing of the threshold. In [Wang et al., 2023b], a mini-batch
type model-free DR-RL algorithm is introduced, with a

i) e
ther enhancement is achieved through the use of variance

). Our result improves upon this

demonstrated sample complexity of o (



reduction (VR) technique, bringing the complexity down

0 O ( |S|1A]

initial vanilla algorithm by an order of O(py'). While the
complexity with VR technique in [Wang et al., 2023b] ex-
hibits a superior dependence on 1 — =, it fares worse con-
cerning pa. This enhancement in 1 — « can be attributed
to the utilization of the VR technique, consistent with pre-
vious findings [Li et al., 2020]. We hence also anticipate
further improvement in our complexity results through the
application of VR technique, a direction left for future in-
vestigation. Consequently, our algorithm achieves superior
sample complexity compared to previous vanilla model-free
algorithms and is anticipated to surpass the results in [Wang
et al., 2023b] with the VR technique.

). Notably, our result outperforms their

5 PROOF SKETCH

In this section, we briefly discuss the proof sketch for our re-
sults under the TV uncertainty set. The proofs for the other
two uncertainty sets can be similarly derived. For conve-
nience, we only discuss the proof regarding the uncertainty
set of the transition kernels, the proof regarding the reward
uncertainty can also be similarly obtained.

Our proof can be divided into two main parts: We first
conduct a sample complexity analysis to establish the con-
vergence of Algorithm 1 to the fixed point of the T-MLMC
estimator; Then we characterize the disparity between this
fixed point and the optimal robust value function. Combine
the two parts together, we quantify the sample complexity
of our T-MLMC algorithm converging to the near approx-
imation of the optimal robust value function. Specifically,
we decompose the error as

5 -0l <ofes -
2
+2HQ*p(U) — Qo) 17)
where @*p denotes the fixed point of the expected T-

MLMC estimator: 74" N (Q) = E[ﬁ@i}il (Q)]. The two
steps in our proof correspond to bounding the two terms in
anmn.

For the first term in (17), we adapt the stochastic approxima-
tion scheme. From the definition, our T-MLMC operator is

an unbiased estimator of ’7'?\;0) (Q), and it suffices to show
the finite variance to ensure the asymptotic convergence to
the fixed point Q*p(") Using the concrete construction of
T-MLMC operator:

, 2 (@)

P(Q(5,0)) 1 = V(si00) + %52 (18)

and definition of 55 (g )NQ, we directly calculate the vari-
ance of it. We show that the variance is finite and can

be bounded by O (Nmax), as in Theorem 4.1. Hence ac-
cording to stochastic approximation theory [Borkar, 2009],
Algorithm 1 converges asymptotically to the fixed point
Q*p(") We then adapt the analysis in stochastic approxima-
tion [Chen et al., 2022] to obtain the finite-time error bound
on the convergence of Algorithm 1 to Q*p("), i.e., the first
term in (17).

For the second term in (17), we show that the approximation
error between Q*”(U) and the optimal robust value function
can be bounded by considering the disparity between the
robust Bellman operator and our T-MLMC operator, i.e., the
bias:

e
HT’J(ZZX( wo)) — 1) (@) a9)

H@w(o)

We note that when the threshold is not met, the T-MLMC
operator is an unbiased estimator of 77 in which case
we bound the error using concentration inequalities as in
conventional MLMC approaches; When the threshold is
met, although the error bound between the two operator is
large, we can set the threshold Ny, larger such that the
probability of GEO(¢)) > Nyax is small, resulting in a
smaller error bound due to its low probability. Combining
the two cases together implies a tight bound on the bias,
as the first part in Theorem 4.1, and further quantifies the
approximation error introduced by our T-MLMC design.

Finally, combining the two parts, we derive the sample com-
plexity for Algorithm 1 to converge to an approximation
of the optimal robust value function with a quantifying ap-
proximation error. By setting the value of the threshold, we
hence obtain the final sample complexity results.

6 CONCLUSION

In this paper, we introduce a novel model-free T-MLMC
algorithm tailored for finding the optimal robust policy in
the DR-RL problem. Our algorithm strikes a delicate bal-
ance between convergence guarantees and the expected total
sample size, ensuring convergence within a finite sample
size. We further conduct sample complexity analyses for
our algorithm under three distinct uncertainty sets: total
variation, Chi-square divergence, and KL divergence. No-
tably, our results mark the first complexity analyses for
model-free DR-RL methods under the total variation and
Chi-square divergence uncertainty sets, while also enhanc-
ing the complexity bounds and applicability of prior results
for the KL divergence model. Our results achieve the tight-
est complexity bounds in the realm of model-free DR-RL
methods, achieving state-of-the-art results under minimal
assumptions.
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A NUMERICAL RESULT

In this section, we conduct numerical experiments to validate the convergence of our T-MLMC algorithm.

A.1 CONVERGENCE AND OPTIMIALITY OF T-MLMC ALGORITHM

We adapt our algorithm under the Garnet problem G(15, 20) [Archibald et al., 1995]. There are 15 states and 20 actions. The
transition kernel P = {P?} is randomly generated by a normal distribution: P¢ ~ A (w?, o%) and then normalized, and the
reward function (s, a) ~ N (v, %), where w?, o, v%, 9% ~ Uniform[0, 100]. We implement our T-MLMC algorithm
under three distinct uncertainty sets. In our experiment, the uncertainty level for each model are set to be 0.4, the step size

are set to be 8 = 0.01, and Ny = 32.

Garnet (KL)

Garnet (TV) Garnet (Chi-Square)
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Figure 1: Garnet G(20, 15) (a)TV (b) x? (c) KL uncertainty set
We run algorithm under each uncertainty set for 20 times, and at each time step, we evaluate the worst-case performance of
the greedy policy derived from the algorithm. We plot the average robust value function across the 20 runs, along with the
5th and 95th percentiles of the 20 runs as an envelope of variability. To establish a baseline, we compute the optimal robust
value functions using robust dynamic programming.

Recycling robot (TV) Recycling robot (Chi-Square)

w IS

N

Robust expected cumulative reward
Robust expected cumulative reward

-

—— T-MLMC Q-learning —— T-MLMC Q-learning
04 baseline: optimal robust policy 04 baseline: optimal robust policy
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Number of iteration Number of iteration
(a) (b)

Figure 2: Recycling Robot (a)TV (b) x? uncertainty set

We further provide an experiment on a real-life problem: recycling robot problem (Example 3.3 [Sutton and Barto, 2018,
Wang et al., 2023c]. A mobile robot running on a rechargeable battery aims to collect empty soda cans. It has 2 battery
levels: low and high. The robot can either 1) search for empty cans; 2) remain stationary and wait for someone to bring it a
can; 3) go back to its home base to recharge. Under low (high) battery level, the robot finds an empty can with probabilities
«(f), and remains at the same battery level. If the robot goes out to search but finds nothing, it will run out of its battery and
can only be carried back by human. We introduce model uncertainty to the probabilities «, 3 of finding an empty can if the
robot chooses the action ’search’. We implement our algorithm under this problem. In our experiment, the uncertainty level
for each model is set to be 0.2, the recycling system are set to be a = 0.5, 8 = 0.5, the learning rate is set to be 0.01, and
Nmax = 32. We run algorithm under each uncertainty set for 20 times, and at each time step, we evaluate the worst-case
performance of the greedy policy derived from the algorithm. We plot the average robust value function across the 20 runs,
along with the 5th and 95th percentiles of the 20 runs as an envelope of variability. To establish a baseline, we compute the
optimal robust value functions using robust dynamic programming.
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Figure 3: FrozenLake (a)TV (b) x? () KL uncertainty set

We further explore the theoretical FrozenLake environment. This simulation involves navigating from the starting point at
[0,0] to the goal at [3,3] on a 4x4 grid of icy patches and holes. Players choose to move up, down, left, or right, but due
to the ice’s slipperiness, movement may not always follow the intended direction. We incorporate model uncertainty into
movement probabilities to account for the ice’s unpredictable nature, demanding strategic planning and robust algorithm
implementation to safely reach the goal. In our experiment, the uncertainty level for each model is set to be 0.2, the learning
rate is set to be 0.01, and Ny,ax = 32. We run algorithm under each uncertainty set for 20 times, and at each time step, we
evaluate the worst-case performance of the greedy policy derived from the algorithm. We plot the average robust value
function across the 20 runs, along with the 5th and 95th percentiles of the 20 runs as an envelope of variability. To establish
a baseline, we compute the optimal robust value functions using robust dynamic programming.
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Figure 4: Gambler (a)TV (b) x2 (c) KL uncertainty set

Besides, we validate our algorithm in the Gambler’s Problem, featured [Zhou et al., 2021, Shi and Chi, 2022]. In this
scenario, a gambler starts with an initial stake and bets on coin toss outcomes to reach a financial goal, such as turning 1
into 100. Each bet can lead to a gain or loss, dictated by probabilities p and 1 — p, respectively. The gambler’s challenge
is to devise a strategy that maximizes the odds of reaching the target without going bankrupt, considering they can bet
any amount up to the lesser of their current capital or the amount needed to reach the goal. This problem emphasizes the
development of optimal betting policies and the application of value iteration techniques to achieve desired outcomes in a
risk-laden environment. In our experiment, the uncertainty level for each model is set to be 0.2, the parameter p in system is
set as p = 0.6, the learning rate is set to be 0.01, and Ny, ,x = 32. We run algorithm under each uncertainty set for 20 times,
and at each time step, we evaluate the worst-case performance of the greedy policy derived from the algorithm. We plot the
average robust value function across the 20 runs, along with the 5th and 95th percentiles of the 20 runs as an envelope of
variability. To establish a baseline, we compute the optimal robust value functions using robust dynamic programming.

As the results show, our algorithm converges to the optimal robust value functions under all uncertainty sets, indicating
the algorithm’s capacity to derive the optimal robust policy effectively. The experimental findings thus corroborate our
theoretical assertions, affirming the convergence of our model-free T-MLMC algorithm.
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A.2 COMPARISON WITH VANILLA MLMC ALGORITHM

Furthermore, we compare our T-MLMC algorithm with the vanilla MLMC algorithm using the recycling robot problem as a
test case. We run both algorithms with same parameters, and plot the robust value functions of the learned policy v.s. the
number of samples. Our algorithm learned the optimal policy with a much fewer number of samples, demonstrating that our
T-MLMC algorithm exhibits better sample complexity performance than the vanilla MLMC algorithm.
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Figure 5: T-MLMC v.s. MLMC (a)TV (b) x? uncertainty set

B NOTATIONS AND LEMMAS

In this section, we present the necessary notations and lemmas which are later used in the proofs. The proofs of these
lemmas can be found in Appendix F.

Recall that for the reward uncertainty set, we have
g"T"(")(,u, a) =E,[(z)a] — (a —minz);

ngZ(U)(.UvO‘) Va-ru x)a

Specifically, the definition is as follows

gPTV(O') (Ms,m C%Ts,a) = Eus,a [(7“57,1),1] — % (v — minrs,a) ;
ng2 (0) (MS,G.? Q, Ts,a) = ]E#s.,a [(rsyll)a} - \/Uvarﬂs,a [(Ts,a)a];
ngL(G) (s, 0,75 4) = —arlog (Eus.a [exp (_%)D — ao. (20)

For the transition kernel uncertainty set, the detailed definition is as follows

prV(J)(pS,ay Oé, V) = Eps,a [(V(s;,a))a] - % (O{ - Ir/un V(Sg’a)) 7

s,a

P22 (V) = By [(V(sha))a] = y/oVary, . [(V(%0)a]:
V(s5,a)
prL(U)(ps,aa a, V) = —alog (Eps,a |:€Xp <_’>:|) - ag. (21)

(67

We present the analysis of propositions and theorems proof of the T-MLMC algorithm. To simplify the proof process, we
just provide the analysis of the transition kernel uncertainty set, which is easy to extend to the reward uncertainty set.

13



Firstly, to define the surrogate (-table @*p("), we define the expected biased estimation of dual value as follows:

/
s,a,t

Definition B.1 (Biased estimation). Draw n samples from nominal distribution s
empirical distributio ps 4 n. We define (resp. fis ¢, fis,a,n)

~ Ds,a,t=0,1,..,n — 1 and get the

P aans V) = 500 { 7 (s 0 V)
a>0

The estimation of the robust Bellman operator is biased and the bias depends on empirical distribution sample sizes n, which
referred to as

[ V)] = 77 (V)]

We first show that when including the threshold N,,x in our algorithm, the bias of the robust Bellman operator is equal
to the bias when applying the model-based algorithm with sample size 2Vmax*1 Here, we describe the condition by the
following proposition.

Proposition B.2 (Threshold MLMC). We recall that 775“2( (Q)(s,a) =7 (s,a) +~0°?)(Q(s, a)). The robust Bellman
estimator 0°7) (Q(s, a)) (resp. 7°(%) (s, a)) satisfies that

p(o),r
E [?p(”)(s, a)} =E |rs00+ —=f| =E [g*”“’)(ﬂs,a,zwmaxﬂws,a)] :
Ny
()
E[079)(Q(5,0)] = B |V($/0.0) + =22 | = E [£4) (5, 0 001, V)] -
No

Thus, the estimated robust Bellman operator Tjsr(:l satisfies

E |74

(Q)(s,a)| =E ["7)(s,0) + 77" (Q(s,0))]
=E |:g>kp(z7) (ﬂs,a,QNmEX‘*'l ) Ts,a) + ’Yf*p(o) (ﬁs,a,2Nmax+1 ) V)i| . (22)

The Proposition B.2 shows the fact that the estimation biases are equal when drawing 2/Vmax+1 samples to estimate the dual
value directly and when setting the N, ,«-threshold MLMC algorithm to estimate the dual value.

Based on Proposition B.2, for p distance and uncertainty level o, we define

BT (Q)(s.0)] = THL(Q)s.0) 23)

max

where Tf\;aix is the surrogate robust operator being the expectation of our T-MLMC estimator.

Proposition B.3. Given statistical distance p and uncertainty level o, estimated robust Bellman operator T°\?)is ~-
contraction w.r.t. the infinity norm:

|73 (@ - TA7 (@)

AX max

2910~ Ql. @4

We denote its unique fixed point as @*p(”), ie.

7—-7\;;)” (@*p(a)) — @), (25)

It hence holds that

2

Y 2 ~ —~ 2 ~
HQ',;(U) _ Q*p(o) < QHQ;(G) _ Q*p(a) + 2HQ*P(U) _ Q*P(U) (26)

oo
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Lemma B.4. The optimal robust Q-function and estimated optimal robust Q-function can be bounded as follows:

H@*”(") ool < % H7—.,;V(a)x (Q*p(0)> _Tp<a)( Ol )H @7

OO_]._ ma.

Combined with Proposition B.2 and Lemma B.4, this term can be bounded specifically for different uncertainty set (TV, 2
and KL) in the following sections.

. The error between surrogate ()-table and the
oo

We then aim to bound the first term in Equation (26) Hng(‘ﬂ — Q*rlo)

N 2
optimal robust Q-table, HQ*”(”) — Q)

oo

can be bounded following lemma.
Lemma B.5 ([Chen et al., 2022] Theorem 2.1 & Corollary 2.1.2). For the following stochastic iteration,
Op+1 =0k + Br (H(0k) — O + wy) , (28)

where 0 € R?, By, is the stepsize. The fixed point 0 satisfies that 0* = H(0*). Define Fj, = {0o,wo, ..., Op_1, wi_1, O }.
When

[H(0) = HO ) oo <710 =6l (29)
and
(@) EfwelFi =0;  (0)E [l 7] < A+ BloxZ (30)
when B; < 2—2, we have
%112
E [0 — 0%
k—1 k—1 k—1
<[00 — 0°)% TL (1 — caBy) + e (A +2B ||9*|\§O) 252 IT (-8, 31)
7=0 i=0 j=i+1
where ¢; = %’ o = 17?7’ c3 = 326(B;r_2’)ylog(d) cq = 16611_0’gy(d) )
We consider the stochastic iteration that
QY = Q1 + 5 (TR (1) =1 + ), (32)

where we define the filtration F; = {QS(U), Wo, eery Qfg), Wi 1,QF (@) } There are three requirements when applying
the Lemma B.5:

1 ’7'%:) =E [Tp (o) (Q)} is v contraction operator (Proposition B.3).

Nmax

2). Unbiased estimation:

Nmax Nmax

{Tpm (mea)) Forv (@) (prw) ‘ ft} —0 (33)

3). Bounded infinite norm expectation: Here, the boundary of the MLMC estimator infinite norm expectation
~ 2

E U’TJGS) (@) H } is required to make sure the convergence of the algorithm. Take the expectation of N ~ Geo(7)),
ax o

the expectation of infinite norm can be bounded by

rp(0) )2 N p(o) 2
: e () e (#9,@)
{HTP,(Q?X )H } Sl A e R Y sup 2 Y sup

(1 - '7)2 Ni=0 5@ PN1 Na—0 5@ PN2

Nmax 7,p(0) o (o) 2
e R papt: (555N1)) S (05, (@)

D
e A=)

=dr max+47
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where (a) follows from that sup, , 75,0 < Tmax, Sup, o @(s,a) < 722= and the two estimators are independent.

2

Then, make the decomposition of the term sup, , 557(; )N2 Q)] ,

2

2
sup 65,(:)]\[(@)(87 a)‘ < 3 sup |sup {fp(o’) (ﬁs,a,?N‘H y Oy V)} - Slil()) {fp(a)(ps,aa «, V)}

s,a s,a |a>0
3 2
+ 7 Sup sup {f’)(”)(ﬁf,a,gw,a, V)} — sup {f"(") (Ps,as @, V)}
s,a |a>0 a>0
3 2
+ 1 sup |sup {fp(d) (ﬁga,QN y V)} — sup {fp(g) (ps,a7 (62} V)} (35)
s,a |a>0 a>0

Then the terms in Equation (35) can be bounded specifically for different uncertainty sets (TV, x2, and KL) and we can
obtain the sample complexity.

C TOTAL VARIATION UNCERTAINTY SET
In this part, we present the proof of propositions and theorems specifically for the TV-constrained uncertainty set.
Theorem C.1 (Restatement of Theorem 4.1 specifically for TV distance). Consider the case of TV constraint uncertainty

set with uncertainty level o i.e. PTV (o) and RV (o), set ¢ = %,for any Q € RS*4A s € S, a € A, the estimation bias
can be bounded as:

E [T Qs 0)] - TV O(Q)(s,0)] < O (N2 ™),

max

sup
s,a

The variance can be bounded as:

Var (ﬁ@:x(a)(Q)(S, a)) < O (Nmax) - oo

Proof. Firstly, we make error decomposition as follows:

E [T (@)(s.0)] - T Q) (s,0)|

sup
s,a

(@)
= sup
s,a

— g™V (g 0y 75.0) — VPV (g o, V)

E |:g*PTV(O') (ﬂs7a72Nmax+1 , ,,,sﬂ)} +9E |:f*PTV(O') (ﬁs,a,QNmax+1a V)}

< sup

s,a

E I:g*pTV(O-) (ﬂsya)QNmax+17TS,a):| - g*pTV(O') (ILLS#“ T'S#a)

+ 7 sup

s,a

]E {f*pTV(U)(ﬁs,aQNmaerl ) V):| - f*pTV(U) (pSﬂ’ V)‘

|

f*pTv(U) (Bo.a.2Nmaxt1, V) — f*pTv(U) (Ps.a» V)” (37)

g*/’TV(U) (ﬂs7a,2Nn—nax+1 ) rsﬂ) - g*pTV(o) (Ms,m TS;G)

<E [sup

s,a

+~E [sup
where (i) follows from Proposition B.2.
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For convenience, we only bound the second term in Equation (37). The first term can be bounded similarly. By Lemma 2.1,

f*pTV(U) (f)s,a,ZNmaerl ) V) - f*PTV(U) (ps,aa V)’

max {5 (VL) = 5 (0 - minviesa) )|

s,a

{5 (V0] = § (0 minV(s,) ) }'

“s,a

= oax ‘]Eps,a [(V(S;’a))a} _Eﬁs,a,szax+l [(V(sg,a))a] .

T 0<a<max,  V(sl,)

(38)

Similarly to Lemma 9 in [Shi et al., 2023], we have the following lemma.

Lemma C.2. Consider the case of TV constraint uncertainty set PV (o) with uncertainty level o , for any 6 € (0,1), one
has with probability at least 1 — 9,

, , log (%)
Ogagmagclz}i V(s ) |Eps,a, [(V(Ss,a))a} 7Eﬁs,a,‘N [(V(Ss,a))a“ < 3max m (39
According to Lemma C.2, it can be shown that with probability at least 1 — %, we have
! /
ogagmzﬁi}i Vst ) Eps,a [(V(Ss,a))a] - Eﬁsya‘QNmax+1 [(V(Ss,a))a}
2
(1 = ~)22Nmaxt1
Then, according to the Bernoulli’s inequality, we have that
2_Nmax_1 ISHA‘ N
- ) R (1)
( |SI[A
Therefore, with probability at least 1 — 2~ Vmax—1 we have that
sup max E [(V(s’, ))a] —E; [(V(s', ))a] < M, (42)
sa | 0<agmax,, V(s).a) Ps,a s,a P a,2Nmax+1 s,a = (1 _ 7)2Nn]3x+1

where we set Oy = 31/2(Npmax + 1) log 2+ log(18[S[]A]).
With probability 2~ ~Vmax—1we directly have that

Ep.. [(V(sha)a] = Ep, . yumaess [(V(sha))a]

)

} <supmaxV (s} ,) < I“‘l (43)
: ' -7

s,a Ss,a

sup max
s,a Ogagmaxsv/s,a V(s;’a)

Hence, combining both cases together with Equation (38), we further have that

E [sup

s,a

f*pTV(a) (ﬁs7a,2Nmax+1, V) _ f*PTV(O') (ps,a’ V) ’:l

(i) TmaxCTV ,M 4 Tmax 27(Nmax+1)
(1=7) 1—v

S Imax 9 Nlllaéx+1 (27 Nlnz;x‘f'l + CTV> ’ (44)
-
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where () follows from that 1 — 2~ (Nmaxt1) < 1,

Similarly, we can get the bound

|

Nmax+1 Nmax+1
< a2 (27 oy ). (45)

e [Sup g*pTV(G) (ﬂs,a,QN"‘aerlars’a) - g*pTV(U) (/Js,avTS,a)

s,a

Thus, we can get that

sup

s,a

BT @)(s.0)| - T Q) (s,a)

<E [sup g*"T"(”)(ﬂs7a72me+1,7“37(1) — g*rrv (@) (ths,asTs,a)

s,a

|

f*pTV (@) (ﬁs,a,Qanax+1a V) - f*PTV @ (ps,av V) ’:|

+~E [sup

s,a

< (71““‘“ - rmax) 27 (275 oy ). (46)
-7

We then consider the variance of the robust Bellman operator. Firstly, we make an error decomposition of the robust Bellman
operator variance as

Var (7407 (Q)(s,a)) = Var (P7V() 4437 ()(Q) 5, a)

o = Var (?”TV(U)> + ’Y2Var (apTV(U)(Q)(S’ a)) ’ 0

which is due to the two estimators are independent.

For convenience, we analyze the second term in the above equation. The first term can be bounded similarly.

var (770)(Q)(5.0)) — B [(Wv<f'><@><s,a>)2] - (& [ 0(@Q)s.0))”
<E {(mv(a)@)(s,a)ﬂ , 48)

Next, according to the Equations (13) and (14), the term above can be explicitly computed:

2
) 6,DTV(U) Q)(s,a
E [(EPTV(")(Q)(&“)) } =B (V(ngav‘)) * %
No
5 Q) (s,0)\
< 2B [V(5)00)°] + 2B | | =27 ———
a Py,
2
o2 Norss ( 02 (Q)(s, a) )
§ﬂ+2Z]E 2o ————|Ny=N| | Py
(1—7)? N=0 Pr;
T (‘7) 2
02 Ninax E {(55’(13\, (Q)(s,a)) }
< _ZTmax .
S s +2 NE::O o (49)
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2

, where

Next, we bound the term 652"]\, (Q)(s,a)

8N (@) (5, )| = [sup {177 O (B g o0, V) |

a>0
1 prv (o) 1 prv (o)
—gsup{f (sa2N7a V)}—isup{f (Sa2N7a V)} (50)
a>0 a>0

We make an error decomposition as follows:

2
N (Qs,0)| = sup {7 (B, g oven, 0,V) )

a>0

2

1 1
I prv (o) I prv (o)
3800 {77 @ aam 0V} = g op {77 @0V}

2
< 3 sup {prV(U) (ﬁs,a,2N+1 ) O V)} — sup {prV(O) (ps,aa «, V)}‘
a>0 a>0
2
3 (@) (o)
+~*Sup{fmw (sa2N¢%V)}4€UP{fMW Ok@,aJﬂ}
4 |o>0 >0
5 2
+ 2 |sup {prV(U)@SOa — V)} — sup {prv(a) (Ps.ar v, V)} (51)
4 |o>0 - >0

Then, combined with the analysis in Equations (42) and (43) and the fact P(AN BN C) > 1 —P(-A) — P(=B) — P(=C),
we can conclude that with probability at least 1 — 3 x 2~V

prv (o) 2 Tmax — Nt1 2 3 Tmax 5— N 2 3 Tmax H_ N ?
JeaN (Q)(Saa)’ C"T 1— 72 2 + - CVTV 72 + - CTV ’72

4 1-— 4 1-—-

3CTVrn1ax 92— (N+1)

) (52)
(1—7)?
Since 0 < sup, > {f"TV(") (¢, a, V)} < ’1‘1—‘1’; for any distribution g, with probability at most 3 * 2~ we have that

prv (o) 2 T'max ?

@) < (=) 53
gl
Above all, we can get that
E |: (SpTV(J)(Q)(S a)‘ :| < 3C Vrmax2 (N+1) + (rmax )23 " 27N
sl ’ (1—7)? 1—~

2

< (3C%y +6) (f*“jfy) 9-N-1, (54)

Then, plug Equation (54) in Equation (49), we can get the bound of variance of robust Bellman operator as follows:
2
Var (270 ©)(Q)(s.0)) < B | (7@ 5,)) |
Nug B | (02537 (Q)(s,0))?]

< 215 ax +2
e ) E o Py
o2 22 Nmax 9—N-1
< max max 302 6
Soap T aoap BT 2 T
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()
< % (14 (3C3y +6) (Nmax + 1)), (55)

where (i) follows from Py = ¢(1 — )V = (1/2)V*1.

Similarly, we can get the bound of the variance Var (?”TV(")) as follows:

Var (ApTV(U)) <E [(?pw(a))T < 27 (1 + (3CFy + 6) (Nimax + 1)) (56)

Hence, we can get the robust Bellman operator variance bound:

Var (’?'JGZ:X(U)(Q)(S, a)) = Var (WTV(")) + 72 Var (@PTV(U)(Q)(S’ a))

272
(2rmax LR _“‘;’32) (1+ (3C%y + 6) (Nmax + 1))- (57)
This completes the proof.
O
Lemma C.3. For any fixed Q € RISIAL the infinite norm of robust Bellman operator can be bounded as:
2
[H @) ] < O (Nax) - (58)

Proof of Lemma C.3. We then consider the expectation of infinite norm of robust Bellman operator. Set ¢) = %, from the
construction of T-MLMC operator we directly have that

rp(0) \ 2 prv (o) 2
) 2 Nimas (55 o) ) Nimas (55 v (Q))
[HTP,KX(U H :| < 4rmax + 47 (1 maX)Q + AR E sup 2—N1_11 + 72 E sup 2—]\2[2—1 . (59)
Yy N1=0 s,a Nae0 s,a

3 (Q) (s, a)

2
’ , we make an

For convenience, we analyze the last term in the above equation. Consider the term supy ,
error decomposition as follows:
6PTV (o) 2 —
s,a,N (Q)(87a’> = sup
s,a

sup {prV(U) (ﬁs,a,2N+1 , & V)}

s,a a>0

2

_ lbup {fPTV(O')(pSa N @y V } _ *bup {fPTV pgazN’a’ V)}
2 a>0 2 a>0 -
2
< 3sup [sup {prV(U)(psa2N+1 a, V } su p{prV(U) Ps,a> &, V)}
s,a |a>0 a>0
3 2
+ — sup |sup {f””(”)(pmw,a V)} up {fp”(")(ps,a,oz, V)}
4 5.0 |a>0 >0
3 2
+ 1 Ssuf Zli% {prv(a)( 22N O, V)} iupo {prV(")(ps,a, a, V)} (60)

Then, combined with the analysis in Equations (42) and (43) and the fact P(AN BN C) > 1 —P(-A) — P(=B) — P(=C),
we can conclude that for any N > 0, with probability at least 1 — 3 27

2 2 2
prv (o) ‘2 Tmax 2_N+1 Tmax Z_E § rmax Q_E
S,a 6saN (Q)(s,a) (CT 1_ ~ 2 + CT 1_ 5 2 4 CT — 2
< 3CTVrmax2 (N+1), (61)
(1—7)?
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Since 0 < sup, > {f"TV(") (¢, V)} < ’i‘l—i’y‘ for any distribution ¢, with probability at most 3 x 2~ we have that

sup

s,a

2
prv () ? o ( Tmax
5s,a,N (Q)(Sa a)‘ S (1 — 7) . (62)

Above all, we can get that

2
E sup (SPTV(U)(Q)(S a)r <3072“Vrr2nax2—(N+1) + Tmax 3*2_1\[
sa | 20BN ’ T (1=9)? 1—vy
2
< (3C%y +6) (f‘i’;) 9-N-1, (63)

Thus we have that
5PV (@) 2
s,a,N (Q)<57a’)
E |sup

s,a PN

2
. 2 Tmax
_(a%v+®<1_7>. (64)

Then, plug Equation (64) in Equation (59), we can get the bound of expectation of infinite norm as follows:

2
N G () I I 2 >
X $,a,1V2 2 Tmax _ 2 "max
E N§ 0 SUD S < N§ O (3CEy +6) (_ ) = (Nmax + 1) (3C%y + 6) (1 . 7) . (65)
2= 2=

Similarly, we can get the bound as follows:

Nonax (57“,9(;\']) ) 2 Niax
E| > sup S | S 2 (BCRy +6) e = (Nanax +1) (3CFy +6) i (66)
Ni=0 ¢ N1=0

Hence, combining Equation (59) and the above equations, we can get the robust Bellman operator infinite norm bound:

~ 2 2
E [ngj“)(@)” ] < 4 (1 + (Nmax + 1) (3CF +6)) (rfnax +7° (f“j:) ) : (67)
This completes the proof. O

Next, we present the proof of Theorem 4.2

Theorem C.4 (Restatement of Theorem 4.2). Set 1) = %, and set the stepsize as

2logT
Br=p8= m
Then the output from Algorithm 1 satisfies that:
~ 2 ~ 1
E H prv (o) _ xprv(o) <O )
ot~ -@o | <o (=

To obtain an e-optimal policy, i.e.,

E U’ Gorv (@) _ grerv@)|”

the expected sample complexity NPTV (9 (¢) is

V(o) (¢) — 5 ( _ISIAL
NPTV (@) (¢) wmw@gzo(a—ww .
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Proof. The update of our algorithm can be equivalently written as
ini/(ﬂ) QPTV(U) + B (TPTV(U) <QPTV(U)) _ @fTV(O’) + Wt) ’ (68)

where W, = T4 (Q7 7)) = TR ().

Nmax

Define the filtration F; = {QgTV(U) Wo, ..., QPTV(U) Wi_1, QfTV(U) } Note that by definition we have that

E[W,|F] =0, (69)

and by Lemma C.3, we can get that

Nmax

E[IWill%, |ft}<E[ 7o (@) (s.0) = TR (@) <s7a>\2|ft}

max

<2E [sup

s,a

~ 2
T’DTV(J)< fTV(U)) (s,a)‘ + sup

max
s,a

_ o . 2

TPTV( ) ( tPTV( )) (s,a)’ |]:t]

(a) ~ 2

< 4E {sup? ‘TJGZ:X(U) (QfTV(J)) (57(1)’ |]:t:|

() o ( Tmax )

<16 (1 + (Nmax + 1) (3CFy +6)) | mmax +7 () : (70)

where (a) follows from that

g

) _
=pTV U)( fTV(O')) (S,a)‘ |]:t:| =E [sup

max
L s,a

B [T (o) ]| |7

<E|swE UTpTvm (@) (s )H | Ft}

Nmax

~ 2
sup | T4 (@4 (s,0) ]ft] , @

and (b) follows from Lemma C.3.

According to Equation (23), we have that

Q\*pTV( )( a) = 7-»0(0 (Q\*pTV(G))( a) = {7—0(0) (Q*PTV(O‘))(57CL):| .

Nmax Nmax

Then, to apply Lemma B.5 [Chen et al., 2020], we set the constant stepsize f; = 5 = (2110,%)TT We note that as long as

T > (9< log T >,it holds that

2logT < (1—7)?
(1 =T ~ 128clog(|S||A])’
and the condition in Lemma B.5 are satisfied. We hence have that

-

(é) g H@STV(U) *pTV(a)

8=

E [H@PTW(U) _ v (@)

= 11—« 16e log(|S||-A]) > Thax
1;[(1 2 ﬁt)+ e N (g

(1 (o + 1) (3G +6) Y82 [ (1 - 25260

4logT
(1—=7)2T’

(93 r2,. 1 16elog(|S|lA) , 12 )
2

< ax 16 Tmax ) (1 4 (N + 1) (3C20 + 6
T e 6 (9t G ) (14 (Vs 1) (5 +6))



where (i) follows from the Lemma B.5. (i) follows from (1 — (1 —v)3/2)" < 1.

We set Nyax = 228 L  then the bound of E [H@%TV(”) — Qrrrv(@)

log 2
2
o

<2E [H@ng(”) _ §rerv(©)

2
} can be obtained as follows

E |:H@'/1)"TV(J) _ Q*PTV(U)

2

} +2E [H@*pmd) _Qrerv(@)

.

o
@ ml‘igﬂi”““)w (r?nax + 72(17%&;)2) (1 + (Nmax +1) (3CTy +6)) %

- (12j§;83);T 1 i ¥ <<Tmax * Ii&;) -+ CTV)>2 %
=0 (=) "

where (7) follows from Lemma B.4 and Theorem 4.1. (4¢) follows from 9TE7 <

Sl

When E [H@PTTW’) _grerv )|

} < ¢, the iteration T > O ((1 — ) ~5¢~2). When ¢) = 3, the expected sample size

oo
per iteration is

Nmax Nmax

1 2logT
1+ > 2Py =1+ Y 2 o = N + 2= 1oggz +2

n=0 n=0

Above all, the total sample complexity is O (ISI[A|(1 = ~)~Pe?).
This completes the proof. O

D x? DIVERGENCE UNCERTAINTY SET
Similar to the proof in the TV part, we can complete the proof. Here we show the detailed result.

Theorem D.1 (Restatement of Theorem 4.1 specifically for x? distance). Set ) = % then forany Q € RS*A s € S,a € A,
the estimation bias can be bounded as:

sup
s,a

E 702 (@)(s.0)] - T (@)(s.a) < 0 (27 4).

)

The variance can be bounded as:

Var (7577 (Q)(5.0)) < O (N (74)
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Proof. Firstly, we make error decomposition as follows:

sup
s,a
@)

= sup

s,a

max

E (700" (@0 = T 0Q)(5,0)

E |:g*pX2 (U) (ﬂs,aaNmax‘*’l ) rS,(l)i| + ,Y]E |:f*pX2 (U) (ﬁ&a’QNmax‘Fl ’ V)i|

— g (@) (Us,m Ts7a) — Ay frx (@) (ps,m V)

< sup

s,a

E |:g*PX2 (@) (ﬂs,a,2Nmax+1 ) Ts,a):| - g*px2 (@) (,U's,a» Ts,a)

+ 7y sup E |:f*px2 (@) (ﬁs,a,QNmax'H P V)] - f*pXQ (@) (ps,aa V)‘
s,a

|

[ (@) (ﬁs,a,QNmax+1 s V) - f*px2(0)(ps’a’ V) ‘:| ) (75)

< E |:Sup g*pXQ(U) (las,a,QNmaerl ; rs,a) - g*pXQ(U) (Hs,aa Ts,a)

s,a

+~E [sup

where (i) follows from Proposition B.2.

Then, for convenience, we bound the second term in Equation (75). The first term can be bounded similarly. By Lemma 2.1,

PP (g e, V) = 7, V)|

mas {]E [(V(s,.0)a] — /o Var,,., [<V<s;,a>>a]}

—E [I;lg()){ {Eﬁs,a72N,I,ax+1 [(V(Sls@))a] — \/UVal‘ﬁs,ay2N,,,ax+1 [(V’(sg)a))a} }:| ‘

Eps,a [(V(S/s,a))a} _Eﬁs,a,szaXJrl [(V(Sls,a))a]

i

According to Lemma 15 and its proof in [Shi et al., 2023], we have the following lemma.

<E max
max V(s| ,)>a>0

+\foVa,, [(V(s))a] = \foVars v [(V(ha)a)

Lemma D.2. Consider the case of x* constraint uncertainty set P’ (o) with uncertainty level o, for any 6 € (0,1), one
has with probability at least 1 — §,

max
Ogagmaxsg,a V(sl,a)

Ep,.. [(V(sha))a] = \/oVary, . [(V(sh.0)a]

212, (1 + o) log (5%
_Eﬁs,a,N [(V(nga))a] + \/UVarﬁ&mQmeﬂ [(V/(S/s,a))a] é 4\/ 7nmax( +0') Og( B ) (77)

(1—=7)?N

2~ Nmax—1

According to Lemma D.2, we can get that with probability at least 1 — AT We have

2 (o a1, V) = [ (0, V)|

2(14 o) (log (24|S|]|A]) + 2(Nmax + 1) log 2) Tmax o— Nmaxt1
< 47”max\/ (1 — 7)22Nmax 1 =Cye - 72 z (78)

where Cy 2 = 4,/2(1 + o) (log (24]S[JA) + 2(Nmax + 1) log 2).
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Then, according to the Bernoulli’s inequality, we have that

9= Nmax—1 15114l N )
1— > > 1 — 27 MmaxT2, (79)
( |SIA]
Therefore, with probability at least 1 — 2~ Nmax—1_ there exists
sup | £ (g g prmax 1, V) = 2 (py o, )‘ < Cp rma>;2_ o (80)
s,a —
Otherwise, we have
S PRI N | L (SO BN (TN

Ve, [0V (5] = Vet (VG500

f

Vovan, (VL )al = JoVary o [(V/(54,0))a]

< supmax V(s ,) + sup

5,0 Ss.a s,a

2
< Tmax sup /o (max V(s a))
1-— Y s,a Sh.a ’

< v o

max
0<a<max ’ V(a

s,a

Plugging the above equations to Equation (90), we can conclude that

E [sup F O, o o, V) = F 057 (0, V >H < G {297 4 (14 /) {2 g~ et
Sfmax 2_Nm<§x+1 ((1 I \/5)2_ mzxﬂ +CX2), (82)
-

where (i) follows from that 1 — 2~ (Mmax+1) <1,

Similarly, we can get the bound

py2(0) (/i

.qu,a,QNmaerl ) TS,tl) -9

S (@) (ﬂs,av Ts,a)

E [sup g

s,a

]grmaXQNma” ((1+f)2* B e oN ) (83)

Thus, we can get that

E 7027 (@s,0)| = T (@Q)(5,a)]

max

S(l

s

* 2(0 ~ * 200
Px ( )(/l’s,a,QNrrlax+1,rs,a) —g Px ( )(,U/s,a;rs,a)

S,a

<E [sup

|

+ 'YE |:Sup f*pxz(a) (ﬁs,a,ZNmaX‘Ha V) - f*pxz (U)(ps,m V)‘:|
S (ZTmax + ’[“max) 9~ max+ <(1 + \/5)27 Nma2x+1 4 C’XQ) . (84)
-

Variance: Next, we consider the variance of the robust Bellman operator. Firstly, we make error decomposition of the robust
Bellman operator variance.

var (T4 (@Q)(s.@)) = Var (7229 1 499(Q)(s.0) )

= Var (7)) 4 92Var (%2 )(Q)(s,a) ). (85)
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For convenience, we analyze the second term in the above equation. The first term can be bounded similarly.

var (720(Q)(s,0)) = B [(W“)(@(s, a))g] - (E[re@Qsa]) <E [(@ﬂx2<0><cz><s, aﬂ . @6

Next, according to the Equations (13) and (14), now we compute the expectation of N, and write a detailed explanation of
the variance as follows:

2

520 (Q) (s, )

B (07 Q)s.0)) | =B | Vst + =225

<E [V(s) 40)%] + 2B | | 22N 200 2

s,a,0 PN2
w2 e | (5720 (0)(s,a) i
SToE LB TR M)y

(87)

N=0
Nmax [
272
< max _ 4 o Z
N=0

57 7(Q) (s, a)

Next, we bound the term

2 (o)
LN (Qs,a)]

1 1
py2(0) (> _ = py2 (o) _ - py2(0)
(S)};F()){f (ps,a,2N+17aaV)} 2Sllp {f (p5a2N’a V)} QSU.p {f (psaZN’a V)}’ (88)

a>0 a>0

We make an error decomposition as follows:
’2

522 (Q) (s, a)

2

1
{pr U) p9a2N7aav)} - ibup {prQ(ﬂ)(psaTV’a V)}

— s {251,001} -
a>0

a>0

2

sup
< 8fsup {22 Gy, 01) m{ﬂﬂ s}

a>0

sup {fPX2(J)(pS 02N O V }
a>0

2

3
— PXQ
+4 f psaaa V)}

2

N (89)

o
{

up {172 @0, s V) f = sup {77 s V) }

> w

aZO

According to Lemma D.2, we can get that with probability 1 — 2~ Vmax—1 we have

f*px (U)(p s,a,2Nmax+1, V) - f*pxz(g) (pS,av V)‘

2r2 (14 0) (log (24|S]|A]) + 2(Nmax + 1) log 2) Tmax o_ Mmax+1
<4 =Ce 27"
(1 = 7)22Nmt1 1—7

; (90)
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where Cy 2 = 4,/2(1 + o) (log (24]S[|A]) + 2(Nmax + 1) log 2). Otherwise, we have

2, 5 { B (V0] = B (V00

/|

VoVar, [(V(st)al = \/oVars, s [(V/(5.0))a)

Va0V 5] = Vet (VG500

<maxV(s,,)+ max
Sha ’ 0<a<max, V(s. )

s,a

Ss,a Ss,a

< (1+Vo) 7™ oD

2
< max V(s ,) + \/a (max V(sgya))

Then, combined with the analysis in Equations (90) and (91) and the fact that for any events A, B,C,P(ANBNC) >
1 —P(=A) — P(~B) — P(=C), we can conclude that with probability at least 1 — 3 * 2=~

6PX2(U)(Q)(S a)r <3(c Tmax 2_¥ 2 + 3 C Tmax 2_% 2 + 3 C T'max 2_% ?
2 — 2 — 2
s,V ’ - L 4\ 71—~ 4\ X1 -«

2 .2
_ 3CX27“max 2—(N+1)’ (92)
-
Since 0 < sup, > {fpx2 @) (q, o, V)} <(1++/0) 722 for any distribution ¢, with probability at most 3 x 2~ we have
that

6pX2 (@) 2 Tmax 2
s,a,N (Q)(S, a‘)‘ S (1 + \/E)ﬁ . (93)

Above all, we can get that
e|

Then, plug Equation (94) in Equation (87), we can get the boundary of variance of robust Bellman operator as follows:

5pX2(U)(Q)(S a)‘Q gciQTI%laxz—(N+1) + Tmax 23*2—1\/ < (3022 +6(1 + \/E)Q) "max 22—N—1
s,a,N ’ =9 (1 _ 7)2 1—7 - X 1—7 :

(94)

PX2(U) 2
22 Nog B (007N (Q)(5,))?]
orx2 () < _“lmax ®
Var (v (Q)<s,a)) S R szjo B
< 2r12nax T 2T12nax (302 + 6(1 T \F)Q) lenix 2_N_1
o
B N ) &~ P
(@) 2ri..
= ToayE (1 B0 +6(1+ Vo)) (Nmax +1)) 95)
where (a) follows from that Py = 9(1 — )N = 27V-1,
Similarly, we can get the bound of the variance Var (?”XZ (U)) as follows:
Var (?Pxﬂf')) <22 (14 (3C% +6(1+v5)?) (Nunax + 1)) - (96)
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Hence, we can get the robust Bellman operator variance bound:

Var (T]\p,:mx (Q)(s, a)) = Var (?’JXZ(")) + y*Var (5’&2(”)(@)(3, a))
2 2
<2rmax 72(17’_’“;’32> (1+(3C% 4+ 6(1+v0)?) (Nmax + 1)) . 97)
This completes the proof. O

Lemma D.3. For any fixed Q € RISIAl s € S, a € A, the infinite norm of robust Bellman operator can be bounded as:

E U ﬁfﬁiﬁ”(@)(&a)Hz ] < O (Nunax) - (98)

o0

Proof of Lemma D.3. We then consider the expectation of infinite norm of robust Bellman operator. Set i) = % and then

we make an error decomposition as follows

2

N 5" r,p(o) ) Novo (5'0x2 (o) (Q))
Py z(a) < s,a,Ny : s,a,No

[HTN H ] < 4Tmax + 497 (1 5 +4E E sup 9N —1 + 7y E bl}pw . (99

max
s,a

— N3=0 s,a

2
, we make an

502 (Q) (5, 0)

For convenience, we analyze the last term in the above equation. Consider the term sup, ,
error decomposition as follows:

sup 552271(\7)(62)(8,@) = sup

‘2
s,a s,a

sup {fp 2(0)(psa2N+1 €9 V)}
a>0

2

1 1
,,Sup{fpxz(a)(ﬁE 2N,a,V }77 {fpxz(o) 22N O V)}
2 a>0 8,8 2
2
< 3sup [sup {prZ(U)(ﬁs,a,QN‘HaaaV)} sSu p{fp 2(0)(])5 as @, V)}
s,a |a>0 a>0
3 2
+ — sup |sup {f”x2(")(ps 02N Qs V)} sup {fpx“")(p&m Q, V)}
4 s,a |a>0 a>0
3 2
+gsup{sup { 50, 5,0, V) | = sup {742 0, V) (100)
s,a |a>0 a>0

Then, combined with the analysis in Equations (80) and (81) and the fact P(AN BN C) > 1 —P(=A) — P(-B) — P(=C),
we can conclude that for any N > 0, with probability at least 1 — 3 * 2—N

(prz(a) 2 Tmax o N+1L 2 3 Tmax H— N 2 3 Tmax 4_ N 2
s,a,N (Q)(S’a) <3 CX21 72 2 + - C,e 272 +— | C,2 272

Ssl,lzlz) - 4 X 1 - 4 X 1 -
02 rde
< 6(1%7)2 (N+1), (101)

Since 0 < sup,>g { o2 (@) (g, , V)} < qm_“; for any distribution g, with probability at most 3 * 2~V we have that

2
55.,’;2,1(5)(62)(8,@))2 < <Tma") : (102)

sup -~

s,a
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Above all, we can get that

[ 5@ ()5, || < 6T g- vy | (T Py oo
E |sup [6,.% Q s,a”ﬁﬁ? +(W) 3x27
s,a N (1 - 7)2 L=y
2
2 T'max —N—1
< (60X2 +6) <1 —’y) 2 . (103)
Besides, we can get
py2 (@) 2
N (@), a) ) Fe )2
E sup P = (6C%= +6) ) (104)

Then, plug Equation (104) in Equation (99), we can get the bound of expectation of infinite norm as follows:

2
Nuax (5”22 E\‘;) (Q)) Nuax , 2 , 2
. $,a,1V2 2 max _ 2 max
E Z bsu(? W S Z (60X2 + 6) (M> = (Nmax + 1) (6CX2 + 6) <1_’y> . (105)
Na=0 % N2=0
Similarly, we can get the bound as follows:
Nonax (57",,0(;) ) 2 Niax
E|Y sup ﬁ < 3 (60% +6) 12, = (Nmax + 1) (602 +6) 2. (106)

Ny=0 5 Ny=0

Hence, combining Equation (99) and the above equations, we can get the robust Bellman operator infinite norm bound:

2
U‘T]\’}m’jﬁ”) | ] <4 (14 (Nax +1) (602 +6)) < P + 7 <fri};) ) : (107)
This completes the proof. O
Theorem D.4 (Sample Complexity with x? Distance). Set Npax = QIfggQT and the stepsize as
2logT
Br=p5= A= T

Then the output of Algorithm 1 satisfies that:

2 2 2
|:HQP><2 (o) Q*PX2 (o) ] < 10g2T T"max - max IOgQT ( Y 5
o0 7 (1-7) 2(1-7)T (1=7)

2
2 v , 1
+r"““"(<1+1—v> (1+3Cy )) 7

~ 1
<0 (i —yr). 1

) (1+ (6C22 +6) (Nmax + 1))

To ensure

e 2
e |:HQ;’X2( ) Q*pX2(U) oo:| < 627
the expected total sample complexity N*x2(7) (¢) is,

py2(o) _ > %) ‘SHAl
N2 () = ||| A N > O <<1 Sa)-
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Proof. We consider the stochastic iteration

2(0) _ Ap2(o) 2 (@) 2 (9) x2 (@)
QT =+ (TR (@) =@+ wa) (109)
where W; = %p:liig) ( tpxz(a)) - '7'?\}1(:) ( f"2 (0)>.
Define the filtration F; = {QS x2(9) s Wo, .o, 5221(0) Wi_1, pXQ( )} Then, by Theorem 4.1, we can get that
E[Wi|F] =0, (110)

and by Lemma D.3, we can get that

E (Il 7] < [sw

Tpxz(g) ( ;&2(")) (5,a) — T?G‘jf:) ( fx2(0)> (37a)‘2 |]:t:|

7o (@) (S,G)‘ e () (S,a)‘z]:t:|

max

<2E [bup

s,a

(@) o
S 41K |:Sup2 ’Tjsii-m ( fxr-’( )) (57(1)’ |J—_-t:|

(b)

2
< 16 (1 + (Nmax + 1) (6C2: +6)) ( T2 + 7 (Tm") ) , (111)
where (a) follows from that

Tp" 2(9) ( fx2(o)) (s,a)‘ﬂ]—}} =

Nmax

E [sup

S,a

= [75” (@) o[ 1]
<E _sup]E { 7o (Qf 2(0)) (S,a)ﬂ ‘ft]

max

=~ o 2(0 2
e (@) o)

L 870’

<E [sup

L s,a

ft} , (112)

and (b) follows from Lemma D.3.

According to Equation (23), we have that

Q0@ (5,0) = TR (Q"7D)(s.0) = E [T (@) (s.a)]

Nmax Nmax

Then, apply Lemma B.5 [Chen et al., 2020], set the constant stepsize 3, = 3 = (21 l_of;)TT and 7' is large enough s.t.

PR
2logT < (1—=7)

B=0=T = 128 og(ISTIAD”
We can conclude that
~p_o(o —~ 2 ) N 2 T-1 1—
ef|a - amee | 2 3ja -are | TT (- 152%)
i=0

. 16elog(IS]IAD

2\ T—1  T-1
6 (14 (N +1) (6C3- +6)) <r12nax +9° (h) ) g 57 _H (1= = *51)

)3 Thax 1 16elog(|S]|A])
2

2
4logT
- 16 (1 + (Nuax + 1) (602, +6)) [ 72, +~2 [ e 113
T 1o, (1+ (Nmax + 1) ( X2+))<rmdx+7 - ) ) G (113)

(ii
<

where (i) follows from the Lemma B.5. (ii) follows from (1 — (1 —v)3/2)T < X
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p oo 2
Set Npax = Qllg’ggQT . Then, we make the decomposition and get the bound of E [HQ;XZ( ) _ Q*px2(") N

@) 22 32elog(|S|IA] | 7" >\ dlogT
< max 1 max + 1) (6C%2 +6)) e
SA—T T 1 16.(1 4 (N + T fmax 17) (1=7)T
2 Tmax _ Nmax+1 [/ __ Nmax+1 2
e (et g2 ) 277 (27 +30,)

@) 22 32¢log(|S||A) r 2\ 4logT
< max 16 (1+ (Nmax + 1) (6C22 +6 ol

< e PO 16 (1 (N4 1) (062 +0) (22 (722 ) ) iy

2 r > 1
27 max S 1 Veal
+ 1_ ((7‘ +1—’}/) ( +30X2)> T

~ 1
-0 (=) e

where (i) follows from Lemma B.4 and Theorem 4.1. (i7) follows from 9 T0Es <

] as follows

N

2 } < 9R |:HQPX2(U) G0

} +2E HQ*PX Q@]

N

per iteration is

2 -
} < €2, the iteration T > O ((1 - 'y)*5e’2). When ) = 1, the expected sample size

Noax Nomaz

1 2logT
n+1 _ n+1 _
1+ g 2" Py =1+ g 2 il = max + 2 = log 2 + 2.

Above all, the total sample complexity is O (|S||A|(1 —~)~5¢2).
This completes the proof. O

E KL DIVERGENCE UNCERTAINTY SET

In this section, we provide the proof of Theorems 4.1 and 4.4 specifically for KL distance.

Theorem E.1 (Restatement of Theorem 4.1 specifically for KL distance). Consider the case of KL constraint uncertainty
set with uncertainty level o i.e. PX (o) and R¥% (), set 1 = §, for any Q € RS*XA s € S, a € A, the estimation bias
can be bounded as:

Nmax

B [T @s0)] - T (@) (s, < 6 (2.

s,a

and the variation can be bounded as:

Var (ﬁ@jj‘”(@)(&a)) < O (Nunax) - (115)
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Proof. Firstly, we make error decomposition as follows:

sup
s,a

max

E [%pXQ(G)(Q)(s,a)} _ TPX2(U)(Q)(5, a)‘

E {g*pKL(U) (ﬂs,a,ZNmaerl ’ rs,a)} + 'YE [f*pKL(U) (ﬁs,a,QNmaerla V)}

- g*pKL(U) (/’(‘S,CH rs,a) - ’Yf*pKL({T) (ps,aa V)

< sup

s,a

E [g*PKL(U) (ﬂs,a,QNmax+1 bl 7‘8,11):| - g*pKL (U) (IU/SJI’ Ts?‘l)

+ 7y sup

s,a

B [ gt )] - PP 57|

|

f*PKL(U) (ﬁsﬁa’QNmax+17 V) _ f*PKL(U) (ps,(l? V) ’:| s (1 16)

<E [SUP g*pKL(d) (.as,a,QNmaerl ) Ts,a) - g*pKL(U) (Us,aa 7"s,a)

s,a

+E [sup

where (i) follows from Proposition B.2.

Then, for convenience, we bound the second term in Equation (116). The first term can be bounded similarly. By Section 2.3,

f*pKL(a') (p&a7 V) _ f*PKL(O') (ﬁs7a72Nmax+1)V*)

o (B V(s5.a)
azo | OB\ P P\ )] T
e V(s.a)
71(?2%( —alog Dy, q,2Nmax+1 erp\ — o -

(1) Vs
<  max —alog <IE,, § {exp (_ ( sa)ﬂ)
0<as fuss; * o
V(ss.a)
+alog Eﬁs,a,QNlnax+1 erp L
V(sh.a)
Eﬁs.a,2Nlnax+1 [ea?p (_T)}
S ma‘,?( alog ’ V(s, )
O<esale Ey. . [eap (—5)]
Vist.a) V(s
Eﬁs,a,ZNlnax+l {exp (_(67)} — Eps,a [emp <_(T)]
< max alOg V(s. ) +1 , (117)
0<a< {2355 Eps,a [exp (_%>:|

where (i) follows from a*#%2(?)(p, V) < maXS:p(Z#O Vi(s) < maxﬁ“;Q(S’a) < (fjjy’so by [Hu and Hong, 2013].

Noting that pg ; oNmax+1 (S5 ) is absolutely continuous on ps (s ,), then by Hoeffding’s inequality we have

1 2/5|
F > svizlege— | <7 118
(Iil’aax = \/QmeHp% 08 = ) =T (118)
2~ (Nmax+1) 9~ (Nmax+1)

Set 7 = %5z With probability at least 1 — 57—, we have that

by [0 ()] B [ (25
E,. . {emp (—V(ST/“))}
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(@) ps a, 2Nmax+1( ! ) Ds, a( )

< max
s psyfl( s,a)

Nl'[l X
< \/sz log (2|S2|A]), (119)
where (i) follows from the fact that
> pii| = 'Z Bgus| < [ D g max p' (120)

qi v 4

Note that if we set 232x log (2|S|2|A[) < 22Nmaxt1 it holds that \/wrfi% log (2|S[?|A|) < . Then, combined with
Equation (117), we can conclude that

f*pKL(J) (ps,m V(S;,a)) - f*pKL(U) (ps a,2Nmaxtls V*(S/S’a))‘

Timas Ep, wonmnts (620 (—5)] —Ep,.. [ezp (=5)]
<——— max log : e +1
(1= 7)o 0<a< Jmac E,. . {eacp (_ (:,a))}
V(sta) V(sia)
@) roax Eﬁs,a,szxH {exp (_ o )} —Ep.. [exp <_T>}
S Ao, max 2 V(s..)
(1 =)0 0sas qmas E,. . [e:cp (* e }
2Tmax ps a, 2Nm1x+1( ‘ ) Ps, a( ) 2Tmax Nmax
log (2|S]2|A 121
~(1-7)o r?gaax Ds. a( Sa) (1= 7)o || 2Nmext1pZ og (2|S[2|A]), (121)
where (i) follows from that |log(z + 1)| < 2|z| for || < 3. Then, according to the Bernoulli’s inequality, we have that
9~ Ninax—1 |S||A\ N
1— > >1 — 2~ Nmax—1, (122)
( S A
Therefore, with probability at least 1 — 2~ Vmax—1 there exists
* o % o 27’max Nmax
Ssus) f prr( )(p a2Vt 1, V) — f prL( )(psﬂ,v)‘ < -0 \/2Nmax+1 5 log (2|S|?|A). (123)
Otherwise, with probability at most 2~ (Nmax+1) we can conclude that
sup f*PKL(G’) (ps,mv) _ f*PKL(G’) (pé 02N 1 V ’ < maXV( ) < ;Inax . (124)
s,a Ss,a -7

Then, consider the expectation, we can get

E [sup f*PKL(U) (p&a7 V) — f*PKL(U) (ﬁ57a72Nmax+l7V*) H
2r N, r
max max 1 2 2 mdx+1) max
- (1 — ’y) \/2Nmax+1 2 Og( ‘S| ‘AD + 1 _ ~y
2Tm1x

V/Nanax 10g (2|8 2] A]) 4 o (Vb)) P 125

_(1_7 W 1—7

where we set Ccf, = 21/ Niax log (2[S[2|A]), then

E [sup FEHT (paa V) = L2 (B s,V )H
T'max 1 Tmax o—
< CKL—Fprr + 9~ (Nmax 1), (126)
(=)o " pr2™s -y

33



Similarly, we can get the bound

E [sup g*PKL(O')(Iu @2 Nmax +15 T a) B g*pKL(a) (Ms,aﬂ"s,a) :|
s,a
< 4rmaxCKL2 Fmgetd a2~ (Nmaxt1) (127)

OPA

Thus, we can get that

sup [ [T4217(Q)(s, )] = TP+ (Q)(s,a)

ma,

*prL(o )(,u a2 Nmax +15 T ) 7g*pKL(a)(MS,a,TS7a)

|

f*PKL(‘T) (ps a,2Nmax+1, V) — f*pKL(U)(ps,av V)‘:|

<E [sup

S,a

+~E {Sup

s,a

S (fyrmax +Tmax) 9— N111?¢2x+1 (2_ Nm%x+1 + CKL) ) (128)

11—~ OPA

Variance: Next, we consider the variance of the robust Bellman operator. Firstly, we make error decomposition of the robust
Bellman operator variance.

Var (Tp:jx (Q)(s, a)) = Var (W’KL(") - ABPRLE) (Q) (s, a))
= Var (7)) 4 2Var (27+)(Q) (s,a) ). (129)

For convenience, we analyze the second term in the above equation. The first term can be bounded similarly.

Var (0°4(Q)(5,0) = E| (77 @(s.0)) | - (B [ @(s.0)])

<E [(A’”K“")(Q)(s, a)ﬂ - (130)

Next, according to the Equations (13) and (14), now we compute the expectation of N, and write a detailed explanation of

the variance as follows:
9 5PKL(<T) ’ 2
E [(%\PKL(U)(Q)(S’ a)) } -E (V(s’s a0) F W)

ﬂKL(U) (s,a) 2
<2E [V(5} 40)%] +2E (”NQ >
2
2 2 max f:l;'L(o-) S a
< rmax Ng )|N2 N PN
(1—9)%0?
e G NT { 5§I3LN”) 8’“))2] (131)
= (1—9)%?
Next, we bound the term ‘6525\(,”) (Q)(s,a)|,
8757 (@) (5. 0)| = [ sup { 54O (B v, 0, V) |
” a>0 Y
! (@) 1 ()
— —sup {prL (psa2N,a V)} — —sup {f”KL (p° Dsaon: @ V)} (132)
2 >0 2 0>0
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Then, we make an error decomposition as follows:

575 H7(Q) (s, a)

’2 sup{f”“ (psa2N+1aV)}

a>0
2
1 (@) 1 (0) (50
— 5 sup {f”“ (P 0o, V)} -~ sup {f"“ (psagw,a,V)}
2 a>0 2 0>0 ’
2
< 3 sup {prL(U)(ps a,2N+1, & V)} Sup{ pKL(U)(pS,thav V)}
a>0 a>0
2
3 (@) (@) (5
+ 5 sup { PR GE, oy, V) = sup { 5O 500, 1) }
4 a>0 a>0
2
3
+ — [sup {f”“(")(pé 09N> Qs V)} su {f”“(")(psa,a V)} (133)
4 a>0 a>0

Case 1: Combined with the analysis in Equations (121) and (124), we can conclude that when N <
2| @]

log(14p% log(2|S|?|A]) log T))

Tog 2 , we bound the term Pr as follows,
(o) 2 "max 2 1 N 2 2

Qo < (122) L o =2 <1 log(iSPLAD og . (134)

w - Py

Hence, we have that
(@) 2

E [ O (@Q)(s,a)| } e

< ( ma") (14 pr?log(2|S?Al) logT) . (135)
Py 1—x

Case 2: When N > [80PA1sCISPIAD I8 T) o ider the fact P(ANBNC)>1—-P-A) — P(-B) — P(=C), by

log 2
Equation (121), with probability at least 1 — 3 % 2~V

2 i\ 2
55126\(/0)(@)(5,&)’ §3<CKLP(TmaX2 ;)

Al =7)o
3 Tmax N 2 3 Tmax N 2
- | Cxp———m——2772 - | Cgp————m———2772
+4< N ) +4< KAl =)o >
CKL’I" _
_ max _g-(N+1) (136)
pi(l—7)202

Since 0 < sup,>q { fP52() (g, 0, V) } < === for any distribution ¢, with probability at most 3 x 2N we have that

prL(o) 2 T'max ?
SN (Qsa)| < (17) - (37
Above all, we can get that
2 C% 12 Faax )
6PKL(G') s,a ‘ :| <3 K L' max 2—(N+1) +< max) 3*2—N. (138)
B |5z @] ] < 3 e i
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Combined with Case 1 and Case 2, when ¢y = % = 27N=1 Then, we have that

5PKL(<T) 2
s,a,N (Q)(s,a)
Py

Tmax 2 2 3 2 2
—= B 1 + p (0] OKL max Tmax

Then, by Equation (139), we can get the boundary of variance of the robust Bellman operator as follows:

Var ( prre(o) (Q)(s, a))
272

L, e B[O Q)]
- (1 —7)20'2 oo PN

272 o < P )2 ( 302
< —20 - +4 4+ pr?log(2|S|?|A logT-i-* KL)
(1 _ ) 0_2 Nz:o — A ( ‘ ‘ ‘ |) /\0,2

< {24 4(Npax + 1) (4 +1og(2|SI*| Al log T) (1 — 7) + 3Chs i (140)

< max g g g 2 P2 (1 —7)202’
Set Cyar = 2 + 4(Npmax + 1) (4 +log(2|S|log T)(1 —7) + %) then

~prr(o) T?nax
Var (1} KL (Q)(&CL)) < Ovarm.
Similarly, we can get the boundary of the variance Var (?”KL(”)) as follows:
Var (Aﬂma ) < Cou ;“); (141)

Hence, we can get the robust Bellman operator variance bound:
Var (T84 (Q)(s,0) ) = Var (P54)) 4 42Var (275+()(Q) (5, a) )

Cuar ( 2 7272 )
< Thax T 77— ~g | - (142)
pro? (1-7)2

This completes the proof. O

Lemma E.2. For any fixed Q € RISIAl s € S.a € A, the infinite norm of robust Bellman operator can be bounded as:

TPKL U) 2
E| |78 (@5, 0)|

} < B (M) - (143)

oo

Proof of Lemma E.2. We then consider the expectation of infinite norm of robust Bellman operator. Set ¢ = %, and then we
make an error decomposition as follows

2
9 2 Nonax (5: P(j‘v) > Nunox (55}([,]\([0’) (Q))
M T @ H ] < AP + 477 7(1 NP Z Sup%“f > SUP% - (144)
Ny=0 % Ny=0 %@
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2

Pz (o) , we make an

For convenience, we analyze the last term in the above equation. Consider the term sup, , |0,y (Q)(s, a)

error decomposition as follows:
2 ~
’ sup {prL(U)(ps,a,QN*lvavv)}

sup 5fﬁLI\(,o)(Q)(s,a) = sup
s,a v s,a | >0
1 1 ?
— —sup {fPKL(O’)(ﬁSEa N O, V)} — —sup {fPKL(U)(]/)‘?a N @y V)}
2020 * 2a>0 -
2
< 3sup [sup { 5+ (5, 4 over, 0, V) | = sup { 54O, 4,0, V) |
s,a |a>0 a>0
3 2
+ sup [sup { fH O BE, v 0, V) | = sup { 754 (paa,a,V) |
4 s,a |a>0 o a>0
3 2
+ 7 Sup [sup {prL(”) (]350,&)21\;,04, V)} — sup {f”KL(”) (Ps,a» @, V)} (145)
s,a |a>0 a>0
Case 1: When NV < log(1+7; loglg%g‘ilZlAD log T), we can get
2 2
(o) 2 T'max 1 N log(2|S|?|A|) log T’
sup [ 675207 (@ s,a‘ <() =N <14 : (146)
sa | 20N (@)(s9) 1-v) Py PA
Therefore, we have that
2
prL(0)
sup, o [7557 (Q)(s,0)| ) (rmax )2 (1 , log(2IS[2|A) log T) o
< 5 . (147)
Py 1—7 YUN

Case 2: When N > ls(LtpA log&‘glzw) logT) ' combined with the analysis in Equations (122) and (123) and the fact

P(ANBNC) > 1—P(-=A) —P(-~B) —P(~C), we can conclude that for any N > 0, with probability at least 1 — 3 %2~

2 Ckirmax o 501\° 3 ( CkriTmax o n\° 3 ( Ckifmax .~
§rnl) s,a' <3<2 2 ) +<2 I
s.a,V @)(s,0)| < a(l—~)pa 4 \o(1—9)pn 4 \o(1—79)pn
2 .2
CKLTmax 2—(N+1)) (148)

o%(1—v)%pa

Since 0 < sup, s { f7%4(7)(g,a,V)} < G2 for any distribution g, with probability at most 3 x 2~ we have that

sup

s,a

sup

s,a

2
6/’KL(O') 2 < "'max 149
s,a,N (Q)(87 a) — 1— v N ( )

Above all, we can get that

2 C2  r2 r 2
E |sup 55};L(0’) Q)(s,a ‘ :| <6 KL max 2(N+1)+< max) 359N
[s,a wn (Q)sa) o?(1 —)?px 1—vy
2 2
<2 (3 C;Kg +3> <““"”‘> 9N (150)
DA I—v
Combined with Case 1 and Case 2, we can get
2
O (@Q)(5.a) ) a2 2LAD log T )
E |sup _ <602K§' 174 o82ISITIAl) log ) (rm‘“> . (151)
s,a Py O“PA PA 1—o
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Then, plug Equation (151) in Equation (144), we can get the bound of expectation of infinite norm as follows:

2
Nina (y’KLA([”)(Q)) Nows 1 o o 2
s,a, 2(2|S|? |A|)logT Tmax
& sup ~—————| < ( +T+

]\]22:0 s.a 9—N2—1 ]VZZ:O 0.2p2 p/\ 1_ ~

02 10 2 8 2 .A 10 T max 2
:(Nmax+1)(6 KL L 74 g2 ||2|) & )(T ) .52

T PA DA 1—nv

Similarly, we can get the bound as follows:

2
Nono (57‘#(;\}) ) Nmax 02 1
s,a,N1 KL og(2\8| \A|)logT r2
E E SUp —o < E <6 5+ 7+

2 Tmax
o
N1=0 PA PR

2 2
= (N + 1) <6 Oy y7., e AmogT) p
0°PA

2 max"*
PA

(153)

Hence, combining Equation (144) and the above equations, we can get the robust Bellman operator infinite norm bound:

Zprcr(o 2 C? log(2|S|?|A]) log T ma |
E {H’ﬁ@jﬁff )(Q)HOJ §4(1+(Nmax+1) (602@% 174 JoslS[TAD log )) <r§m+72 (17’_7> ) (154)

PA

This completes the proof. O
Theorem E.3 (Restatement of Theorem 4.4). If we set ) = % and the stepsize as

logT
(L=7T"

=0 (aazarr)

2
<
oo

Br=p=
Then the output of Algorithm 1 satisfies that:

E |:H©§1KL(0') _ Q*pKL(o')

To ensure

{HQPKL _ Q*pKL(G)

the expected total sample complexity NP<1(7) (¢) is

3 S|IA]
NPEL() (¢) = NunaxT > | :
© = 8143T > 0 (7 70

Proof. We consider the stochastic iteration that

fof _ PKL + B (TPKL (QtPKL(U)> . @fKL(U) + Wt) , (155)

Nmax

where Wt TP]I:aLX(U) (Q/JKL U)) TPILI;X (QfKL(U))-

Define the filtration F; = {QSKL(U), Wo, ..., QPKL(U) Wi_1, QfKL(U) } Then, by Theorem 4.4, we can get that

E [Wt|-7:t] =0, (156)
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and by Lemma E.2, we can get that

) (QfKL(@) (s,a) — 7_””51;((0) (QfKL(U)) (5761)‘2 |.7:t:|

TPKL(U) ( fo(U)) (s,a)‘

E[IWill%, 1] <E {

Tee (@) (s,

< 2E {sup

s,a

(a) ~
< 4E [sup2 ‘T]f;ji(g) ( fKL(U)> (s,a)’ |.7-"t]

(©] 2 2 2
< 16 <1 + (Nmax + 1) <6UC;;§ 7y eS| 2“4|)1°gT>> (r?naery? (f“";) ) . 3457
2 —

DA

where (a) follows from that

Nmax

=prr(o) (QfKL(0)> (s,a)r |-7:t:| _ [’TPKL o) (QPKL(” ) (s,a)} ‘2 ’]—'t]

max

E {sup

L s,a

<E —supE “TPKL o) (QPKL(U)) (s, )‘1 ‘]:t:|

Nmax
L s,a

< E |sup

L s,a

Tt (Qeer) (S,a)ﬁft} : (158)

and (b) follows from Lemma E.2.

According to Equation (23), we have that

Qo) (s,0) = TR Q7<) (s,0) = B[ TEL7 Q7)) (s.a)]

Nmax Nmax

Then, apply Lemma B.5 [Chen et al., 2020], set the constant stepsize 5; = 8 = (2110g)T and 7' large enough s.t.

(1 —~)T ~ 128elog(|S||A])°

We can conclude that

.

‘me _ Qrexe(@)

* U\@;“@ - g

2 T 1—~ 16¢log(|S||A]) . 5 2
Ho(l_ 2 ﬂt>+ 1—v 16max(1+(17)2)

ooj:
c? log(2IS2| AN log T\ <= o 1T (1
.(1+(Nmax+1) <6 L+ 7+ o8(25I | ) log ))ZﬂQ ITa L51)
0P p/\ t=i+1
@3 42 1  16elog(|S||A]) . . , C log(2|S|?|A|) log T
< 2 _Tmax = 1 1 N. 1 KL
T 2(1-9)2T 1—~ 6"‘”‘( * (Nma )(602p%+7+ PA ))
2
y 4logT
(14 > , (159)
( (1=7)2) 1=7)?°T

where (i) follows from the Lemma B.5. (i) follows from (1 — (1 —v)3/2)" < L.

@%KL(”) _ Q*PKL(U)

2
} as follows

Set Npax = 2log T Then, we make the decomposition and get the bound of E [H

log2 *
2
o)

< 2FE |:H@/[1)_‘KL(O') _ Q\*PKL(G')

{HQPKL _ Q*pr(G)

.

2 ] +oR [H@*PKL(U) _ Q*PKL(U)
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W 272 32elog(|S||A]) C?(L 10g(2|8|2|A|)logT>>
2

< + 1672 (1 + (Nmax + 1 (6
(1 —7)T 11—~ ( ) o?p P

2 2
) (1 n ¥ 2) 410g721 n 2 ((’yrmax n Tmax) o Vmatl (2_ Nings 41 n CKL))
(1=7)2) QA=7)T 1-v\\1-v aPA

@) 922 32elog(|S||Al) . . , Ch log(2|S[*|A|) log T
< max 1 1 Nmax 1 hL
e e G )

2 2
¥ 4logT 2 YT max 1 Ckr 1
<1+(1—V)2>(1—7)2T+1—7(<1—7+rma") <T+crp/\ T
~ 1
= - 160
O (=7 (160

where () follows from Lemma B.4 and Theorem 4.1. (i7) follows from 9TEr <

+ 74+

1
T

When E [H@%KL(U) _ Q*7PKL(‘7)

2 .

} < €2, the iteration T' > O ((1 — )78 *2p o~ ) When ¢ = %, the expected
sample size per iteration is Nyax + 2. Above all, the total sample complexity is O (|S|IAI(1 — )P 2pr2o~2).
This completes the proof. O

F PROOF OF LEMMAS AND PROPOSITIONS
Proof of Lemma B.4.
H@*p(a) _ Q@ .
[ (@) 7 ()
<[ (o) T2 (e )| 1 () 7 )

S " H@*p(a) — Q) _+ HTP (Q*pw)) _ 7@ (Q*pw)) H , (161)
where (i) follows from Proposition B.3. O
Proof of Proposition B.2. Here we recall the definition of §7 ((f 3\,2 (Q) that
(@) =5 {777 (B avass, o, V) |
1 1 (0) (20
— 55w { O GE, a0, V) | = 5 5up { OG0, v V) (162)
2 0>0 2 4>0 “
Then, we recall that
P o, V) 1= 500 {7 V) } (163)

Thus, we can get that
|:5gap§\[f;)|N2} =E |:f*p(cr) (ﬁs a,2N2+1, V)|N2:|

[f*p ( Dg q,2N2+15 )|N2} - *]E [f*p(g)( D a,2N2+15 )‘N2]

—E [f*”(") (Brsa 01, V)N | = E [f*ﬂ<”>(ps 0o V)IN2] (164)
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Take the expectation of the random variable No ~ Geo(1)), we can obtain that

E [#)(Q(s,a))]

5@7/)](\‘,7)
=E V(s 4 202
( s,a,O) PN2
6@1»0](\;7)
:E[V( saO)]+E e
Px,
) Nmax Q, Pg\l[f) oo Q, pg\z;)
i 12 -s,a,Na s,a,Na
= EV(sha0)l+ > E . [Ny = N] P(N)+ > E P |N, = N] P (N)
N=0 N=Npax+1
.. Nmax
D B[ (a0, V)] + Y E[677]
N=0
() Nrnax
B[ Goae V)| + Y E[F O Beapn, V)| = B[ £ (Byan, V)]

N=0
=FE {f*p( )(ps a,2Nmax+1, V)}

where () and (i) follows from the Equation (13); (4i7) follows from Definition B.1.

This completes the proof.
Proof of Proposition B.3. For any Q, Q' € RISl we have that
Thol (@Q)(s.a) = TH (Q)(5.0)
= E [P (0 21, o) 1S (B3, V)]
-E [g*p(g)(ﬂs,aglvmaxﬂ \Tsa) + Vf*p(a)(ﬁs,aQNmaxH , VI)}

= (E [f*p( ) (Ds.a.2Mmax+1 V)} E [f*p( ) (Ps.aoNmax 1, V' )D

=E; inf E,[V'(s. )] — inf E,[V (s, ,
k Poa,2Nmax t1 [p(q’ﬁs,a,szax+1)§a q[ ( ’ )] p(‘]vi’s,a,szax+1)§‘7 q[ ( ’ ﬂ‘|
=VEp_ vt ~inf Eq[max Q' (s} ,,a")]
o P(@:Dg 4 aNmax+1)<0 a’
- inf ]Eq[max Q(s,.4,a")]
P(@:Py 4 2Nmax+1) <0

Hence, consider the infinite norm of both sides Equation (166), we can get

| TR @ - TR @)

< max TR (Q)(s,a) — TAZ (Q)(s, a)‘
= vymax |E; inf E max a
v s,a Ps a,2Nmax+1 [p(q»ﬁs,a,szax+1)§U [ Q ( s a )]
- inf Eq[max Q(s5,4,a")]
'D(q’ijs,a,ZNmax‘Fl)Sa'
<ymax|E; o sup ]Eq[maxQ (shard') — maxQ( s, 0 )]
o o PGP, 4 oNmax+1)S0
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< ymaxmax max Q' (sg ,,a’) — maXQ( @)
s,a

’
Sg a a’

< fymgmxmé}x|Q(8 ,a') —Q'(s',d)]
Q- ... aon

Proof of Lemma C.2. [Shi et al., 2023] Firstly, for a fixed «, by Bernstein’s inequality, we has that with probability at least

1-9,
B [V 6he] ~ B (V600 < 4 2250 N, () + 2ot 6 i

Ep.. [(V(sha))a] = Ep.n [(V(5ha))a]| is 1-Lipschitz w.r.t. o for any V obey-

s,a s,a

Then, the term MaXp<a<max,, V(s,,)
ing [V, < fm2=.In addition, we construct an €;-net Ne, over [0, 722x ] whose size satisfies [N, | < F‘g(rf“x) [Vershynin,
2018]. By union bound and Equation (168), with probability at least 1 — §, we have that for all &« € N, ,

27 max log (2|N51 ‘)

’Eps,a I:(V(S/G,(I))O/:I - EﬁS,a,N I:(V(S/S',(l))(y] | Varps,a (V) + 3N(1 _ ,y) (169)
Then, we have that
s B (V)] =By [(V(50))a)
(a)
S ea+ sup Ep,.. [(V(55a))a] = Ep,un [(V(s5.0))a]]
27 max log (2|N‘1 ‘)
3N(1—7)
2rmax log (‘N‘1|>
N1 =)
(170)

where (a) follows from that the parameter o* = argmaxq [Ep_, [(V (8, 4))a] = Ep,on [(V(sh.4))a]| falls into a €

3 rana Tog ((2Nea
balls centered around some point inside N, . (b) follows from Equation (168). (c) follows from taking e; = W
(d) follows from that [N, | < (1 =5 < 9N. (e) follows from the fact that ||V, < §22* and N' > log (18X). This
completes the proof. O
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Proof of Lemma D.2. [Shi et al., 2023] Firstly, we do error decomposition as follows

Oﬁﬁmgiivg%)Em@va;&u}—thmmﬂ«vwgan>—ﬁmﬁUV@;JM}+thmm@N«vw;au>

< max Ep.o [(V(si))a] = Ep o n [(V(s6.0))al]

OgocgmaxgzS " V(s;'a)

0<agmax, . V(s,,) \f Ps.a s.a pean (V(55,0))a)

Then, consider the first terms in Equation (171). By Bernstein’s inequality, for fixed a,with probability at least 1 — §, we
have that

(171)

max Ep.. [(V(s5.a))a) = Epon [(V(sha))a]| <27 Jog (). (172)
Oﬁagmaxsgwa V(Sls,a,) Ps,a s,a//& Ps,a,N s,al)a = max (1 — 5 2N~

Next, consider the second term in Equation (171). According to the Lemma 6 in [Panaganti and Kalathil, 2022], with
probability at least 1 — ¢, we have that

‘\/Varpw sy \/Varp an (V (5, )) )| <

Next, we prove the Lipschitz property of the above term.

‘\/Varps a S \/Va‘rps a, N S ’\/Va'rps a 5 \/Varp a, N S/ )) )

‘\/Varps (s4 \/Vaer a, v \/VElrp a Ss a))as) + \/Varﬁs aN ((V(S/s a))oz)
‘\/Varpb a (s4 \/Varpb a Sl ‘\/Varpa a, v ( \/Varpé a, v ( 3/ a))as)

< Va0V S’D)—W%JW@QMM+WW%WAW%WMPV%WAW%QMM
(b)

(173)

Tmax|01 — Q|

< 2v/2(a1 + ag) [ar —as| <4 — (174)
where (a) follows from |\/z — /| < \/ﬁ and (b) follows from that
[Vary, , ((V(54.0))ar) = Vary, , (V(s}0))as)]
—mﬂM%Mﬂ%&J(JM)pJW%mﬂﬂmﬁmmwﬂ
< B, [((V(haDa)? = (V4 D)an)?]| + | B [(VIShaDer])” = (B [(V(sha)an])]
(%) 2(a1 + ag)|ar — as, (175)

where (a) follows from (V (s, ,))a < a.

S’

To prove the union bound, we also construct an ex-net N, over {0 T‘““‘} [Vershynin, 2018]. With probability at least 1 — &,
we have that

max Ve f’\/Varp& LV (s, \/Varp& o (V(8h0))a)

Ogagmaxsg " a
(a) Tmax
< 4P+ sup ‘\/Varps,a((v(sé,a))a) - \/Vafﬁs,a.N((V(Sé,a))a)
— €N,




(c) 2log (mNT‘)

< 2 max T N9 AT

= TN AN

(d) 2log (%)

< 2rmax m, (176)

2| Ney |
Tmax 10%(%)

where (a) follows from the property of N, . (b) follows from Equation (174). (c) follows from taking es = —¢5 =

(d) follows from that | N, | < ﬁ < 24N.

This completes the proof.
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