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Abstract: Static Analysis (SA) in Cybersecurity is a practice aimed at detecting vulnerabilities within the source
code of a program. Modern SA applications, though highly sophisticated, lack programming language agnostic
generalization, instead requiring codebase specific implementations for each programming language. The
manner in which SA is implemented today, though functional, requires significant man hours to develop and
maintain, higher costs due to custom applications for each language, and creates inconsistencies in
implementation from SA-tool to SA-tool.

One promising source of programming language generalization occurs within the compilers used to
compile code for programming languages like C, C++, and Java. During the compilation process, source code of
varying languages moves through several validation passes before being converted into a grammatically
consistent Intermediate Representation (IR). The grammatical consistencies provided by IRs allow the same
program derived from different programming languages to be represented uniformly and thus analyzed for
vulnerabilities.

By using IRs of compiled programming languages as the codebase of SA practices, multiple
programming languages can be encompassed by a single SA tool. To begin understanding the possibilities the
combination of SA and IRs may reveal, this research presents the following outcomes: 1) a systematic
literature search, 2) a literature review, and 3) the classification of existing work pertaining to SA practices
using IRs. The results of the study indicate that generalized Static Analysis using IRs is already a common
practice in all compilers, but that the extended use of IRs in Cybersecurity SA practices aimed at finding
vulnerabilities in source code remains underdeveloped.
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1. Introduction

Static Analysis (SA) is a software practice focused on detecting patterns and deficiencies contained within the
source code of a program, without executing the code. (Thomson, 2021; Bodden, 2018; Schmeelk et al., 2015)
Originally used for early development program optimization (Bodden, 2018), SA is now widely utilized as an
effective means to detect common vulnerabilities and weaknesses in static code bases (Nachtigal et al., 2022).
In practice, SA can take on many forms of varying complexities. Some tools are concise, aiming only to detect
formatting issues in code (Nachtigal et al., 2022; Dlint, 2022; JavaScript, 2022). Others offer the ability find
minor bugs by observing common patterns occurring in the code (Nachtigal et al., 2022; PMD, 2022; SpotBugs,
2022). More complex SA implementations sometimes claim full vulnerability discovery capabilities (Nachtigal
et al., 2022; Find Security Bugs, 2022; SecurityCodeScan, 2022).

As a well understood knowledge domain, current SA implementations have reached a level of sophistication
and functionality that early implementations couldn’t attain (Bodden, 2018; Johnson et al., 2013). This is due
to streamlined pattern detection algorithms and more efficient data structure architectures contained within
modern SA tools (Bodden, 2018). Even with high levels of sophistication and complexity, the core benefit of SA
lies in the fact that a code-base containing potential malware can be analyzed quickly without risking infection
of the host system (Johnson et al., 2013). This low resource, high security functionality means SA is still used
extensively in most cybersecurity analysis activities (Johnson et al., 2013).

Even with the sophistication afforded most modern SA tools, several issues arise to the practical
implementation of SA in large scale applications. With the blinding pace of technological improvement, the
increasing levels of complexity, and the overwhelming sizes of modern application code bases, SA, even with
it'’s dearth of research and sophistication, will always struggle to keep up with rapidly expanding technologies
(Bodden, 2018). Due to the direction connection between the vulnerabilities and weaknesses discovered in
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source code and the SA application designed to find them, each SA tools must be both coded by hand and
coded specifically for a single language (Bodden, 2018; Johnson et al., 2013). These laborious development
requirements require that large SA tools must be coded to handle new programming languages that may or
may not be rapidly evolving as the tool is developed. This can make SA tools lag behind in terms of
functionality. Exacerbating the issue is the general lack of usability for most SA tools (Johnson et al., 2013).
While the tool developers try to keep apprised of code base changes and new vulnerabilities, the user
interface generally suffers from tacked-on additions and difficult-to-understand processes (Johnson et al.,
2013). Breaking through these barriers requires a new way of thinking in order to alleviate the code-specific
nature of SA tools (Bodden, 2018).

1.1 Compilers

Compilers are small software packages that translate one programming language into another (Zhong et al.,
2009; Aho et al., 1986). The input language is called the source language, while the output is called the target
language (Zhong et al., 2009). In general, compilers convert a high level programming language like Fortran, C,
C++, or Java into lower level executable machine code; however, compilers are not limited to high/low
conversions and can also convert low-level code to high-level languages (Aho et al., 1986).

To carry out this translation process, compilers first analyze the input code and break it into smaller,
constituent pieces. These constituent pieces are then passed through a two-phase analysis process wherein
the lexical and syntactical characteristics of the input program are parsed to create an intermediate
representation data structure, often in the form of a Syntax Tree. The resulting Syntax Tree allows the compiler
to generate a program language agnostic, low-level representation of any given program, much like a program
meant for an abstract machine. During the analysis portion of the program, should the input code present any
number of deficiencies, the compiler generally responds using compiler errors. On the other side of the
intermediate representation, the synthesis portion of the compiler is responsible for converting the internal
intermediate representation into the desired target program.

1.2 Intermediate Representations

One of the most important elements of intermediate representations is that they must be fast and efficient to
both produce and translate. Intermediate representations processes and structures are used in every compiler
activity, thus, all intermediate representations must be fast and efficient. Any lack of efficiency will cause the
functionality of the compiler to suffer.

It is important to note that the intermediate representation of each compiler exhibits consistent grammatical
characteristics regardless of the input or output format. This consistency is necessitates so that a program
written in C or Fortran to carry out the same computational steps will be compiled into identical source code
outputs. This fundamental consistency within compiler intermediate representations can act as a bridge
between languages, describing the functionality of the language in a language-independent grammar.

1.3 Intermediate Representations and Static Analysis

This language-independent, inter-compiler grammatical consistency, when coupled with SA practices can
theoretically facilitate the design and creation of a SA tool that analyzes the intermediate representation of the
compiler rather than specific high level programming languages. By combining these two elements, the burden
of recoding SA tools for new or changing languages can be mitigated in favor of SA tools that specifically
analyze the consistent intermediate representation. This research aims to explore foundational literature to
gain a better understanding of the state-of-the-topic regarding SA using intermediate representations. This
exploration will be achieved by meeting the following objectives: 1) describe the problem, 2) design a
systematic literature review, 3) carry out a literature survey, 4) synthesize the findings, and 5) discuss the
outcomes.



2. Survey Design

The literature survey conducted in this research follows processes set by (de Sousa Borges et al., 2014). The
literature survey follows the following four steps:

1) Research Questions: The research questions in this study fall into the following classifications: 1)
pertinent literature, and 2) classifications.

2)  Literature Search: Based on the research questions developed, a replicable process is implemented
to gather generally relevant literature.

3) Literature Selection: The literature collected is further refined by using a replicable process to select
relevant material.

4) Literature Synthesis: The literature collected is synthesized and classified to determine patterns or
existing themes.

2.1 Goals and Research Questions

The goal of this study aims to both discover and synthesize pertinent literature related to the use of
intermediate representations in Static Analysis activities. To achieve this goal, the following research questions
are asked:

1) What literature exists relating the use of intermediate representations and compilers to Static
Analysis?

2) What common themes and characteristics occur in existing literature?

3) Canthese commonalities be used to classify pertinent literature?

4) What themes, information, and knowledge does existing literature present about the use of
intermediate representations in Static Analysis practices?

3. Literature Survey

While the application of SA using IRs presents new and novel opportunities, existing literature provides useful
insights as to the current state of the practice. The work reviewed in this survey generally falls into three
categories: 1) motivating literature, 2) the use of IR in general program analysis, and 3) the use of IRs in bug
detection and error discovery.

3.1 Motivating Literature

By its very nature, code is complicated. Adding to this inherent complexity, the progression toward more
complex and ubiquitous technological solutions makes understanding modern applications all the more
difficult (Thomson, 2021). In such an environment, programmers need as many tools as they possibly can to
help manage and understand complex code. Static analysis (SA) is one such tool. SA is defined as “the
extraction of facts from another program’s source code, without executing the program in question and
usually as a distinct stage in the day-to-day software development process” (Thomson, 2021).

3.1.1 Static Analysis

Thomson (2021) indicates that SA can manifest in the following ways: 1) discovery of security vulnerabilities, 2)
code beautification and standardization, 3) dead code detection, 4) taint analysis, 5) race condition detection,
6) bounds checking.

One of the most common types of SA lies in it’s prolific use in compilers. Compilers break source code into
pieces, pass these pieces through lexical and syntactic static analysis processes and convert the resulting
syntax trees into low level intermediate representations (Aho et al., 1986). The lexical and syntactical processes
help determine the existence of compiler errors, code formatting issues, syntactical errors, uninitialized
variables, or suspicious variable assignments in the code (Thomson, 2021). In this way, the core function of a
compiler serves as a means to extract facts about the source code, thus tying compilers intrinsically to the SA



process. In general applications, compilers derive facts about the source code and manifest the existence of
those facts as machine code.

Modern SA implementations generally manifest through code specific analysis applications generally based in
Version Control, Continuous Integration-based, or IDE based environments (Thomson, 2021). Though SA is
currently considered a separate step in software development, compilers and SA often end up working
synchronously, sometimes to the point of integration into new versions of compiler software. This relation,
however, can also cause an arms race between SA and compilers. As code-bases get updated, modified, and
become evermore complex, SA must attempt to remain effective within the context of the dynamic code-base.
In current practice, this manifests through laborious efforts on the part of the SA tool developers. Such an
inefficient process necessitates newer and more efficient analysis as code-bases get bigger and more complex
(Thomson, 2021).

3.2 IR in General Program Analysis

Most general SA activities in compilers, should they occur, happen at the intermediate representation level
(IR). Due to the consistency in program logic, structure, and control, IRs can provide a language agnostic access
point for programs of varying source code languages.

The use of IR in general program SA remains somewhat novel in application. A number of limited feasibility
studies and experiments relating directly to general program analyses using IR are described below (Kataev et
al., 2018; Belyaev et al., 2013; Ghime et al., 2022; Khaldi et al., 2016).

3.2.1 SAPFOR: Automatic Parallelization using IR

Kataev et al. (2018) provide insight into the state of the numerous and complex computational environments
that exist today and the challenges that are posed by the automatic parallelization processes required to fit
into these environments. With so much processing power now available, effective automatic parallelization of
compiled programs via the use of compilers remains somewhat elusive.

As stated by, System FOR Automated Parallelization (SAPFOR) is a tool that can simplify the development of
automatically parallelized programs. SAPFOR functions by carrying out source-to-source transformations such
that a single, linear progressing program can be divided into portions that can be allotted to parallelized
computing systems. This process generates a need to better represent and analyze programs originating from
multiple high-level programming languages; notably, C and FORTRAN.

To meet this need, the research provided by presents a novel auto-parallelization application using SAPFOR,
LLVM, and the LLVM-IR. The program outlined by first examines compiled programs via the LLVM-IR, then
determines memory locations, and ensures that no two pointers generate homogeneous memory locations.
This process is carried out by analyzing IR-level memory locations and mapping them to higher level source
code and creating what the researchers call a source-level alias tree.

The outcomes of the research carried out by indicate that the novel source-level alias tree created in this work
provides usefulness in automation of parallelization in C and FORTRAN-based programs using the LLVM
architecture. The primary contribution of this work is the novel application of LLVM-IR analysis for more
efficient, automatic parallelization operations.

3.2.2 Type and Effect Systems in SA using IR

Belyaev et al. (2013) outline a novel system that implements type and effect systems to analyze programs
using their derivative LLVM-IRs. As a feasibility study, this paper serves as means to determine whether such a
tool is possible via the exploration of general concepts and a novel design.

Belyaev et al. chose the LLVM-IR approach due to the need for a more consistent, language agnostic approach
to static analysis. C and C++ programs can prove complex when analyzed in their source format. An IR
accurately represents the program regardless of source language, while providing less complex



representations of the structures involved. The researchers in this case used the LLVM default Static Single
Assignment (SSA) representation model for their IR. The LLVM SSA IR is called bitcode, and forms the input of
the novel system proposed by the researchers.

The outcomes of the research carried out by Belyaev et al. saw the creation of both a bitcode parser and a
basic analysis library and the development of a proof of concept type and effect system that can detect
undefined variables.

3.2.3 IR Mapping in Incremental Analysis

Ghime et al. (2022) posit that the use of intermediate representations (IR) in SA can provide useful insights as
to the functionality of a given program. They indicate that, while the use of IR objects in one-pass SA is very
useful, each resulting IR of a given program as it changes over time generates different IDs for each program
entity. For example, a variable contained within the program could receive a different unique identifier each
time the IR is modelled. This creates significant boundaries to tracking program entity SA information through
time.

Incremental analysis is the study of programs as they evolve over time. Incremental analysis is generally
carried out on the source code of programs as it changes during the System Development Lifecycle. While this
more traditional approach functions well in a historic sense, it can be laborious, inefficient, and language
specific. The use of IRs in incremental analysis can allow for a more streamlined process as a program is
analyzed over time.

The research carried out by Ghime et al. presents an accurate approach by which IR objects can be mapped to
each other through time, such that SA information can be carried forward throughout the development of a
software package.

3.2.4 Automatic HBM Allocation using IR

Khaldi et al. (2016) present a novel means by which High Bandwidth memory (HBM) can be automatically
allocated during the execution of a program. Much like the research carried out by Kataev et al. (2018), Khaldi
et al. (2016) seek to implement the use of IR SAs so that the optimizations that occur within a compiler can be
translated into more efficient computation. Where Kataev et al. (2018) seek to balance processing loads
between multiple environments, Khaldi et al. (2016) seek to optimize the usage of memory allocations.

According to, HBM systems utilize a new three-dimensional memory stacking process by which memory chips
are stacked vertically using processor dies. This stacking process allows the memory chips to work together
and act like one single device. By changing the architecture, HBM allows for much higher bandwidth
performance. While HBM achieves high bandwidth, traditional DDR memory still operates at a much lower
latency, therefore making 10 much faster to and from the DDR modules. These balanced benefits necessitate
the dynamic combination of both HBM and DDR memory-types during execution to achieve the best
computational output.

To meet the highly dynamic requirements needed to automatically allocate program entities to either HBM or
DDR, chose to utilize a compiler-based optimization function that analyzes the IR of a given program and
chooses which memory allocations using the malloc function should be given to HBM and which would be
better served in DDR.

The outcomes of the work carried out by saw the implementation of the novel IR-based BCDA process in the
LLVM compiler, and the subsequent dynamic allocation of HBW/DDR memory during execution. The resulting
efficiency of the system increased the speed of the executing program by up to 2.29 times that of the normally
executed binary (Khaldi et al., 2016).



3.3 IR in Static Vulnerability Analysis

Though the use of IRs in program analysis relates directly to the questions asked in this research, the scope yet
remains beyond the desired aim of this work. To hone in on IR and Static Vulnerability Analysis pairings,
studies relating directly to bug detection using IRs are required.

Much like general program analysis using IRs, vulnerability analysis experiments using IRs are limited to a small
number of application and feasibility studies (Liang et al., 2016; Cassez et al., 2017; Fornaia et al., 2019;
Schilling et al., 2022). While each study discovered relates directly to the problem in question, all outcomes
thus far are limited to the detection of, at most, three types of software bugs.

3.3.1 MLSA: Static Bug Detection using IR

Liang et al. (2016) state that static analysis falls into five (5) categories: 1) control flow analysis, 2) data flow
analysis, 3) model checking, 4) taint analysis, and 5) symbolic execution. Control flow analysis deals with
operators contained in instructions. Data flow analysis concerns the operands that contain data in a program.
Model checking constructs an automaton based on bug behavior patterns and checks for the existence of the
automaton within the program. Symbolic execution sees an analysis of execution paths based on symbolic
variable values.

Liang et al. present a static analysis tool called MLSA that uses the LLVM-IR to support limited bug discovery in
multiple C-based programming languages. Currently MLSA can detect three bugs: 1) a division by zero error, 2)
pointer overflows, and 3) dead code.

The system proposed by Liang et al. (2016) operates by using both Clang and Dragon Egg compilers to generate
an LLVM-IR file from a C-based source code file. The LLVM-IR files generated in this research contain three (3)
main sections: modules, functions, and basic blocks. The proposed program then processes the instructions in
the module according to the Control Flow Graph (CFG) generated by the IR, and the relationships between the
basic blocks contained in the IR. A Z3 SMT solver is then used to determine if bugs exist within the IR model.
When a bug is found, MLSA marks the location of the bug so it can be found quickly. These locations are then
written into a log file.

3.3.2 Skink: Static Program Analysis using IRs

The research carried out by Cassez et al. (2017) aims to implement LLVM-IRs to determine the existence of
error traces in the logical architecture of a given C-based program. To do this Cassez et al. generate an LLVM-IR
using the Clang compiler. The resulting IR is then mapped onto a CFG. This graph is a Finite Labelled
Automaton (FLA) that implements two specific labels: basic blocks and choices. The FLA accepts a regular
language comprised of a set of traces that lead to a given error block. These traces, called abstract error traces,
are not guaranteed to be feasible within the actual program. To check the correctness of a given program,
Cassez et al. simply need to determine if an abstract error trace is feasible in the IR CFG. Cassez et al. check
feasibility by encoding a given abstract error trace into a logical statement and checking if the resultant output
is satisfiable using an SMT. If satisfiable, an error trace has been discovered and the program can be called
incorrect.

The outcomes of the research carried out by Cassez et al. is comprised of a software package called Skink. The
package includes the full LLVM-IR suite, a front end, middle-end, and a back-end architecture. Skink has been
shown to work on any programming language that can be compiled into LLVM-IR. The major benefits, as
stated by Cassez et al., lie in the program’s ability to discover loop invariants and the ability to establish
program correctness.

3.3.3 JSCAN: IR-Based Static Analysis Framework

Fornaia et al. (2019) propose a cross-language framework that utilizes LLVM-IR for the analysis of Object-
Oriented code. By using the language-agnostic nature of the LLVM-IRs generated by LLVM compatible



languages, the tool developed, called JSCAN, provides a readily readable representation of IR contents. SA
tools like BCEL can then be built on top of the generalized IR framework.

As stated by Fornaia et al., the main contribution JSCAN provides lies in it’s ability to augment the LLVM-IR
with a more nuanced and structured information support system. The two main characteristics of the JSCAN
framework are: 1) it is easy to understand and work with, and 2) it is uniform to abstraction of a tool called
BCEL.

The aim of the research carried out by Fornaia et al. lies in a desire to see other developers take the
frameworks and build more comprehensive and diverse tools on top of the code developed by this research.

3.3.4 VANDALIR: IR-Based Vulnerability Analyses

According to Schilling et al. (2022), custom built static vulnerability analysis tools are expensive, time-
consuming, and inefficient. Many man-hours are required to develop, code, and maintain functionality for very
limited, very specific applications. Though SA tools can find hidden vulnerabilities and complex patterns in
program structures, the implementation, maintenance, and upkeep can be both logistically inefficient and
quite expensive. These limitations drive the need for newer and more dynamic methods by which static
vulnerability analysis can be carried out on wider code bases in more simple contexts.

Schilling et al. present a novel approach by which Datalog programming is modelled as an LLVM-IR and
subsequent static vulnerability activities are carried out on the new, intermediate representation. As an added
bonus, the researchers also generate a new static analysis detection rule that helps detect stack based
memory corruption in 90% of test cases in LLVM-IR programs.

4 Themes and Classifications

The relevant works selected during the course of this study fall into three broad categories: 1) motivation, 2)
general program analysis using IRs, and 3) vulnerability detection using IRs. These categories also represent the
most common themes discovered in the analysis of the literature surveyed.

Motivating works serves not only as the motive to carry out the work in question, but also as a means to
connect the proverbial dots between SA and the use of IRs. The foundational premises outlined by Thomson et
al. (Thomson, 2021) drive the need to experiment with more efficient and diverse SA tools, while
simultaneously outlining the intrinsic and inherent connection between compilers and static analysis. In this
work, one piece of literature fell within the motivating category.

Many of the works selected for inclusion relate directly to the use of IRs in general program analysis. While the
intent of this work is to determine the state of research based on static vulnerability analysis using IRs, the use
of IRs in novel ways in program analysis practices can provide useful insights for novel static vulnerability
techniques. Works included in this classification indicate the use of an IR via static program analysis. This work
analyzes four general program analysis applications that incorporate IRs in the analysis structure.

The remaining works included in this research fall into the final and most pertinent category, vulnerability
detection using IR. The works included in this classification demonstrate, in some capacity, the use of an IR in
static vulnerability analysis. This classification contains the remaining four works analyzed in this study.

5. Conclusion

The use of intermediate representations in static analysis as a means to detect and discover vulnerabilities in
software remains a relatively under-developed research area. While several applications analyzed in this study
delved into the vulnerability discovery via IRs, the overall state of research relating to vulnerability detection in
IRs is generally limited. At the same time, the use of IRs in general static analysis through internal compiler
functionality has been discovered to be a standard practice. All compilers parse the logical structure of
compiled programs to determine the existence of compiler errors. This connection is what drives the need to



explore the relationships between static analysis practices, compilers, and IRs. The extraction of static analysis
data from IRs outside the compiler structure, however, is still relatively unexplored.

Through the limited observations put forward by this re- search, more effort should be placed into a deeper
under- standing of how IRs can better be implemented in static vulnerability analysis. Should the state of
practice of IR-based SA find a greater level of sophistication, the potential for full vulnerability detection
integration within many compilers could potentially occur, adding significant security robustness to modern
compiler architectures. By streamlining and integrating such a process, most compiled programs could account
better for basic vulnerabilities, therefore increasing general security overall.

Through the limited observations put forward by this re- search, more effort should be placed into a deeper
understanding of how IRs can better be implemented in static vulnerability analysis. Should the state of
practice of IR-based SA find a greater level of sophistication, the potential for full vulnerability detection
integration within many compilers could potentially occur, adding significant security robustness to modern
compiler architectures. By streamlining and integrating such a process, most compiled programs could
increasingly search for basic cybersecurity vulnerabilities, therefore increasing general security overall.

Our research team is currently exploring ways in which the LLVM-IR can be utilized in this way; we hope to
present research papers with our results at a future ECCWS or ICCWS venue.
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