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STRICHARTZ ESTIMATES FOR THE SCHRODINGER EQUATION
ON NEGATIVELY CURVED COMPACT MANIFOLDS

MATTHEW D. BLAIR, XIAOQI HUANG, AND CHRISTOPHER D. SOGGE

ABSTRACT. We obtain improved Strichartz estimates for solutions of the Schrodinger
equation on negatively curved compact manifolds which improve the classical univer-
sal results results of Burq, Gérard and Tzvetkov [11] in this geometry. In the case
where the spatial manifold is a hyperbolic surface we are able to obtain no-loss Lgfx—
estimates on intervals of length log A - A~! for initial data whose frequencies are
comparable to A, which, given the role of the Ehrenfest time, is the natural analog
of the universal results in [11]. We are also obtain improved endpoint Strichartz
estimates for manifolds of nonpositive curvature, which cannot hold for spheres.

1. Introduction.

It has been almost two decades since Burq, Gérard and Tzvetkov [11] obtained their
now classical universal Strichartz estimates for the Schrodinger equation on compact
manifolds. Besides the notable exception of near lossless estimates on general tori by
Bourgain and Demeter [10], and more recent related work in this setting by Deng, Ger-
main and Guth [13] and Deng, Germain, Guth and Meyerson [14], to the best of our
knowledge, there have not been significant improvements of the results in [11], in other
geometries.

The purpose of this paper is to obtain improvement of the universal bounds in [11]
under the assumption of negative curvature, as well as, more generally, nonpositive cur-
vature.

Let us now recall the universal estimates of Burq, Gérard and Tzvetkov [11]. If (M9, g)
is a compact Riemannian manifold of dimension d > 2, then the main estimate in [11] is
that if A, is the associated Laplace-Beltrami operator and

(L.1) ulw,t) = ("2 f) (a)
is the solution of the Schrédinger equation on M? x R,
(1.2) iOu(z,t) = Agu(z,t), u(z,0) = f(z),

then one has the mixed-norm Strichartz estimates

(1.3) ||U||Lng(de[o,1]) S ||f||H1/P(Md)

for all admissible pairs (p, q). By the latter we mean, as in Keel and Tao [21],
(1.4) d(f—4)=2and 2<¢< 2L if d>3, or 2<g<ooif d=2.
Also, in (1.3) H* denotes the standard Sobolev space

(1.5) 1l arey = || L+ PYf || pagapayy with P = /=4,
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and “<” in (1.3) and, in what follows, denotes an inequality with an implicit, but un-
stated, constant C' which can change at each occurrence.
Note that if ey is an eigenfunction of P with eigenvalue A, i.e.,

(16) - Ag@\ = /\26A7
then
(1.7) u(x,t) = eit)‘QeA(x)

solves (1.2) with initial data f = ey. From this one immediately sees that, unlike for

the Euclidean case originally treated by Strichartz [34], one can never obtain any sort

of global analog of (1.3) where [0, 1] is replaced by R. On the other hand, the proof of

(1.3) in [11] shows that one can replace [0, 1] by a larger interval I at the expense of an

additional factor |I|*/? in the implicit constant in the right side of (1.3). Also, in some

cases, the special solutions (1.7) involving eigenfunctions saturate (1.3). Specifically, for
2d

the endpoint Strichartz estimates where p = 2 and ¢ = 75 with d > 3 the solutions

where ey = Z, are zonal eigenfunctions on S¢ with eigenvalue A = (k(k + "7*1))1/2,
k=1,2,..., which saturate (1.3) since (1.3) as

(1.8) 1201, ot g /12250y ~ X1/

(see, e.g., [26]). We shall have more to say about solutions arising from eigenfunction in
what follows.

To align with the numerology in related earlier results involving eigenfunction and
spectral projection estimates, as well as parabolic Fourier restriction problems, in what
follows, we shall always take d = n—1. Thus, we are interested in estimates of solutions of
Schrodinger’s equation (1.2) on the n-dimensional space M™~1 x [0,1]. As we mentioned
before, we are focusing here on improvements of the universal bounds (1.3) of [11] when
M™~1! has nonpositive curvature. We shall take d = n—1 > 2, since the case where d = 1
boils down to the spatial manifold being the circle, S!, and optimal results in this case
were obtained by Bourgain [9]. In what follows (just as in [9] and [10]) we shall mainly
focus on the unique admissible pair (p,¢) in (1.4) where p = g, i.e.,

(1.9) q=qc= 2n41)

n—1
One of our main results is that in this case we have logarithmic improvements of the
universal bounds in [11] under our curvature assumptions.

Theorem 1.1. Let M" ™! be a d = n—1 > 2 dimensional compact manifold all of whose
sectional curvatures are nonpositive. Then

(1.10) ull poe arn-1x 1)) S || (L + P)Y4 (log(2] + P))” &i? f||L2(Mn71).

To prove this estimate we shall employ a similar strategy to the one used in [11], which
we now recall. We first note that, by Littlewood-Paley theory, we may reduce matters to
proving certain dyadic estimates.

To this end, fix a Littlewood-Paley bump function  satisfying

(1.11) BeCF((1/2,2) and 1= > B(27"s), s>0.

k=—o00
Then, if we set Bo(s) =1— 7o, B(27%s) € C§°(Ry) and Bi(s) = B(27Fs), k=1,2,...,
we have (see e.g., [29])

oo

(1.12) 1l zaqaan—1y = || (D 186 (PRI )2 | Ly ppamsys 1< < 0.
k=0
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Trivially, || Bo(P)e™ "2 || p2(arn-1)— ra(mn-1x[0,1)) = O(1), and, similarly such results where
k = 0 is replaced by a small fixed k¥ € N are also standard. So, as noted in [11], one
can use (1.12) and Minkowski’s inequality to see that the special case of (1.3) where
p = q = q. follows from the uniform bounds

. 1
@8) e BN flliaeun-rxpopy < CAF | fllzsganoy, A 1.

Burq, Gérard and Tzvetkov proved this estimate in [11] by showing that one always has
the following uniform dyadic estimates over very small intervals:

(1.3") le™ 29 B(P/A) f || Lae uam-1x10, -1 < C I FlL2aen-1),  A> 1.

Indeed, (1.3”) immediately yields (1.3'), since one can write [0, 1] as the union of ~ A
intervals of length A~ and thus obtain (1.3’) by adding up the uniform estimates on
each of these subintervals that (1.3”) affords. As was noted in [11], one can also obtain
the universal Strichartz estimates of Burq, Gérard and Tzvetkov using local smoothing
estimates of Staffilani and Tataru [32]; however, it seems difficult to obtain improvements
like the ones in Theorem 1.1 using this approach.

The time scale here of |[t| < A~™! is natural since the dyadic operators in (1.3") behave
somewhat like standard half-wave operators e’*°" of speed ¢ = X, although this is a some-
what cartoonish reduction. Being more specific, it is possible to construct parametrices
for the dyadic operators in such small time scales that allow one to use the Keel-Tao
[21] theorem to deduce (1.3”). Similar arguments show that the other cases in (1.3) also
follow from uniform dyadic estimates for this time scale.

It is a simple matter to see that on any manifold the bounds in (1.3"”) cannot be
improved even though the time intervals are very small. For instance, if S(P/A)(z,y) is
the kernel of the Littlewood-Paley operators S(P/)A) and f(z) = fa(x) = B(P/A)(z, zo)
for any fixed 2o € M™~!, then the ratio of the norms in (1.3”) is comparable to one for
A > 1. As a result, in order to obtain improvements such as those in (1.10), one must
use larger time intervals.

Since we are working on manifolds of nonpositive curvature, due to the expected role
of the Ehrenfest time in the analysis, it is natural to consider time intervals of length
~ log A - A~!. This is what we shall do. Specifically, we shall show that if M™! is as in
Theorem 1.1 then we have the uniform bounds

. _2
(1.10) ||€7ZtAgﬂ(P/)\)fHL4c (Mn=1x[0,1og AA-1]) < O (log A) @ || fllp2(agn—1y,  A> 1.

Since the logarithmic gain of (n+1)2 in (1.10) versus (1.3) is just (1 - q—) by the
above counting arguments, one obtains (1 10) from (1.10") since [0, 1] can be covered by

~ A/log X intervals of length log A - A~'. Also, the universal bounds (1.3”) imply the
analog of this inequality with 2/(q.)? replaced by the larger exponent 1/q. (since g. > 2),
which is another way of recognizing the improvement of (1.10") versus (1.3").

We shall also show that if one strengthens the hypothesis in the above theorem by
assuming that the manifolds are of negative curvature than we can obtain stronger results,
including a natural analog of the estimates (1.3") for hyperbolic surfaces:

Theorem 1.2. Assume that d = n — 1 > 2 and that all of the sectional curvatures of
M™ 1 are negative. Then ifd=n—1>3

(1.13) lull accarm-sxop S |+ PYM% (og(2l + P)) 50 £ 1.

Moreover, if d =n — 1 =2, in which case q. = 4, we have

(1.14) e~ 29 B(P/A) I Lacarzx (0,108 xa-1)) < C [ Fllzearzy,  A> 1,
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and
(1'14/) Hu||L4(M2><[O,1]) 5 H(I+ P)1/4 (10g(2[—|—P))71/4f|‘L2(M2).

By the above discussion of course (1.14) yields (1.14’). Moreover, we point out that
(1.14) is the natural extension of the uniform small-time scale estimates (1.3”) of Burq,
Gérard and Tzvetkov to time intervals which are perhaps the largest one can hope to
obtain such estimates in the geometry we are focusing on using available techniques, due
to the role of the Ehrenfest time.

As we shall see, the improvement in Theorem 1.2 compared to those in Theorem 1.1
are due to the much stronger dispersive properties of the kernel for the solution operators
for the wave equation. On the other hand, in proving Theorem 1.2, we have to balance
this with the exponential volume growth of manifolds of strictly negative curvature as
we have in some earlier works. We accomplish this using arguments involving microlocal
pseudo-differential cutoffs.

By interpolating with the endpoint Strichartz estimates of Burq, Gérard and Tzvetkov
[11], one can also obtain logarithmic—power improvements for all of the other pairs of
exponents (p,q) in (1.4) besides the endpoint case where p = 2 and d = n —1 > 3.
Although these techniques break down for the important endpoint case, we are able to
adapt arguments from one of us [30] to get the following more modest improvements for
this case.

Theorem 1.3. Let M be a d > 3 dimensional compact manifold all of whose sectional
curvatures are nonpositive. Then

L15) ] < /(7 + P)> (log(log(2I + P)) £ 010

2d
L2LJ72 (Md4x[0,1])

Our mixed-norm notation differs a bit from some other works when we define

1
1/
H“”Lsz(de[o,u):(/o luC s O 0 pgay dt) "

We choose to write M9 x [0,1] instead of [0, 1] x M? inside the norm in (1.15), and ones
to follow, since most of the crucial local analysis, as well as the pseudodifferential cutoffs
employed, involve the spatial variables. We hope that our choice of notation does not
confuse the reader.

A very interesting, but perhaps difficult problem, would be to show that, like in (1.14’),
one could replace the (log(log(2I + P)))'/P gain in (1.15) with a (log(2] + P))'/? gain,
with p in (1.15) being 2 as opposed to 4 in (1.14). This would provide a potentially
difficult generalization of an important special case of the (log \)~'/? eigenfunction gains

leall, 22, ey S A2 Q08N 2 erll 231

of Hassell and Tacy [17] for manifolds of nonpositive curvature versus the universal eigen-
function estimates of one of us [27] for ¢ > %.

As we shall show, for d > 3 dimensional tori, we can strengthen our endpoint estimates
in (1.15) by replacing, in this case, (log(log(2 + P)))~/? with Pd%?_%*'s, Ve > 0. This
follows directly from using the L{, toral estimates of Bourgain and Demeter [10] along
with Sobolev estimates. We have no doubt that stronger estimates should hold; however,
we are not aware of any. This seems worth of further investigation. The decoupling
methods of Bourgain and Demeter [10] that work so well for the case p = ¢ = ¢, might not
apply as well for the endpoint case (p,q) = (2, %)' We have to prove our bounds (1.15)

for general manifolds of nonpositive curvature in a somewhat circuitous way (leading to
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only log-log power gains) due to the fact that the related bilinear techniques that we
utilize break down for this endpoint case.

The estimates in Theorems 1.1 and 1.2 of course improve the universal estimates of
Burq, Gérard and Tzvetkov [11] in the geometry that we are focusing on here, manifolds of
nonpositive curvature. On the other hand, they are weaker than the (near) optimal toral
results of Bourgain and Demeter [10], as well as the non-endpoint Strichartz estimates
for the sphere of Burq, Gérard and Tzvetkov [11]. The estimates in [10] were obtained
via decoupling using, in part, that the types of microlocal cutoffs that we shall employ
commute well with Schrédinger propagators on tori, and, moreover, lend themselves there
to analysis on much larger time scales than we are able to handle on general manifolds
of nonpositive curvature. The improved estimates for spheres simply follow from specific
arithmetic properties of the distinct eigenvalues of the Laplacian on S¢.

Even though we cannot obtain estimates that are as strong as those for the sphere for
the non-endpoint exponents in (1.4), our endpoint Strichartz estimates in Theorem 1.3
are improvements of the ones for the sphere, where, by (1.8), there can be no improvement
of the H'/2(S?) endpoint estimates of Burq, Gérard and Tzvetkov [11].

This paper is organized as follows. In the next section we present the main arguments
that allow us to prove the above theorems. The proofs require local bilinear arguments
from harmonic analysis and a detailed analysis of the kernels that arise in both the “local”
and “global” arguments. We carry out these in Sections 3 and 4, respectively.

The local harmonic analysis arguments that we use rely on bilinear oscillatory integral
estimates of Lee [23] and are variable coefficient analogs of the arguments of Tao, Vargas
and Vega [35] that were used to study parabolic restriction problems for the Fourier
transform, which, of course is related to Strichartz estimates for Schrodinger’s equation.
As we shall see, the kernels of the local operators oscillate most rapidly along curves of
the form s — (z(ks), —(s—s0)) € M" ! xR, where z(s) € M™ 1 is a unit-speed geodesic.
We call such space-time curves “Schrodinger curves” of varying speeds x, which we shall
be able to take to be comparable to one. They are integral curves of the Hamilton vector
field Hp associated with the Schrédinger operator P = D; + A,. Such curves naturally
arise in our analysis, as well as in related past work (cf. [1], [11] and [15]). Perhaps a
novelty here, though, is that, in order to apply the bilinear oscillatory integral estimates
of Lee [23], it is very convenient to work in what we call “Schrédinger coordinates” about
one of these curves.

These coordinates are the analog of Fermi normal coordinates that naturally arise in
relativity theory and Riemannian geometry (see, e.g., [16], [22] and [24]). In relativ-
ity theory, Fermi normal coordinates are chosen so that, for an observer in a free fall
(geodesic) path in an arbitrary spacetime, the geometry will appear to be “flat” up to
higher order terms. The Schrédinger coordinates that we shall employ have a similar
property for quantum “observers” traveling along what we call Schrédinger curves. The
use of these “Schrodinger coordinates” is key to be able to adapt the Euclidean harmonic
analysis techniques of [23] and [35] to our variable coefficient setting,.

In order to apply Lee’s results we also need detailed estimates for the kernels of the
local operators that arise. Motivated by the earlier local quasimode analysis of the last
two authors [20], we are able to construct local operators whose kernels can essentially be
calculated using techniques from the first and last authors [7], while, at the same time, be
of use for studying the “global operators” that necessarily arise in the proofs of the above
theorems. We need to compose the “global” operators with “local” ones to apply the
bilinear harmonic analysis techniques, and, motivated by the earlier work in by the last
two authors in [20], they can be constructed so that the difference between the original
global operators and the ones composed with the local ones has small norm. Besides
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the relatively intricate application of harmonic analysis techniques that we require, we
also need to show, that when we microlocalize the solution operators for Schrédinger’s
equation (1.2), our geometric assumptions imply that there are favorable bounds for the
resulting kernels. Using the Fourier transform, this amounts to a classical argument
involving the Hadamard parametrix going back to Bérard [2], with microlocal variants in
a more recent work of the first and third authors [6], as well as in that [3] of all three of
the authors.

The authors are grateful to W. Minicozzi for patiently answering numerous questions
about Fermi normal coordinates, as well as for referring us to the classical reference
Manasse and Misner [24].

2. Main arguments.

Let us start by proving Theorems 1.1 and 1.2 which concern the non-endpoint Strichartz
estimates. Then at the end of this section we shall give the modifications needed to prove
the endpoint estimates in Theorem 1.3. For the proofs we shall require certain bilinear
estimates and pointwise estimates for kernels that arise in the arguments, which will be
addressed in the next two sections.

To start, let 8 be the Littlewood-Paley bump function in (1.11), and also fix

(2.1) neC((—1,1)) with n(t) =1, |t <1/2.

We then shall consider the dyadic time-localized dilated Schrédinger operators

(2:2) Sx =n(t/T)e """ 45 5(P/X),

and claim that the estimates in Theorems 1.1 and 1.2 are a consequence of the following.
Proposition 2.1. Let M?%, d = n —1 > 2 be a fized compact manifold all of whose

sectional curvatures are nonpositive. Then we can fixz cg > 0 so that for large A > 1 we
have the uniform bounds

i R .
(2.3) 19X fllLae (rm—1xr) < CAae Tac e || fllp2(arn-1y, if T = colog A.

Moreover, if all of the sectional curvatures of M™~! are negative co > 0 can be fized so
that for all A > 1 we have

1 4—dc .
(2.4) ISxfllLac (arn—1xr) < CAae T2 || fllp2(pm-1y, if T =cologA.

We claim that (2.3) and (2.4) imply Theorems 1.1 and 1.2, respectively. For the
former, we note that just by changing scales (2.1) and (2.3) imply that for large enough
A we have the analog of (1.10’) where the interval [0,log A - A1) in the left is replaced
by [0, %co log A - A71], and this of course implies (1.10") at the expense of including an
additional factor of (cy/2)~ /9 in the constant in the right if ¢g < 2. As we indicated
before, the estimate (1.10) for large A and Littlewood-Paley theory yield Theorem 1.1,
which verifies our claim regarding (2.3). Repeating this argument, we see that (2.4)
implies that, for large enough A, we have

. 4—qgc
24) e8P/ Fllpae i xirosaa—t)y < C (log \) T [|£ll s are,
which yields the first estimate in Theorem 1.2 as

Lo L4 if g=p—1>3,

n+1 qc 2qc ?

as well as (1.14) and hence (1.14’) since g =4 when d=n—1= 2.
In order to prove Proposition 2.1, as in earlier works, we shall use bilinear techniques
requiring us to compose the “global operators” S with related local ones. Motivated by
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the recent work of the last two authors [20], our “local” auxiliary operators will be the
following “quasimode” operators adapted to the scaled Schrodinger operators AD; + Ay,
(2.5) ox = o (MN2Dy|'/? — P) B(Dy/N),

where

(2.6) o € S(R) satisfies ¢(0) =1 and supp & C ¢ - [1 — do, 1 + Jp] = [0 — 06,0 + dd],
with 0 < d,dp < 1/8 to be specified later, and, also here

(2.7) BeC((1/8,8)) satisfies f=1on [1/6,6].

We shall want ¢ in (2.6) to be smaller than the injectivity radius of (M"~1,g) and &y to
be small enough so that we can verify the hypotheses of the bilinear oscillatory integral
estimates that we shall use in the next section.

To handle the bilinear arguments it will be convenient to introduce an initial microlo-
calization. So, let us write

N
(2.8) I=3 By, D),

j=1
where each B; € S{(M"™ ') is a standard pseudo-differential operator with symbol
supported in a small conic neighborhood of some (z;, ;) € S*M. The size of the support
will be described later; however, these operators will not depend on our parameter A > 1.
Next, if 3 is as in (2.7) then the dyadic operators

(2.9) B = Bj,=B;oB(P/)\
are uniformly bounded on L?, i.e.,
(2.10) Bl e (arn-1)— Lp(mn-1) = O(1)  for 1 <p < oo,

Also, note that since o € S(R) a simple calculation shows that if A is an eigenvalue of P
(1= BO/N) aA2[7V2 = P) B(r/X) = O N (1 + A + |7) ™) V.
Consequently,
lox = B(P/A) 0 ol L2 (arn-1x (0,77 Lae (aan—1 xjo.77) = ONN) V.
Thus, if B; is as in (2.8) and Bj ) is the corresponding dyadic operator in (2.9)
(2.11) 1Bjox — BjaoallL2(am—1 xjo0,17) s Lae (vn -1 x o,y = OAY) VN,

since operators in SY ((M"~!) are bounded on L? for 1 < p < co.
We need one more result for now about these local operators:

Lemma 2.2. If Sy as in (2.2) and oy is as in (2.5) then

(2.12) (I = 0) © Sxfllac -1 x 0,77y < CT# 2N || £
For a given B = B; ) as in (2.9) let us define the microlocalized variant of o as follows
(2.13) ox=Booy, B=Bjx,
and the associated “semi-global” operators
(2.14) S\ =Gy 09y.

By (2.8), (2.11) and (2.12), in order to prove Proposition 2.1, it suffices to show that if
T = colog A with ¢y > 0 sufficiently small (depending on M™~1), then, if all the sectional
curvatures of M™! are nonpositive,

& 1 1.2
(2.3") 1S3 fll Lac (aam=1xmy < CAzeTae s || f]| L2 aam-),
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and, if all of the sectional curvatures of M™~! are negative,

~ 1 4—qc
(2.47) 1Sxf || e (arn—1 gy < CA3e T 5" || fl| g2 (an1y.-

As we shall see, in order to prove (2.3') and (2.4”) we shall need to take ¢ and g in
(2.6) and (2.7) to be sufficiently small for each j; however, since, by the compactness of
M"~! and the arguments to follow, the sum in (2.8) can be taken to be finite, we can
take these two parameters to be the minimum over what is needed for j =1,..., N.

Proof of Lemma 2.2. We shall follow the strategy in [20]. In proving (2.12) we may
assume, as we shall throughout, that

(2.15) 1fll2=1.

Also, we notice that, if Ey, f denotes the projection of f onto the eigenspace of P = /—A,
with eigenvalue g, we have

Sxf(w,t) =Y n(t/T)e™ ™ "X B(Ae/A) B f (x)
k

=(2m)! Z/ ETTHT (T — XIA\2) Bk /N Exf(z) dr.
k’ —00
Since, by (1.11), B(s) = 0 if s ¢ [1/2,2], /1 € S(R) and B(s) = 1 for s € [1/6,6], it is not
difficult to check that
(L= B(r/ M) TA(T(r = AAR) BA/A) = O N (L +[7])~V) VN,

and so trivially

I(I = B(D1/N) S [ | Lae (aam-1 x(0,77) = OAN) VA
Consequently, in order to prove (2.12), it suffices to show that

(216) || (I = o (A\2Dy["> — P)) 0 D /NS || o agos oy < OT 3 AT
To prove this let

(2.17) a€CP((-1,1)) satisfy 1= Y aml(t),

if

(2.18) am(t) = a(t —m).

Then, in order to prove (2.16), it suffices to see that
(219) [lam () (I = o (A2 D'/2 = P)) B(Di/N)) o (n(t/T))e_itxlAgﬁ(P/)\)f)HL%
< T2)\Vae,
Call w the function in the norm in the left, i.e.,
(220) W= aum(t)(I = a(\2[Dy| 2 = P)B(D/N)) o (n(t/T)e™ "> 29 5(P/N) f).
It is supported in [m — 1, m + 1], and so is
(2.21) F = (i\d; — Ag)w.
For later use, note that, by (1.11) and (2.7)
(2.22) (I — B(P/A\)F =0.
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Also, by the Duhamel formula for the scaled Schrédinger equation and the above support
properties

t

w(z,t) = (i)\)_l/ (e_i)‘fl(t_s)AgF(s, ) (z) ds.

m—1
So, by Minkowski’s inequality, for each fixed t,

t
Jw( -, )| pae (agn-1y < )\‘1/ [ CAed ACRRS) [F——E

m—1

ds,

1
< /, e B AT EEmB B, ) e gy

since F'(s,-) =0if s ¢ [m — 1, m + 1]. Thus, by Minkowski’s inequality, we have
1 ! iINTHEA G (iNTT A
lw|lpae <A™ / [em 12 (€ (s+m)89 F(5 +m, ) HLqC ds.
x,t _1 t,x

Furthermore, by (2.22) we can use the local dyadic estimates (1.3”) of Burq, Gérard
and Tzvetkov along with Schwarz’s inequality to obtain

Hw”L?fx < Aae ! /11||ei’\l(s+m)A9F(s +m, )HLi ds
< A/ IF (s +m, )2 ds
S i Pl
If we put
1= |ag, (0)(I = o (N 2|D|? = PYB(D:/N) o (n(t/T)e™ "2 B(P/NF) ||z
and
11 = llam (070, +P?) (=0 (A2 Dy /2= P)S(DX)o (n(t/T)e™ ™ 208N )| 5
we conclude that from (2.21) and (2.22) that
(2.23) lwllpae < Nae (I + 11).
To handle I we note that the function in the norm can be written as

(2m) o, ()Y / (1 — a(A2r12 = X)) B(r/X) TH(T (1 — A7) B(Ak/A) Ex f dr,
k

Thus, by orthogonality and the support properties of B in (2.7), since we are assuming
that || f]|2 = 1, we have

8A 1/2
I < AT sup (/ L o272 AT (7 = AN Pdr)
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If we change variables s = A\1/271/2 then ds & dr in the support of the integrand, and so
by the above

/2

oo 1
I <AT sup (/ 11— (s = M) [N (s + M) (s — M) ds)
AR 0

oo 1/2
= AT sup (/ 11— o(s) 2 [A(TA (5 + 2)p) - s)\zds)
AR 0

oo 1/2
gAT(/O 52(1+|Ts|)_Nds) ~ AT,

using, in the last step, our assumption in (2.6) that o(0) = 0.
If we repeat the arguments we find that

8\
ST sup ([ 10 o202 < M| Ar AP AT~ A ) )2
A=A /8

o “142y A —1y2y|2 Yz
< ) sup ( ‘T(T = A7) (T (T — A )‘k))‘ dT)
AR 0

< A(/OO 1+ 7))~V dT)l/Q = O(NT~V/?).

— 00

If we combine these two estimates and use (2.23) we conclude that
lwllpge, S T2\,
as posited in (2.19), which finishes the proof. |

For later use, let us also see that this argument yields the following result, which we
shall need when we use local variable coefficient bilinear harmonic analysis techniques.

Lemma 2.3. If o, is as in (2.18) then for m € Z we have

(2.24) Ham(t)U/\HHLg% < OXie | H| g2 (agn-1 x m—10.m10)) + ONA V[ H | 12(000-1 xw),
for every N =1,2,....

Proof. If {ey} is an orthonormal basis of eigenfunctions of P on M"~! with eigenvalues

{Ar} then the kernel o (z,t;y, s) of oy is

(2m) 7! z:/ei(t*s)TU(/\l/ng/2 — M) B(T/N) ex(@)ex(y) dr
k

_ (27‘()72 // ei(tfs)rei)\l/27—1/2r B(T/)‘) (3'(7”) Zefir)\kek(x)mdrdr
k

Recall that, by (2.6), 6(r) = 0 if r ¢ [0, 1]. Therefore, by (2.7) and a simple integration
by parts argument we have that

// ei(t*S)"'eiAI/ZTlﬂr B(T/A) (}(’I‘)@iir}\k drdr = O(()\ + >\k + |t — S|)*N)’
if |t —s| > 5.

If A\ < 100X one obtains these bounds just by integrating by parts in 7, while if A > 100\
one integrates by parts in both variables r and 7 to obtain this bound. Since, by the
pointwise Weyl formula (see e.g. [29]),

D1+ ) er(@)er(y) = O(1),

k
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we conclude that
ox(z, t;y,s) = O(([t —s| + A)"N)VN, if |t —s| >5.

Thus, if H(t,xz) =0 for t € [m — 10, m + 10], then the left side of (2.24) is dominated
by the second term in the right. Consequently, to prove (2.24) we may assume that

H(t,z)=0 if t¢ [m —10,m + 10].
If we then let
w(z,t) = am(t)(orH)(z,t), and F = (iAd; — Ag)w
and argue as in the proof of Lemma 2.2, it suffices to show that
1Flzz, S MHIzz

which would follow from

(2.25) | oNV2IDy| > = P)B(Dy/N H 1z, S |1 Hllzz .
and
(2.26) 1 (iAD = Ag) [0 (N2 D[ /2 = P) B(De/N) H] ||z, S MIH] gz -

By orthogonality and the arguments in the proof of Lemma 2.2, (2.25) just follows
from the fact that

o (22— ) Br /) = O(1),

and, (2.26) is a consequence of the bound

= O = @) o (NP2 — ) B(r/A)
= 2 ) B/ - [V o (A2 ] = O,
which follows from (2.7) and the fact that o € S(R). O

2.1. Height Decomposition.

Next we set up a variation of an argument of Bourgain [8] originally used to study
Fourier transform restriction problems, and, more recently, to study eigenfunction prob-
lems in [3], [7] and [30]. This involves splitting the estimates in Proposition 2.1 into two
heights involving relatively large and small values of |5’ Af(x,t)].

To describe this, here, and in what follows we shall assume, as we just did, that f is
L?-normalized as in (2.15). Then, we shall prove the estimates in Proposition 2.1, using
very different techniques by estimating L9 bounds over the two regions

(2.27) Ay ={(x,t) € M™ U x [0,T] : [Sxf(t,z)| = AT 0},
and A_ = {(z,t) € M" ' x [0,T] : |Sxf(z,t)] < \"T T}

Due to the numerology of the powers of A arising, the splitting occurs at height /\%‘*“57
d = 1/8; however, we could have replaced this specific value of § by any sufficiently
small positive §. The transition occurring at, basically, A"T" is natural and arises due
to Knapp-type phenomena, both in Euclidean problems, as well as geometric ones that
we are considering here. We choose this specific value of 6 = 1/8 to simplify some of the
calculations to follow.

We next notice that Proposition 2.1 (and hence Theorems 1.1 and 1.2) are a conse-
quence of the following two propositions corresponding to the two regions in (2.27).
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Proposition 2.4. Let (M1, g), n > 3 have nonpositive curvature. We then can choose
co > 0 so that for A> 1 and T = cglog A we have the uniform bounds

& 1
(2.28) 19xfllLac(ayy < CAae,
assuming that f is L*-normalized as in (2.15).

Proposition 2.5. Let (M7 g), n > 3, have nonpositive curvature. We then can take
T = colog A as above so that, if f is L?-normalized,

= 112
(2.29) [SxfllLae(a_y < CAaeTae e,
Furthermore, if all the sectional curvatures of (M"Y, g) are negative,
(2.30) 153 fllnea ) < CXFTTE.

We shall present the proofs of these Propositions in the next two subsections.

2.2. Estimates for relatively large values: Proof of Proposition 2.4.
We first note that, by Lemma 2.2 and (2.10) we have

=, 1 1.1
[SxFllzacayy S NBSxfllpac(ayy + CT ™2 Ase,

and, since ¢. > 2, (2.28) would follow from

(2.31) IBSxfllzae(ayy < CAae + [[Sxfllzae(ay)-

To prove this we shall adapt an argument of Bourgain [8] and more recent variants in
[3] and [30] . Specifically, choose g(x,t) such that

||g||Lqé(A+):1 and ||BS)\f||LqC(A+):/ BS\f - (14, -g)dzdt.

Then, since we are assuming that || f||2 = 1, by the Schwarz inequality

@320 1B\ an = ([ 0 - BB a - g)(w) d )
< [1535" @a, - )@ do
= / / (BS\S3B*) (14, - 9)(z,t) (La, - 9)(z,t) dudt
:(//kf?oLAoly)mA+-g)@;ﬂzi;:fgﬂgﬁjdxdt

+//(BoG,\ o B*)(1a, - g)(z,t) (La, - g)(x,t) dudt
—I+1I,

where L) is the integral operator with kernel equaling that of S3S% if [t —s| <1 and 0
otherwise, i.e,

(2.33)  La(x,t;y,s) =
{<sAs;)<x,t;y,s> = 0t/ Tyns/T) (B (P/ Ve =P 8) (a,y), it [t = 5| < 1,

0 otherwise.
In the final section (see Proposition 4.1) we shall show that for T as above we have

(2.34)  [(SaS))(@,tiy,8)| < OA"T |t — s|~ "% exp(Cumlt —s|), if [t —s| < 2T.
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Consequently, if we let Ly ;s be the “frozen” operators

(Laef) (@) = / La(, t;y, ) f(y) dy,
we have that

n—1 _n—1
ILxtsfll oo (aan-1y S CAZ [t = |77 || fll L1 (un-1),

—i(t—s)A"tA

and, since e 9 is unitary, we of course have

I Lxt,s fllz2(aan-1) < Cllfll 2 arn-1).-
Therefore, by interpolation
2 2
1Ensd e arn-1y < CXZ [t = 8173 || £l ot agnsy-

Therefore, by Strichartz’s [34] original argument (or, e.g., Theorem 0.3.6 in [29]), we can
use the classical Hardy-Littlewood fractional integral estimates to conclude that
2
”L)‘”Lq/c(M"—lXR)HL‘IC(M"_lx[R) = O(\ae).

If we use this, along with Holder’s inequality and (2.10), we obtain for the term I in
(2.32)

(2'35) |I| < ||BL)\B*(ILA+ 'g>||LqC(M"*1><[R) : ||1A+ .gHL(I.,:(Mnle[R)
S ||L>\B*(]1A+ 'g)”LqC(Mn*lx[R) ) ||1A+ '.‘JHLQL(Mn—lX[R)
2
SNENB* (- Dl gt arrrery 124, -l s
2 2
S A ||g||2Lqé(A+) = A,

To estimate the other term in (2.32), I1, we choose ¢y small enough so that if Cyy is
the constant in (2.34)

exp(20yT) < AV8 if T =¢ologh and A > 1.
Then, since 7(t) = 0 for |¢t| > 1, it follows from (2.33) and (2.34) that

n—1_, 1
||G>‘||L1(M"_1><[R)—)L°°(Mn—1><|R) <C)\ =2 +5.

As a result, since, by (2.10), the dyadic operators B are bounded on L! and L, we can
repeat the arguments to estimate I and use Hélder’s inequality to see that

n—1 .1 n—1 1 n—-1 1
I < CA = A [1a, - glf S CNZ XS lgllTa g Tae = CAZ AR [[La, [

If we recall the definition of Ay in (2.27), we can estimate the last factor:
<

no1,1\-2 ~
(AT ) NS e 4y

||]lA+ ||%‘lc
Therefore,
_l.a 5 2
111 S X583l ae ay < (GISAllpaeasy)
assuming, as we may, that A is large enough.

If we combine this bound with the earlier one, (2.35) for I, we conclude that (2.31) is
valid, which completes the proof of Proposition 2.4. O

2.3. Estimates for relatively small values: Proof of Proposition 2.4.
We now turn to the proving the L% (A_) estimates in Proposition 2.4. To do this we
need to borrow and adapt results from the bilinear harmonic analysis in [23] and [35].
‘We shall utilize a microlocal decomposition which we shall now describe. We first recall
that the symbol B(z, &) of B in (2.9) is supported in a small conic neighborhood of some
(70,&) € S*M™1. We may assume that its symbol has small enough support so that
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we may work in a coordinate chart € and that zop =0, {, = (0,...,0,1) and g,%(0) = 6%
in the local coordinates. So, we shall assume that B(z,£) = 0 when x is outside a small
relatively compact neighborhood of the origin or £ is outside of a small conic neighborhood
of (0,...,0,1). These reductions and those that follow will contribute to the number of
terms in (2.8); however, it will be clear that the N there will be independent of A > 1.
Similarly, the positive numbers ¢ and §p in (2.7) may depend on N, but, at the end we
can just take each to be the minimum of what is required for each j =1,..., N.

Next, let us define the microlocal cutoffs that we shall use. We fix a function a €
C°(R*"=2)) supported in {z: |2;] <1, 1 < j < 2(n — 2)} which satisfies

(2.36) Z a(z—j) =1

j622(n—2)

We shall use this function to build our microlocal cutoffs. By the above, we shall focus on
defining them for (y,n) € S*Q with y near the origin and 7 in a small conic neighborhood
of (0,...,0,1). We shall let
H:{y: yn—1:0}

be the points in Q whose last coordinate vanishes. Let ¥’ = (y1,...,Yn—2) and n =
(M, --.,Mn—2) denote the first n — 2 coordinates of y and 7, respectively. For y € IT near
0 and 7 near (0,...,0,1) we can just use the functions a(=(y/,n’) — 7), j € 7> to
obtain cutoffs of scale §. We will always have 6 € [\~%, 1] with § = 1/8.

We can then extend the definition to a neighborhood of (0, (0, ...,0,1)) by setting for
(z,&) € S*Q in this neighborhood

(2.37) af(2,&) =a(0'(y',0) =) if xs(2,6) = (¥,0,0",m5-1) with s = dy(a, IT).

Here x5 denotes geodesic flow in S*(). Thus, a?(m,f) is constant on all geodesics
(z(s),&(s)) € S*Q with z(0) € IT near 0 and £(0) near (0,...,0,1). As a result,

(2.38) a3 (xs(w,)) = aj(,¢)
for s near 0 and (z,¢) € S*Q near (0, (0,...,0,1)).

We then extend the definition of the cutoffs to a conic neighborhood of (0, (0,...,0,1))
in T*Q\ 0 by setting

(2.39) aje(mvg) = af(x,f/p(x,f))

Notice that if (y},7}) = 0j and ; is the geodesic in S*Q passing through (y;,0,7;) €
S*Q with n; € SF@/;,O)Q having 7} as its first (n — 2) coordinates then
(2.40) af(z, &) =0 if dist ((x,),7;) > Cob,
for some fixed constant Cy > 0. Also, a? satisfies the estimates
(2.41) 0707l )] S 0711, (26) € 50
related to this support property.

The a? provide “directional” microlocalization. We also need a “height” localiza-
tion since the characteristics of the symbols of our scaled Schrédinger operators lie on
paraboloids. The variable coefficient operators that we shall use of course are adapted
to our operators and are analogs of ones that are used in the study of Fourier restriction
problems involving paraboloids.

To construct these, choose b € C§°(R) supported in |s| < 1 satisfying > b(s—¢) = 1.
We then simply define the “height operator” as follows

(2.42) AS(PYy=b(0 A H(P =AY (P/N), w)=1+60, |0 <07t
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where if § is as in (2.7)
(2.43) T € Cg°((1/10,10)) satisfies Y(r) =1 in a neighborhood of supp £.

Thus, these operators microlocalize P to intervals of size &~ 6\ about “heights” )\HZ ~
A. As we shall see below, different “heights” will give rise to different “Schrédinger
tubes” about which the kernels of our microlocalization of the &, operators are highly
concentrated. Also, standard arguments as in [29] show that if A9(z,y) is the kernel of
this operator then

(2.44) Al(z,y) = ONN)VYN, if dy(z,y) > Cob,
for a fixed constant if 6§ € [A7%, 1] with, as we are assuming &y < 1/2.

If ¢(z) € C§°(NN) equals 1 in a neighborhood of the z-support of the B(z,§) and
A?(x, D,) is the operator with symbol

(2.45) Af(2,€) = ()af(x, €),
then for v = (05,0¢) € 7>+ we can finally define the cutoffs that we shall use:
(2.46) Al = A%z, D,) 0 AJ(P).

For later use, we note that if A%(z,&) and AY(z,€) are the symbols of A% and A%,
respectively, then

(2.47) Ab(z,6)A(x,6) =0, if |v—p|>Cy,

for some uniform constant Cy. Also, since p(z, £) is invariant under the geodesic flow, by
by (2.38) we have that the principal symbol af (x, &) of AY satisfies

(248) ay(xr(2,€)) = a)(w,€), on supp B(w,€) if [r[ <25,

assuming that § > 0 is small, and, as we may assume, the symbol B(z,§) is supported
in a small conic neighborhood of (0, (0,...,0,1)).

Note also that, if § € [A=%, 1], then the A% belong to a bounded subset of SY_; 5 (M)
(pseudo-differential operators of order zero and type (1 — dg, do)).-

Also, as operators between any LP — L%, 1 < p,q < 0o, spaces we have

(2.49) Gr=Y A0+ O N) VN,

and the A% are almost orthogonal in the sense that we have

(2.50) STIAGIE . S IGI3;

with constants independent of § € [A7% 1], with §y < 1/2 as above. The second estimate
(2.50), is standard since the Af are in S7_; 5 and (2.47) is valid. The other estimate
(2.50) follows from the fact, that by (2.36) and (2.43), Q(z, D) =1 - A% € SY 505
has symbol supported outside of a neighborhood of supp B(z,€), if, as we may, we
assume that the latter is small, and this leads to (2.49) by the proof of Lemma 2.7
below if § in (2.6) is small enough. Also, for each x the symbols vanish outside of cubes
of sidelength 6\ and \32A3(x,§)| = O((M)~ 1), we also have that their kernels are
O((ON)" 1 (1 4+ 0Xdy(z,y)) ™) for all N and so

(2.51) 1A | Lo (at)— 2o (ar) = O(1) V1 < p < o0.
In view of (2.49) we have for 6y = A~1/8
(2.52) (m(t)FnH)? = > (am(®)oAALH) - (am ()53 AL H) + O N H|3),

v, U
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for o, as in (2.18). Recall that in A% v € §7*("=2+1 indexes a \~/3-separated set in
[R2n73.

We need to organize the pairs of indices v, 7 in (2.52) as in many earlier works (see
23] and [35]). To this end, consider dyadic cubes, 7/ in R?"~3 of sidelength 6 = 256, =
2k \~1/8_ with Tlf denoting translations of the cube [0,0)*"=3 by u € 67?73, Two such
dyadic cubes of sidelength 6 are said to be close if they are not adjacent but have adjacent
parents of length 26, and, in this case, we write 7'3 ~ Tg. We note that close cubes satisfy
dlbt(T TH) ~ 6, and so each fixed cube has O(1) cubes which are “close” to it. Moreover,
as noted in [35, p. 971], any distinct points v, 7 € R?"~3 must like in a unique pair of close
cubes in this Whitney decomposition. So, there must be a unique triple (8 = 692%, u, i)

0

such that (v,7) € Tl‘f X Tg and 7'3 ~ 7;. We remark that by choosing B to have small

support we need only consider § = 20, < 1.
Taking these observations into account implies that the bilinear sum (2.52) can be
organized as follows:

(2.53)

Z Z Z (am(t)[f')\Ag"H) . (am(t)&AAgoH)
{kEN: k>10 and §=2F80 <1} {(p,fi): T4 ~70} {(v,0)ETE x 70}
+ Y (am(FAALH) - (am ()52 AR H),

(, T)E~90

—1/8 including the

where Ep, indexes the remaining pairs such that |v — 7] < 6y = A
diagonal ones where v = v.
The key estimate that we require, which follows from bilinear harmonic analysis argu-

ments, then is the following.

Proposition 2.6. If H = S, f is as in (2.2) then for m € Z we have the uniform bounds

(2.54)  lam(t)onH || Loc(a_)

(ZHa ()G A% H

1/qe a1
) AT 2 (are e

The Aa:~ notation that we are using for the last term in (2.54) denotes Aac % for
some unspecified g9 > 0. Note that since |[H|| 2 ~ T2 for H = Syf and T =~ log A
the log-loss afforded by having the last term involve this norm is more than overset by
the power gain 1/g.— of A. Similarly, when we sum over m and use this estimate, the
additional log—loss will be more than compensated by this gain.

We shall postpone the proof of Proposition 2.6 until the next section. Let us now see
how we can use it to prove Proposition 2.5.

We first note that if a,,(t) = a(t —m) is as in (2.18) with « as in (2.17), we of course
have

RYFNED SITHCE N
Recall that Sy = &3S,. Therefore, by (2.54) and (2.15) we have with fy = \~1/8

Hg)\fHch(A )~ ZZ Ham UAAGOSAfHerc A_ + )‘1_HS)\quchc(Mnflxue)-
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Since the last term is O(A ™~ log ), in order to prove Proposition 2.5, it suffices to show
that when M™ ! has nonpositive curvature

(2.55) Do e (BFNAL SAS | % (g o)) < C\Tie

with, as in the Proposition, T' = ¢glog A for ¢y > 0 sufficiently small, and we obtain the
other estimate, (2.30), from

(2.56) Z Z [l vm (£)Tx

If we use Lemma 2.3 along with (2.10) and (2.50) we obtain the following uniform
bounds for each fixed m

(257) D llam()FaAL SN | e (arn-1x (0,1

S Z [|em( UAAG SAfHLqr(Mn 1x[0,T7)
< Aie Z HAgosAfH%%Mn—lx[m—10,m+10]) +0(M)

2 .
S A5 [|SAfll L2 (vm—1 x [m—10,m+10]) + O(A M)
< Aie.
Here, we again used the trivial bound ||Sx f||r2(avm-1xp) S [I]V/2 if I C R is an interval.
To use this, for each m choose v(m) such that
(2.58) max [l tm ()52 AL S\ f1| Loe (aam—1 ¢ [0,77) = ”am(t)&)\Agczm)S)\f”L‘lc(M“*l><[0,T])-
Then, by (2.57) we have
(2.59)

ZZ levm (£)
< Z Z [|am (t) GAAO Sx\fHch(M" 1%[0,T]) ) ’ ||Olm(t)‘}AAiCEm)SAf”%Cq:(QMn—lX[07T])

qc—2
Lae (Mn=1x[0,T])"

< N Z et (£)52 AL, Sxf

Since there are O(T') nonzero terms in the last sum, by Hoélder’s inequality we have

Z llovm (t UAAy(m)SAququ(zMn 1%[0,77) S ch [ (t )JAAV(m SAf”Z;:quc Mn—=1x[0,T])’

m

and, as ¢, < 4,

Z [lovm (¢ 0,\149? Sxfl %quQMn 1%[0,T]) ~

(t )UAAu(m S)‘f||g§n_LZ‘ZC(M”*1><[O,T])'

Therefore, by (2.57), we would have (2.55) if we could show that when all the sectional
curvatures of M™~! are nonpositive then for T = ¢ylog A with ¢y > 0 small enough

(2.60) v () Box AL, ) Sxf

i Lie, (Mn=1xR) ~S S )\q%

and we would have (2.56) if we could show that when all of the sectional curvatures are
negative and T is as above

1
(2.61) levm (8) Box AL, SxFllez, Lo, (a1 xr) S A%
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since 6\ = Boy.
To prove these inequalities we shall make use of the following simple lemma whose
proof we postpone until the end of this subsection.

Lemma 2.7. If§ > 0 in (2.6) is small enough and 6y = \~*/% we have for B as in (2.9)
(2.62) || BoxAS — BA% oy ||, = O(\ac 7).

dc
o LES

If we use (2.62) followed by the use of (2.10) and (2.51), we see that for each m we
have

(2.63)

llewm (8) Bor AL )Sxfllw
< lam (D) BA% oxSxfllpse + A% 5[ Sxfllzz

S ||am<t>BA£cgm)sAf||Lg; + llam () BA%, (I = 03)Sx f|Lse, + Aie i (log A)*/2
S Nom ()AL, S Fllzse, + llom(E)(T = ax)Sxf[lze + A7~ T (log A)!/2.

By (2.17)—(2.18) and Lemma 2.2 we have

(2.64) [l (E)( = ox)Sx flleze pae, < Aac T2 2,
and so, by (2.63) we would have (2.60) if

1
(2.65) [[am (t )A,affm S/\f”eg,ngfz(Mn—lxu%) S A,

Also, by Hélder’s inequality in m and (2.64) we have

9c—=2 1
[l (E)(I = ox)Sxfllez, e (vrn-1xry ST %5 [lam (E)(L — ox) xS llege 3e, (arn-1xR) S A<,

which, by (2.63) means that we would also have (2.61) if when all the sectional curvatures
of M™~! are negative

(2.66) o ( )A,e,%m Sxfllez, ge, (n-1xR) S Aie.
In both (2.65) and (2.66) we are considering the map
f= (WF) (@, t,m) = n(t/T)am(t) (A, 0 e ™ 2 f)(x).

By repeating the standard 77T argument that was used in the proof of Proposition 2.4,
we would have (2.65) if

(2.65) IWW Gl g a5y < O Gl

7n

e (Mn=1xR)’
and (2.66) if
(2.66")

2 Lde, (Mn—1xR) < O Gl 2

nz 4

L, (Mn=1xR)’
with
(2.67)

WW*G(z,t,m) =
n(t/T) Z / 0t () T) [ (A%, =N B (A% )G 5,m)] (@) ds

= Z//K(x7 t? m;y7 S7m/) G(y7 S7m/) dyd57
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with
(2.68)

K(Ia ta m3y,s, m,) = Oém(t)ﬁ(t/T) (Ai%m) eii(tis))\_lAg (Ai%m/))*) (gja y) Qm! (S)T/(S/T)

In §4 we shall show (see Proposition 4.2) that for T' = ¢y log A small enough we have
for M™ 1 of nonpositive curvature

n—1
)

(2.69) K (z,t,m;y,5,m')| < CA"Z |t — 5|
and, moreover, if all of the sectional curvatures of M™~! are negative
(2.70) \K (z,t,m;y,s,m')| < CNT |t —s|™N if |t —s| > 1.

As we shall see, it is for these two estimates that we need to assume that ¢y is small
enough depending on (M"~!, g). Also, by the support properties of a in (2.17) we also
have

(2.71) K(z,t,m;y,s,m') =0 if [t—m|>3or |s—m'|>3.

Thus, if we define the frozen operators

(Wt,m;s,m/h) (z) = / K(z,t,m;y,s,m") h(y) dy,
Mn—l

we have

(2.72) Wimism =0 if [t —m| >3 or [s—m'| >3,

and, if M™~! has nonpositve curvature, by (2.69),

(2.73) IWemis,m hll oo (aan—1y) < CXZ [t = 8|72 || Al 1 a1y,

and, moreover, if the sectional curvatures of M™~! are negative, by (2.70) and (2.71),
(2.74)

W mss,me bl Loo (an—1) S

N7t — 8|77 |hl| g agn-ry i Jm—m!| < 10
N7 [m— |V |[B g gy YN iE [m— | > 10.

Also, by (2.51) and the fact that e~ Ay g unitary, we of course always have
(2.75) Wi mis,m HL2(Mn—1)_>L2(Mn71) =0(1).

By interpolation (2.73), (2.75) along with (2.72) yield that if M™~! has nonpositive
curvature

(2.76)

O(Nie|t — 5|74 ||l . gu-vy) i |t —m| <3 and |s —m'| <3
W mssme Pl Lge (aam-1y = . ,

0 if t—m|>3o0r |s—m/|>3.
while if we also use (2.74) then this argument implies that if the sectional curvatures of
M™1 are all negative

2.77) N Wemis,m bl Lge (rrn-1) =
O(Nie |t = 8|73 || par (gn-s)) if [m —m’| <10, [t —m| < 3 and |s —m’| <3
O()\%\m — m’|*2||h||Lq/C(Mn_1)) if lm—m/|>10, |t —m| <3and |s—m/| <3
0 if [t—m|>3or |s—m/|>3.
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Note that for fixed ¢, m we have by Minkowski’s inequality and (2.67)

@18) WG tm)e <Y [ | [ K tmigsm') Gy o) dy|

ds
Lie

=5 10V G ) @)

Set
)\%|t75|_%, if |t—m|<3and |s—m/|<3

(2.79) H(t,m;s,m') = .
0 if [t—m|>3or |s—m/|>3.

Then, by (2.76) and (2.78) we have

IWW*Gllage 10 (Z/’ Z/H(t,m;s,m') HG(~7s,m’)||Lgé ds
m m/’
B ' 1/q;
3 (3 [ 16050y 05

1/qc
ae dt)

2
= )\qc ||G||€(IICIL3(IJZ(MW,—1><IR)7
since if
(2.80) Uf(t,m) = Z/H(t,m;s,m')f(s,m')ds,
we have

= O(A=)

||U||éZ'%/Lgé_>€ZV$L;1c
by a simple variant of Theorem 0.3.6 in [29]. Thus, we have obtained (2.65).
If all the sectional curvatures of M™~! are negative and we set

N t—s\fi if [/m—m/| <10, [t—m|<3and |s—m'| <3
H(t,m;s,m’) = )\%|m—m’|_2 if |m—m/|>10,]t—m|<3and |[s—m/| <3
0 if [t—m|>3or |s—m/| >3,
and, if U is as in (2.80), then the proof of Theorem 0.3.6 in [29] yields
2
1ol —00d),

2 LIe 02 Lie
which yields (2.66") by the above argument. O

This completes the proof of Proposition 2.5 and hence Theorems 1.1 and 1.2 up to
proving the crucial local estimates in Proposition 2.6, as well as the global kernel estimates
(2.34), (2.69) and (2.70) and that we have used. We shall prove the former using bilinear
harmonic analysis techniques in the next section and the kernel estimates in the final
section.

The other task remaining to complete the proofs Theorems 1.1 and 1.2 is to prove the
commutator estimate that we employed:

Proof of Lemma 2.7. Recall that by (2.42) and (2.43) the symbol B(x,§) = By(z,§) €
59 o vanishes when [¢[ is not comparable to A. In particular, it vanishes if [£] is larger
than a fixed multiple of A, and it belongs to a bounded subset of S%O. Furthermore, if

a% (x, &) is the principal symbol of our zero-order dyadic microlocal operators, we recall
that by (2.48) we have that for § > 0 small enough

(2.81) a?,‘](x,{) = aﬁo(xr(x,f)) on supp B) if |r| <26,
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where y,. : T*M" 1\0 — T*M"~1\0 denotes geodesic flow in the cotangent bundle.
By Sobolev estimates for M™~! x R, in order to prove (2.62), it suffices to show that

(2.82) H (\/I+P2+D?) ne "“)[BAO—AA%J—BAA,@OUA]‘

To prove this we recall that

ox = (2m) 7 B(De/N) /(3(T)eiml/2|’3t\l/2 =P dr.

= O(\ac4).

2 2
Li ,—L3 .

. AL/2| D, [1/2 .
and, therefore, since e/ "“1PtI'"" has L2 — L? norm one and commutes with By, A% and

(v I+P?+ D?)n(%fi), and since 6(r) = 0, || > 26, by Minkowski’s integral inequality,
we would have (2.82) if

(2.83)
n(%—i)~ . .
JI+ P2+ D2 “) B(Dy/A) [Bye~i"F A% — B, A% *”P’
8\1335”( +P2+ D ) PO [Bre™™ AL = Badte™ ™ |

— O(Aw 1),
Next, to be able to use Egorov’s theorem, we write
[BAe*"PAZD - BAAﬁOe*"P] = B, [(e*"PAgOe”P) — BAAﬁO] oe P,
Since e~ also has L2-operator norm one, we would obtain (2.83) from

1

sty ||(VI+ P20 )" B0y By [ A - 4] |

By Egorov’s theorem (see e.g. Taylor [36, §VIIL.1])
Ag?r(x, D) — e—irPAgoeirP

2 2
Li ,—Li .
11

— O(ri 4.

is a one-parameter family of zero-order pseudo-differential operators, depending on the
parameter 7, whose principal symbol is a% (y_,(z,¢)). By (2.81) and the composition
calculus of pseudo-differential operators the principal symbol of B AAE?T and By A% both
equal By(x,&)al0 (x,&) if |r] < 26. If 6 = 1 then A) € SY, and, so, in this case we would
have that By(e~""F A%"F) — By A% would be a pseudo-differential operator of order —1
with symbol vanishing for || larger than a fixed multiple of A (see e.g., [28, Theorem
4.3.6]). Since we are assuming that 6, = A\~1/8 by the way they were constructed, the
symbols A% belong to a bounded subset of 53/8,1/8' So, by [36, p. 147], for |r| < 24,

By (e7P A%eimP) — By A% belong to a bounded subset of S;/?’S/j/s with symbols vanishing
for |¢| larger than a fixed multiple of A due to the fact that the symbol Bj(z,¢) has this
property (see e.g., [36, p. 46]).

We also need to take into account the other operators inside the norm in (2.84).
Since B(D;/)) is a zero-order dyadic operator by the above, the operators in the left

of (2.84) belong to a bounded subset of 52 i (M™~1 x R) with symbols vanishing

7/8 1/8
for |(&,7)| larger than a ﬁxed multiple of A. Consequently, the left side of (2.84) is
O(3-2)-1) = O(AE ). For, g, = 274D and so w=m3-2) 3 O

2.3. Endpoint Strichartz estimates: Proof of Theorem 1.3.
We now prove our final theorem saying that if all the sectional curvatures of M™~! are
nonpositive and, as is necessary, d = n—1 > 3 we have the endpoint Strichartz estimates
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(1.15). As we pointed out before, such improvements cannot hold on spheres S¢ since the
estimates are saturated just by taking the initial data in (1.1) to be zonal eigenfunctions.

To prove our improvements under our geometric assumptions we shall use the univer-
sal local estimates of Burq, Gérard and Tzvetkov [11] along with our improvements in
Theorem 1.1 for non-endpoint exponents, some of the kernel estimates we have used and
an argument of one of us [30] that is a variation of an earlier one of Bourgain [8].

To this end, we recall the universal endpoint Strichartz estimates of Burq, Gérard and
Tzvetkov, which say that for A > 1 one has the uniform dyadic small interval bounds

||67itAgﬁ(P/)‘)f”Lng‘i(JVI"*1><[0,>\*1]) <Clfll2, if g = 2% = 2(::31)7 d=n—-12>3.
This is of course equivalent to the following estimates for the scaled Schrodinger operators

. —1 1 n—
(2.85) [ Agﬂ(P/A)f”L%Lge(Mnﬂx[o,u) <OX|fl2s ge = 21 n >4,

n—3 7

We also point out that by using the Littlewood-Paley arguments described in the
introduction we would obtain the bound (1.15) in Theorem 1.3 by showing that whenever
all the sectional curvatures of M™~! are nonpositive we have for ¢, and n as above

(2.86)  [[e™* 2 BP/N 12 pae (per wionog apy S CAZ (08 X2 (log(log X)) 2 [ £

In order to use our earlier arguments, it turns out that we need to modify the height
splitting (2.27) as follows

(2.87) Ay ={(z.t) € M""1 x [0,log \] : [Unf(z,£)] = AT (log A)*°},
and A_ = {(z,t) € M" ' x [0,log \] : [Unf(z,t)| < A"5 (log \)=°},
assuming, as we are that || f||2 = 1, for 9 > 0 to be specified in just a moment and
Unf = 7" 893(P/N) .
Let us now see how we can adapt the proof of Proposition 2.4 to obtain the following.

Proposition 2.8. Suppose that all the curvatures of M™~' are nonpositive and let g > 0
be fized and Ay be as in (2.87). Then, if, as before || fll2 = 1 and X\ > 1 we have the

following uniform bounds
(2.88) NUxfll L2 Lae (aynuan—1x10)) < Oz,
if It C [0,log \] is an interval of length |I7| < T where
T = ¢olog(log M),
with co > 0 sufficiently small (depending on €9 > 0 and M"™~1).

Proof. If I is as above choose g so that

(2.89) =1, and

”g”L?LZé(A+m(M"*1><IT))

NUNfllzae (aynvn—1x10)) = // Unf - Ta,n(mn—1x1y) - g dadt.

Note that UyU; = e~*(t=)X" "2 82(P/\). Let us split
U)\U:\k =Ly + Gy,
where if a, is as in (2.18)

Ly = 3 aj(H)e =N B0 B2(P/ N (s).
{(4.,k): |5 —k|<10}
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Then, it is straightforward to see that (2.85) yields
(2.90) LAl =0(),

L2L% 12L%
and, using (2.34) again, we have that the kernel of G satisfies
(2.91) IGa(z, 5y, 8)| < ON"T exp(Cu|t — s|) if [t — s| <log A,

for some constant C; depending on M™ 1.
Thus, if we repeat the first part of the proof of Proposition 2.4, we find that

HU/\fHQLnge(Am(MHxIT)) < [+ |11,

where

I= // Lx(La,nvr-1xrry - 9) Ta,nun—1x1p) - g dadt

IT = // GA(La,nvr-1x1r) - 9) Ta,a(un—1x1y) - g dadt.

By (2.89) and (2.90)

(2.92) | < | EA(Taynan-1x20) - 9 )20 (A, n(vm-1x17)) < CA

Also, by (2.91), if T = ¢o(log(log \)) with ¢o > 0 sufficiently small we have
|Ga(z, t,5)| < AT (log N, if t,s € Ir.

So, for this choice of T' we have by (2.89) and Hoélder’s inequality

n—1 e 2
|II‘ S CA\ 2 (log )\) OH 1A+IAI(M”71><IT) - g ||L%YI(A+Q(M"—1><[T)

< C)\n%(bg )‘>EO ||]1A+n(M"*1><IT)H%§Lge'
Since 1 < |Unf(x,t)] - (A"T (log A)*)~! on A, we have
_n-1 _
||]]'A+ﬂ(M"_l><IT)Hi?Lge <A77 (log ) 250||U>\f||%?Lge(A+m(M"—1><IT))7
and thus for A > 1
(2.93) (1) < UM 2 n0e (4, (a1 510
Since (2.92) and (2.93) imply (2.88), the proof is complete. a
Next, let us note that by Proposition 2.8
1 1
IUxfllz2Laea,y < CAZ(log A/ log(log A))=.

Thus, we would have (2.86) and hence (1.15) if we could show that if g > 0 in (2.87) is
small enough, then for A > 1,

(2.94) IUNFllp2r0e 4y < CAZ(log \)2~%, some &1 > 0.
We can use our log power gains for L% to prove this since, by (2.85),

(299) 3= ) and =G0

We also note that by Hélder’s inequality since A_ € M™~! x [0,log A], the L{, estimates

(1.10') yield

(2.96)  [[U\fllLyLaecay < C)\i(log)\)%*‘so, if 1 <r<gq.,and § = é(l - q%) > 0.
Note that g. > q. and let

(297) €0 = %Eo <e&p and 50 = %50 < dp.
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Then by (2.87) and (2.97)

(2.98) IOl L2 Lgea_y < HSAfIILm(A )
Lqé’ LQ{‘(A )
< (log NN T (5 U, £ %,
L/qE LqC(A,)

n—14gc 3—5
o [[UNFI " 2ge
Lth LiC(A,)

= (log \)ZON"T A~

If we let r = 2qu

, then, since n > 4, we have r € [1, g.). Therefore, if we apply (2.96) and
recall (2.97), since ||f]l2 = 1, we can bound the last factor as follows

(2.99) ||UAf|| % < OX"T (G i [(log ) Fie 00 i
(Ie LqL (A,)
= CN'T T A (log \) 2
If we combine (2.98) and (2.99) and use (2.95) one more time we conclude that
157 f L2 pae 4y < C)\%*%i(log)\)%—(éo—éo) — OM¥(log \) 3~ (Go—é0),
This gives us (2.94) with §; = do — o, if g > 0 is small enough so that &y < 30, which
finishes the proof of Theorem 1.3. O

Remarks. We note that if M"~1 is a torus T”~! of dimension d = n—1 > 3 then we can
use the toral estimates of Bourgain and Demeter [10] to obtain much stronger results than
the ones we have obtained for general manifolds of nonpositive curvature. Indeed, we
recall that in [10] it was shown that [|3(P/X)e™ A= || p2(pn-1)_ pac (pn-1x[0,1]) = O(A?),
Ve > 0. Therefore, by Sobolev estimates and Holder’s inequality we have

IB(P/A)e™#5m- 1||L2L‘1€(1r" L 0,1]) S <A 1)(7_7)”5(13//\) Arn- 1||L2L“°(1T“ 1[0,1])
< ATDG) | B(P/A) e A ILge Lge (rn=1x[0,1))
SACTDGEEZHE o = AT £ o

Ifd=n-12> 3, thisis a AmrT e < A~151¢ over the universal bounds of Burq,
Gérard and Tzvetkov [11], which is much better than our (loglog A)~'/? improvement in
Theorem 1.3.

On the other hand, it seems likely that we shall be able to obtain no loss for dyadic
estimates on tori T” on intervals of length A=1*%» for some 4,, > 0, which would be the
natural analog of (1.14) in this setting. We hope to study this problem as well as possible

improved Strichartz estimates for spheres! in a later work.

3. Local variable coefficient harmonic analysis: Proof of Proposition 2.6.
We are dealing with A% ¢ 57 /8,178 which are pseudo-differential cutoffs at the scale

0o = A~'/8. In order to obtain the gains involved in the last term in the right side of
(2.54) we shall have to also use cutoffs at the scale §, = 2¢6y with £ < 0.

To prove this we shall use the strategy in Blair and Sogge [7] and earlier works,
especially Tao, Vargas and Vega [35] and Lee [23].

We should point out that in a recent work Sénchez and Esquivel [25] stronger results than those
in [11] were stated. However, there is a gap in the arguments in [25] based on incorrect use of Sobolev
estimates, and simple examples (such as the function f\ = B(P/N)(z,zo) discussed in the introduction)
show that some of the results in [25] are invalid.
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We first note that if § as in (2.6) is small enough we have

(3.1) am 1)y = Y am(t)5r AL = Ry, where ||[RyH|p=, SA V| H]|2 VN.

ta N

Thus, we have

(32) (am(t)orH)* = Z(am(t)5,\A§0H) (e (t)FrAL H) + O N|IHI|IZ; ) VN

As in earlier works, let
(3.3) THE(H) = > (am(t)orALH) - (am(t)52 AL H),
(V,D)GEQO
and
B4 ) = Y (0nRnADH) - (0 (5L H) + O N H|Z, ),
(v,0) 20,

with the last term denoting the error term in (3.2). Thus,
(3.5) (o (1)FAH)? = T8 4 YT (H).

Thus, the summation in Y98 (H) is over near diagonal pairs (v, 7). In particular we
have |v — 7| < Cfy for some uniform constant as v, 7 range over #oZ("~3). The other
term Y (H) is the remaining pairs, which include many which are far from the diagonal.
This sum will provide the contribution to the last term in (2.54).

The two types of terms here are treated differently, as in analyzing parabolic restriction
problems or spectral projection estimates.

We can treat the first term in the right of (3.5) as in [3] and [7] by using a variable
coefficient variant of Lemma 6.1 in [35] (see also Lemma 4.2 in [7]):

Lemma 3.1. If Y¥%(H) is as in (3.5) and n > 3, then we have the uniform bounds
. - 2/Qc 2
36 D) e 5 (X lamaralms, ) O0E I, ).

We also need the following estimate for Y (H) which will be proved using bilinear
oscillatory integral estimates of Lee [23] and arguments of two of us in [4], [5] and [7].

Lemma 3.2. If Yo (H) is as in (3.4), and, as above 0y = \~'/8, then for all e > 0 we
have for H = Sy f

2
Lt’m n

(37) // |’rfar(H)|q/2 dadt §E /\1+6 (/\7/8)%((1—%) ||H||q Zf q= M

Let us postpone the proofs of these two lemmas for a bit and show how they can be
used to obtain Proposition 2.6.

If we let ¢ = w as in Lemma 3.2, we note that ¢ < ¢. and also

|Ozm(f)5')\H . am(t)&AH|
< 292 |, (1)GAH - (1) G2 H| T

. (|Tdiag(H)|q/2 + |frfar(H)|q/2).
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Thus,

9/2 grdt

(3.8) [l (¢ )O')\HHLQC(A /A |am(t)&AH cam(t)o H

< / | () H - (£)53H| “T H)|"? dzdt

(Icq

+/ |t ()FAH - o (0)G3H| 7" | Y (H) |2 dedt =T+ 11

To estimate II we use (3.7), the ceiling for A_, and the fact that 6yH = S\f if
H = S, f to see that

11 < flam (D83 F 428,y - A= (AT/3) T ) e,

< )\(”’Zl-l-é)(qc—Q) ,)\—(qc—q)(g~";‘ 1, = O(A1_§"+E||HHqLC% ‘)’ some 6, > 0.
We have §,, > 0 since (g, —q)(?’(qigl) —$) >0, and also ||H||%‘%L dominates HH||%?9: since

gc > q and ||HHL?1 ~ T since H = S\ f, ||[fl2 =1 and e~ 20 is a unitary operator
on L2.

Since we may take &€ < &,, II'/% is dominated by the last term in (2.54), Conse-
quently, we just need to see that I'/9 is dominated by the other term in the right side
of this inequality. To estimate this term we use Holder’s inequality followed by Young’s
inequality and Lemma 3.1 to see that

|| rdies () |92

I <l (t)orH - cm(t )U/\HHch L/

/2(A2)

QC/2
Lgc/2

< q(};i:qHOém(t)&)\H cam(t )J,\HHL%/2 asyt q ||'rd1ag(H)

IN

“Etlan O H 5o oy + O3 o (FALHfy: + O IH]T; ).

Since ch:q < 1, the first term in the right can be absorbed in the left side of (3.8), and
this, along with the estimate for IT above yields (2.54).

Thus, if we can prove Lemma 3.1 and Lemma 3.2, the proof of Proposition 2.6 will be
complete.

Proof of Lemma 3.1.
Let us first define slightly wider microlocal cutoffs by setting

o= S am
|p—v[<Cobo
We can fix Cj large enough so that
(3.9) A% — AP AP e = ON M) VN if 1<p < o0
Also, like the original A% operators the [130 operators are almost orthogonal

(3.10) S ALK S (IR

Since
_ 1
am (£)oaF|pge, < CAae |||z
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we conclude that, in order to prove (3.6), we may replace Y428(H) by Td22(H) where
the latter is defined by the analog of (3.3) with A% and A% replaced by A% A% and
Ago flgo, respectively.

So, it suffices to prove

311 || Y (am(O)FrALALH) - (0 (8)52 AL AL H)| 002
t,x

(v,0)EEq,

2/qe o
<C<Zl|am UAAGOHHL%) +O(EH|: ).

We shall need the following variant of (2.62),
(3.12) loam (D)[G3 A% — ALGAIFllge, S A% HIF g,

This follows from the proof of Lemma 2.7, or, alternately from Lemma 2.3, (2.62) and
the fact that the commutator [B, A%] is bounded on L% (M™~') with norm O(A~7/8).
Since the A% commute with the ., (t) time-localizations, by (3.10) and (3.12) we would
have (3.11) if we could show that

(3.13) || Y. (Al(am(t)orARH) - A (o ()AL H) || ac /2
(Vvﬁ)EEGU ,
2/qc P
< C(Z lom (AL IS, ) + O™, ):
Note that the functions in the norm in the left side of (3.13) vanish if ¢ ¢ [m—1,m+1].

Therefore, if we take r = (g./2)’ so that r is the conjugate exponent for ¢./2, it suffices
to show that

3 14 Z // Aeo O'AAGOH) Ago (Olm(t)&)\AgOH) .G dtdx

(y V)E._g

2/qe 2
(Zuam oAA"OHnLqC) + O (|3, ),

ry. =1land G(t,z) =0 if t¢[m—1,m+1].

Note that if 2 and v are fixed and & — A% (2, £) does not vanish identically, then this
function of ¢ is supported in a cube Q% (x) C [Rgi1 of sidelength ~ A7/8. The cubes
can be chosen so that, if n, (x) is its center, then 07n, (z) = O()) for all multi-indices .
Keeping this in mind it is straightforward to construct for every pair (v, 7) € Eg, symbols
by, (x, &) belonging to a bounded subset of 59/8’1/8 satisfying

(3.15) b,p(,m) = 1if dist(n, suppe A (z,€) + suppAQ° (2, &)) < A7/%,

with “4” denoting the algebraic sum. Using this and a simple integration by parts
argument shows that for every pair (v,7) € Ey,

(3.16) |(Z = by,5(z, D)) [ALh - AL ] < ONAN|h)Z., VYN

I
The symbols can also be chosen so that b,, 5, (z,€) and b,, 5, (z, ) have disjoint supports
lf (I/j, ﬂj) S Ego, ] = 1,2 and IIliIl(|(I/1 — Vo, 171 — 52)|, |(1/1 — 132,171 — 1/2)‘) Z 0290 Wlth 02
being a fixed constant independent of X since all pairs in =y, are nearly diagonal. Due to
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this, the adjoints, b;D(x, D) are almost orthogonal in the sense that we have the uniform
bounds

(3.17) Y bs(@ Dz S Il

(v,D)EEq,

Since supp; A% (z,€) + suppgAgO (z,€) is contained in a cube of sidelength ~ A7/® and
can be chosen to have center 7, 5(z) satisfying 97n, 5(z) = O()A), we can furthermore
assume that we have the uniform bounds

(3.18) sup  [|b), 5(, D)hl[Lge S (1Rl g

(’/717)6590
We have now set up our variable coefficient version of the simple argument in [35] that
will allow us to obtain (3.14). First, by (3.16), modulo O(A"N||H||2, ) errors, the left
side of (3.14) is dominated by Y

(3.19) ’ > / / (A% (i ()oAAL H) - AL (0 () GAAL H - (b}, (2, D)G) dtdz ]
(v,0)€EEq,
- ~ 2/4ec
<X IAR @ OmALH) - AL (am (Bor AL D], )
(v,D)EEq, ot
* r Yr
> b D)GIE,)
(V,ﬂ)GEgO
since r = (q./2)’.
Note that r € [2,00) since g. € (2,4]. So, if we use (3.17), (3.18) and an interpolation
argument we conclude that

/r
(S Wi oal;)" =0,

(V,D)EEQO

for G as in (3.14). As a result, we conclude that modulo O(A%7||H||Lf _) errors, the left
side of (3.13) is dominated by

o= - , 2/qe
(3 14D (nm AP H) - AL (@ (e AL 1"/, )
(v,9) €S0, o

~ 2/qe
S (X lamn Ao A H|g. )

If we repeat earlier arguments and use (3.9) again, we conclude that the right side
of the preceding inequality is dominated by the right side of (3.6), and this finishes the
proof of Lemma 3.1.

Bilinear oscillatory integral estimates: Proof of Lemma 3.2
To prove (3.7) we note that for a given § = 2¥6y, k > 10 we have for each fixed co > 0

(3.20) am(APH = > 53 ASPAPH + O\ V| H]2).

H/ECOG 72n—3

As in [4] it will be convenient to choose ¢g = 2™ < 1 so that we are working at scales
cof rather than 6 to ensure that we easily have the separation to apply bilinear oscillatory
integral bounds.



STRICHARTZ ESTIMATES ON NEGATIVELY CURVED MANIFOLDS 29

With this in mind we note that if we fix & > 10 in the first sum in (2.53), we then

have for a given fixed ¢y = 27™°, mg € N, and pair of dyadic cubes 7'3, Tg with ’7'3 ~ Tg
and 6 = 2%,
(321) > (am(®)or AL H)(am ()52 AL H)
(y,D)ETﬁ XTS
= > Yo (an®arAZ AR H) (am ()5 AZ AP H) + O N[ H|3),
(W P)ETXT] r0% N7l 20
r;‘)em?g;é(b

if ?ﬁ and ?z the cubes with the same centers but 11/10 times the sidelength of 7'3 and Tg,
respectively, so that we have dist(?z,?z) > 60/2 when 7'3 ~ Tg. This follows from the fact
that for ¢y small enough the product of the symbol of AZ?G and A% vanishes identically
if Tﬁ?g ﬂ?ﬁ =@0and v € Tg, since 8 = 2%6, with & > 10. Also notice that we then have
for fixed ¢y = 27™° small enough

: col _cob -1 n : col ~ =0 cof ~ =0
(3.22) dist(70"%, 7507) € [47°0,470], if 72" N7, #0, and 72" N7, # 0.

Also, of course, for each p there are O(1) terms p' with 7'599 N ?z £ (), if cq is fixed.

Note also, that if we fix ¢y then for our fixed pair 7'3 ~ Tg of #-cubes there are only

O(1) summands involving £’ and i’ in the right side of (3.21).
Keeping this in mind, we claim that we would have favorable bounds for the Lg’/ﬁ-
2(";2), of the first term in (2.53) and hence Y%*(H) if we could prove the

norm, q =
following:

Proposition 3.3. Let 0 = 250, = 2°\~1/8 < 1 with k € N. Then we can fix ¢y = 270
small enough so that whenever

(3.23) dist(t¢0?, 70%) € [4716,470),

one has the uniform bounds for 0 < m < C'log A

(3.24) / / (o ()53 ALY H) (0 (152 AZ Hy) | dtd

n

n=lc._ ..
<, AlHe (2k)\7/8) 7 (9—qc) ||Hl||7;/§i ||H2||q/2

with, as in (3.6), ¢ = w, assuming that Hy(y,s) =0, k =1,2, for |s| > Clog .

Before using Lee’s [23] oscillatory integral estimates to prove this Proposition, let us
verify the above claim.
We first note that if

Hy=)» A%H and Hy= Y AFH,

verf ﬁETg
then by the almost orthogonality of the A% operators, there is a fixed constant C' so that

IHlle, < (3 IADHIZ, )'* and [Halzz, < C(S |ARH|2; )

6 by [
VET“ VE‘rﬁ

1/2 1/2
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Thus, (3.20), (3.22), (3.24) and Minkowski’s inequality yield the following estimates for
the first term in (2.53) with k > 10, § = 2¥0y and ¢ = w:
(3.25)

H Z Z (am (t)&/\AgoH) (am (t)&)\A?/o H)HLg/f
(p.,ﬂ):TﬁN’Tg (V,ﬂ)ETﬁXTg ’
< 2 X (an®RAR 0 ALH) - (am®EAT (3 ALH)) | g2
(,LL,[L):TSNTE T:(,’sﬂ?ﬁ;é@ verf DE'rg ’
70070 20
+ONTNMH|Z, )

e AOR ()T ST (S A )Y 14l I, )

) 2 6 > 6
(u,u).Tﬁw‘rﬁ veT) veT;

+ OO N H]3 )
n=1(._ .
Se AT (T T TSNS AL H|E, + OOV H]3; )
v overf

n

< (1492 (2k)\7/8) 2 (g—qc)

~E

H|[7; +OWNHZ; ).

In the above we used the fact that for each 7f there are O(1) 7';99 with 7599 N ?Z # 0,
and O(1) Tg with Tg ~ Tg, as well as (2.50).

Since ¢ — g. < 0, we can clearly show that if we replace Y™ (H) by the first term
in (2.53), then the resulting expression satisfies the bounds in (3.7). Since by (3.4) the

additional part of Y™ (H) is pointwise bounded by O(A™N||H||%2, ), we conclude that
t,x
we have reduced matters to proving Proposition 3.3.

Proof of Proposition 3.3: Schrodinger curves and coordinates, and using bi-
linear oscillatory integral estimates

We first need to collect some facts about the kernels of the operators &y A% in (3.24).
As we shall momentarily see, they are highly concentrated near certain “Schrodinger
curves”.

To describe these, let us recall (2.46), which says that A%? = A;Oe(x, D,)o AEOB(P),
if v = (o8, cobl) € co8Z>"=2) x cyfZ. We also recall that, by (2.40), the symbols of the
“directional” operators A;"o are each highly concentrated near a unit speed geodesic

(3.26) 73(s) = (25(5),&5(s) € S7Q,  with (x;(s),&(s)) € supp A5 (z,).
Since «; is of unit speed, we have dg(z;(s1),;(s2)) = |s1 — s2| for points on the geodesic
in Q. On the other hand, as described in [20], due to the role of the “height operators”
A%%(P), the space-time Schrédinger curves associated to the operators in (3.24) will
necessarily have to involve speeds that are associated with the heights Hjoe in (2.42) that
define the operators A% (P) (see also [1] and [15]).

To be more specific, we claim that, if we define the “Schrdodinger curves” corresponding
to v,

(3.27) Lsow(8) = (2 (265), —(s — 50)) € QX R, v = (cobj,cobl), K= k5,
then the kernels K% (z,¢;y, s) of the operators &) A%? must be highly concentrated in

“Schrodinger tubes” of radius & # about the curves ¢, in (3.27). Note that s — z;(2r5°"s)
is a geodesic of speed 2x5°?, meaning that d,(z;(2k5°%s1), 7;(2k5°%59)) = 2k5°% |51 — s2].
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FIGURE 1. Schrodinger FIGURE 2. Eu-
tubes clidean case

Also, the minus sign in the time variable in (3.27) is just based on the minus sign in (2.5),
which, as we shall see, we have chosen to be able to use the local analysis in [7], [27],
etc., without unnecessary sign-confusion. This minus sign also occurs because of our sign
convention in (1.1) of course.

Remark 3.4. In Figure 1 three Schridinger tubes passing through a common point
(x0,t0) are depicted. The two on the right have a common spatial orientation, mean-
ing that each comes from a common geodesic v = v; as in (3.26); however, their speeds
come from different heights and thus do not coincide, which accounts for the separation
of the two Schrodinger tubes away from (xg,tg) on the right. The left and right tubes
in the figure have a common speed but different spatial components, which accounts for
their separation. We also point out that in parabolic restriction problems, curves of the
form (3.27) necessarily arise in the analysis due to Knapp phenomena. In the transla-
tion invariant setting, these Schrodinger curves are simply lines in directions pointing in
normal directions to relevant portions of paraboloids as depicted in Figure 2. For variable
coefficient Schrédinger problems, the analogous Knapp phenomenon was discussed in [20,
§4], and additional variable coefficient local analysis that we have exploited was developed
there.

Let us now state the properties of the kernels K% (x,t;vy, s) that we shall require. To
simplify the statements and to also most easily apply Lee’s [23] results, let us work in
Fermi normal coordinates about the geodesic z;(s) in (3.26) (see [16]). In these coor-
dinates the geodesic becomes part of the last coordinate axis, i.e., (0,...,0,s) in R"71,
with, as in the constructions of the symbols of the A%? s close to the origin. For the
remainder of the section, abusing notation a bit, x = (z1,...,2,—1) denotes these Fermi
normal coordinates. We then have

(328) dg((07 PN ,07.27”,1), (0, ey O,ynfl)) = |.’L'n,1 — yn71|7

and, moreover, on our spatial geodesic in (3.26) we also have that the metric is simply
gir(z) = 65 if = (0,...,2,_1) and all the Christoffel symbols vanish there. Thus, g;x
agrees with the standard flat rectangular metric to second order along this geodesic. See
[22], [24]. Note that in these coordinates we have (0, (0,...,0,1)) € supp A;Ue(x, &) and
so for small enough 6 we have

(3.29)  A%%(0,¢/¢]) =0 when [¢/]¢] = (0,...,0,1)| > Ccqf),
and x:(0,(0,...,0,1)) = (¢,(0,...,0,1)),

with, as before, x; being geodesic flow, and C here a uniform constant.
We can now formulate the required properties of the kernels.
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Lemma 3.5. Fiz 0 < § < $Inj M. Assume further that = v,V are as in (3.23), and
let Ki?g be the kernel of 5,\AZ‘39. In the above coordinates if co < 1 we have

(3.30) K)C\‘jg(m,t; Y,8) = AT e*”‘(dg(“J’y))2/4(t73)a>\,u(x,t;y, ) +O0NN), p=uv1,

where, if v = (o], cobl), and /ﬁo‘g is as in (3.27),

06 206
(3'31) | (2K/20 a.’Ef_l - %)ml (QH;O 3y2_1 B %)szg-,tyy,SaAv#|

< thmzﬁe—‘ﬁ‘, w=uv,v.

Furthermore, for small § and cy there is a constant Cy so that the above O(A™N) errors
can be chosen so that the amplitudes have the following support properties: If%; denotes
the projection onto M™~' of the geodesic in (2.40) and 7; when j is replaced by j',

(3.32) axu(@,tiy,s) =0, if dg(z,7,) +dg(y, 7)) = Crcob,
if k=7 when v = (co07j, cobf) and if k = j' when v/ = (co0j’, cobl’),

(333) aA7/i(z7 t; Y, S) =0 Zf ‘dg(x; y) + 2k (t - 5)| > CVOC()Ga

when p=v with k= K;Oe, or v=1v with k= K;;/UO,

as well as
(3.34) axu(z, t;y,s) =0, p=uwv,1/,

if (@1, @)+ (W15 s Yne2)| + (@1 — Yn1) + 26507 (¢ — 5)] > Cof.
Finally, for small 6o > 0 in (2.6), the O(A\™N) errors can be chosen so that we also have
(3.35) ap(z, t;y,s) =0 if ’dg(x,y) — 5| > 2000, or if Tp_1—Yn1 <0, u=rv,0
with 6 and d¢ as in (2.6).

This lemma is just a small variation on Lemma 4.3 in [7] (see also Lemma 3.2 in [4]),
and we shall use the aforementioned result from [7] and the nature of the o operators to
obtain the above estimates. We shall postpone the proof until the final section in which
we prove all the kernel estimates we have used.

Let us show now how Lemma 3.5 along with results from Lee [23] can be used to obtain
Proposition 3.3.

Proof of Proposition 3.3. To be able to prove (3.24) using Lee’s bilinear estimates we need
to make one more change of variables to isolate what amounts to a “linear direction” for
the phase functions in Lemma 3.5. In our earlier works on improved spectral projection
estimates this was done simply by choosing Fermi normal coordinates about the spatial
geodesic in (3.26). Since the kernels in Lemma 3.5 also involve a time variable, we
have to deal with our time management problem by working in what amounts to “Fermi-
Schrodinger” coordinates adapted to the Schrodinger tubes that we have described before.
As we shall see, when we use these coordinates we use a simple parabolic scaling argument
allowing us to apply the main estimate in [23]. We should also point out that the
coordinate system we are about to describe is associated to the tube ¢, in (3.27) that is
associated with the amplitude ay , of the kernel K f\of but not the amplitude other kernel

K;?S, in the lemma.

To describe these coordinates we first recall that, by (3.28), the last spatial coordinate
T,_1 measures distance along the spatial geodesic partially defining ¢,. The “Fermi-
Schrodinger” coordinates will preserve the first (n — 2) spatial coordinates but involve a
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linear change of variables in the last two coordinates (z,,—1,t) that takes into account the
609

speeds of the spatial geodesics in (3.27), i.e., 2x;°", with v = (coj, cofl) as before and
5209 as in (2.42). The “Schrodinger coordinates” that we employ are the quantum analog
of the “free-fall coordinates” in relativity theory described in Manasse and Misner [24].

‘We note that if

—(dy (7, 9))?

(336) @(‘Tvt;yas) = 4(t _ S) >

is the phase function of the kernels in (3.30), then since we are working in Fermi normal
coordinates, we have along our spatial geodesic

(3.37)
0 0 . .
%cp, 8734»80:0 if £=1(0,...,0,2,-1), y=1(0,...,0,yp—1) and j=1,...,n—2.
J j

This is not valid, though, for either of the two remaining coordinates x,_1 or ¢ that we
are currently using. We need to change coordinates so that, in the new variable, we will
have the analog of (3.37) for the (n — 1)-th variable, and, simultaneously, have that the
phase function is linear in the other remaining variable when restricted to ¢,,.
Fortunately, this is easy to do. We simply define new variables (#,_1,%) via

(3.38)  (wn_1,t) = 1265, —1) + 1 (8527, —1) = (26597 + K50 %1, —F — Fpa).
Note then, for later use that

. Tn—1, t) =— K’C T Tp—1+ KC y “ln—1 — KC ’
3.39 Tl cofy—1 2150 cof

which means that the #,_; is related to the concentration in (3.33) with k = nﬁ“a. As
mentioned before, we shall not change the first (n — 2) variables and so to be consistent
with our notation, we let

(3.40) ij=xj, 1<j<n-2

Note that (#,) is on the Schrodinger curve ¢, in (3.28) if and only if # = 0. Moreover,
we claim that our new coordinates fulfill the two additional goals for the behavior of the
phase function ¢ in (3.36) on ¢,.

So, we need to check that we have the analog of (3.37) forall j =1,...,n—1, ie.,

(3.41) Vip, Vigp=0 if 2=9=0,
as well as
(342) SO(Ov Ea 0, ,§) = (H§o9)2 ’ ({_ §)

To verify (3.41), we note that since Z; = z;, 1 < j <n — 2, (3.37) yields 0¢/0z; =0
and Op/0y; =0 when £ =g =0and 1 < j < n —2. To see that this remains true for
j = n—1, which gives us the remaining part of (3.41), we note that, by (3.28) and (3.38),

Sz (R =3+ (#n1 — Ga))?
3.43 0, oo @150, 0,0, G, 8) = LT O T ~ ,
(3.43) o( 1 Un-1,9) 1 T— 51 (Eno1 — 1)
and, consequently, by calculus, we also obtain 9¢/0Z,—1, ¢/0¥n—1 = 0 when & = § = 0.
Finally, of course (3.43) yields (3.42) as well, meaning that our goals are fulfilled.

Next, we need to make a couple of more minor modifications to prove (3.24), which,

in the notation of Lemma 3.5, after a little bit of arithmetic, can be rewritten as follows:

2n

_2n —_2
s AT 07T || Hy e || Hollpz . g = Ant2)

~ n_

(3.44) ”<T1H1)(T2H2)"L;?(T? N
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assuming Hy(y,s) =0, k = 1,2, if |s| > C'log A, where

(3.45) (T Hy ) (% / / e @LT8) g\ (757, 5) Hy (3, §) dijds
and
(346)  (ToH)(#) = am(t) / / NEETN g, (5T §,5) Ha(, 5) dijds,

We may neglect the O(A~) errors in Lemma 3.5 since in (3.24) we are supposing that
Hj(s,-) =0if |s| > C'log A.
We also of course have

~ 2
(3.47) (T1Hy - ToHo)(Z,1) = (am(t)) %
/eik(“’(i’g’g’g)ﬂp( 20N ay (5,1, 8)ax (.1,§,§) Hi (5, 5) Ha(§', §) dgdsdy ds’.

Note that by (3.32), (3.34) and (3.39) we have that ay ,(#,¢,7,3) = 0, p = v,v/ if
|(i‘1, . ,.fjn_g)| > 019, |(g1, . ,gn_g)‘ > 010 or |i‘n_1 — %-1\ > 010 As a result, in
order to prove (3.44), it suffices to control the left side when the norm is taken over sets
where |2 — (0,...,0,7)] < C20, with Cy fixed, and so, since we may take r to be 0, we
have reduced matters to showing that for sufficiently small 6 we have with C3 =~ Cs,

(3.48) H<T1H1)(T2H2)HLZKf({mscse}x[—1,1])

S AT e | Hale g =22
assuming, as above, that Hy(y,s) =0, k = 1,2, if |s| > C'log A.
Next, we note that by (3.31), (3.38) and (3.39) we have that if we use the parabolic
scaling (#,t) — (0Z,t) then

(3.49) Dgfg Laxu(03,7,00,3) = Op(1).
This is clear for u = v since then 2/@000 dxa dat corresponds to 7z, and the bounds also

hold for u = v/ since /{j"g /{EE’Q = O(#). Also note that the dllated amplitude in (3.49)
is O(A™") when |Z| or || is larger than a fixed constant.

The phase function ((%,%,7, §) does not quite satisfy the bounds in (3.49); however, it
is straightforward to remedy this if we recall that we constructed our Fermi-Schrodinger
coordinates so that (3.41) and (3.42) would be valid. As a result

(3.50) P 1,5,5) = (i, ,5,5) — (55°7)" (- 5)

vanishes to second order when £ = 0 and y = 0. This means that, after the above
parabolic scaling, we actually have

(3.51) DI, (072¢(02,1,03,5)) = Os(1) if |75 = O(1),

Clearly, in order to prove (3.48) we may replace ¢ by ¢. Also, by Minkowski’s in-
equality and the Schwarz inequality, if we define the “frozen” bilinear oscillatory integral
operators

(3.52) By* ((hiy ha) (2, 1) = (am(t))?x

At

// NEELTTRELT g,y (7,17, 8)ax, (1,7, 5) hi(§) ha(F) djdy,
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then it suffices to prove that

(3.53) |’B§:i,w(h1’h2)||Lff({\i|§€39}><[—1,1])

_2n __2
SATE 0 b e llhall 2, g = 202,

n

Note that Bi’ily,(hl, hs) factors as the product of two oscillatory integral operators
involving the (%,1,7) variables. The two phase functions are
(354) ¢§(£Ea E; ?»7) = @(‘%7 Ev ga §) and ¢§’ (ja E; g) = 95(‘%7 Ev ga gl)

In order to apply the bilinear results in [23] we need to collect a few facts about the

support properties of the amplitudes of the bilinear oscillatory integrals in (3.52) which
are straightforward consequences of Lemma 3.5.

Lemma 3.6. Let § < 1/8 as in (2.6) be given. Then we can fix co > 0 in (3.21) so that
there are constants cs,Cs € (0,00) so that for sufficiently small 0 and |Z| < Cof, with Cy
fized, we have

(355) Zf a')\,v(jja Evga §) W7 (jja E? 377 gl) 7& 07 then ‘g|7 |37| < 0597 and |g - gl‘ > 659'
Additionally, if 6o < 1/8 as in (2.6) is small enough, then for sufficiently small 8 we have
(3.56) if ax,(&,1;9,3) # 0 then |5 — 2r5°% (F — 5)| < 4009,

and if ax,(Z,59,5) # 0 then |5 — 2r5°°(F — §')| < 480,

Proof. The first assertion in (3.55) about the size of § and §’ follows trivially from (3.34),
(3.39) and (3.40). To see the assertion regarding the important separation of the g-
variables, recall that v,1/ € cof - Z?"~3, and by (3.23), |v — /| € [160,4"0]. Thus, if we
write v = (cob7, coff) and v/ = (coj’, cobl'), we can divide into the following two cases:

W) 15 —4'| > %. In this case, the spatial parts, 7; and %, of the Schrédinger curves
t, and ¢, have angle &~ 6. By (3.32) if the product of the amplitudes in (3.55) is
nonzero then we must have in our original Fermi normal coordinates that, for a fixed
constant C1, © € Tereo0(V;) N Tereos (V)5 ¥ € Toreo(V;) and y' = Torcpo(F;0). Here,
of course, 7,(7) denotes an 7-tube about 7 in M"~!. By (3.35) we must also have
dy(z,y),dg(x,y") € [6 — 600,08 + do6] for our small §; > 0 if the product is nonzero. Since
we are assuming (3.23) the two tubes of width ~ ¢ intersect at angle ~ 6 at (z,t), which
implies that in our original Fermi normal coordinates |(y1,...,Yn—2)— (Y1, .-, Yh_o)| = 6
if the above product is nonzero and ¢ and 6 are small. By (3.40), this yields the assertion
in (3.55) about the separation of § and §’ under our assumption that j # j'. Note that
the smaller § becomes we have to choose ¢y to be correspondingly small, but we are
assuming here that ¢ is fixed (as we shall do later).

(ii) [¢ — ¢'| > . In this case we have [¢ — ¢'| ~ 1. Recall that in our Fermi normal
coordinates, we have

0 0
(3.57) dy(z,y) = |Tn-1 — Yn-1], %jdg(%y), @dg(x,y) =0,
ifx=1(0,...,0,2p-1), y=1(0,...,0,yp—1),and j=1,...,n—2.
Also we know that by (3.34)
(3.58) (1, .. Tn2)| + (Y1, o Yn—2)| < Cob, if axax, #0.

Since the function dg(z,y) is smooth when dy(x,y) ~ 0, by (3.57), (3.58) and Taylor’s
expansion, we have

|dg(x7y) - (l.nfl - yn71)|7 |dg(x,y/) - (.’En,1 - y;zfl)| S 06027 if ax QX # 0;
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since by (3.35) both of the amplitudes vanish if z,—1 — y,—1 < 0. If we let 6 to be
small enough, C50? is much smaller than cof, consequently, if |(z,,_1 — Yn_1) + 2/-@009(
5)| > Cheof with C) large enough we must have that |dy(x,y) 4 265°%(t — )| > Cocof
with Cp as in (3.33), which means that a, = 0 if |(rp—1 — Yn-1) + 2nzoe(t —s)| >
Clcof for this choice of C{ (which is independent of ¢p). We similarly have a,» = 0
if [(n_1 — ¥l 1) + 2650%(t — 5)| > Cheoh. By (3.39) this means that for a uniform
constant C1 if a, # 0 we must have |Z,,—1 — Jn—1| < Cico8, and if a,» # 0 we must have
((Zn—1—F_1) —2(850%) "1 (k50? — K50) (t —5)| < Cicof. Since (3.33) and (3.35) imply that
—(t — 5) ~ & on the support of the amplitudes and thus [2(k5°?) ' (k5*? — £50?)(t — 5)|
must be larger than a fixed multiple of 6 if | — ¢'| = 1 and ay, - @y, # 0. So, in this
case, if ¢ is small enough, we must have |§,—1 — ¥,,_1] =~ 0 if ax, - ax, # 0, which
finishes the proof of the first assertion regarding the separation of § and ¢’ in (3.55) .
It remains to prove (3.56). Since we are assuming |Z| < Cyf, it follows from the
first part of (3.55) that both of the amplitudes in (3.56) will vanish if we do not have
|9, |7'| = O(0) and hence

(3.59) axy (%, 69,3) = ax (7,£9,5) =0 if [|Zno1 — Fua| > C',

for some constant C’. By (3.39)

(Fn1=Gn-1,1=5) = =(5{°") " (@n-1—Yn1 426 (t=5), —(Tn-1—yn-1) =K’ (t—5))),

and 0 (Z_1 — Gn_1) + ( — 8) = —(t — s). Since |[¢ — /| ~ 1 implies 5% — k5% = O(6),

by (3.33) and (3.59), we conclude that both amplitudes vanish if we do not have
|dg(z,y) — 267" (T — 3)| < C'6,

for some uniform constant C’. By the first part of (3.35) we obtain (3.56) if 6 is sufficiently

small. ]

Let us now prove the bilinear oscillatory integral estimates (3.53) which will finish the
proof of Proposition 3.3.

To prove (3.53), in addition to following the proof of [23, Theorem 1.3], we shall also
follow related arguments of two of us [4] which proved analogous bilinear estimates in
the 14 2 dimensional setting (one lower dimension than here) using the simpler classical
bilinear oscillatory integral estimates implicit in Hormander [19]. Similar arguments were
in the paper [5] by these two authors.

Just as in [23] we first perform a parabolic scaling as in (3.49) and (3.51) to be able
to apply the main estimate, Theorem 1.1, in Lee [23]. So for small \=*/8 < § < 1, we let
(3.60) 95 E9) = 07°G(07,£:05,5), and Of(%,1§) = 07*(03, 105, 5).
and corresponding amplitudes
(3.61)  af,(3,54,8) = ar,(02,507,5) and af . (Z,£7,5) = ar, (02,407 ,§).
Then, as we noted before

D £ agu_O,B() ,LL:I/,Z// and D ¢]_O,3() ¢1:¢0§7 ¢2:¢§/-

\9
y (3.55) and (3.56) we also have the key Separatlon properties for small enough 6

(3.62) if af ,(2,5:3,8)af, (15§ ,5) #0
then |g‘, ‘gl‘ = 0(1)7 ‘27 - gl| 2 Cs and ‘5 - §I| S 85053

B
i,
.55

with § and &y as in (2.6).
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Additionally, by a simple scaling argument, our remaining task of the section, (3.53),
is equivalent to the following for small enough 6:

(3:63) B (s ho)l| oz oyt S (0)F “Umallzg Bhallzg, 0 = 2052,

where we have the scaled version of (3.52), i.e
(3.64)  BYSE (h, ho)(2,t) = (am(t))?x

// GO @B T CETf (3,547, 8)a% 0 (3,5, ) ha (§)ha () dijdi -

To prove this, let us see how we can use our earlier observation that (3.41) and (3.50)
implies that ¢ vanishes to second order when (Z,4) = (0,0) to see that the scaled phase
functions in (3.60) closely resemble Euclidean ones if 6 is small which will allow us to
verify the hypotheses of Lee’s bilinear oscillatory integral theorem [23, Theorem 1.3] if
d,00 > 0 in (2.6) are fixed small enough.

To be more specific, let

2 2 ~
0°p - 0°p 0.5

(3.65) A(t,3) = 55,00 (0,%;0,3), B(t,3) = 97,07 ,1;0,3),
2 ~
and C(t,3) = 8578]‘0i'2k ,150,8)
Then the Taylor expansion about (Z,4) = (0,0) of @ is
(3.66) @(2,4,9,5) = LT AL, 5)§ + 2" B(t,3)§ + 337 C(t,3)% + r(3,£,7,9),
where 7(Z,; 7, ) vanishes to third order at (,7) = (0,0). So,
(3.67) Dﬂg &, 8,9,3) =0(0), if (& 7,3) =0 r(0%,1,07,3),

which means that 7 — 0 in the C> topology as 6 — 0.

To use (3.66) we shall use parabolic scaling and the following lemma, whose proof we
postpone until the end of this subsection, which says that if 4,09 > 0 in (2.6) are small
enough then the phase functions ¢z and ¢z in (3.54) satisfy the Carleson-Sjolin condition
(see [29, §2.2.2] and [33]).

Lemma 3.7. Let A(t,3) and B(t,3) be as in (3.65). Then if 5,50 > 0 in (2.6) are small
enough

9*9(0,£,0,3)
0% ;07
Furthermore, on the support of ai,y . agﬂj,, —(2A(t,5) ! = 7(%%(0,&0,5))*1 is
positive definite, i.e.,
0  ,~.\"! o - _\—1 ‘
(369) gt (_877,: (t7 8)) 57 gt (_877? (t7 S/)) 6 Z C§|£|27 Zf a’g\,u : a’?\,u’ 7é Ou
and also

(3.70) ia% i3 5‘

(3.68) det B(1, 5) = det #0, if af, -af, #0.

tgl §‘>C5i§| Zf aAl/ a’/\z/ #O

Let us use (3.66) and (3.67) and this lemma to see that we can obtain our remaining
estimate (3.63) via Lee’s [23, Theorem 1.1]. As we shall see, it is crucial for us that
— %7 (t §) is positive definite.

Note that, in addition to the § parameter, (3.63) also involves the (§,5’) parameters.
For simplicity, let us first see how Lee’s result yields (3.63) in the case where these two
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parameters agree, i.e. § = §'. We then will argue that if dp in (2.6) and hence (3.55) is
fixed small enough we can also handle the case where § # §'.

To do this we first note that the parabolic scaling in (3.67), which agrees with that
n (3.60), preserves the first three terms in the right of (3.66) since they are quadratic
Also, in proving (3.64), we may subtract 33'C(t,5)Z from ¢¢ and $3'C(t,§')% from ¢%,
as these quadratic terms do not involve . We point out that this terlal reduction also
works if § # §'.

Next, we note that, by (3.68) and our temporary assumption that § = §’, after making
a linear change of variables in Z (depending on £, 5), we may reduce to the case where
B(t,3) = I,,_1, the (n — 1) x (n — 1) identity matrix. This means for the case where
§ = § we have reduced matters to showing that (3.63) is valid where

n—1 -
. 1 0%p
3.71) %z, 9
(3.71) ¢5(%,t;9) = 8y]8yk

0,450, 8)g;gx + (2,1, 3)

= (@) + 9" A 8)g + (2,55, 5),
with 7% denoting 7¥ rewritten in the new # variables coming from B(¢,3). In view of
(3.68), (3.67) remains valid for 7. For later use, we note that if we change variables

according to § as above, then for § near § we have for

(3.72) B(#5,8) = (B(,3)) (BH3) ™) = In_1 + 0(5 - 7),

n—1 ~
- 1 o2 - -
(3.73) ¢%(%,1,§) = (x,B(£,5,8)j) + = T2 (0,F0,8)d;0k + 7 (&, T 5, 5)

2 4= 07;00k

= ¢l(z,£:9) + O(|5 - 7).

We fix § and dy in (2.6) so that the conclusions of Lemmas 3.5 and 3.7 are valid. We
can also now fix also finally fix ¢y so that the results of Lemma 3.5 and Lemma 3.6 are
valid. If we only had to treat the case where § = §’ in (3.63) then the above choice of dy
would suffice; however, as we shall momentally see, to handle the cases where § # 5 we
shall need to choose &y small enough so that we can exploit the last part of (3.62).

Let us now verify that we can apply [23, Theorem 1.3] to obtain (3.63) for sufficiently
small 6. This would complete the proof of Proposition 3.3. We recall that we are assuming

for now that § = § and that we have reduced to the case where B(f,3) = I,,_; and
C(t,8) =0 in (3.66) and so
(3.74) 04(&,6:9) = (2,9) + 55" A, 3)7 + (2,15, 3),

with 79 satisfying the bounds in (3.67).
By (3.67) and (3.74) we have

o008 o o b
(375) aj ($7t7y) - y 635( t y7 )_ y+5(9,$,t787y)7

where § — e(-; ) and its derivatives are O(f). Thus, for small enough 6, the inverse
function also satisfies

(3.76) g— (

where

(3.77) Dy&(60,%,1,53) = Os(6).
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Define, in the notation of [23],

(3.78) (&5 9) = 200 (5, i (%2 (@6 ) ()

as well as
(3.79) 03,51 (#,1:9,5) = 0543 (3,1, 0:65(, :9)) — 0543 (3, ; O b (7,15 7'))-
Even though we are assuming for the moment that 5 = §’ these two quantities will be
needed for § # §' as well to be able to use [23, Theorem 1.1] to obtain (3.63).
Then [23, (1.4)], the conditions to ensure the bounds (3.63), are
Lo -1 o
62, = 59 < :1} 17 >, on  supp (% Saxw),

>0,

as well as

(3.81)
(02504 (2. 53108 5, [02 505 (2,550 ] [03508 (2.1 0504 (2. 5:9)] 62| > 0,

55 o= 52 (z 7, 7'), on supp (ax, - ax.).

Note that by (3.67), (3.71), (3.93), (3.77) and (3.78) for small § we have

(3.82) (2(5,59) " = (22(53) " +0(9),

and also, by (3.75) and (3.76)

(3.83) 2 505(E,59) = L1+ 0(0),

as well as

(3.84) (02,3053, E9)) " = L1+ O(0).

By (3.71), (3.70), (3.78) and the separation condition in (3.55), if § = § we have
(3.85) 105.5(2,%:9,9)] >0 on supp (ax, - axu),

if 6 is small enough. Thus, in this case the quantities inside the absolute values in (3.80)
and (3.81) equal

(386)  (05(&.5:5.9). (%H(F.) " 0852, 5:9.9)) +0(0) on supp (axy - axw),
and, therefore, by (3.69) and (3.85) the conditions (3.80) and (3.81) are valid for small
enough 6 when § = §'. So, by [23, Theorem 1.1], we obtain (3.63), we obtain (3.63) in
this case.

If 5§ # & in (3.63), we must replace ¢ . by 5~ s In order to accommodate this, we
first need to use the fact that, by the last part of (3 55),

60 (2,5,0,7) = 02 5(2,53,7) + O(15— &) on supp (axy - axw).
Thus, by the last part of (3.62),
&? o(@ Gy = 67 (@ 69,7)+0(0) on supp (ax, - axy).

This means that, if we replace O( ) by O(6 + d¢) in (3.86), then the quanitity in (3.80)
is of this form.

The other condition, (3.81) involves the phase function ¢% and the associated q¥,.
However if B = B({,5,5") is as in (3.72), then we have the analog of (3.75) where we
replace the first term in the right side of (3.75) by By and the first term in the right
side of (3.76) by (t "= ‘9‘4 (t 5) + O(|s — §'|). Consequently,
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q? will agree with ¢ when ay, - ax, # 0 up to a O(|s — s'|) = O(8) error, and by
(3.72) the analogs of (3.83) and (3.84) remain valid if § is replaced by § if O(0) there is
replaced by O(6 + dg). So, like (3.80), if we replace O(#) by O(8 + dp) in (3.86), then the
quantity in (3.81) is of this form.

Thus, if d¢ in (2.6) is (finally) fixed small enough, and, as above, 6 is small enough we
conclude that the condition (1.4) in [23] is valid, which yields (3.63) and completes the
proof of Proposition 3.3. ]

Proof of Lemma 3.7. Let us first prove (3.69) and (3.70) since they are slightly more
difficult than the other estimate, (3.68), in the lemma.
If we recall (3.50) we see that
- 0%p

(3.87) A, 5) = —22(0,7,0,5 Y
. 7 g0y, 070U

(0,%;0,5),

where ¢ is as in (3.36).
By (3.43) we have

2 co0\2
C?f (0,£0,3) = (" )"
6yn—1

Additionally, by (3.38) and (3.39) we have

(3.88)

col ~ ~ cob ~ c0b ~ 2
[dg((0,...,0, foeoat), (J1y -+ Un—2, 2/{[’98 + /izoeyn_l))]
4t — 8 — Gn-1)

(3.89) ©0(0,t;7,3) =

By (3.89) we have
0?p

3.90 —_—
(3.90) 95,9

(0,£0,35) =0, if j=1,...,n—2.

The remaining part of the Hessian in (3.87) is

~ ~ cof 12
Gon) 22 (50,5 = 2 [al00 026070, (o 27S)]
9Y; Oy, 0Y;0Yk 4(t — 3)
when ¢y =---=gp—2=0and 1 <jk<n—2.
To compute this, we recall that the Schrédinger coordinates (%,t) in (3.39) and (3.40)
come from the Fermi normal coordinates (z1,...,2,—1) about the spatial geodesic Vjs
and that in these coordinates 7; = (0,...,0,t) and on this geodesic the metric is d;

(rectangular) and the Christoffel symbols vanish there as well
As a result, in the Fermi normal coordinates, we must have that the full Hessian of
the square of the distance function satisfies

s cof 1 2 : cof 7
D00 [dg((0,...,0,265°°%),y)]" = 20,1, if y=1(0,...,0,2k7°"F).
This along with (3.40) means that (3.91), the remaining piece of the Hessian in (3.87),
must be of the form
0% 1
Y . 5,4 0(1), if1<jk<n-—2.
5,05, 3 =5 TOW J

Note that since

(G, Tng) = dg((0,...,0,265°%), (§1, .. ., G2, 25°75"))
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is smooth we also obtain

(3.92) 0 Py O£~0§)—7716- +O(t-35H, 1<j,k<n—-2

' oL 0g; 05, T 2(i—a)2 = hEEnTS

Therefore, by (3.65), (3.87), (3.88), (3.90) and (3.92), we have

N o, - . o Pp - N
3.93) —2(t—3)*=A(f,5) = —2( - 5)*= £50,8) = J coo +O(|t — 3
(3.93) (t—3) 5 (t.5) (t—3) o7 8505, & 18) = J o0 +O(Jt = 3)),
i J 0 =diag (1,...,1,(x%)?).
14

Note that REOG € [1/10,10]. Therefore by (3.56) if § is fixed small enough in (2.6) and if
o there is smaller than 1/8, by (3.56), we have that —(9A(¢, 3)/0t) " is positive definite
on the support of the amplitudes in (3.64). Thus, we obtain (3.69) and (3.70) for some
cs > 0. Indeed, one may take cs ~ 62,

The proof of the other (3.68) is very similar. If we use (3.36) we see that since, by (3.35)
and (3.56), dg(x,y) = |t — s| = § on supp a?\’j ~a‘§7y,, we may assume that |z|, |y| < C6.
We then have

(dg(z,9))?* = |z = y* +r(z,y), where r(z,y) = O((|z| + |y])|z — y|*) and r € C=.
Therefore, by (3.38), (3.50) and (3.39), if Z = (%1, T2, ..., Zn—2) and § = (§1, T2, - - -, Yn—2)
(56")(Fn1 = Gu1)” + |7 — > +7(2,9)

4<t -5+ (SEn—l - gn—l))

Consequently, by the proof of (3.69) and (3.70) we have that for J cjo as above
4

(3.94)  @(3,4;9,8) = — (k") (- 9).

BES) = -2 (070,58 = —— 7 00+ 0(1)
yS) = A% ~ y iy §) = — 7= ~ C )
007 2(t —3) wg
which yields (3.68) if § is small enough. O

4. Kernel estimates.
In this section we finish up matters by proving the various kernel estimates that we
have utilized.

4.1. Basic kernel estimates on manifolds of nonpositive curvature
Let us prove the kernel estimates that we used on A, .

Proposition 4.1. Let Sy(z,t;y,s) denote the kernel
n(t/T)n(s/T)B>(P/N) (e 40 ) (a, ).

Then if M = M™ ' has nonpositive sectional curvatures and T = colog\ with ¢y =
co(M) > 0 sufficiently small, we have for A > 1

(4.1) 1Sx(z, 5, 5)| < CA™Z [t — s| "= exp(Cugt — s)).

To prove this we note that for fixed ¢ and s, 52(P/)\)e*i(t’s))‘_lA9 = BZ(P/)\)ei(t*SV‘_l‘P2
is the Fourier multiplier operator on M™~! with

(4.2) m(\t — s;7) = B2(|r] /)= T

‘We have extended m to be an even function of 7 so that we can write

(4.3) BE(P/N)e i t=9A " Ay — (97)1 / m(\t — s;7) cosry/—A, dr,
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where

(4.4) A\t — ;1) = /OO eI B2(|r|/A) AT g
—o0
We note that, by a simple integration by parts argument,
(4.5) Ot —s;1) = ONNA+ 7)™ M)VN, if [t —s| <1and |r| > Cy,
with Cy sufficiently large. Similarly
(4.6) &m0\t —sr) =0 N1 +|r)"NV)VYN,
if [t—s|e€[2771,29], and |r| > Co27, j=1,2,...,

with Cp fixed large enough. Since S(|7|/A) = 0 if |7| ¢ [A/4,2)] one may take Cy = 100,
as we shall do.
To use this fix an even function a € C§°(R) satisfying

a(r)=1, |r| <100 and a(r)=0if |r| > 200.

Then by crude eigenfunction estimates and the Weyl formula, if we let
(4.7 Syo(z,t;y,s) = (2m) 7! /a(r)m()\,t —s,7)cosrPdr
we have
(4.8)  Snolz,t;y,s) — (B2(P/A)e =N "Aa) (g y) = ONN)VN if [t —s] <1,
and if
(4.9) Sy iz, t;y,8) = (2m)~? /a(2_jr)m(/\,t —s,r)cosrPdr
we have
(410) Sy (o613, 5) — (BA(P/N)e =P80 (g, ) = O M) ¥ N
if [t—s|e271,29], j=1,2,....
Consequently, we would have (4.1) if we could show that
(4.11) 1Sxo(z, t;y, s)| < )\%1“ - s|‘an1 when |t —s| <1,

as well as

(4.12) |Sy(z,t;y,8)] < AT exp(C27), if |t —s| € [2971,27]
with j=1,2,... and 2/ < ¢glog

with ¢g = ¢o(M) fixed small enough.

To prove (4.11) and (4.12) we shall argue as in Bérard [2] (see also [28, §3.6]). Just as
in [2], [6], [31] and other works we shall want to use the Hadamard parametrix and the
Cartan-Hadamard theorem to lift the calculations that will be needed up to the universal
cover (R"~1,g) of (M"~1,g).

We therefore let {a} = T' denote the group of deck transfermations preserving the
associated covering map x : R*~! — M""! coming from the exponential map at the
point in M™~! with coordinates 0 in ) in §4 above. The metric § on R”~! is the pullback
of the metric g on M™~! via k. Choose a Dirichlet domain D ~ M™~! for M~ centered
at the lift of the point with coordinates 0.
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As in earlier works (see [28]) we recall that if & denotes the lift of x € M™~! to D,
then we have the following formula

(4.13) (costP)(z,y) = (costy/—Ay)(x,y) = g (costn/—Dg)(Z, a(y)).
ael
As a result, if we set

(4.14) Ky o(Z,t;79,8) = (27r)*1 /a(r)m()\,t —87) (COST ng)(i,gj) dr,
we have the formula
(4.15) Do, ty,5) = Y Kol t; (), 5))-

a€el’

Similarly, if we set

(4.16) Ky ;(Z,t;y,s) = (2m)~! /a(27j7‘)ﬁ1(>\,t —s7) (cosr —Ag)(i‘,gj) dr,
we have
(4.17) Sy j(z,t;y, ) ZKA]mta (9), s).
acll
Also, by Huygen’s principle and the support properties of a, we have that
(418) K)\,O(LZ',]]) =0 if dg(i‘,g) > Cl, and K)\’j(.’f',g) =0 if dg(i‘,g) > 012j
for a uniform constant C;. Based on this, we conclude that the number of non-zero
summands in the right side of (4.15) is O(1) since a(D) N /(D) =0 if o # o/. Also, by
simple volume estimates, the number of o € I' for which d3(D, a(D)) < p is O(exp(Cp))
for a uniform constant C'if 4 = 27, j = 1,2, ..., and so the number of nonzero summands
in the right side of (4.16) is O(exp(C27)). As a result, we would obtain (4.11) if we could
show that
n—1 n—1
(4.19) [Kxo(Z,t;9,8)| <CA = |t—s|” 2, if |[t—s| <1,
while (4.12) would follow from the estimate
(4.20) |K»;(Z, 13, 8)| < CA™7 exp(C27),
if |t—s|e[297127], j=1,2,...,27 <colog ),

with cg = ¢o(M) sufficiently small.

To prove these two estimates, we can use the Hadamard parametrix for 92 — Aj since
(R"~1, §) is a Riemannian manifold without conjugate points, i.e., its injectivity radius
is infinite. Thus, we can use the Hadamard parametrix to write for # € D, § € R*™! and
|r| > co >0

(4.21) (cosr Zwu T, )Wy (r,2,9) + Rn(r, 7, 9)

where w, € C®°(R"~! x R*~ 1),

(4.22) Wo(r,#,9) = (2r)~ (=1 / '3 (@& cos (€| de,
Rn—1
while for v =1,2,..., W, (¢, Z,7) is a finite linear combination of Fourier integrals of the
form
(4.23)

/ et da@DEeE Il (1)) de, with oy, (1) =0, for 7 <1and #a,(r) <7779,
Rn—1
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and, if Ny is given, then if N is large enough,
(4.24) |01 R (r,2,9)| < Cexp(Cr), 0<j < No

for a fixed constant C. Furthermore, the leading coefficient wq(Z, §) reflects the geometry
of (R"71, ). Specifically, in geodesic normal coordinates about &

wo (2, §) = (det 91‘;‘@))71/4-

Thus, if in geodesic polar coordinates the volume element is given by
dVy(§) = (Alr,w)" “drdw, r = dy(%,7),

then o

wo(Z,9) = (r/A(r,w)) = .
By the classical Giinther comparison theorem from Riemannian geometry (see [12, §II1.4])
(4.25) wo(Z,9) <1,
and, moreover, for later use, A(r,w) > + sinh(Kr) if all the sectional curvatures are
< —-K? <0, and so
(4.26) wo(%,9) < Cxnp ™

if d;(#,9) ~ p and all the sectional curvatures of M" " are < —K? < 0.

The other coefficients in (4.21) are not as well behaved; however, Bérard [2] showed that
if Ny is fixed

(4.27) 05w, (%,7)] < Cexp(Cr), |B,v < No, 1 =dg(&,7),

for some uniform constant C' (depending on g and Np).

The facts that we have just recited are well known. One can see, for instance, [2] or [28,
§1.1, §3.6] for background regarding the Hadamard parametrix, and [31] for a discussion
of properties of wyg.

Let us next use the Hadamard parametrix to prove (4.19). By (4.21), it suffices to see
that if we replace (cosry/—Aj)(Z,7) in (4.14) by each of the terms in the right side of
(4.21) then each such expression will satisfy the bounds in (4.19).

Let us start with the contribution of the main term in the Hadamard parametrix which
is the v = 0 term in (4.21). In view of (4.22) and (4.25) it would give rise to these bounds
if

(4.28) (27)" / /{R 450 cos(rle]) a(r) (A, — s 7) drde

= O(
However, by (4.2) and (4.5) and the support properties of a, if [t — s| < 1

(4.29)  (27)” / /[R 93908 cos(r|¢]) alr) m(\, t — s;7) drdé

—1
2 ) when |[t—s| <L

= (ZW)‘l/ / e (@D cos(r|€]) (N t — s;7) drdé + O(AN)
—00 [Rn—l

= [ e g et e g o)
|RTL1

A simple stationary phase argument shows that the last integral is O(/\"T_1 |t — s|’nT_l),
and so we conclude that the main term in the Hadamard parametrix leads to the desired
bounds.
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To estimate the contributions of the higher order terms v = 1,2, ..., we note that by

the first part of (4.18) we may assume that d3(Z, §) is bounded. So, by (4.23) the higher
order terms would lead to the desired bounds since

(430) (2m)" [ [ Eme A, (€)) alryi(ht - sir)drs
7/ z zy)5152(‘€|/)\) i(t—s)A g2 o, (|€|)d§+0()\ N), if |t—s| <].
Rn— 1

and by (4.23), together with a stationary phase argument, the last integral is O (A 7‘”|t—

7).

We also need to see that the remainder term in (4.21) leads to the bounds

S

(4.31) /OO a(rym(Xt —s;r)R(r, Z, ) dr

— 00

- / T B (el N [a(R(- 5, )] () dr = O(NT), i dy(#.§) = O(1).

By (4.24), the last factor in the integral in the right, which is the Fourier transform of
r—a(r)R(r,Z,7), is O(1) if d5(Z, §) = O(1). So, by the support properties of 3, the last
integral in (4.31) is O(\) = O(A"T"), as desired, since n > 3.

Since each term in the Hadamard parametrix has the desired contribution, the proof
of (4.19) is complete.

Similar arguments will yield (4.20). We need to see that if we replace (cosry/—Ag)(Z, §)
in (4.16) by each of the terms in the right side of (4.21), then each will satisfy the bounds
in (4.20) if d3(7,9) < C27 and |t — s| € [2771,27] with j = 1,2,... and 27 < ¢glog\ as
above.

By (4.6) and (4.25) and the above argument, the ¥ = 0 term in the Hadamard
parametrix will lead to a contribution of

n—1

(27T)_(7L—1)/ eidg(f,’!?)ﬁlei(t—s)A*1\5‘252(|£|/)\) ¢ + O()\_N) _ O()\T),
Rn—1

by stationary phase and the fact that we are assuming |t — s| > 1. By (4.27) and
the above arguments each of the v = 1,2,... terms will have contributions which are
O\"T ¥ - exp(C27)) = O(A"T) if 20 < ¢olog A with ¢o > 0 small enough. If we
repeat the argument above for the contribution of the remainder term, we see that the
contributions here will be of the form

[ T B (el /)N 0@ R(- 5, 9)] () d,

which, by (4.24) and the support properties of a, is O(Aexp(C27)) = O(A"% exp(C2%)),
as desired.

Since each term in the Hadamard parametrix has the desired contribution, the proof
of (4.20) is complete, which finishes the proof of Proposition 4.1.

We should point out that the small |t — s| estimates are universally true as in [11].

4.2. Estimates for kernels of microlocalized operators
Let us prove the kernel estimates, (2.69) and (2.70), that we used in the proof of
L9 (A_)-estimates.
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Proposition 4.2. For each m € Z pick v(m) € Z*"~3 as in (2.46) and let
(4.32) Ky(z,t,m;y,s,m’) =
() ()(A,, 0 (B2(P/N)e 9% ) o (4l ) ().
Then if M = M™~' has nonpositive curvature
(4.33) [Kx(@,t,m;y,s,m')| < OX"T |t — |72,
provided that |t — s| < colog A with ¢o = co(M) > 0 sufficiently small. Moreover, for such
|t — s| we have
(4.34)  |Ka(z,t,m;y,s,m')| < CA*T |t —s| "N VN,

if |t —s| > 1 and all the sectional curvatures of M" ! are negative.
The uniform constants C = C(M™~') do not depend on the particular choice of the v(m).

Proof. Since, as we mentioned before, the kernels of the A% operators satisfy the uniform
bounds

(4.35) / A% (2, )] da, / A% (2,y)|dy < C,

by Proposition 4.1, we obtain the above bounds when |t — s| < 1.
Also, by (4.35), if we let

(4.36) Kx(z,t,m;y,s,m') =
(D () (A2 0 (B P/ 950 ) (@), v = v(m),

it suffices to see that this kernel, which does not include the microlocal cutoffs in the
right satisfies the bounds in (4.33) and (4.34) when |t — s| > 1.

Let us start by proving that (4.36) satisfies the bounds in (4.34) for [t —s| > 1 if M"~1
has nonpositive curvatures.

To do this recall that, by (2.42) and (2.46) with 6 = 6y = A~'/% | if v(m) = (6pk, Hpl)
then

(4.37) A% (x,D) = AP (x,D) o b(AT/B(P — A&0)), KD =1+60f, |0] SO,
it A% (z,D) = A% (z,D)o T(P/\),
with b € C§°((—1,1)) and T as in (2.43). Here the Aio operators localize at scale

0o = A~1/® about a geodesic 7, in Q due to (2.37)-(2.41).
By (4.37) we now have the following variant of (4.3)

(4.38)
AL o (BA(P/N)e N B0y = A0 o (B2(P/A) BTI(P — Afe)) N )

= ((m " [t = si) (A o cosry/=B,) dr),

if now (4.4) is replaced by

(4.39) (N t—sr) = / eI B2(17]/A) BT/ (7] — ARD0))e AT g

— 00
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By a simple integration by parts argument we have the following analog of (4.6)

(4.40)  IFrng(A\t—s;7) = ON N1+ [r]) V) VYN

it |t—s| <cologA and |r| > 100c¢ log A.
Thus, if a is as in the proof of Proposition 4.1, since the dyadic operators flz‘) have kernels
as in (4.35), if we insert a factor of (1 — a(r/colog X)) into the integral in the last term

in (4.38) the resulting kernels will be O(A™") for all N. So, we have reduced the proof
of (4.33) to showing that we have the kernel estimates

(4.41) (Wais)(@,y) = ONT |t —s|75), if 1<|t—s|<cologh,
for small enough ¢¢ > 0 if
(4.42) Wiis = (27)7 " /a(r/co log A) me(A, t — s;7) (flzo cosTy/—Ay) dr.

To estimate (4.41), we shall argue as in the last subsection. We first lift the calculation
up to the universal cover exactly as before by rewriting

(443) W)\,Z,t*é‘(xv y) = Z W)(\l,l,tfs(fi'v g)a
ael

where

(4.44) WX, (2,9) =

(o)
(2m)~t / a(r/ecolog A) me(A, t — s;7) (AZO cos rw/—Ag) (Z, a(g)) dr,
—o0
and Z, § denote the lift of x,y, respectively, to the universal cover (R"~!,g). By the
support properties of a and Huygens principle

(4.45) Wieo o(@a(@) =0 if dg(# () = Ceglog A,

with C' being a fixed constant.

In the last subsection we had to deal with the fact that the sums that arose after
lifting the calculations up to the universal cover involved O(exp(CcylogA)) terms. Here,
because of the v = (k, ) localizations, it will turn out that, given |t — s| > 1, there are
only O(1) summands above which are nontrivial.

Let us start by exploiting the localization coming from the flzo operators which localize
about the geodesic 7, in . If we argue exactly in [6], just by using this operator and ele-
mentary arguments involving the calculus of Fourier integral operators and Toponogov’s
triangle comparison theorem, we shall be able to see that the overwhelming majority of
the terms in (4.43) are O(A~/2), which is much better than the bounds posited above.

To do this, just as in earlier works we start by modifying the coordinates in €2 so that
the 0 € 7,. Then, as in [6], we let 4(t), ¢ € R denote the lift of the geodesic 7, to the
universal cover and

Ta(3) = {e: d3(3,%) < R}.
Then, just as in [6], if R is fixed large enough and a(D) N Tr(¥) = 0, with, as before,
D ~ M"™~! being our fundamental domain, then the summand in (4.43) involving o must
by O(A™1) by Toponogov’s theorem and microlocal arguments. This is exactly how (3.9)
in [6] was proved, and one can simply repeat the arguments there to obtain this bound.

Since there are O(A\'/?) non-zero terms in (4.43) if co in (4.44) is fixed small enough,
we obtain in this case

> W —o(@,9) = ONY2), if 1< |t —s| <cologh,
{a: a(D)NTr(5)=0}
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which is much better than the bounds in (4.41).

In order to obtain (4.41) we still have to deal with the terms for which a(D)NTr (%) # 0;
however, fortunately for us, by (4.45) there are only O(log |t — s|) such non-zero terms in
(4.43). Having reduced out task to only considering such summands we no longer need

to use the microlocal cutoff flzo. Since it satisfies the bounds in (4.35) we would have
(4.41) if

(4.46)
Z (2m) 1 / a(r/colog A) me(A\ t — s;7) (cosr\/—Ag) (Z,a(g))dr

{a: a(D)NTr(7)#0} >

= O\ T |t—s|~"T), if 1<|t—s|<colog
To do this, just like before, we shall use the Hadamard parametrix (4.21). We need to
see that the contribution of each term gives a contribution satisfying the these bounds.
If we argue as before, and use (4.23) the contribution of the higher order terms to
(4.44) will be a linear combination of terms of the form

(4.47)  (27) " w, (7, (7)) / b / etla(@a@)er el (1¢])a(r/colog \)
X me(N\, t — s;r) dédr.

Assuming as we are that |t — s| < cglog A, modulo a O(A™") term, just as in (4.30), this
equals
(4.48)
wy(Z, 04(?3))/ BRIEI/ MDA/ (Je] = Arfe)) et @e a,, ((g]) im0 TEE g,
Rn—1
By an easy stationary phase calculation if [t—s| > 1 the last integral is O(A%*”) in view
of the last part of (4.23). Since, as we noted before there are only O(log \) summands
in (4.46), we conclude that the contribution of the higher order terms, v = 1,2,..., in
Hadamard parametrix will be O(A%’%), which is much better than we need for (4.46).
We next notice that, similar to (4.31), the contribution of the remainder term in (4.21)
will be

/_ B (NI T (T (| — Ak)) [al(eo log \) "N R( -5, §)](r) dr.

By (4.24), the last factor in the integral is O(exp(Ccolog))) < A/16 if ¢ is small
enough. Since the rest of the integrand is bounded and supported on a set of size A7/%,
we conclude that the contribution of the remainder term in the Hadamard parametrix
to (4.41) also not only satisfies the bounds in (4.46), but, moreover, like the above terms
for v =1,2,... in (4.21), satisfies the improved ones in (4.34). Indeed, its contribution
will be O(A'%/1610g \) for such cq.

We still have to deal with the main term in the Hadamard parametrix, i.e., the con-
tribution of the v = 0 term in (4.21) to (4.47). Arguing as before, the proof of (4.46)
would be complete if we could show that

(4.49) > wo(i,a(z}))/ 1 B2(IEl/X) b8 (€] — Akp0))
{a: a(D)NTr(5)7#0} R
x cos(r|¢])eids @@ gilt=s)ANE gy

=0T Jt—s|7"7), if 1<|t—s|<colog.



STRICHARTZ ESTIMATES ON NEGATIVELY CURVED MANIFOLDS 49

To obtain (4.49) we shall use the fact that for |t — s| > 1 we have:

(4.50) / B2(I&l /BB (] = Ar))eis @@ ili=A IR ge — O(A~N) YN
R"_l
if dy(Z, () & Lo = [2]t — s|(5 — CATYE), 2]t — s|(k + OXTY®)], if K = K10
with C' large enough, and

(4.51)
[ BT ] = an)eitaEe@e TR g — o - 5|7,
Rn—1

if dy(z,0(9)) € Lisn, k=K.

The first estimate just follows from a simple integration by parts argument. For if ¢ =
dg(Z,9)& + (t — s)A71¢[?, then, if C in the definition of I; s, is fixed large enough,
|Veo| > A\71/8 if dy(3,9) ¢ I..s, and, also, derivatives of the amplitude of the integral
are O(A~7/8). Thus, in this case, every integration by parts gains a power of \=3/4,
resulting in (4.50). The other estimate, (4.51) just follows from stationary phase.

If we note that the interval I; ;. has length O(|t — s| A\™*/8) which is much smaller
than 1, if as above we assume that |t — s| < ¢glog A, we conclude that there can only be
O(1) terms in (4.49) which are not O(A~%), which leads to (4.49) since, by (4.25) wy, is
bounded.

This completes the proof of (4.33).

To prove the much stronger bounds (4.34) which require that M™~! have negative
sectional curvatures, we note that the contribution of all of the terms in the Hadamard
parametrix other than the main one, corresponding to v = 0, involved a A-power im-
provement of what was needed for (4.33) and thus lead to bounds of the form (4.34) since
we are assuming that |t — s| = O(log A). Thus, to prove (4.34), it is enough to show that
under these curvature assumptions we have the analog of (4.49) with O()\nT_1 [t — s|_"T_1)
replaced by O(A"z |t — 5| =) for every N. To do this, we also use the simple fact, which
follows from an integration by parts argument, that we have the O(A~") bounds in (4.50)
if dy(7, a(g)) ¢ [C] |t —s|, C1|t—s|] with O} fixed sufficiently large. In view of (4.26) each
of the O(1) nontrivial terms in the sum in the left side of (4.49) must be O()\TLT_1 [t—s|=)
for every N, as desired. This completes the proof of Proposition 4.2. O

4.3. Estimates for kernels involving local auxiliary operators.
Let us prove the kernel estimates we used in §3.

Proof of Lemma 3.5. Let us now prove Lemma 3.5, which allowed us to use parabolic
scaling and results from [23] to obtain the bilinear estimates (3.63). This lemma follows
from a straightforward variation on the stationary phase arguments used to prove [29,
Lemma 5.1.2]. Moreover, Lemma 3.5 is essentially Lemma 3.2 in [5] or Lemma 4.3 in
[7], and in fact the latter result almost immediately gives our results given how we have
constructed the local operators in (2.5).

We first note that the kernel of our local operators are given by

(4.52) Gx(z,t;y,s) = (Booy)(w, t;y,s)

= (2m) 72 // 61-(#5)76")‘1/271/2B(T/)\) 6(r) (Boe ) (z,y) drdr.
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Since (r,z,y) — (B oe P)(z,y) is smooth when d,(x,y) # |r| and & is as in (2.6), by
a simple integration by parts argument,

(4.53) Gr(z,ty,8) = ONV)VN if |dy(x,y) — 5] > 2506

This leads to the first part of (3.35) if 6 is small since the kernels of our microlocal cutoffs,
Al satisfy

(4.54) AL (z,y) = ONNYVN i dy(z,y) > 19,

for a uniform constant C; since we are assuming that A2« 28 <9, Also, since the
symbols A%?(z,£) = 0 if £ is not in a small conic neighborhood of (0,...,0,1) € R*! it
follows that (r, z,y) — (Boe™ "0 A%%)(xz,y) is smooth when z,,—1 —y,—1 < 0 and 6 # 0,
which yields the other half of (3.35) via another simple integration by parts argument.

Next, we recall that, by (2.46) A%? = A;“e(x, D) oAz"e(P), where A; localizes to a cof
neighborhood of a geodesic 7; € {2 about which we have chosen Fermi normal coordinates
and A%%(P) is the “height operator” given by (2.42). The other operator A%? localizes
at scale cofl to a geodesic 7, and height operator AZ?G which are 6-close to the above.

Next, let us use the fact that, by Lemma 3.2 in [4] or Lemma 4.3 in [7],? if we just
consider the localizations coming from the ones arising from geodesics, we have, for w ~ A,
that the following kernels on M™~! satisfy

(4.55)  (G(w—P)o A™)(z,y) =w" b, 4(w;x,y) + ONN), 1= 3,7,

where the amplitude satisfies a, 9 = 0 if (3.32) is valid, and, additionally, since we are
working in Fermi normal coordiates about 7
(4.56) |8Z;8§n_185;_1Df’yab,g(w; z,Y)| < Cikwp w*iﬁf‘m, t=73,7.
If ¢ = 0, this just follows [7, Lemma 4.3] and our choice of coordinates. In order to get the
cob-scale concentration as in (3.32) that we used in the last section, we apply [7, Lemma
4.3] with 0 there replaced by cof. The fact that we also have a w™! improvement for each
w-derivative just comes from the fact that if we use parametrices for e~ to represent
e~ wdg(#:9) times the right side of (4.55) as an oscillatory integral in the standard way,
such as in [7], each w-derivative brings down a factor of the phase function (normalized to
vanish at the stationary points) and so results in a w™! improvement, just as in standard
stationary phase with parameters results (see e.g., [29, Corollary 1.1.8]).

To obtain (3.32) for our kernels, we first note that, by (4.52) and (2.46),

(4.57) (620 AX%) (2,5, 9)
= ([@n [ en 5202 - o ap®o fr/ndr] o A7),

If we consider the kernel of the operator inside the square brackets, by (4.55), we can
write it as
(4.58)

n—2

(2,”)71 / eir(tfs)()\,r) I

NPT 2o (@) g (A2 0 ) B(r/A) dr + O(AY)

= (271.)—1>\n/2/ ei)\[T(t—S)+Tl/2dg(337y)]aj’9()\7_1/2; ,y) T%B(T)dT n O()\_N)7

—00

_ ﬂ,fl/\n/Q/ ei)\[Tz(tis)Jerg(I’y)]aj’Q()\T;x, y) 7_n/2 5(7_2) dr + O(}\*N)7
0

2In [7] different notation was used to denote the pseudodifferential cutoff B due to the semiclassical
notation there.
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where a; g is as in (4.55) and so vanishes when z or y is outside a O(cof))-tube about 7;.

Since the kernel of A;Oe also satisfies (4.54), by combining (4.57) and (4.58), we obtain
(3.32) for v = (cpbj, cofl). The same argument gives us this for v/ = (cobj’, co0?').

Next, let us use (4.56)—(4.58) to prove the remaining parts of Lemma 3.5 saying that
the kernels are also O(A~") in the regions described by (3.33) and (3.34) and that outside
of these and the ones in (3.32) and (3.35) (where we already know this), they are as in
(3.30) and (3.31).

In order to do this we argue as in Hormander [18] or more specifically as in [29, §4.3)
to see that the we can write the kernel of the height operators, m = £, ¢, as

(4.59)
AR (2, y)

= /R OB ((eofN) T (p(, €) = M) Y (p(w, €)/N) alw, v, €) d§ + O )

=t [ O () (oo €) = ) Yo €) a5 ) dE + O ),

where b € C§°((—1,1)) is as in (2.42), T as in (2.43), and p(z, &) is the principal symbol
of P, q € SRO, (2m)~(=1 g € Sf,é and ¢ is homogeneous of degree one in & and satisfies
(4.60) (2, y;6) = (x —y,€) + O(lz — y*[¢]), on supp q.

So, in particular,
2

Ty
0x0€
Indeed, to see this, one recalls that the Lax parametrix allows to write for small |¢|

(eitP)(m7y) _ /eitp(m,y;ﬁ)+itp(m,§)q(x,y7t;§) de,

(4.61) Vep=0 <= z =y, and V,p =¢ as well as =1, 1if z=uy.

for q € 5(1)70 solving a transport equation and so (27)~ (=1 — ¢(0, z,y;€) € Sié. Using
this, and the fact that the Fourier transform of 7 — b((cofA) ™' (7 — Ak2?)) Y (1/7) is
O(A~Y) and rapidly decreasing outside of a fixed interval about the origin, allows one to
argue as in [29, §4.3] or the previous two subsections here to obtain (4.59).

In the regions where we do not already know that the kernel K)C\‘j/f in (3.30) is O(A™N),

by (4.57), (4.58) and (4.59), we can write

(4.62) Kifﬁ(%y)zc)\%/ [)\n—l/ eiA[rdg(m,z)w(z,y;&)]aw()\T;sz)T%B(Tz)
0 R

2(n—1)
X b((coB) " (p(2,€) — KON T (p(2,€) /N)q(z, y; A)dzdE | €T ) dr,
= l/vl/a 2 :jvj/a m :&E/,

If we consider the oscillatory integral over R2("~1) in the square brackets here, the phase
function is

(b(Z, 5) = (b(mv Y, Tz, 6) = ng(xv Z) + (P(Z, Y; 5)
It has a unique stationary point when
y=2z and 7V.dy(z,2) = —V.p(z,y;§) = —¢,

with the last inequality coming from the second part of (4.61). This stationary point
is non-degenerate by the last part of (4.61), and ¢ = 7dy(x,y) there. Also, since



52 MATTHEW D. BLAIR, XIAOQI HUANG, AND CHRISTOPHER D. SOGGE

p(z, V.dy(z,2)) =1 and p(z, &) = p(z, —¢), we conclude that
(4.63) T=p(z,§) and ¢ =0 when V,¢0p=0.

Since § > A~1/8 > \=1/2 we may use (4.61) and (4.63) along with stationary phase to
evaluate A" ! times the oscillatory integral inside the square brackets in (4.62). It must
be of the form
(4.64)

e )G, (A, y) T2 B(T%) b((cod) M (T — Ki3”)) A, y; AT)
T2

e/ (@ B( )b ((009) (T - /{#{%)T(T/A)q(y, Y; —ATVydg(2,y))

Ya,o(A;2,)
+ O34,

Here @, satisfies the bounds in (4.56), like b, the smooth function b vanishes outside of
[—1,1], and, finally, § € S?,o-
If we combine (4.62) and (4.63), we conclude that

n o~

(4.65) Kcoo(x y) =cA? / eNTda@ AT (=g o (Ariz y)7E B(r?)
X ((009) Yr— Iicoa)) J(x,y; M) dr, p=v,v, 1=34,5', m=41/.

Now we shall prove (3.32)-(3.34), by a simple integration by parts argument, we obtain
(3.33) from (4.65), and, by using the properties of the amplitude function a, g(A7;,y),
we have the assertion in (3.34) that the amplitudes are O(A\~") when |(z1,...,z,_o| +
|(y1,-..,Yyn—2)| is larger than a fixed multiple of 6 for both u = v,/ since [v —1v'| = O(6).
For the last part of (3.34), saying that the amplitudes are also trivial when |(z,_1 —
Y1) + 265°% (t — 5)| is larger than a fixed multiple of 6, we use the fact that d,(z,y) =
ZTp—1 — Yn—1 + O(0) in our Fermi normal coordinates if (3.35) is valid and x,y are in a
O(0)-tube about 7; as in (3.32). By (3.34), along with the earlier steps, we conclude that
these kernels are O(A™%) in the regions described by (3.32)-(3.35).

Also, since the phase function in (4.65) has a unique stationary point when 7 =
—dg(x,y)/2(t—s) which is non-degenerate, and since the phase equals —(d,(z,y))?/4(t—
s) there, we conclude that the kernels in (4.64) must be of the form (3.30). It is also
straightforward that the amplitudes must satisfy the estimates in (3.31) in the special
cases where both my and msy are zero due to (4.56).

To prove the estimates (3.31) involving (my, ma) # (0,0), we first note that

(dg(,9))2/A(t = 5) + Ty (2,y) + T2(t = ) = (¢ = 5) - (7 + dy(2,9)/2(t = 5))”,

and, also, by (3.34) and (3.35) t — s & —§ when the kernel is non-trivial. Therefore, by
(4.65), the amplitude in (3.30) is of the form

(4.66) axu(z,t;y,s) =
1 o —iaT2 s—t 1/2d T, ¢ dg(x,
Az /_ € A h/\,L,O (x7t§y78; ( ( )2(75 S)( y))7 (s— t)}/z(. 9( (S_t)1/2[“{7720+ 2(15_3))])) dT,

M:V:(j7k)7y :(jﬁel)7 LZj’j’? ng’el,

with
(4.67) ha,o(x, tiy, s;upr)
= ao(Mu/(s = )% 2,y) (uy /(s = )/2)? B(u? /(s = 1) G, y; /(s — £)M2) b(r).
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Here w4 = u if w > 0 and 0 otherwise. What is impor:cant foNr us and follows from the
fact that a, ¢ satisfies(4.56), the support properties of b and 3, as well as the fact that
s —t is bounded away from zero and ¢ € S?’O, is that we have

(4.68) hao(z, tiy, s;usr) =0 if Ju|+|r| > C or |ul <O,
for some fixed C = C§, and, moreover
(469) Dﬁls,u,r,mn,l,yn,l (H‘Dilyy/)ﬁ2 hA,L,G (1‘7 t; Y, S5 U; 7") = 051,52 (1)

Let us now use this to prove (3.31) for (mq,mg) # 0. We shall first consider the special
case where = v and on z,y € ¥;, which is a portion of the (n — 1)-axis in the Fermi
normal coordinate system in which we are working. We then have dg(z,y) = Zp—1—Yn—1
if the kernel is nontrivial by (3.35). Note that (3.33) tells us that the amplitude ay , in
(3.30) is also very highly concentrated on the Schrodinger curve where we also have
Tpo1—Yn_1 = —2m;oa(t — s). With this in mind, let us prove (3.31) when =0, mz =0

and m; = 1 and we are on this Schrédinger curve. We then have —d,(z,y)/2(t—s) = Iigoa.
In this case we take x¢0¢ = /f;‘)e

(3.31) for this special case if

,t=jand p = v in (4.66) and see that we would have

(4.70) /e*W (Buhnio) (@, tiy, 857+ (s =) 265°% ((s =) 2¢o0) "' 1) dT = O(A™V/?),
as well as
(4.71) 9—1/76—1'”2 (Orhrg) (@, by, 57 + (5 — £)Y2650%: (s — )1 2c8) ~L7) dr

=0\,

The first estimate, (4.70) just follows from stationary phase and (4.69). We obtain the
second estimate by realizing that, after integrating by parts, we can rewrite the left side
as

(4.72)

(2i0) ! / e AT % [(Orhco) (@i, s:7 + (5 = )1/26577% (s — 1) 2e00) ~'7) | dr

= O((M?) A = 0V,

with the bounds in the right holding by (4.69) along with stationary phase and the fact
that # > A~1/2. In view of (4.69), it is clear that by induction this argument will give the
rest of (3.31) in this special case where both (z,t) and (y, s) lie on this special Schrédinger
curve.

If 2,y are in a O(6)-tube about 7; with dy(z,y) ~ ¢ and we let (- ) be the unit speed
geodesic in M™ ! with v(0) = 0 and y(r) = x, r = dy(z,y), then the argument also
yields

(2/@200& — at)a,\,l,(v(r), t;y,s) =0(1) if r=dy(z,y) and r = —2/{509(75 —3),

due to the fact that the Schrodinger curve connecting (x,t) and (y,s) is as in (3.27).
Since we are working in Fermi normal coordinates about 7, this equals

(2/‘660089@71 - 8t)a)\7u(x7 Ly, 8) + O(9|v$a)‘7”|)’

and the error term here is O(1) by our known estimate in (3.31) where || = 1 and
m1 = mg = 0. Thus, if there is a /ﬁzoe—speed Schrodinger curve connecting (x,t) and
(y,s) and the kernel is not O(A™") we have (3.31) with m; = 1, my =0 and u = v. By
an induction argument, it must be valid for all (mq,ms, 8) in this case.
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If the kernel is non-trivial at at (z,¢;y,s), then by (3.34) and (3.35) there is a
Schrodinger curve as in (3.27) with associated speed x = mzoe + O(9), passing through
(z,t) and (y, s). So, by the above argument, we would we have (3.31) for p =v, m; =1
and mgy = 0 if we had the following variants of (4.70) and (4.71):

(4.73)
/670\72 (Ouhiro) (@, t;y, 8,7+ (s — )2k ((s—1)Y2¢00) (1 — (s — 1)/ (k50 — K)) dr
_ ()(Afl/Q)7

as well as

(4.74) 071 /(T — (K0 — k)) - emAT
X (Orhaao) (@, iy, 57 + (s = )26 (s = 1)1 2c00) H 7 — (s = )2 (57 — k) dr
=012,

Just as with (4.70), (4.73) follows immediately from stationary phase arguments and

(4.68)(4.69). We also get (4.74) since, as we mentioned before, we must have x5°? — x =

0O(6), and so the left side of (4.74) splits into two terms, one of which is of the form
(4.70), while the other is of the form (4.71). Thus, (4.73) and (4.74) imply (3.31) for
u=v when m; =1 and my = 0. Also, just as before, one obtains the remaining cases of
(3.31) by an induction argument.

Finally, since |£5°° — k07|, 0] — 5| = O(8), it is also clear that (3.31) also must hold
when v = (cob7, coff) is replaced by v = (cobj’, cof¢’), which completes the proof of
Lemma 3.5.
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