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Abstract. We obtain improved Strichartz estimates for solutions of the Schrödinger
equation on negatively curved compact manifolds which improve the classical univer-
sal results results of Burq, Gérard and Tzvetkov [11] in this geometry. In the case
where the spatial manifold is a hyperbolic surface we are able to obtain no-loss L

qc
t,x-

estimates on intervals of length log λ · λ−1 for initial data whose frequencies are
comparable to λ, which, given the role of the Ehrenfest time, is the natural analog
of the universal results in [11]. We are also obtain improved endpoint Strichartz

estimates for manifolds of nonpositive curvature, which cannot hold for spheres.

1. Introduction.

It has been almost two decades since Burq, Gérard and Tzvetkov [11] obtained their
now classical universal Strichartz estimates for the Schrödinger equation on compact
manifolds. Besides the notable exception of near lossless estimates on general tori by
Bourgain and Demeter [10], and more recent related work in this setting by Deng, Ger-
main and Guth [13] and Deng, Germain, Guth and Meyerson [14], to the best of our
knowledge, there have not been significant improvements of the results in [11], in other
geometries.

The purpose of this paper is to obtain improvement of the universal bounds in [11]
under the assumption of negative curvature, as well as, more generally, nonpositive cur-
vature.

Let us now recall the universal estimates of Burq, Gérard and Tzvetkov [11]. If (Md, g)
is a compact Riemannian manifold of dimension d ≥ 2, then the main estimate in [11] is
that if ∆g is the associated Laplace-Beltrami operator and

(1.1) u(x, t) =
(
e−it∆gf

)
(x)

is the solution of the Schrödinger equation on Md × R,

(1.2) i∂tu(x, t) = ∆gu(x, t), u(x, 0) = f(x),

then one has the mixed-norm Strichartz estimates

(1.3) ‖u‖Lp
tL

q
x(Md×[0,1]) . ‖f‖H1/p(Md)

for all admissible pairs (p, q). By the latter we mean, as in Keel and Tao [21],

(1.4) d( 12 − 1
q ) =

2
p and 2 < q ≤ 2d

d−2 if d ≥ 3, or 2 < q <∞ if d = 2.

Also, in (1.3) Hµ denotes the standard Sobolev space

(1.5) ‖f‖Hµ(Md) =
∥∥ (I + P )µf

∥∥
L2(Md)

, with P =
√
−∆g,
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and “.” in (1.3) and, in what follows, denotes an inequality with an implicit, but un-
stated, constant C which can change at each occurrence.

Note that if eλ is an eigenfunction of P with eigenvalue λ, i.e.,

(1.6) −∆geλ = λ2eλ,

then

(1.7) u(x, t) = eitλ
2

eλ(x)

solves (1.2) with initial data f = eλ. From this one immediately sees that, unlike for
the Euclidean case originally treated by Strichartz [34], one can never obtain any sort
of global analog of (1.3) where [0, 1] is replaced by R. On the other hand, the proof of
(1.3) in [11] shows that one can replace [0, 1] by a larger interval I at the expense of an
additional factor |I|1/p in the implicit constant in the right side of (1.3). Also, in some
cases, the special solutions (1.7) involving eigenfunctions saturate (1.3). Specifically, for
the endpoint Strichartz estimates where p = 2 and q = 2d

d−2 with d ≥ 3 the solutions

where eλ = Zλ are zonal eigenfunctions on Sd with eigenvalue λ = (k(k + n−1
2 ))1/2,

k = 1, 2, . . . , which saturate (1.3) since (1.3) as

(1.8) ‖Zλ‖
L

2d
d−2 (Sd)

/‖Zλ‖L2(Sd) ≈ λ1/2

(see, e.g., [26]). We shall have more to say about solutions arising from eigenfunction in
what follows.

To align with the numerology in related earlier results involving eigenfunction and
spectral projection estimates, as well as parabolic Fourier restriction problems, in what
follows, we shall always take d = n−1. Thus, we are interested in estimates of solutions of
Schrödinger’s equation (1.2) on the n-dimensional space Mn−1 × [0, 1]. As we mentioned
before, we are focusing here on improvements of the universal bounds (1.3) of [11] when
Mn−1 has nonpositive curvature. We shall take d = n−1 ≥ 2, since the case where d = 1
boils down to the spatial manifold being the circle, S1, and optimal results in this case
were obtained by Bourgain [9]. In what follows (just as in [9] and [10]) we shall mainly
focus on the unique admissible pair (p, q) in (1.4) where p = q, i.e.,

(1.9) q = qc =
2(n+1)
n−1 .

One of our main results is that in this case we have logarithmic improvements of the
universal bounds in [11] under our curvature assumptions.

Theorem 1.1. Let Mn−1 be a d = n−1 ≥ 2 dimensional compact manifold all of whose
sectional curvatures are nonpositive. Then

(1.10) ‖u‖Lqc (Mn−1×[0,1]) .
∥∥(I + P )1/qc (log(2I + P ))

− n−1

(n+1)2 f
∥∥
L2(Mn−1)

.

To prove this estimate we shall employ a similar strategy to the one used in [11], which
we now recall. We first note that, by Littlewood-Paley theory, we may reduce matters to
proving certain dyadic estimates.

To this end, fix a Littlewood-Paley bump function β satisfying

(1.11) β ∈ C∞
0 ((1/2, 2)) and 1 =

∞∑

k=−∞

β(2−ks), s > 0.

Then, if we set β0(s) = 1−∑∞
k=1 β(2

−ks) ∈ C∞
0 (R+) and βk(s) = β(2−ks), k = 1, 2, . . . ,

we have (see e.g., [29])

(1.12) ‖h‖Lq(Mn−1) ≈
∥∥ (

∞∑

k=0

|βk(P )h|2 )1/2
∥∥
Lq(Mn−1)

, 1 < q <∞.
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Trivially, ‖β0(P )e−it∆g‖L2(Mn−1)→Lq(Mn−1×[0,1]) = O(1), and, similarly such results where
k = 0 is replaced by a small fixed k ∈ N are also standard. So, as noted in [11], one
can use (1.12) and Minkowski’s inequality to see that the special case of (1.3) where
p = q = qc follows from the uniform bounds

(1.3′) ‖e−it∆gβ(P/λ)f‖Lqc (Mn−1×[0,1]) ≤ Cλ
1
qc ‖f‖L2(Mn−1), λ� 1.

Burq, Gérard and Tzvetkov proved this estimate in [11] by showing that one always has
the following uniform dyadic estimates over very small intervals:

(1.3′′) ‖e−it∆gβ(P/λ)f‖Lqc (Mn−1×[0, λ−1]) ≤ C ‖f‖L2(Mn−1), λ� 1.

Indeed, (1.3′′) immediately yields (1.3′), since one can write [0, 1] as the union of ≈ λ
intervals of length λ−1 and thus obtain (1.3′) by adding up the uniform estimates on
each of these subintervals that (1.3′′) affords. As was noted in [11], one can also obtain
the universal Strichartz estimates of Burq, Gérard and Tzvetkov using local smoothing
estimates of Staffilani and Tataru [32]; however, it seems difficult to obtain improvements
like the ones in Theorem 1.1 using this approach.

The time scale here of |t| ≤ λ−1 is natural since the dyadic operators in (1.3′′) behave
somewhat like standard half-wave operators eitcP of speed c = λ, although this is a some-
what cartoonish reduction. Being more specific, it is possible to construct parametrices
for the dyadic operators in such small time scales that allow one to use the Keel-Tao
[21] theorem to deduce (1.3′′). Similar arguments show that the other cases in (1.3) also
follow from uniform dyadic estimates for this time scale.

It is a simple matter to see that on any manifold the bounds in (1.3′′) cannot be
improved even though the time intervals are very small. For instance, if β(P/λ)(x, y) is
the kernel of the Littlewood-Paley operators β(P/λ) and f(x) = fλ(x) = β(P/λ)(x, x0)
for any fixed x0 ∈ Mn−1, then the ratio of the norms in (1.3′′) is comparable to one for
λ � 1. As a result, in order to obtain improvements such as those in (1.10), one must
use larger time intervals.

Since we are working on manifolds of nonpositive curvature, due to the expected role
of the Ehrenfest time in the analysis, it is natural to consider time intervals of length
≈ log λ · λ−1. This is what we shall do. Specifically, we shall show that if Mn−1 is as in
Theorem 1.1 then we have the uniform bounds

(1.10′) ‖e−it∆gβ(P/λ)f‖Lqc (Mn−1×[0, log λ·λ−1]) ≤ C (log λ)
2

(qc)2 ‖f‖L2(Mn−1), λ� 1.

Since the logarithmic gain of n−1
(n+1)2 in (1.10) versus (1.3) is just 1

qc
(1 − 2

qc
), by the

above counting arguments, one obtains (1.10) from (1.10′) since [0, 1] can be covered by
≈ λ/ log λ intervals of length log λ · λ−1. Also, the universal bounds (1.3′′) imply the
analog of this inequality with 2/(qc)

2 replaced by the larger exponent 1/qc (since qc > 2),
which is another way of recognizing the improvement of (1.10′) versus (1.3′′).

We shall also show that if one strengthens the hypothesis in the above theorem by
assuming that the manifolds are of negative curvature than we can obtain stronger results,
including a natural analog of the estimates (1.3′′) for hyperbolic surfaces:

Theorem 1.2. Assume that d = n − 1 ≥ 2 and that all of the sectional curvatures of
Mn−1 are negative. Then if d = n− 1 ≥ 3

(1.13) ‖u‖Lqc (Mn−1×[0,1]) .
∥∥(I + P )1/qc (log(2I + P ))−

1
(n+1) f

∥∥
L2(Mn−1)

.

Moreover, if d = n− 1 = 2, in which case qc = 4, we have

(1.14) ‖e−it∆gβ(P/λ)f‖L4(M2×[0, log λ·λ−1]) ≤ C ‖f‖L2(M2), λ� 1,
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and

(1.14′) ‖u‖L4(M2×[0,1]) .
∥∥(I + P )1/4 (log(2I + P ))−1/4f

∥∥
L2(M2)

.

By the above discussion of course (1.14) yields (1.14′). Moreover, we point out that
(1.14) is the natural extension of the uniform small-time scale estimates (1.3′′) of Burq,
Gérard and Tzvetkov to time intervals which are perhaps the largest one can hope to
obtain such estimates in the geometry we are focusing on using available techniques, due
to the role of the Ehrenfest time.

As we shall see, the improvement in Theorem 1.2 compared to those in Theorem 1.1
are due to the much stronger dispersive properties of the kernel for the solution operators
for the wave equation. On the other hand, in proving Theorem 1.2, we have to balance
this with the exponential volume growth of manifolds of strictly negative curvature as
we have in some earlier works. We accomplish this using arguments involving microlocal
pseudo-differential cutoffs.

By interpolating with the endpoint Strichartz estimates of Burq, Gérard and Tzvetkov
[11], one can also obtain logarithmic–power improvements for all of the other pairs of
exponents (p, q) in (1.4) besides the endpoint case where p = 2 and d = n − 1 ≥ 3.
Although these techniques break down for the important endpoint case, we are able to
adapt arguments from one of us [30] to get the following more modest improvements for
this case.

Theorem 1.3. Let Md be a d ≥ 3 dimensional compact manifold all of whose sectional
curvatures are nonpositive. Then

(1.15) ‖u‖
L2

tL
2d

d−2
x (Md×[0,1])

.
∥∥(I + P )1/2 (log(log(2I + P )))−1/2f

∥∥
L2(Md)

.

Our mixed-norm notation differs a bit from some other works when we define

‖u‖Lp
tL

q
x(Md×[0,1]) =

( ∫ 1

0

‖u( · , t)‖p
Lq

x(Md)
dt

)1/p
.

We choose to write Md × [0, 1] instead of [0, 1]×Md inside the norm in (1.15), and ones
to follow, since most of the crucial local analysis, as well as the pseudodifferential cutoffs
employed, involve the spatial variables. We hope that our choice of notation does not
confuse the reader.

A very interesting, but perhaps difficult problem, would be to show that, like in (1.14′),
one could replace the (log(log(2I + P )))1/p gain in (1.15) with a (log(2I + P ))1/p gain,
with p in (1.15) being 2 as opposed to 4 in (1.14). This would provide a potentially
difficult generalization of an important special case of the (log λ)−1/2 eigenfunction gains

‖eλ‖
L

2d
d−2 (Md)

. λ1/2 (log λ)−1/2‖eλ‖L2(Md)

of Hassell and Tacy [17] for manifolds of nonpositive curvature versus the universal eigen-

function estimates of one of us [27] for q > 2(d+1)
d−1 .

As we shall show, for d ≥ 3 dimensional tori, we can strengthen our endpoint estimates

in (1.15) by replacing, in this case, (log(log(2 + P )))−1/2 with P
2

d+2−
1
2+ε, ∀ ε > 0. This

follows directly from using the Lqc
t,x toral estimates of Bourgain and Demeter [10] along

with Sobolev estimates. We have no doubt that stronger estimates should hold; however,
we are not aware of any. This seems worth of further investigation. The decoupling
methods of Bourgain and Demeter [10] that work so well for the case p = q = qc might not
apply as well for the endpoint case (p, q) = (2, 2d

d−2 ). We have to prove our bounds (1.15)

for general manifolds of nonpositive curvature in a somewhat circuitous way (leading to
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only log-log power gains) due to the fact that the related bilinear techniques that we
utilize break down for this endpoint case.

The estimates in Theorems 1.1 and 1.2 of course improve the universal estimates of
Burq, Gérard and Tzvetkov [11] in the geometry that we are focusing on here, manifolds of
nonpositive curvature. On the other hand, they are weaker than the (near) optimal toral
results of Bourgain and Demeter [10], as well as the non-endpoint Strichartz estimates
for the sphere of Burq, Gérard and Tzvetkov [11]. The estimates in [10] were obtained
via decoupling using, in part, that the types of microlocal cutoffs that we shall employ
commute well with Schrödinger propagators on tori, and, moreover, lend themselves there
to analysis on much larger time scales than we are able to handle on general manifolds
of nonpositive curvature. The improved estimates for spheres simply follow from specific
arithmetic properties of the distinct eigenvalues of the Laplacian on Sd.

Even though we cannot obtain estimates that are as strong as those for the sphere for
the non-endpoint exponents in (1.4), our endpoint Strichartz estimates in Theorem 1.3
are improvements of the ones for the sphere, where, by (1.8), there can be no improvement
of the H1/2(Sd) endpoint estimates of Burq, Gérard and Tzvetkov [11].

This paper is organized as follows. In the next section we present the main arguments
that allow us to prove the above theorems. The proofs require local bilinear arguments
from harmonic analysis and a detailed analysis of the kernels that arise in both the “local”
and “global” arguments. We carry out these in Sections 3 and 4, respectively.

The local harmonic analysis arguments that we use rely on bilinear oscillatory integral
estimates of Lee [23] and are variable coefficient analogs of the arguments of Tao, Vargas
and Vega [35] that were used to study parabolic restriction problems for the Fourier
transform, which, of course is related to Strichartz estimates for Schrödinger’s equation.
As we shall see, the kernels of the local operators oscillate most rapidly along curves of
the form s→ (x(κs),−(s−s0)) ∈Mn−1×R, where x(s) ∈Mn−1 is a unit-speed geodesic.
We call such space-time curves “Schrödinger curves” of varying speeds κ, which we shall
be able to take to be comparable to one. They are integral curves of the Hamilton vector
field HP associated with the Schrödinger operator P = Dt +∆g. Such curves naturally
arise in our analysis, as well as in related past work (cf. [1], [11] and [15]). Perhaps a
novelty here, though, is that, in order to apply the bilinear oscillatory integral estimates
of Lee [23], it is very convenient to work in what we call “Schrödinger coordinates” about
one of these curves.

These coordinates are the analog of Fermi normal coordinates that naturally arise in
relativity theory and Riemannian geometry (see, e.g., [16], [22] and [24]). In relativ-
ity theory, Fermi normal coordinates are chosen so that, for an observer in a free fall
(geodesic) path in an arbitrary spacetime, the geometry will appear to be “flat” up to
higher order terms. The Schrödinger coordinates that we shall employ have a similar
property for quantum “observers” traveling along what we call Schrödinger curves. The
use of these “Schrödinger coordinates” is key to be able to adapt the Euclidean harmonic
analysis techniques of [23] and [35] to our variable coefficient setting.

In order to apply Lee’s results we also need detailed estimates for the kernels of the
local operators that arise. Motivated by the earlier local quasimode analysis of the last
two authors [20], we are able to construct local operators whose kernels can essentially be
calculated using techniques from the first and last authors [7], while, at the same time, be
of use for studying the “global operators” that necessarily arise in the proofs of the above
theorems. We need to compose the “global” operators with “local” ones to apply the
bilinear harmonic analysis techniques, and, motivated by the earlier work in by the last
two authors in [20], they can be constructed so that the difference between the original
global operators and the ones composed with the local ones has small norm. Besides
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the relatively intricate application of harmonic analysis techniques that we require, we
also need to show, that when we microlocalize the solution operators for Schrödinger’s
equation (1.2), our geometric assumptions imply that there are favorable bounds for the
resulting kernels. Using the Fourier transform, this amounts to a classical argument
involving the Hadamard parametrix going back to Bérard [2], with microlocal variants in
a more recent work of the first and third authors [6], as well as in that [3] of all three of
the authors.

The authors are grateful to W. Minicozzi for patiently answering numerous questions
about Fermi normal coordinates, as well as for referring us to the classical reference
Manasse and Misner [24].

2. Main arguments.

Let us start by proving Theorems 1.1 and 1.2 which concern the non-endpoint Strichartz
estimates. Then at the end of this section we shall give the modifications needed to prove
the endpoint estimates in Theorem 1.3. For the proofs we shall require certain bilinear
estimates and pointwise estimates for kernels that arise in the arguments, which will be
addressed in the next two sections.

To start, let β be the Littlewood-Paley bump function in (1.11), and also fix

(2.1) η ∈ C∞
0 ((−1, 1)) with η(t) = 1, |t| ≤ 1/2.

We then shall consider the dyadic time-localized dilated Schrödinger operators

(2.2) Sλ = η(t/T )e−itλ−1∆gβ(P/λ),

and claim that the estimates in Theorems 1.1 and 1.2 are a consequence of the following.

Proposition 2.1. Let Md, d = n − 1 ≥ 2 be a fixed compact manifold all of whose
sectional curvatures are nonpositive. Then we can fix c0 > 0 so that for large λ � 1 we
have the uniform bounds

(2.3) ‖Sλf‖Lqc (Mn−1×R) ≤ Cλ
1
qc T

1
qc

· 2
qc ‖f‖L2(Mn−1), if T = c0 log λ.

Moreover, if all of the sectional curvatures of Mn−1 are negative c0 > 0 can be fixed so
that for all λ� 1 we have

(2.4) ‖Sλf‖Lqc (Mn−1×R) ≤ Cλ
1
qc T

4−qc
2qc ‖f‖L2(Mn−1), if T = c0 log λ.

We claim that (2.3) and (2.4) imply Theorems 1.1 and 1.2, respectively. For the
former, we note that just by changing scales (2.1) and (2.3) imply that for large enough
λ we have the analog of (1.10′) where the interval [0, log λ · λ−1] in the left is replaced
by [0, 12c0 log λ · λ−1], and this of course implies (1.10′) at the expense of including an

additional factor of (c0/2)
−1/qc in the constant in the right if c0 < 2. As we indicated

before, the estimate (1.10′) for large λ and Littlewood-Paley theory yield Theorem 1.1,
which verifies our claim regarding (2.3). Repeating this argument, we see that (2.4)
implies that, for large enough λ, we have

(2.4′) ‖e−it∆gβ(P/λ)f‖Lqc (Mn−1×[0,log λ·λ−1]) ≤ C (log λ)
4−qc
2qc ‖f‖L2(Mn−1),

which yields the first estimate in Theorem 1.2 as

1
n+1 = 1

qc
− 4−qc

2qc
, if d = n− 1 ≥ 3,

as well as (1.14) and hence (1.14′) since qc = 4 when d = n− 1 = 2.
In order to prove Proposition 2.1, as in earlier works, we shall use bilinear techniques

requiring us to compose the “global operators” Sλ with related local ones. Motivated by
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the recent work of the last two authors [20], our “local” auxiliary operators will be the
following “quasimode” operators adapted to the scaled Schrödinger operators λDt +∆g,

(2.5) σλ = σ
(
λ1/2|Dt|1/2 − P

)
β̃(Dt/λ),

where

(2.6) σ ∈ S(R) satisfies σ(0) = 1 and supp σ̂ ⊂ δ · [1− δ0, 1 + δ0] = [δ − δ0δ, δ + δ0δ],

with 0 < δ, δ0 < 1/8 to be specified later, and, also here

(2.7) β̃ ∈ C∞
0 ((1/8, 8)) satisfies β̃ = 1 on [1/6, 6].

We shall want δ in (2.6) to be smaller than the injectivity radius of (Mn−1, g) and δ0 to
be small enough so that we can verify the hypotheses of the bilinear oscillatory integral
estimates that we shall use in the next section.

To handle the bilinear arguments it will be convenient to introduce an initial microlo-
calization. So, let us write

(2.8) I =
N∑

j=1

Bj(x,D),

where each Bj ∈ S0
1,0(M

n−1) is a standard pseudo-differential operator with symbol
supported in a small conic neighborhood of some (xj , ξj) ∈ S∗M . The size of the support
will be described later; however, these operators will not depend on our parameter λ� 1.
Next, if β̃ is as in (2.7) then the dyadic operators

(2.9) B = Bj,λ = Bj ◦ β̃(P/λ)
are uniformly bounded on Lp, i.e.,

(2.10) ‖B‖Lp(Mn−1)→Lp(Mn−1) = O(1) for 1 ≤ p ≤ ∞.

Also, note that since σ ∈ S(R) a simple calculation shows that if λk is an eigenvalue of P

(1− β̃(λk/λ))σ(λ
1/2|τ |1/2 − P ) β̃(τ/λ) = O(λ−N (1 + λk + |τ |)−N ) ∀N.

Consequently,

‖σλ − β̃(P/λ) ◦ σλ‖L2(Mn−1×[0,T ])→Lqc (Mn−1×[0,T ]) = O(λ−N ) ∀N.
Thus, if Bj is as in (2.8) and Bj,λ is the corresponding dyadic operator in (2.9)

(2.11) ‖Bjσλ −Bj,λσλ‖L2(Mn−1×[0,T ])→Lqc (Mn−1×[0,T ]) = O(λ−N ) ∀N,
since operators in S0

1,0(M
n−1) are bounded on Lp for 1 < p <∞.

We need one more result for now about these local operators:

Lemma 2.2. If Sλ as in (2.2) and σλ is as in (2.5) then

(2.12) ‖(I − σλ) ◦ Sλf‖Lqc (Mn−1×[0,T ]) ≤ CT
1
qc

− 1
2λ

1
qc ‖f‖2.

For a given B = Bj,λ as in (2.9) let us define the microlocalized variant of σλ as follows

(2.13) σ̃λ = B ◦ σλ, B = Bj,λ,

and the associated “semi-global” operators

(2.14) S̃λ = σ̃λ ◦ Sλ.

By (2.8), (2.11) and (2.12), in order to prove Proposition 2.1, it suffices to show that if
T = c0 log λ with c0 > 0 sufficiently small (depending on Mn−1), then, if all the sectional
curvatures of Mn−1 are nonpositive,

(2.3′) ‖S̃λf‖Lqc (Mn−1×R) ≤ Cλ
1
qc T

1
qc

· 2
qc ‖f‖L2(Mn−1),
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and, if all of the sectional curvatures of Mn−1 are negative,

(2.4′′) ‖S̃λf‖Lqc (Mn−1×R) ≤ Cλ
1
qc T

4−qc
2qc ‖f‖L2(Mn−1).

As we shall see, in order to prove (2.3′) and (2.4′′) we shall need to take δ and δ0 in
(2.6) and (2.7) to be sufficiently small for each j; however, since, by the compactness of
Mn−1 and the arguments to follow, the sum in (2.8) can be taken to be finite, we can
take these two parameters to be the minimum over what is needed for j = 1, . . . , N .

Proof of Lemma 2.2. We shall follow the strategy in [20]. In proving (2.12) we may
assume, as we shall throughout, that

(2.15) ‖f‖2 = 1.

Also, we notice that, if Ekf denotes the projection of f onto the eigenspace of P =
√
−∆g

with eigenvalue λk, we have

Sλf(x, t) =
∑

k

η(t/T )e−itλ−1λ2
kβ(λk/λ)Ekf(x)

= (2π)−1
∑

k

∫ ∞

−∞

eitτT η̂(T (τ − λ−1λ2k))β(λk/λ)Ekf(x) dτ.

Since, by (1.11), β(s) = 0 if s /∈ [1/2, 2], η̂ ∈ S(R) and β̃(s) = 1 for s ∈ [1/6, 6], it is not
difficult to check that

(1− β̃(τ/λ))T η̂(T (τ − λ−1λ2k))β(λk/λ) = O(λ−N (1 + |τ |)−N ) ∀N,
and so trivially

‖(I − β̃(Dt/λ))Sλf‖Lqc (Mn−1×[0,T ]) = O(λ−N ) ∀N.
Consequently, in order to prove (2.12), it suffices to show that

(2.16)
∥∥ (I − σ(λ1/2|Dt|1/2 − P )) ◦ β̃(Dt/λ)Sλf

∥∥
Lqc (Mn−1×[0,T ])

≤ CT
1
qc

− 1
2λ

1
qc .

To prove this let

(2.17) α ∈ C∞
0 ((−1, 1)) satisfy 1 ≡

∞∑

m=−∞

αm(t),

if

(2.18) αm(t) = α(t−m).

Then, in order to prove (2.16), it suffices to see that

(2.19)
∥∥αm(t)

(
I − σ(λ1/2|Dt|1/2 − P )) β̃(Dt/λ)

)
◦
(
η(t/T )

)
e−itλ−1∆gβ(P/λ)f

)∥∥
Lqc

t,x

. T−1/2λ1/qc .

Call w the function in the norm in the left, i.e.,

(2.20) w = αm(t)
(
I − σ(λ1/2|Dt|1/2 − P ))β̃(Dt/λ)

)
◦
(
η(t/T )e−itλ−1∆gβ(P/λ)f

)
.

It is supported in [m− 1,m+ 1], and so is

(2.21) F = (iλ∂t −∆g)w.

For later use, note that, by (1.11) and (2.7)

(2.22) (I − β̃(P/λ))F = 0.
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Also, by the Duhamel formula for the scaled Schrödinger equation and the above support
properties

w(x, t) = (iλ)−1

∫ t

m−1

(
e−iλ−1(t−s)∆gF (s, · )

)
(x) ds.

So, by Minkowski’s inequality, for each fixed t,

‖w( · , t)‖Lqc
x (Mn−1) ≤ λ−1

∫ t

m−1

∥∥e−iλ−1t∆g
(
eiλ

−1s∆gF (s, · )
) ∥∥

Lqc (Mn−1)
ds

≤ λ−1

∫ 1

−1

∥∥e−iλ−1t∆g
(
eiλ

−1(s+m)∆gF (s+m, · )
) ∥∥

Lqc (Mn−1)
ds,

since F (s, ·) = 0 if s /∈ [m− 1,m+ 1]. Thus, by Minkowski’s inequality, we have

‖w‖Lqc
x,t

≤ λ−1

∫ 1

−1

∥∥e−iλ−1t∆g
(
eiλ

−1(s+m)∆gF (s+m, · )
) ∥∥

Lqc
t,x
ds.

Furthermore, by (2.22) we can use the local dyadic estimates (1.3′′) of Burq, Gérard
and Tzvetkov along with Schwarz’s inequality to obtain

‖w‖Lqc
t,x

. λ
1
qc

−1

∫ 1

−1

∥∥eiλ−1(s+m)∆gF (s+m, · )
∥∥
L2

x
ds

≤ λ
1
qc

−1

∫ 1

−1

‖F (s+m, · )‖L2
x
ds

. λ
1
qc

−1‖F‖L2
t,x
.

If we put

I = λ
∥∥α′

m(t)
(
I − σ(λ1/2|Dt|1/2 − P ))β̃(Dt/λ) ◦ (η(t/T )e−itλ−1∆gβ(P/λ)f)

∥∥
L2

t,x
,

and

II = ‖αm(t)(iλ∂t+P
2)
(
I−σ(λ1/2|Dt|1/2−P ))β̃(Dt/λ)◦(η(t/T )e−itλ−1∆gβ(P/λ)f)

∥∥
L2

t,x
,

we conclude that from (2.21) and (2.22) that

(2.23) ‖w‖Lqc
t,x

. λ
1
qc

−1
(
I + II

)
.

To handle I we note that the function in the norm can be written as

(2π)−1α′
m(t)

∑

k

∫
eitτ (1− σ(λ1/2τ1/2 − λk)) β̃(τ/λ)T η̂(T (τ − λ−1λ2k))β(λk/λ)Ekf dτ,

Thus, by orthogonality and the support properties of β̃ in (2.7), since we are assuming
that ‖f‖2 = 1, we have

I ≤ λT sup
λk≈λ

(∫ 8λ

λ/8

|1− σ(λ1/2τ1/2 − λk))|2 |η̂(T (τ − λ−1λ2k)|2 dτ
)1/2

,
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If we change variables s = λ1/2τ1/2 then ds ≈ dτ in the support of the integrand, and so
by the above

I . λT sup
λk≈λ

(∫ ∞

0

|1− σ(s− λk)|2 |η̂(Tλ−1(s+ λk)(s− λk))|2 ds
)1/2

= λT sup
λk≈λ

(∫ ∞

0

|1− σ(s)|2 |η̂(Tλ−1(s+ 2λk) · s)|2 ds
)1/2

. λT
(∫ ∞

0

s2(1 + |Ts|)−N ds
)1/2

≈ λT−1/2,

using, in the last step, our assumption in (2.6) that σ(0) = 0.
If we repeat the arguments we find that

II . T sup
λk≈λ

(∫ 8λ

λ/8

|(1− σ(λ1/2τ1/2 − λk))|2 | − λτ + λ2k|2 |η̂(T (τ − λ−1λ2k))|2 dτ)1/2

≤ λ sup
λk≈λ

(∫ ∞

0

∣∣T (τ − λ−1λ2k) · η̂(T (τ − λ−1λ2k))
∣∣2 dτ

)1/2

. λ
(∫ ∞

−∞

(1 + T |τ |)−N dτ
)1/2

= O(λT−1/2).

If we combine these two estimates and use (2.23) we conclude that

‖w‖Lqc
t,x

. T−1/2λ
1
qc ,

as posited in (2.19), which finishes the proof. �

For later use, let us also see that this argument yields the following result, which we
shall need when we use local variable coefficient bilinear harmonic analysis techniques.

Lemma 2.3. If αm is as in (2.18) then for m ∈ Z we have

(2.24)
∥∥αm(t)σλH

∥∥
Lqc

t,x
≤ Cλ

1
qc ‖H‖L2(Mn−1×[m−10,m+10]) + CNλ

−N‖H‖L2(Mn−1×R),

for every N = 1, 2, . . . .

Proof. If {ek} is an orthonormal basis of eigenfunctions of P on Mn−1 with eigenvalues
{λk} then the kernel σλ(x, t; y, s) of σλ is

(2π)−1
∑

k

∫
ei(t−s)τσ(λ1/2τ1/2 − λk) β̃(τ/λ) ek(x)ek(y) dτ

= (2π)−2

∫∫
ei(t−s)τeiλ

1/2τ1/2r β̃(τ/λ) σ̂(r)
∑

k

e−irλkek(x)ek(y) drdτ.

Recall that, by (2.6), σ̂(r) = 0 if r /∈ [0, 1]. Therefore, by (2.7) and a simple integration
by parts argument we have that

∫∫
ei(t−s)τeiλ

1/2τ1/2r β̃(τ/λ) σ̂(r)e−irλk drdτ = O
(
(λ+ λk + |t− s|)−N

)
,

if |t− s| ≥ 5.

If λk ≤ 100λ one obtains these bounds just by integrating by parts in τ , while if λk > 100λ
one integrates by parts in both variables r and τ to obtain this bound. Since, by the
pointwise Weyl formula (see e.g. [29]),

∑

k

(1 + λk)
−n|ek(x)ek(y)| = O(1),
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we conclude that

σλ(x, t; y, s) = O((|t− s|+ λ)−N ) ∀N, if |t− s| ≥ 5.

Thus, if H(t, x) = 0 for t ∈ [m− 10,m+ 10], then the left side of (2.24) is dominated
by the second term in the right. Consequently, to prove (2.24) we may assume that

H(t, x) = 0 if t /∈ [m− 10,m+ 10].

If we then let

w(x, t) = αm(t)
(
σλH

)
(x, t), and F = (iλ∂t −∆g)w

and argue as in the proof of Lemma 2.2, it suffices to show that

‖F‖L2
t,x

. λ‖H‖L2
t,x
,

which would follow from

(2.25) ‖σ(λ1/2|Dt|1/2 − P ) β̃(Dt/λ)H ‖L2
t,x

. ‖H‖L2
t,x
,

and

(2.26) ‖ (iλ∂t −∆g) [σ(λ
1/2|Dt|1/2 − P ) β̃(Dt/λ)H] ‖L2

t,x
. λ‖H‖L2

t,x
.

By orthogonality and the arguments in the proof of Lemma 2.2, (2.25) just follows
from the fact that

σ(λ1/2τ1/2 − µ) β̃(τ/λ) = O(1),

and, (2.26) is a consequence of the bound

− (λτ − µ2)σ(λ1/2τ1/2 − µ) β̃(τ/λ)

= −(λ1/2τ1/2 + µ) β̃(τ/λ) ·
[
(λ1/2τ1/2 − µ)σ(λ1/2τ1/2 − µ)

]
= O(λ),

which follows from (2.7) and the fact that σ ∈ S(R). �

2.1. Height Decomposition.

Next we set up a variation of an argument of Bourgain [8] originally used to study
Fourier transform restriction problems, and, more recently, to study eigenfunction prob-
lems in [3], [7] and [30]. This involves splitting the estimates in Proposition 2.1 into two

heights involving relatively large and small values of |S̃λf(x, t)|.
To describe this, here, and in what follows we shall assume, as we just did, that f is

L2-normalized as in (2.15). Then, we shall prove the estimates in Proposition 2.1, using
very different techniques by estimating Lqc bounds over the two regions

(2.27) A+ = {(x, t) ∈Mn−1 × [0, T ] : |S̃λf(t, x)| ≥ λ
n−1
4 +δ},

and A− = {(x, t) ∈Mn−1 × [0, T ] : |S̃λf(x, t)| < λ
n−1
4 +δ}.

Due to the numerology of the powers of λ arising, the splitting occurs at height λ
n−1
4 +δ,

δ = 1/8; however, we could have replaced this specific value of δ by any sufficiently

small positive δ. The transition occurring at, basically, λ
n−1
4 is natural and arises due

to Knapp-type phenomena, both in Euclidean problems, as well as geometric ones that
we are considering here. We choose this specific value of δ = 1/8 to simplify some of the
calculations to follow.

We next notice that Proposition 2.1 (and hence Theorems 1.1 and 1.2) are a conse-
quence of the following two propositions corresponding to the two regions in (2.27).
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Proposition 2.4. Let (Mn−1, g), n ≥ 3 have nonpositive curvature. We then can choose
c0 > 0 so that for λ� 1 and T = c0 log λ we have the uniform bounds

(2.28) ‖S̃λf‖Lqc (A+) ≤ Cλ
1
qc ,

assuming that f is L2-normalized as in (2.15).

Proposition 2.5. Let (Mn−1, g), n ≥ 3, have nonpositive curvature. We then can take
T = c0 log λ as above so that, if f is L2-normalized,

(2.29) ‖S̃λf‖Lqc (A−) ≤ Cλ
1
qc T

1
qc

· 2
qc .

Furthermore, if all the sectional curvatures of (Mn−1, g) are negative,

(2.30) ‖S̃λf‖Lqc (A−) ≤ Cλ
1
qc T

4−qc
2qc .

We shall present the proofs of these Propositions in the next two subsections.

2.2. Estimates for relatively large values: Proof of Proposition 2.4.

We first note that, by Lemma 2.2 and (2.10) we have

‖S̃λf‖Lqc (A+) ≤ ‖BSλf‖Lqc (A+) + CT
1
qc

− 1
2λ

1
qc ,

and, since qc > 2, (2.28) would follow from

(2.31) ‖BSλf‖Lqc (A+) ≤ Cλ
1
qc + 1

2‖S̃λf‖Lqc (A+).

To prove this we shall adapt an argument of Bourgain [8] and more recent variants in
[3] and [30] . Specifically, choose g(x, t) such that

‖g‖
Lq′c (A+)

= 1 and ‖BSλf‖Lqc (A+) =

∫∫
BSλf ·

(
1A+

· g
)
dxdt.

Then, since we are assuming that ‖f‖2 = 1, by the Schwarz inequality

‖BSλf‖2Lqc (A+) =
(∫

f(x) ·
(
S∗B∗

)
(1A+

· g
)
(x) dx

)2

(2.32)

≤
∫

|S∗
λB

∗(1A+ · g)(x)|2 dx

=

∫∫ (
BSλS

∗
λB

∗
)
(1A+

· g)(x, t) (1A+
· g)(x, t) dxdt

=

∫∫ (
B ◦ Lλ ◦B∗

)
(1A+ · g)(x, t) (1A+ · g)(x, t) dxdt

+

∫∫ (
B ◦Gλ ◦B∗

)
(1A+

· g)(x, t) (1A+
· g)(x, t) dxdt

= I + II,

where Lλ is the integral operator with kernel equaling that of SλS
∗
λ if |t − s| ≤ 1 and 0

otherwise, i.e,

(2.33) Lλ(x, t; y, s) ={(
SλS

∗
λ

)
(x, t; y, s) = η(t/T )η(s/T )

(
β2(P/λ)e−i(t−s)λ−1∆g

)
(x, y), if |t− s| ≤ 1,

0 otherwise.

In the final section (see Proposition 4.1) we shall show that for T as above we have

(2.34) |(SλS
∗
λ)(x, t; y, s)| ≤ Cλ

n−1
2 |t− s|−n−1

2 exp(CM |t− s|), if |t− s| ≤ 2T.
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Consequently, if we let Lλ,t,s be the “frozen” operators

(
Lλ,t,sf

)
(x) =

∫
Lλ(x, t; y, s) f(y) dy,

we have that

‖Lλ,t,sf‖L∞(Mn−1) ≤ Cλ
n−1
2 |t− s|−n−1

2 ‖f‖L1(Mn−1),

and, since e−i(t−s)λ−1∆g is unitary, we of course have

‖Lλ,t,sf‖L2(Mn−1) ≤ C‖f‖L2(Mn−1).

Therefore, by interpolation

‖Lλ,t,sf‖Lqc (Mn−1) ≤ Cλ
2
qc |t− s|− 2

qc ‖f‖
Lq′c (Mn−1)

.

Therefore, by Strichartz’s [34] original argument (or, e.g., Theorem 0.3.6 in [29]), we can
use the classical Hardy-Littlewood fractional integral estimates to conclude that

‖Lλ‖Lq′c (Mn−1×R)→Lqc (Mn−1×R)
= O(λ

2
qc ).

If we use this, along with Hölder’s inequality and (2.10), we obtain for the term I in
(2.32)

|I| ≤ ‖BLλB
∗(1A+ · g)‖Lqc (Mn−1×R) · ‖1A+ · g‖

Lq′c (Mn−1×R)
(2.35)

. ‖LλB
∗(1A+

· g)‖Lqc (Mn−1×R) · ‖1A+
· g‖

Lq′c (Mn−1×R)

. λ
2
qc ‖B∗(1A+ · g)‖

Lq′c (Mn−1×R)
· ‖1A+ · g‖

Lq′c (Mn−1×R)

. λ
2
qc ‖g‖2

Lq′c (A+)
= λ

2
qc .

To estimate the other term in (2.32), II, we choose c0 small enough so that if CM is
the constant in (2.34)

exp(2CMT ) ≤ λ1/8, if T = c0 log λ and λ� 1.

Then, since η(t) = 0 for |t| ≥ 1, it follows from (2.33) and (2.34) that

‖Gλ‖L1(Mn−1×R)→L∞(Mn−1×R) ≤ Cλ
n−1
2 + 1

8 .

As a result, since, by (2.10), the dyadic operators B are bounded on L1 and L∞, we can
repeat the arguments to estimate I and use Hölder’s inequality to see that

|II| ≤ Cλ
n−1
2 λ

1
8 ‖1A+

· g‖21 ≤ Cλ
n−1
2 λ

1
8 ‖g‖2

Lq′c (A+)
· ‖1A+

‖2Lqc = Cλ
n−1
2 λ

1
8 ‖1A+

‖2Lqc .

If we recall the definition of A+ in (2.27), we can estimate the last factor:

‖1A+
‖2Lqc ≤

(
λ

n−1
4 + 1

8

)−2‖S̃λf‖2Lqc (A+).

Therefore,

|II| . λ−
1
8 ‖S̃λf‖2Lqc (A+) ≤

(
1
2‖S̃λf‖Lqc (A+)

)2
,

assuming, as we may, that λ is large enough.
If we combine this bound with the earlier one, (2.35) for I, we conclude that (2.31) is

valid, which completes the proof of Proposition 2.4. �

2.3. Estimates for relatively small values: Proof of Proposition 2.4.

We now turn to the proving the Lqc(A−) estimates in Proposition 2.4. To do this we
need to borrow and adapt results from the bilinear harmonic analysis in [23] and [35].

We shall utilize a microlocal decomposition which we shall now describe. We first recall
that the symbol B(x, ξ) of B in (2.9) is supported in a small conic neighborhood of some
(x0, ξ0) ∈ S∗Mn−1. We may assume that its symbol has small enough support so that
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we may work in a coordinate chart Ω and that x0 = 0, ξ0 = (0, . . . , 0, 1) and gjk(0) = δjk
in the local coordinates. So, we shall assume that B(x, ξ) = 0 when x is outside a small
relatively compact neighborhood of the origin or ξ is outside of a small conic neighborhood
of (0, . . . , 0, 1). These reductions and those that follow will contribute to the number of
terms in (2.8); however, it will be clear that the N there will be independent of λ � 1.
Similarly, the positive numbers δ and δ0 in (2.7) may depend on N , but, at the end we
can just take each to be the minimum of what is required for each j = 1, . . . , N .

Next, let us define the microlocal cutoffs that we shall use. We fix a function a ∈
C∞

0 (R2(n−2)) supported in {z : |zj | ≤ 1, 1 ≤ j ≤ 2(n− 2)} which satisfies

(2.36)
∑

j∈Z2(n−2)

a(z − j) ≡ 1.

We shall use this function to build our microlocal cutoffs. By the above, we shall focus on
defining them for (y, η) ∈ S∗Ω with y near the origin and η in a small conic neighborhood
of (0, . . . , 0, 1). We shall let

Π = {y : yn−1 = 0}
be the points in Ω whose last coordinate vanishes. Let y′ = (y1, . . . , yn−2) and η =
(η1, . . . , ηn−2) denote the first n− 2 coordinates of y and η, respectively. For y ∈ Π near
0 and η near (0, . . . , 0, 1) we can just use the functions a(θ−1(y′, η′)− j), j ∈ Z

2(n−2) to
obtain cutoffs of scale θ. We will always have θ ∈ [λ−δ, 1] with δ = 1/8.

We can then extend the definition to a neighborhood of (0, (0, . . . , 0, 1)) by setting for
(x, ξ) ∈ S∗Ω in this neighborhood

(2.37) aθj (x, ξ) = a(θ−1(y′, η′)− j) if χs(x, ξ) = (y′, 0, η′, ηn−1) with s = dg(x,Π).

Here χs denotes geodesic flow in S∗Ω. Thus, aθj (x, ξ) is constant on all geodesics
(x(s), ξ(s)) ∈ S∗Ω with x(0) ∈ Π near 0 and ξ(0) near (0, . . . , 0, 1). As a result,

(2.38) aθj (χs(x, ξ)) = aθj (x, ξ)

for s near 0 and (x, ξ) ∈ S∗Ω near (0, (0, . . . , 0, 1)).
We then extend the definition of the cutoffs to a conic neighborhood of (0, (0, . . . , 0, 1))

in T ∗Ω \ 0 by setting

(2.39) aθj (x, ξ) = aθj (x, ξ/p(x, ξ)).

Notice that if (y′j , η
′
j) = θj and γj is the geodesic in S∗Ω passing through (y′j , 0, ηj) ∈

S∗Ω with ηj ∈ S∗
(y′

j ,0)
Ω having η′j as its first (n− 2) coordinates then

(2.40) aθj (x, ξ) = 0 if dist
(
(x, ξ), γj

)
≥ C0θ,

for some fixed constant C0 > 0. Also, aθj satisfies the estimates

(2.41)
∣∣∂σx∂γξ aθj (x, ξ)

∣∣ . θ−|α|−|γ|, (x, ξ) ∈ S∗Ω

related to this support property.
The aθj provide “directional” microlocalization. We also need a “height” localiza-

tion since the characteristics of the symbols of our scaled Schrödinger operators lie on
paraboloids. The variable coefficient operators that we shall use of course are adapted
to our operators and are analogs of ones that are used in the study of Fourier restriction
problems involving paraboloids.

To construct these, choose b ∈ C∞
0 (R) supported in |s| ≤ 1 satisfying

∑∞
−∞ b(s−`) ≡ 1.

We then simply define the “height operator” as follows

(2.42) Aθ
` (P ) = b(θ−1λ−1(P − λκθ` ))Υ(P/λ), κθ` = 1 + θ`, |`| . θ−1,
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where if β̃ is as in (2.7)

(2.43) Υ ∈ C∞
0 ((1/10, 10)) satisfies Υ(r) = 1 in a neighborhood of supp β̃.

Thus, these operators microlocalize P to intervals of size ≈ θλ about “heights” λκθ` ≈
λ. As we shall see below, different “heights” will give rise to different “Schrödinger
tubes” about which the kernels of our microlocalization of the σ̃λ operators are highly
concentrated. Also, standard arguments as in [29] show that if Aθ

` (x, y) is the kernel of
this operator then

(2.44) Aθ
` (x, y) = O(λ−N ) ∀N, if dg(x, y) ≥ C0θ,

for a fixed constant if θ ∈ [λ−δ0 , 1] with, as we are assuming δ0 < 1/2.
If ψ(x) ∈ C∞

0 (Ω) equals 1 in a neighborhood of the x-support of the B(x, ξ) and
Aθ

j (x,Dx) is the operator with symbol

(2.45) Aθ
j (x, ξ) = ψ(x)aθj (x, ξ),

then for ν = (θj, θ`) ∈ θZ2(n−2)+1 we can finally define the cutoffs that we shall use:

(2.46) Aθ
ν = Aθ

j (x,Dx) ◦Aθ
` (P ).

For later use, we note that if Aθ
ν(x, ξ) and Aθ

ν̃(x, ξ) are the symbols of Aθ
ν and Aθ

ν̃ ,
respectively, then

(2.47) Aθ
ν(x, ξ)A

θ
ν̃(x, ξ) ≡ 0, if |ν − ν̃| ≥ C0θ,

for some uniform constant C0. Also, since p(x, ξ) is invariant under the geodesic flow, by
by (2.38) we have that the principal symbol aθν(x, ξ) of A

θ
ν satisfies

(2.48) aθν(χr(x, ξ)) = aθν(x, ξ), on supp B(x, ξ) if |r| ≤ 2δ,

assuming that δ > 0 is small, and, as we may assume, the symbol B(x, ξ) is supported
in a small conic neighborhood of (0, (0, . . . , 0, 1)).

Note also that, if θ ∈ [λ−δ0 , 1], then the Aθ
ν belong to a bounded subset of S0

1−δ0,δ0
(M)

(pseudo-differential operators of order zero and type (1− δ0, δ0)).
Also, as operators between any Lp → Lq, 1 ≤ p, q ≤ ∞, spaces we have

(2.49) σ̃λ =
∑

ν

σ̃λA
θ
ν +O(λ−N ) ∀N,

and the Aθ
ν are almost orthogonal in the sense that we have

(2.50)
∑

ν

‖Aθ
νG‖2L2

t,x
. ‖G‖2L2

t,x
,

with constants independent of θ ∈ [λ−δ0 , 1], with δ0 < 1/2 as above. The second estimate
(2.50), is standard since the Aθ

ν are in S0
1−δ0,δ0

and (2.47) is valid. The other estimate

(2.50) follows from the fact, that by (2.36) and (2.43), Q(x,D) = I −∑
ν A

θ
ν ∈ S0

1−δ0,δ0

has symbol supported outside of a neighborhood of supp B(x, ξ), if, as we may, we
assume that the latter is small, and this leads to (2.49) by the proof of Lemma 2.7
below if δ in (2.6) is small enough. Also, for each x the symbols vanish outside of cubes
of sidelength θλ and |∂γξAθ

ν(x, ξ)| = O((λθ)−|γ|), we also have that their kernels are

O((θλ)n−1(1 + θλdg(x, y))
−N ) for all N and so

(2.51) ‖Aθ
ν‖Lp(M)→Lp(M) = O(1) ∀ 1 ≤ p ≤ ∞.

In view of (2.49) we have for θ0 = λ−1/8

(2.52)
(
αm(t)σ̃λH

)2
=

∑

ν,ν̃

(
αm(t)σ̃λA

θ0
ν H

)
·
(
αm(t)σ̃λA

θ0
ν̃ H

)
+O(λ−N‖H‖22),
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for αm as in (2.18). Recall that in Aθ0
ν , ν ∈ θZ2(n−2)+1 indexes a λ−1/8-separated set in

R
2n−3.
We need to organize the pairs of indices ν, ν̃ in (2.52) as in many earlier works (see

[23] and [35]). To this end, consider dyadic cubes, τθµ in R
2n−3 of sidelength θ = 2kθ0 =

2kλ−1/8, with τθµ denoting translations of the cube [0, θ)2n−3 by µ ∈ θZ2n−3. Two such
dyadic cubes of sidelength θ are said to be close if they are not adjacent but have adjacent
parents of length 2θ, and, in this case, we write τθµ ∼ τθµ̃. We note that close cubes satisfy

dist(τθµ, τ
θ
µ̃) ≈ θ, and so each fixed cube has O(1) cubes which are “close” to it. Moreover,

as noted in [35, p. 971], any distinct points ν, ν̃ ∈ R
2n−3 must like in a unique pair of close

cubes in this Whitney decomposition. So, there must be a unique triple (θ = θ02
k, µ, µ̃)

such that (ν, ν̃) ∈ τθµ × τθµ̃ and τθµ ∼ τθµ̃. We remark that by choosing B to have small

support we need only consider θ = 2kθ0 � 1.
Taking these observations into account implies that the bilinear sum (2.52) can be

organized as follows:

(2.53) ∑

{k∈N: k≥10 and θ=2kθ0�1}

∑

{(µ,µ̃): τθ
µ∼τθ

µ̃}

∑

{(ν,ν̃)∈τθ
µ×τθ

µ̃}

(
αm(t)σ̃λA

θ0
ν H

)
·
(
αm(t)σ̃λA

θ0
ν̃ H

)

+
∑

(τ,τ̃)∈Ξθ0

(
αm(t)σ̃λA

θ0
ν H

)
·
(
αm(t)σ̃λA

θ0
ν̃ H

)
,

where Ξθ0 indexes the remaining pairs such that |ν − ν̃| . θ0 = λ−1/8, including the
diagonal ones where ν = ν̃.

The key estimate that we require, which follows from bilinear harmonic analysis argu-
ments, then is the following.

Proposition 2.6. If H = Sλf is as in (2.2) then for m ∈ Z we have the uniform bounds

(2.54) ‖αm(t)σ̃λH‖Lqc (A−)

.
(∑

ν

∥∥αm(t)σ̃λA
θ0
ν H

∥∥qc
Lqc

t,x(M
n−1×R)

)1/qc
+ λ

1
qc

−‖H‖L2
t,x(M

n−1×R).

The λ
1
qc

− notation that we are using for the last term in (2.54) denotes λ
1
qc

−ε0 for
some unspecified ε0 > 0. Note that since ‖H‖L2

t,x
≈ T 1/2 for H = Sλf and T ≈ log λ

the log-loss afforded by having the last term involve this norm is more than overset by
the power gain 1/qc− of λ. Similarly, when we sum over m and use this estimate, the
additional log–loss will be more than compensated by this gain.

We shall postpone the proof of Proposition 2.6 until the next section. Let us now see
how we can use it to prove Proposition 2.5.

We first note that if αm(t) = α(t−m) is as in (2.18) with α as in (2.17), we of course
have

‖S̃λf‖qcLqc (A−) .
∑

m

‖αm(t)S̃λf‖qcLqc (A−).

Recall that S̃λ = σ̃λSλ. Therefore, by (2.54) and (2.15) we have with θ0 = λ−1/8

‖S̃λf‖qcLqc (A−) .
∑

m

∑

ν

‖αm(t)σ̃λA
θ0
ν Sλf‖qcLqc (A−) + λ1−‖Sλf‖qcLqc (Mn−1×R).
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Since the last term is O(λ1− log λ), in order to prove Proposition 2.5, it suffices to show
that when Mn−1 has nonpositive curvature

(2.55)
∑

m

∑

ν

‖αm(t)σ̃λA
θ0
ν Sλf‖qcLqc (Mn−1×[0,T ]) ≤ CλT

2
qc ,

with, as in the Proposition, T = c0 log λ for c0 > 0 sufficiently small, and we obtain the
other estimate, (2.30), from

(2.56)
∑

m

∑

ν

‖αm(t)σ̃λA
θ0
ν Sλf‖qcLqc (Mn−1×[0,T ]) ≤ CλT

4−qc
2 .

If we use Lemma 2.3 along with (2.10) and (2.50) we obtain the following uniform
bounds for each fixed m

∑

ν

‖αm(t)σ̃λA
θ0
ν Sλf‖2Lqc (Mn−1×[0,T ])(2.57)

.
∑

ν

‖αm(t)σλA
θ0
ν Sλf‖2Lqc (Mn−1×[0,T ])

. λ
2
qc

∑

ν

‖Aθ0
ν Sλf‖2L2(Mn−1×[m−10,m+10]) +O(λ−N )

. λ
2
qc ‖Sλf‖L2(Mn−1×[m−10,m+10]) +O(λ−N )

. λ
2
qc .

Here, we again used the trivial bound ‖Sλf‖L2(Mn−1×I) . |I|1/2 if I ⊂ R is an interval.
To use this, for each m choose ν(m) such that

(2.58) max
ν

‖αm(t)σ̃λA
θ0
ν Sλf‖Lqc (Mn−1×[0,T ]) = ‖αm(t)σ̃λA

θ0
ν(m)Sλf‖Lqc (Mn−1×[0,T ]).

Then, by (2.57) we have

∑

m

∑

ν

‖αm(t)σ̃λA
θ0
ν Sλf‖qcLqc (Mn−1×R)

(2.59)

≤
∑

m

(∑

ν

‖αm(t)σ̃λA
θ0
ν Sλf‖2Lqc (Mn−1×[0,T ])

)
· ‖αm(t)σ̃λA

θ0
ν(m)Sλf‖qc−2

Lqc (Mn−1×[0,T ])

. λ
2
qc

∑

m

‖αm(t)σ̃λA
θ0
ν(m)Sλf‖qc−2

Lqc (Mn−1×[0,T ]).

Since there are O(T ) nonzero terms in the last sum, by Hölder’s inequality we have
∑

m

‖αm(t)σ̃λA
θ0
ν(m)Sλf‖qc−2

Lqc (Mn−1×[0,T ]) . T
2
qc ‖αm(t)σ̃λA

θ0
ν(m)Sλf‖qc−2

`qcmLqc (Mn−1×[0,T ])
,

and, as qc ≤ 4,
∑

m

‖αm(t)σ̃λA
θ0
ν(m)Sλf‖qc−2

Lqc (Mn−1×[0,T ]) . T
4−qc

2 ‖αm(t)σ̃λA
θ0
ν(m)Sλf‖qc−2

`2mLqc (Mn−1×[0,T ]).

Therefore, by (2.57), we would have (2.55) if we could show that when all the sectional
curvatures of Mn−1 are nonpositive then for T = c0 log λ with c0 > 0 small enough

(2.60) ‖αm(t)BσλA
θ0
ν(m)Sλf‖`qcmLqc

t,x(M
n−1×R) . λ

1
qc ,

and we would have (2.56) if we could show that when all of the sectional curvatures are
negative and T is as above

(2.61) ‖αm(t)BσλA
θ0
ν(m)Sλf‖`2mLqc

t,x(M
n−1×R) . λ

1
qc ,
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since σ̃λ = Bσλ.
To prove these inequalities we shall make use of the following simple lemma whose

proof we postpone until the end of this subsection.

Lemma 2.7. If δ > 0 in (2.6) is small enough and θ0 = λ−1/8 we have for B as in (2.9)

(2.62)
∥∥BσλAθ0

ν −BAθ0
ν σλ

∥∥
L2

t,x→Lqc
t,x

= O(λ
1
qc

− 1
4 ).

If we use (2.62) followed by the use of (2.10) and (2.51), we see that for each m we
have

‖αm(t)BσλA
θ0
ν(m)Sλf‖Lqc

t,x

(2.63)

. ‖αm(t)BAθ0
ν(m)σλSλf‖Lqc

t,x
+ λ

1
qc

− 1
4 ‖Sλf‖L2

t,x

. ‖αm(t)BAθ0
ν(m)Sλf‖Lqc

t,x
+ ‖αm(t)BAθ0

ν(m)(I − σλ)Sλf‖Lqc
t,x

+ λ
1
qc

− 1
4 (log λ)1/2

. ‖αm(t)Aθ0
ν(m)Sλf‖Lqc

t,x
+ ‖αm(t)(I − σλ)Sλf‖Lqc

t,x
+ λ

1
qc

− 1
4 (log λ)1/2.

By (2.17)–(2.18) and Lemma 2.2 we have

(2.64) ‖αm(t)(I − σλ)Sλf‖`qcmLqc
t,x

≤ λ
1
qc T

1
qc

− 1
2 ,

and so, by (2.63) we would have (2.60) if

(2.65) ‖αm(t)Aθ0
ν(m)Sλf‖`qcmLqc

t,x(M
n−1×R) . λ

1
qc .

Also, by Hólder’s inequality in m and (2.64) we have

‖αm(t)(I − σλ)Sλf‖`2mLqc
t,x(M

n−1×R) . T
qc−2
2qc ‖αm(t)(I − σλ)Sλf‖`qcmLqc

t,x(M
n−1×R) . λ

1
qc ,

which, by (2.63) means that we would also have (2.61) if when all the sectional curvatures
of Mn−1 are negative

(2.66) ‖αm(t)Aθ0
ν(m)Sλf‖`2mLqc

t,x(M
n−1×R) . λ

1
qc .

In both (2.65) and (2.66) we are considering the map

f →
(
Wf

)
(x, t,m) = η(t/T )αm(t)

(
Aθ0

ν(m) ◦ e−itλ−1∆gf
)
(x).

By repeating the standard TT ∗ argument that was used in the proof of Proposition 2.4,
we would have (2.65) if

(2.65′) ‖WW ∗G‖`qcmLqc
t,x(M

n−1×R) ≤ Cλ
2
qc ‖G‖

`
q′c
m′

L
q′c
t,x(M

n−1×R)
,

and (2.66) if

(2.66′) ‖WW ∗G‖`2mLqc
t,x(M

n−1×R) ≤ Cλ
2
qc ‖G‖

`2
m′

L
q′c
t,x(M

n−1×R)
,

with

WW ∗G(x, t,m) =

(2.67)

= αm(t)η(t/T )
∑

m′

∫ ∞

−∞

αm′(s)η(s/T )
[(
Aθ0

ν(m)e
−i(t−s)λ−1∆g (Aθ0

ν(m′))
∗
)
G( · , s,m′)

]
(x) ds

=
∑

m′

∫∫
K(x, t,m; y, s,m′)G(y, s,m′) dyds,
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with
(2.68)

K(x, t,m; y, s,m′) = αm(t)η(t/T )
(
Aθ0

ν(m)e
−i(t−s)λ−1∆g (Aθ0

ν(m′))
∗
)
(x, y)αm′(s)η(s/T ).

In §4 we shall show (see Proposition 4.2) that for T = c0 log λ small enough we have
for Mn−1 of nonpositive curvature

(2.69) |K(x, t,m; y, s,m′)| ≤ Cλ
n−1
2 |t− s|−n−1

2 ,

and, moreover, if all of the sectional curvatures of Mn−1 are negative

(2.70) |K(x, t,m; y, s,m′)| ≤ Cλ
n−1
2 |t− s|−N if |t− s| ≥ 1.

As we shall see, it is for these two estimates that we need to assume that c0 is small
enough depending on (Mn−1, g). Also, by the support properties of α in (2.17) we also
have

(2.71) K(x, t,m; y, s,m′) = 0 if |t−m| ≥ 3 or |s−m′| ≥ 3.

Thus, if we define the frozen operators

(
Wt,m;s,m′h

)
(x) =

∫

Mn−1

K(x, t,m; y, s,m′)h(y) dy,

we have

(2.72) Wt,m;s,m′ ≡ 0 if |t−m| ≥ 3 or |s−m′| ≥ 3,

and, if Mn−1 has nonpositve curvature, by (2.69),

(2.73) ‖Wt,m;s,m′h‖L∞

x (Mn−1) ≤ Cλ
n−1
2 |t− s|−n−1

2 ‖h‖L1(Mn−1),

and, moreover, if the sectional curvatures of Mn−1 are negative, by (2.70) and (2.71),
(2.74)

‖Wt,m;s,m′h‖L∞

x (Mn−1) .

{
λ

n−1
2 |t− s|−n−1

2 ‖h‖L1(Mn−1) if |m−m′| ≤ 10

λ
n−1
2 |m−m′|−N‖h‖L1(Mn−1) ∀N if |m−m′| > 10.

Also, by (2.51) and the fact that e−itλ−1∆g is unitary, we of course always have

(2.75) ‖Wt,m;s,m′‖L2(Mn−1)→L2(Mn−1) = O(1).

By interpolation (2.73), (2.75) along with (2.72) yield that if Mn−1 has nonpositive
curvature
(2.76)

‖Wt,m;s,m′h‖Lqc
x (Mn−1) =

{
O(λ

2
qc |t− s|− 2

qc ‖h‖
Lq′c (Mn−1)

) if |t−m| ≤ 3 and |s−m′| ≤ 3

0 if |t−m| > 3 or |s−m′| > 3.

while if we also use (2.74) then this argument implies that if the sectional curvatures of
Mn−1 are all negative

(2.77) ‖Wt,m;s,m′h‖Lqc
x (Mn−1) =





O(λ
2
qc |t− s|− 2

qc ‖h‖
Lq′c (Mn−1)

) if |m−m′| ≤ 10, |t−m| ≤ 3 and |s−m′| ≤ 3

O(λ
2
qc |m−m′|−2‖h‖

Lq′c (Mn−1)
) if |m−m′| > 10, |t−m| ≤ 3 and |s−m′| ≤ 3

0 if |t−m| > 3 or |s−m′| > 3.
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Note that for fixed t,m we have by Minkowski’s inequality and (2.67)

‖WW ∗G( · , t,m)‖Lqc
x

≤
∑

m′

∫ ∥∥∥
∫
K(x, t,m; y, s,m′)G(y, s,m′) dy

∥∥∥
Lqc

x

ds(2.78)

=
∑

m′

∫ ∥∥(Wt,m;s,m′G( · , s,m))(x)
∥∥
Lqc

x
ds.

Set

(2.79) H(t,m; s,m′) =

{
λ

2
qc |t− s|− 2

qc , if |t−m| ≤ 3 and |s−m′| ≤ 3

0 if |t−m| > 3 or |s−m′| > 3.

Then, by (2.76) and (2.78) we have

‖WW ∗G‖`qcmLqc
t,x

.
(∑

m

∫ ∣∣∑

m′

∫
H(t,m; s,m′) ‖G( · , s,m′)‖

L
q′c
x

ds
∣∣qc dt

)1/qc

. λ
2
qc

(∑

m′

∫
‖G( · , s,m′)‖q

′

c

L
q′c
x

ds
)1/q′c

= λ
2
qc ‖G‖

`
q′c
m′

L
q′c
t,x(M

n−1×R)
,

since if

(2.80) Uf(t,m) =
∑

m′

∫
H(t,m; s,m′) f(s,m′) ds,

we have

‖U‖
`
q′c
m′

L
q′c
s →`qcmLqc

t

= O(λ
2
qc )

by a simple variant of Theorem 0.3.6 in [29]. Thus, we have obtained (2.65′).
If all the sectional curvatures of Mn−1 are negative and we set

H(t,m; s,m′) =





λ
2
qc |t− s|− 2

qc if |m−m′| ≤ 10, |t−m| ≤ 3 and |s−m′| ≤ 3

λ
2
qc |m−m′|−2 if |m−m′| > 10, |t−m| ≤ 3 and |s−m′| ≤ 3

0 if |t−m| > 3 or |s−m′| > 3,

and, if U is as in (2.80), then the proof of Theorem 0.3.6 in [29] yields

‖U‖
`2
m′

L
q′c
s →`2mLqc

t

= O(λ
2
qc ),

which yields (2.66′) by the above argument. �

This completes the proof of Proposition 2.5 and hence Theorems 1.1 and 1.2 up to
proving the crucial local estimates in Proposition 2.6, as well as the global kernel estimates
(2.34), (2.69) and (2.70) and that we have used. We shall prove the former using bilinear
harmonic analysis techniques in the next section and the kernel estimates in the final
section.

The other task remaining to complete the proofs Theorems 1.1 and 1.2 is to prove the
commutator estimate that we employed:

Proof of Lemma 2.7. Recall that by (2.42) and (2.43) the symbol B(x, ξ) = Bλ(x, ξ) ∈
S0
1,0 vanishes when |ξ| is not comparable to λ. In particular, it vanishes if |ξ| is larger

than a fixed multiple of λ, and it belongs to a bounded subset of S0
1,0. Furthermore, if

aθ0ν (x, ξ) is the principal symbol of our zero-order dyadic microlocal operators, we recall
that by (2.48) we have that for δ > 0 small enough

(2.81) aθ0ν (x, ξ) = aθ0ν (χr(x, ξ)) on supp Bλ if |r| ≤ 2δ,
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where χr : T ∗Mn−1 \0 → T ∗Mn−1 \0 denotes geodesic flow in the cotangent bundle.
By Sobolev estimates for Mn−1 × R, in order to prove (2.62), it suffices to show that

(2.82)
∥∥∥
(√

I + P 2 +D2
t

)n( 1
2−

1
qc

) [
BλσλA

θ0
ν −BλA

θ0
ν σλ

] ∥∥∥
L2

t,x→L2
t,x

= O(λ
1
qc

− 1
4 ).

To prove this we recall that

σλ = (2π)−1β̃(Dt/λ)

∫
σ̂(r)eirλ

1/2|Dt|
1/2

e−irP dr,

and, therefore, since eirλ
1/2|Dt|

1/2

has L2 → L2 norm one and commutes with Bλ, A
θ0
ν and

(
√
I + P 2 +D2

t )
n( 1

2−
1
qc

), and since σ̂(r) = 0, |r| ≥ 2δ, by Minkowski’s integral inequality,
we would have (2.82) if

(2.83)

sup
|r|≤2δ

∥∥∥
(√

I + P 2 +D2
t

)n( 1
2−

1
qc

)

β̃(Dt/λ)
[
Bλe

−irPAθ0
ν −BλA

θ0
ν e

−irP
] ∥∥∥

L2
t,x→L2

t,x

= O(λ
1
qc

− 1
4 ).

Next, to be able to use Egorov’s theorem, we write
[
Bλe

−irPAθ0
ν −BλA

θ0
ν e

−irP
]
= Bλ

[
(e−irPAθ0

ν e
irP )−BλA

θ0
ν ] ◦ e−irP .

Since e−irP also has L2-operator norm one, we would obtain (2.83) from

(2.84)
∥∥∥
(√

I + P 2 +D2
t

)n( 1
2−

1
qc

)

β̃(Dt/λ)Bλ

[
(e−irPAθ0

ν e
irP )−Aθ0

ν

] ∥∥∥
L2

t,x→L2
t,x

= O(λ
1
qc

− 1
4 ).

By Egorov’s theorem (see e.g. Taylor [36, §VIII.1])

Aθ0
ν,r(x,D) = e−irPAθ0

ν e
irP

is a one-parameter family of zero-order pseudo-differential operators, depending on the
parameter r, whose principal symbol is aθ0ν (χ−r(x, ξ)). By (2.81) and the composition
calculus of pseudo-differential operators the principal symbol of BλA

θ0
ν,r and BλA

θ0
ν both

equal Bλ(x, ξ)a
θ0
ν (x, ξ) if |r| ≤ 2δ. If θ = 1 then Aθ

ν ∈ S0
1,0, and, so, in this case we would

have that Bλ(e
−irPAθ

νe
irP )−BλA

θ
ν would be a pseudo-differential operator of order −1

with symbol vanishing for |ξ| larger than a fixed multiple of λ (see e.g., [28, Theorem
4.3.6]). Since we are assuming that θ0 = λ−1/8, by the way they were constructed, the
symbols Aθ0

ν belong to a bounded subset of S0
7/8,1/8. So, by [36, p. 147], for |r| ≤ 2δ,

Bλ(e
−irPAθ0

ν e
irP )−BλA

θ0
ν belong to a bounded subset of S

−3/4
7/8,1/8 with symbols vanishing

for |ξ| larger than a fixed multiple of λ due to the fact that the symbol Bλ(x, ξ) has this
property (see e.g., [36, p. 46]).

We also need to take into account the other operators inside the norm in (2.84).

Since β̃(Dt/λ) is a zero-order dyadic operator, by the above, the operators in the left

of (2.84) belong to a bounded subset of S
n( 1

2−
1
qc

)− 3
4

7/8,1/8 (Mn−1 × R) with symbols vanishing

for |(ξ, τ)| larger than a fixed multiple of λ. Consequently, the left side of (2.84) is

O(λn(
1
2−

1
qc

)− 3
4 ) = O(λ

1
qc

− 1
4 ). For, qc =

2(n+1)
n−1 and so 1

qc
= n( 12 − 1

qc
)− 1

2 . �

2.3. Endpoint Strichartz estimates: Proof of Theorem 1.3.

We now prove our final theorem saying that if all the sectional curvatures ofMn−1 are
nonpositive and, as is necessary, d = n−1 ≥ 3 we have the endpoint Strichartz estimates
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(1.15). As we pointed out before, such improvements cannot hold on spheres Sd since the
estimates are saturated just by taking the initial data in (1.1) to be zonal eigenfunctions.

To prove our improvements under our geometric assumptions we shall use the univer-
sal local estimates of Burq, Gérard and Tzvetkov [11] along with our improvements in
Theorem 1.1 for non-endpoint exponents, some of the kernel estimates we have used and
an argument of one of us [30] that is a variation of an earlier one of Bourgain [8].

To this end, we recall the universal endpoint Strichartz estimates of Burq, Gérard and
Tzvetkov, which say that for λ� 1 one has the uniform dyadic small interval bounds

‖e−it∆gβ(P/λ)f‖L2
tL

qe
x (Mn−1×[0,λ−1]) ≤ C‖f‖2, if qe =

2d
d−2 = 2(n−1)

n−3 , d = n− 1 ≥ 3.

This is of course equivalent to the following estimates for the scaled Schrödinger operators

(2.85) ‖e−itλ−1∆gβ(P/λ)f‖L2
tL

qe
x (Mn−1×[0,1]) ≤ Cλ

1
2 ‖f‖2, qe = 2(n−1)

n−3 , n ≥ 4.

We also point out that by using the Littlewood-Paley arguments described in the
introduction we would obtain the bound (1.15) in Theorem 1.3 by showing that whenever
all the sectional curvatures of Mn−1 are nonpositive we have for qe and n as above

(2.86)
∥∥e−itλ−1∆gβ(P/λ)f

∥∥
L2

tL
qe
x (Mn−1×[0,log λ])

≤ Cλ
1
2 (log λ)

1
2 (log(log λ))−

1
2 ‖f‖2.

In order to use our earlier arguments, it turns out that we need to modify the height
splitting (2.27) as follows

(2.87) A+ = {(x, t) ∈Mn−1 × [0, log λ] : |Uλf(x, t)| ≥ λ
n−1
4 (log λ)ε0},

and A− = {(x, t) ∈Mn−1 × [0, log λ] : |Uλf(x, t)| < λ
n−1
4 (log λ)ε0},

assuming, as we are that ‖f‖2 = 1, for ε0 > 0 to be specified in just a moment and

Uλf = e−itλ−1∆gβ(P/λ)f.

Let us now see how we can adapt the proof of Proposition 2.4 to obtain the following.

Proposition 2.8. Suppose that all the curvatures ofMn−1 are nonpositive and let ε0 > 0
be fixed and A+ be as in (2.87). Then, if, as before ‖f‖2 = 1 and λ � 1 we have the
following uniform bounds

(2.88) ‖Uλf‖L2
tL

qe
x (A+∩(Mn−1×IT )) ≤ Cλ

1
2 ,

if IT ⊂ [0, log λ] is an interval of length |IT | ≤ T where

T = c0 log(log λ),

with c0 > 0 sufficiently small (depending on ε0 > 0 and Mn−1).

Proof. If IT is as above choose g so that

(2.89) ‖g‖
L2

tL
q′e
x (A+∩(Mn−1×IT ))

= 1, and

‖Uλf‖L2
tL

qe
x (A+∩(Mn−1×IT )) =

∫∫
Uλf · 1A+∩(Mn−1×IT ) · g dxdt.

Note that UλU
∗
λ = e−i(t−s)λ−1∆gβ2(P/λ). Let us split

UλU
∗
λ = Lλ +Gλ,

where if αm is as in (2.18)

Lλ =
∑

{(j,k): |j−k|≤10}

αj(t)e
−i(t−s)λ−1∆gβ2(P/λ)αk(s).
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Then, it is straightforward to see that (2.85) yields

(2.90) ‖Lλ‖
L2

tL
q′e
x →L2

tL
qe
x

= O(λ),

and, using (2.34) again, we have that the kernel of Gλ satisfies

(2.91) |Gλ(x, t; y, s)| ≤ Cλ
n−1
2 exp(CM |t− s|) if |t− s| . log λ,

for some constant CM depending on Mn−1.
Thus, if we repeat the first part of the proof of Proposition 2.4, we find that

‖Uλf‖2L2
tL

qe
x (A+∩(Mn−1×IT )) ≤ |I|+ |II|,

where

I =

∫∫
Lλ

(
1A+∩(Mn−1×IT ) · g

)
1A+∩(Mn−1×IT ) · g dxdt

II =

∫∫
Gλ

(
1A+∩(Mn−1×IT ) · g

)
1A+∩(Mn−1×IT ) · g dxdt.

By (2.89) and (2.90)

(2.92) |I| ≤
∥∥Lλ( 1A+∩(Mn−1×IT ) · g )‖L2

tL
qe
x (A+∩(Mn−1×IT )) ≤ Cλ.

Also, by (2.91), if T = c0(log(log λ)) with c0 > 0 sufficiently small we have

|Gλ(x, t; y, s)| ≤ Cλ
n−1
2 (log λ)ε0 , if t, s ∈ IT .

So, for this choice of T we have by (2.89) and Hölder’s inequality

|II| ≤ Cλ
n−1
2 (log λ)ε0

∥∥ 1A+∩(Mn−1×IT ) · g
∥∥2
L1

t,x(A+∩(Mn−1×IT )

≤ Cλ
n−1
2 (log λ)ε0 ‖1A+∩(Mn−1×IT )‖2L2

tL
qe
x
.

Since 1 ≤ |Uλf(x, t)| · (λ
n−1
4 (log λ)ε0)−1 on A+, we have

‖1A+∩(Mn−1×IT )‖2L2
tL

qe
x

≤ λ−
n−1
2 (log λ)−2ε0‖Uλf‖2L2

tL
qe
x (A+∩(Mn−1×IT )),

and thus for λ� 1

(2.93) |II| ≤ 1
2‖Uλf‖2L2

tL
qe
x (A+∩(Mn−1×IT )).

Since (2.92) and (2.93) imply (2.88), the proof is complete. �

Next, let us note that by Proposition 2.8

‖Uλf‖L2
tL

qe
x (A+) ≤ Cλ

1
2 (log λ/ log(log λ))

1
2 .

Thus, we would have (2.86) and hence (1.15) if we could show that if ε0 > 0 in (2.87) is
small enough, then for λ� 1,

(2.94) ‖Uλf‖L2
tL

qe
x (A−) ≤ Cλ

1
2 (log λ)

1
2−δ1 , some δ1 > 0.

We can use our log power gains for Lqc to prove this since, by (2.85),

(2.95) 1
2 = n−1

2 ( 12 − 1
qe
) and 1

qc
= n−1

2 ( 12 − 1
qc
).

We also note that by Hölder’s inequality since A− ⊂Mn−1× [0, log λ], the Lqc
t,x estimates

(1.10′) yield

(2.96) ‖Uλf‖Lr
tL

qc
x (A−) ≤ Cλ

1
qc (log λ)

1
r−δ0 , if 1 ≤ r < qc, and δ0 = 1

qc
(1− 2

qc
) > 0.

Note that qe > qc and let

(2.97) ε̃0 = qe−qc
qe

ε0 < ε0 and δ̃0 = qc
qe
δ0 < δ0.
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Then by (2.87) and (2.97)

‖Uλf‖L2
tL

qe
x (A−) ≤ ‖Sλf‖

qe−qc
qe

L∞(A−) · ‖Uλf‖
qc
qe

L
2qc
qe

t Lqc
x (A−)

(2.98)

. (log λ)ε̃0λ
n−1
4 ( qe−qc

qe
)‖Uλf‖

qc
qe

L
2qc
qe

t Lqc
x (A−)

= (log λ)ε̃0λ
n−1
4 λ−

n−1
4

qc
qe ‖Uλf‖

qc
qe

L
2qc
qe

t Lqc
x (A−)

.

If we let r = 2qc
qe

, then, since n ≥ 4, we have r ∈ [1, qc). Therefore, if we apply (2.96) and

recall (2.97), since ‖f‖2 = 1, we can bound the last factor as follows

‖Uλf‖
qc
qe

L
2qc
qe

t Lqc
x (A−)

≤ Cλ
n−1
2 ( 1

2−
1
qc

)· qcqe
[
(log λ)

qe
2qc

−δ0
] qc

qe(2.99)

= Cλ
n−1
4 · qcqe −n−1

2 · 1
qe (log λ)

1
2−δ̃0 .

If we combine (2.98) and (2.99) and use (2.95) one more time we conclude that

‖Sλf‖L2
tL

qe
x (A−) ≤ Cλ

n−1
4 −n−1

2
1
qe (log λ)

1
2−(δ̃0−ε̃0) = Cλ

1
2 (log λ)

1
2−(δ̃0−ε̃0).

This gives us (2.94) with δ1 = δ̃0 − ε̃0, if ε0 > 0 is small enough so that ε̃0 < δ̃0, which
finishes the proof of Theorem 1.3. �

Remarks. We note that ifMn−1 is a torus T
n−1 of dimension d = n−1 ≥ 3 then we can

use the toral estimates of Bourgain and Demeter [10] to obtain much stronger results than
the ones we have obtained for general manifolds of nonpositive curvature. Indeed, we
recall that in [10] it was shown that ‖β(P/λ)e−it∆

Tn−1 ‖L2(Tn−1)→Lqc (Tn−1×[0,1]) = O(λε),
∀ε > 0. Therefore, by Sobolev estimates and Hölder’s inequality we have

‖β(P/λ)e−it∆
Tn−1 ‖L2

tL
qe
x (Tn−1×[0,1]) . λ(n−1)( 1

qc
− 1

qe
)‖β(P/λ)e−it∆

Tn−1 ‖L2
tL

qc
x (Tn−1×[0,1])

≤ λ(n−1)( 1
qc

− 1
qe

)‖β(P/λ)e−it∆
Tn−1 ‖Lqc

t Lqc
x (Tn−1×[0,1])

. λ(n−1)( 1
qc

− 1
qe

)+ε‖f‖2 = λ
2

n+1+ε‖f‖2.

If d = n − 1 ≥ 3, this is a λ
2

n+1−
1
2+ε ≤ λ−

1
10+ε over the universal bounds of Burq,

Gérard and Tzvetkov [11], which is much better than our (log log λ)−1/2 improvement in
Theorem 1.3.

On the other hand, it seems likely that we shall be able to obtain no loss for dyadic
estimates on tori T

n on intervals of length λ−1+δn for some δn > 0, which would be the
natural analog of (1.14) in this setting. We hope to study this problem as well as possible
improved Strichartz estimates for spheres1 in a later work.

3. Local variable coefficient harmonic analysis: Proof of Proposition 2.6.

We are dealing with Aθ0
ν ∈ S0

7/8,1/8 which are pseudo-differential cutoffs at the scale

θ0 = λ−1/8. In order to obtain the gains involved in the last term in the right side of
(2.54) we shall have to also use cutoffs at the scale θ` = 2`θ0 with ` < 0.

To prove this we shall use the strategy in Blair and Sogge [7] and earlier works,
especially Tao, Vargas and Vega [35] and Lee [23].

1We should point out that in a recent work Sánchez and Esquivel [25] stronger results than those

in [11] were stated. However, there is a gap in the arguments in [25] based on incorrect use of Sobolev
estimates, and simple examples (such as the function fλ = β(P/λ)(x, x0) discussed in the introduction)

show that some of the results in [25] are invalid.
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We first note that if δ as in (2.6) is small enough we have

(3.1) αm(t)σ̃λ −
∑

ν

αm(t)σ̃λA
θ0
ν = Rλ, where ‖RλH‖L∞

t,x
. λ−N‖H‖L2

t,x
∀N.

Thus, we have

(3.2)
(
αm(t)σ̃λH

)2
=

∑

ν,ν̃

(
αm(t)σ̃λA

θ0
ν H

)
·
(
αm(t)σ̃λA

θ0
ν̃ H

)
+O(λ−N‖H‖2L2

t,x
) ∀N.

As in earlier works, let

(3.3) Υdiag(H) =
∑

(ν,ν̃)∈Ξθ0

(
αm(t)σ̃λA

θ0
ν H

)
·
(
αm(t)σ̃λA

θ0
ν̃ H

)
,

and

(3.4) Υfar(H) =
∑

(ν,ν̃)/∈Ξθ0

(
αm(t)σ̃λA

θ0
ν H

)
·
(
αm(t)σ̃λA

θ0
ν̃ H

)
+O(λ−N‖H‖2L2

t,x
),

with the last term denoting the error term in (3.2). Thus,

(3.5)
(
αm(t)σ̃λH

)2
= Υdiag(H) + Υfar(H).

Thus, the summation in Υdiag(H) is over near diagonal pairs (ν, ν̃). In particular we
have |ν − ν̃| ≤ Cθ0 for some uniform constant as ν, ν̃ range over θ0Z

(2n−3). The other
term Υfar(H) is the remaining pairs, which include many which are far from the diagonal.
This sum will provide the contribution to the last term in (2.54).

The two types of terms here are treated differently, as in analyzing parabolic restriction
problems or spectral projection estimates.

We can treat the first term in the right of (3.5) as in [3] and [7] by using a variable
coefficient variant of Lemma 6.1 in [35] (see also Lemma 4.2 in [7]):

Lemma 3.1. If Υdiag(H) is as in (3.5) and n ≥ 3, then we have the uniform bounds

(3.6) ‖Υdiag(H)‖
L

qc/2
t,x

.
(∑

ν

‖αm(t)σ̃λA
θ0
ν H‖qc

Lqc
t,x

)2/qc
+O(λ

2
qc

−‖H‖2L2
t,x

).

We also need the following estimate for Υfar(H) which will be proved using bilinear
oscillatory integral estimates of Lee [23] and arguments of two of us in [4], [5] and [7].

Lemma 3.2. If Υfar(H) is as in (3.4), and, as above θ0 = λ−1/8, then for all ε > 0 we
have for H = Sλf

(3.7)

∫∫
|Υfar(H)|q/2 dxdt .ε λ

1+ε
(
λ7/8

)n−1
2 (q−qc) ‖H‖q

L2
t,x
, if q = 2(n+2)

n .

Let us postpone the proofs of these two lemmas for a bit and show how they can be
used to obtain Proposition 2.6.

If we let q = 2(n+2)
n as in Lemma 3.2, we note that q < qc and also

|αm(t)σ̃λH · αm(t)σ̃λH|
≤ 2q/2 |αm(t)σ̃λH · αm(t)σ̃λH| qc−q

2 ·
(
|Υdiag(H)|q/2 + |Υfar(H)|q/2

)
.
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Thus,

‖αm(t)σ̃λH‖qcLqc (A−) =

∫

A−

∣∣αm(t)σ̃λH · αm(t)σ̃λH
∣∣qc/2 dxdt(3.8)

.

∫

A−

|αm(t)σ̃λH · αm(t)σ̃λH| qc−q
2 |Υdiag(H)|q/2 dxdt

+

∫

A−

|αm(t)σ̃λH · αm(t)σ̃λH| qc−q
2 |Υfar(H)|q/2 dxdt = I + II.

To estimate II we use (3.7), the ceiling for A−, and the fact that σ̃λH = S̃λf if
H = Sλf to see that

II . ‖αm(t)S̃λf‖qc−q
L∞(A−) · λ1+ε

(
λ7/8

)n−1
2 (q−qc) ‖H‖q

L2
t,x

≤ λ(
n−1
4 + 1

8 )(qc−q) ·λ−(qc−q)( 7
8 ·

n−1
2 ) ·λ1+ε‖H‖q

L2
t,x

= O(λ1−δn+ε‖H‖qc
L2

t,x
), some δn > 0.

We have δn > 0 since (qc− q)( 3(n−1)
16 − 1

8 ) > 0, and also ‖H‖qc
L2

t,x
dominates ‖H‖q

L2
t,x

since

qc > q and ‖H‖L2
t,x

≈ T since H = Sλf , ‖f‖2 = 1 and e−itλ−1∆g is a unitary operator

on L2
x.

Since we may take ε < δn, II
1/qc is dominated by the last term in (2.54), Conse-

quently, we just need to see that I1/qc is dominated by the other term in the right side
of this inequality. To estimate this term we use Hölder’s inequality followed by Young’s
inequality and Lemma 3.1 to see that

I ≤ ‖αm(t)σ̃λH · αm(t)σ̃λH‖
qc−q

2

Lqc/2(A−)
· ‖Υdiag(H)‖q/2

L
qc/2
t,x

≤ qc−q
qc

‖αm(t)σ̃λH · αm(t)σ̃λH‖qc/2
Lqc/2(A−)

+ q
qc
‖Υdiag(H)‖qc/2

L
qc/2
t,x

≤ qc−q
qc

‖αm(t)σ̃λH‖qcLqc (A−) + C
∑

ν

‖αm(t)σ̃Aθ0
ν H‖qc

Lqc
t,x

+O(λ1−‖H‖qc
L2

t,x
).

Since qc−q
qc

< 1, the first term in the right can be absorbed in the left side of (3.8), and

this, along with the estimate for II above yields (2.54).
Thus, if we can prove Lemma 3.1 and Lemma 3.2, the proof of Proposition 2.6 will be

complete.

Proof of Lemma 3.1.

Let us first define slightly wider microlocal cutoffs by setting

Ãθ0
ν =

∑

|µ−ν|≤C0θ0

Aθ0
µ .

We can fix C0 large enough so that

(3.9) ‖Aθ0
ν −Aθ0

ν Ã
θ0
ν ‖Lp

x→Lp
x
= O(λ−N ) ∀N if 1 ≤ p ≤ ∞.

Also, like the original Aθ0
ν operators the Ãθ0

ν operators are almost orthogonal

(3.10)
∑

ν

‖Ãθ0
ν h‖2L2

x
. ‖h‖2L2

x
.

Since

‖αm(t)σ̃λF‖Lqc
t,x

≤ Cλ
1
qc ‖F‖L2

t,x
,



STRICHARTZ ESTIMATES ON NEGATIVELY CURVED MANIFOLDS 27

we conclude that, in order to prove (3.6), we may replace Υdiag(H) by Υ̃diag(H) where

the latter is defined by the analog of (3.3) with Aθ0
ν and Aθ0

ν̃ replaced by Aθ0
ν Ã

θ0
ν and

Aθ0
ν̃ Ã

θ0
ν̃ , respectively.

So, it suffices to prove

(3.11)
∥∥ ∑

(ν,ν̃)∈Ξθ0

(αm(t)σ̃λA
θ0
ν Ã

θ0
ν H) · (αm(t)σ̃λA

θ0
ν̃ Ã

θ0
ν̃ H)

∥∥
L

qc/2
t,x

≤ C
(∑

ν

‖αm(t)σ̃λA
θ0
ν H‖qc

Lqc
t,x

)2/qc
+O(λ

2
qc

−‖H‖2L2
t,x

).

We shall need the following variant of (2.62),

(3.12) ‖αm(t)[ σ̃λA
θ0
ν −Aθ0

ν σ̃λ ]F‖Lqc
t,x

. λ
1
qc

− 1
4 ‖F‖L2

t,x
.

This follows from the proof of Lemma 2.7, or, alternately from Lemma 2.3, (2.62) and
the fact that the commutator [B,Aθ0

ν ] is bounded on Lqc
x (Mn−1) with norm O(λ−7/8).

Since the Aθ0
ν commute with the αm(t) time-localizations, by (3.10) and (3.12) we would

have (3.11) if we could show that

(3.13)
∥∥ ∑

(ν,ν̃)∈Ξθ0

(Aθ0
ν (αm(t)σ̃λÃ

θ0
ν H) ·Aθ0

ν̃ (αm(t)σ̃λÃ
θ0
ν̃ H)

∥∥
L

qc/2
t,x

≤ C
(∑

ν

‖αm(t)σ̃λA
θ0
ν H‖qc

Lqc
t,x

)2/qc
+O(λ

2
qc

−‖H‖2L2
t,x

).

Note that the functions in the norm in the left side of (3.13) vanish if t /∈ [m−1,m+1].
Therefore, if we take r = (qc/2)

′ so that r is the conjugate exponent for qc/2, it suffices
to show that

(3.14)
∣∣∣

∑

(ν,ν̃)∈Ξθ0

∫∫
Aθ0

ν (αm(t)σ̃λÃ
θ0
ν H) ·Aθ0

ν̃ (αm(t)σ̃λÃ
θ0
ν̃ H) ·Gdtdx

∣∣∣

≤ C
(∑

ν

‖αm(t)σ̃λA
θ0
ν H‖qc

Lqc
t,x

)2/qc
+O(λ

2
qc

−‖H‖2L2
t,x

),

if ‖G‖Lr
t,x

= 1 and G(t, x) = 0 if t /∈ [m− 1,m+ 1].

Note that if x and ν are fixed and ξ → Aθ0
ν (x, ξ) does not vanish identically, then this

function of ξ is supported in a cube Qθ0
ν (x) ⊂ R

n−1
ξ of sidelength ≈ λ7/8. The cubes

can be chosen so that, if ην(x) is its center, then ∂
γ
xην(x) = O(λ) for all multi-indices γ.

Keeping this in mind it is straightforward to construct for every pair (ν, ν̃) ∈ Ξθ0 symbols
bν,ν̃(x, ξ) belonging to a bounded subset of S0

7/8,1/8 satisfying

(3.15) bν,ν̃(x, η) = 1 if dist
(
η, suppξA

θ0
ν (x, ξ) + suppξA

θ0
ν̃ (x, ξ)

)
≤ λ7/8,

with “+” denoting the algebraic sum. Using this and a simple integration by parts
argument shows that for every pair (ν, ν̃) ∈ Ξθ0

(3.16)
∥∥(I − bν,ν̃(x,D))

[
Aθ0

ν h ·Aθ0
ν̃ h]

]∥∥
L∞

x
≤ CNλ

−N‖h‖2L1
x
, ∀N.

The symbols can also be chosen so that bν1,ν̃1(x, ξ) and bν2,ν̃2(x, ξ) have disjoint supports
if (νj , ν̃j) ∈ Ξθ0 , j = 1, 2 and min(|(ν1 − ν2, ν̃1 − ν̃2)|, |(ν1 − ν̃2, ν̃1 − ν2)|) ≥ C2θ0 with C2

being a fixed constant independent of λ since all pairs in Ξθ0 are nearly diagonal. Due to



28 MATTHEW D. BLAIR, XIAOQI HUANG, AND CHRISTOPHER D. SOGGE

this, the adjoints, b∗ν,ν̃(x,D) are almost orthogonal in the sense that we have the uniform
bounds

(3.17)
∑

(ν,ν̃)∈Ξθ0

‖b∗ν,ν̃(x,D)h‖2L2
x
. ‖h‖2L2

x
.

Since suppξA
θ0
ν (x, ξ) + suppξA

θ0
ν̃ (x, ξ) is contained in a cube of sidelength ≈ λ7/8 and

can be chosen to have center ην,ν̃(x) satisfying ∂γxην,ν̃(x) = O(λ), we can furthermore
assume that we have the uniform bounds

(3.18) sup
(ν,ν̃)∈Ξθ0

‖b∗ν,ν̃(x,D)h‖L∞

x
. ‖h‖L∞

x
.

We have now set up our variable coefficient version of the simple argument in [35] that
will allow us to obtain (3.14). First, by (3.16), modulo O(λ−N‖H‖2

L2
t,x

) errors, the left

side of (3.14) is dominated by

(3.19)
∣∣∣

∑

(ν,ν̃)∈Ξθ0

∫∫
(Aθ0

ν (αm(t)σ̃λÃ
θ0
ν H) ·Aθ0

ν̃ (αm(t)σ̃λÃ
θ0
ν̃ H ·

(
b∗ν,ν̃(x,D)G

)
dtdx

∣∣∣

≤
( ∑

(ν,ν̃)∈Ξθ0

‖Aθ0
ν (αm(t)σ̃λÃ

θ0
ν H) ·Aθ0

ν̃ (αm(t)σ̃λÃ
θ0
ν̃ H)‖qc/2

L
qc/2
t,x

)2/qc

·
( ∑

(ν,ν̃)∈Ξθ0

‖b∗ν,ν̃(x,D)G‖rLr
t,x

)1/r

,

since r = (qc/2)
′.

Note that r ∈ [2,∞) since qc ∈ (2, 4]. So, if we use (3.17), (3.18) and an interpolation
argument we conclude that

( ∑

(ν,ν̃)∈Ξθ0

‖b∗ν,ν̃(x,D)G‖rLr
t,x

)1/r

= O(1),

for G as in (3.14). As a result, we conclude that modulo O(λ
2
qc

−‖H‖L2
t,x

) errors, the left

side of (3.13) is dominated by

( ∑

(ν,ν̃)∈Ξθ0

‖Aθ0
ν (αm(t)σ̃λÃ

θ0
ν H) ·Aθ0

ν̃ (αm(t)σ̃λÃ
θ0
ν̃ H)‖qc/2

L
qc/2
t,x

)2/qc

.
(∑

ν

‖αm(t)Aθ0
ν σ̃λÃ

θ0
ν H‖qc

Lqc
t,x

)2/qc
.

If we repeat earlier arguments and use (3.9) again, we conclude that the right side
of the preceding inequality is dominated by the right side of (3.6), and this finishes the
proof of Lemma 3.1.

Bilinear oscillatory integral estimates: Proof of Lemma 3.2

To prove (3.7) we note that for a given θ = 2kθ0, k ≥ 10 we have for each fixed c0 > 0

(3.20) αm(t)σ̃λA
θ0
ν H =

∑

µ′∈c0θ Z2n−3

σ̃λA
c0θ
µ′ A

θ0
ν H +O(λ−N‖H‖2).

As in [4] it will be convenient to choose c0 = 2−m0 < 1 so that we are working at scales
c0θ rather than θ to ensure that we easily have the separation to apply bilinear oscillatory
integral bounds.
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With this in mind we note that if we fix k ≥ 10 in the first sum in (2.53), we then
have for a given fixed c0 = 2−m0 , m0 ∈ N, and pair of dyadic cubes τθµ, τ

θ
µ̃ with τθµ ∼ τθµ̃

and θ = 2kθ0

(3.21)
∑

(ν,ν̃)∈τθ
µ×τθ

µ̃

(αm(t)σ̃λA
θ0
ν H)(αm(t)σ̃λA

θ0
ν̃ H)

=
∑

(ν,ν̃)∈τθ
µ×τθ

µ̃

∑

τ
c0θ

µ′
∩τθ

µ 6=∅

τ
c0θ

µ̃′
∩τθ

µ̃ 6=∅

(αm(t)σ̃λA
c0θ
µ′ A

θ0
ν H)(αm(t)σ̃λA

c0θ
µ̃′ A

θ0
ν̃ H) +O(λ−N‖H‖22),

if τθµ and τθµ̃ the cubes with the same centers but 11/10 times the sidelength of τθµ and τθµ̃,

respectively, so that we have dist(τθµ, τ
θ
µ̃) ≥ θ/2 when τθµ ∼ τθµ̃. This follows from the fact

that for c0 small enough the product of the symbol of Ac0θ
µ′ and Aθ0

ν vanishes identically

if τ c0θµ′ ∩ τθµ = ∅ and ν ∈ τθµ, since θ = 2kθ0 with k ≥ 10. Also notice that we then have

for fixed c0 = 2−m0 small enough

(3.22) dist(τ c0θµ′ , τ
c0θ
µ̃′ ) ∈ [4−1θ, 4nθ], if τ c0θµ′ ∩ τθµ 6= ∅, and τ c0θµ̃′ ∩ τθµ̃ 6= ∅.

Also, of course, for each µ there are O(1) terms µ′ with τ c0θµ′ ∩ τθµ 6= ∅, if c0 is fixed.

Note also, that if we fix c0 then for our fixed pair τθµ ∼ τθµ̃ of θ-cubes there are only

O(1) summands involving µ′ and µ̃′ in the right side of (3.21).

Keeping this in mind, we claim that we would have favorable bounds for the L
q/2
t,x -

norm, q = 2(n+2)
n , of the first term in (2.53) and hence Υfar(H) if we could prove the

following:

Proposition 3.3. Let θ = 2kθ0 = 2kλ−1/8 � 1 with k ∈ N. Then we can fix c0 = 2−m0

small enough so that whenever

(3.23) dist(τ c0θν , τ c0θν̃ ) ∈ [4−1θ, 4nθ],

one has the uniform bounds for 0 ≤ m ≤ C log λ

(3.24)

∫∫ ∣∣(αm(t)σ̃λA
c0θ
ν H1) (αm(t)σ̃λA

c0θ
ν̃ H2)

∣∣q/2 dtdx

.ε λ
1+ε

(
2kλ7/8

)n−1
2 (q−qc) ‖H1‖q/2L2

t,x
‖H2‖q/2L2

t,x
,

with, as in (3.6), q = 2(n+2)
n , assuming that Hk(y, s) = 0, k = 1, 2, for |s| ≥ C log λ.

Before using Lee’s [23] oscillatory integral estimates to prove this Proposition, let us
verify the above claim.

We first note that if

H1 =
∑

ν∈τθ
µ

Aθ0
ν H and H2 =

∑

ν̃∈τθ
µ̃

Aθ0
ν̃ H,

then by the almost orthogonality of the Aθ
ν operators, there is a fixed constant C so that

‖H1‖L2
t,x

≤ C
(∑

ν∈τθ
µ

‖Aθ0
ν H‖2L2

t,x

)1/2
and ‖H2‖L2

t,x
≤ C

(∑

ν̃∈τθ
µ̃

‖Aθ0
ν H‖2L2

t,x

)1/2
.
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Thus, (3.20), (3.22), (3.24) and Minkowski’s inequality yield the following estimates for

the first term in (2.53) with k ≥ 10, θ = 2kθ0 and q = 2(n+2)
n :

∥∥ ∑

(µ,µ̃): τθ
µ∼τθ

µ̃

∑

(ν,ν̃)∈τθ
µ×τθ

µ̃

(αm(t)σ̃λA
θ0
ν H) (αm(t)σ̃λA

θ0
ν̃ H)

∥∥
L

q/2
t,x

(3.25)

≤
∑

(µ,µ̃): τθ
µ∼τθ

µ̃

∥∥ ∑

τ
c0θ

µ′
∩τθ

µ 6=∅

τ
c0θ

µ̃′
∩τθ

µ̃ 6=∅

(
αm(t)σ̃λA

c0θ
µ′ (

∑

ν∈τθ
µ

Aθ0
ν H)

)
·
(
αm(t)σ̃λA

c0θ
µ̃′ (

∑

ν̃∈τθ
µ̃

Aθ0
ν H)

)
‖
L

q/2
t,x

+O(λ−N‖H‖2L2
t,x

)

.ε λ
(1+ε) 2

q
(
2kλ7/8

)n−1
q (q−qc)

∑

(µ,µ̃): τθ
µ∼τθ

µ̃

(∑

ν∈τθ
µ

‖Aθ0
ν H‖2L2

t,x

)1/2(∑

ν̃∈τθ
µ̃

‖Aθ0
ν H‖2L2

t,x

)1/2

+O(λ−N‖H‖2L2
t,x

)

.ε λ
(1+ε) 2

q
(
2kλ7/8

)n−1
q (q−qc)

∑

ν

∑

ν∈τθ
ν

‖Aθ0
ν H‖2L2

t,x
+O(λ−N‖H‖2L2

t,x
)

.ε λ
(1+ε) 2

q
(
2kλ7/8

)n−1
q (q−qc)‖H‖2L2

t,x
+O(λ−N‖H‖2L2

t,x
).

In the above we used the fact that for each τθµ there are O(1) τ c0θµ′ with τ c0θµ′ ∩ τθµ 6= ∅,
and O(1) τθµ̃ with τθµ ∼ τθµ̃, as well as (2.50).

Since q − qc < 0, we can clearly show that if we replace Υfar(H) by the first term
in (2.53), then the resulting expression satisfies the bounds in (3.7). Since by (3.4) the
additional part of Υfar(H) is pointwise bounded by O(λ−N‖H‖2

L2
t,x

), we conclude that

we have reduced matters to proving Proposition 3.3.

Proof of Proposition 3.3: Schrödinger curves and coordinates, and using bi-

linear oscillatory integral estimates

We first need to collect some facts about the kernels of the operators σ̃λA
c0θ
ν in (3.24).

As we shall momentarily see, they are highly concentrated near certain “Schrödinger
curves”.

To describe these, let us recall (2.46), which says that Ac0θ
ν = Ac0θ

j (x,Dx) ◦ Ac0θ
` (P ),

if ν = (c0θj, c0θ`) ∈ c0θZ
2(n−2)× c0θZ. We also recall that, by (2.40), the symbols of the

“directional” operators Ac0θ
j are each highly concentrated near a unit speed geodesic

(3.26) γj(s) = (xj(s), ξj(s)) ∈ S∗Ω, with (xj(s), ξj(s)) ∈ supp Ac0θ
j (x, ξ).

Since γj is of unit speed, we have dg(xj(s1), xj(s2)) = |s1− s2| for points on the geodesic
in Ω. On the other hand, as described in [20], due to the role of the “height operators”

Ac0θ
` (P ), the space-time Schrödinger curves associated to the operators in (3.24) will

necessarily have to involve speeds that are associated with the heights κc0θ` in (2.42) that

define the operators Ac0θ
` (P ) (see also [1] and [15]).

To be more specific, we claim that, if we define the “Schrödinger curves” corresponding
to ν,

(3.27) ιs0,ν(s) = (xj(2κs),−(s− s0)) ∈ Ω× R, ν = (c0θj, c0θ`), κ = κc0θ` ,

then the kernels Kc0θ
ν (x, t; y, s) of the operators σ̃λA

c0θ
ν must be highly concentrated in

“Schrödinger tubes” of radius ≈ θ about the curves ιν in (3.27). Note that s→ xj(2κ
c0θ
` s)

is a geodesic of speed 2κc0θ` , meaning that dg(xj(2κ
c0θ
` s1), xj(2κ

c0θ
` s2)) = 2κc0θ` |s1 − s2|.
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Figure 1. Schrödinger
tubes

Figure 2. Eu-
clidean case

Also, the minus sign in the time variable in (3.27) is just based on the minus sign in (2.5),
which, as we shall see, we have chosen to be able to use the local analysis in [7], [27],
etc., without unnecessary sign-confusion. This minus sign also occurs because of our sign
convention in (1.1) of course.

Remark 3.4. In Figure 1 three Schrödinger tubes passing through a common point
(x0, t0) are depicted. The two on the right have a common spatial orientation, mean-
ing that each comes from a common geodesic γ = γj as in (3.26); however, their speeds
come from different heights and thus do not coincide, which accounts for the separation
of the two Schrödinger tubes away from (x0, t0) on the right. The left and right tubes
in the figure have a common speed but different spatial components, which accounts for
their separation. We also point out that in parabolic restriction problems, curves of the
form (3.27) necessarily arise in the analysis due to Knapp phenomena. In the transla-
tion invariant setting, these Schrödinger curves are simply lines in directions pointing in
normal directions to relevant portions of paraboloids as depicted in Figure 2. For variable
coefficient Schrödinger problems, the analogous Knapp phenomenon was discussed in [20,
§4], and additional variable coefficient local analysis that we have exploited was developed
there.

Let us now state the properties of the kernels Kc0θ
ν (x, t; y, s) that we shall require. To

simplify the statements and to also most easily apply Lee’s [23] results, let us work in
Fermi normal coordinates about the geodesic xj(s) in (3.26) (see [16]). In these coor-
dinates the geodesic becomes part of the last coordinate axis, i.e., (0, . . . , 0, s) in R

n−1,
with, as in the constructions of the symbols of the Ac0θ

ν , s close to the origin. For the
remainder of the section, abusing notation a bit, x = (x1, . . . , xn−1) denotes these Fermi
normal coordinates. We then have

(3.28) dg((0, . . . , 0, xn−1), (0, . . . , 0, yn−1)) = |xn−1 − yn−1|,
and, moreover, on our spatial geodesic in (3.26) we also have that the metric is simply
gjk(x) = δkj if x = (0, . . . , xn−1) and all the Christoffel symbols vanish there. Thus, gjk
agrees with the standard flat rectangular metric to second order along this geodesic. See
[22], [24]. Note that in these coordinates we have (0, (0, . . . , 0, 1)) ∈ supp Ac0θ

j (x, ξ) and
so for small enough θ we have

(3.29) Ac0θ
j (0, ξ/|ξ|) = 0 when |ξ/|ξ| − (0, . . . , 0, 1)| ≥ Cc0θ,

and χt(0, (0, . . . , 0, 1)) = (t, (0, . . . , 0, 1)),

with, as before, χt being geodesic flow, and C here a uniform constant.
We can now formulate the required properties of the kernels.
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Lemma 3.5. Fix 0 < δ � 1
2 Inj M . Assume further that µ = ν, ν′ are as in (3.23), and

let Kc0θ
λ,µ be the kernel of σ̃λA

c0θ
µ . In the above coordinates if c0 � 1 we have

(3.30) Kc0θ
λ,µ(x, t; y, s) = λ

n−1
2 e−iλ(dg(x,y))

2/4(t−s)aλ,µ(x, t; y, s) +O(λ−N ), µ = ν, ν′,

where, if ν = (c0θj, c0θ`), and κ
c0θ
` is as in (3.27),

(3.31)
∣∣ (2κc0θ`

∂
∂xn−1

− ∂
∂t )

m1
(
2κc0θ`

∂
∂yn−1

− ∂
∂s )

m2Dβ
x,t,y,saλ,µ

∣∣

≤ Cm1,m2,βθ
−|β|, µ = ν, ν′.

Furthermore, for small θ and c0 there is a constant C0 so that the above O(λ−N ) errors
can be chosen so that the amplitudes have the following support properties: If γj denotes

the projection onto Mn−1 of the geodesic in (2.40) and γj′ when j is replaced by j′,

(3.32) aλ,µ(x, t; y, s) = 0, if dg(x, γk) + dg(y, γk) ≥ C1c0θ,

if k = j when ν = (c0θj, c0θ`) and if k = j′ when ν′ = (c0θj
′, c0θ`

′),

(3.33) aλ,µ(x, t; y, s) = 0 if |dg(x, y) + 2κ (t− s)| ≥ C0c0θ,

when µ = ν with κ = κc0θ` , or ν = ν′ with κ = κc0θ`′ ,

as well as

(3.34) aλ,µ(x, t; y, s) = 0, µ = ν, ν′,

if |(x1, . . . , xn−2)|+ |(y1, . . . , yn−2)|+ |(xn−1 − yn−1) + 2κc0θ` (t− s)| ≥ C0θ.

Finally, for small δ0 > 0 in (2.6), the O(λ−N ) errors can be chosen so that we also have

(3.35) aµ,λ(x, t; y, s) = 0 if
∣∣ dg(x, y)− δ

∣∣ ≥ 2δ0δ, or if xn−1 − yn−1 < 0, µ = ν, ν′

with δ and δ0 as in (2.6).

This lemma is just a small variation on Lemma 4.3 in [7] (see also Lemma 3.2 in [4]),
and we shall use the aforementioned result from [7] and the nature of the σλ operators to
obtain the above estimates. We shall postpone the proof until the final section in which
we prove all the kernel estimates we have used.

Let us show now how Lemma 3.5 along with results from Lee [23] can be used to obtain
Proposition 3.3.

Proof of Proposition 3.3. To be able to prove (3.24) using Lee’s bilinear estimates we need
to make one more change of variables to isolate what amounts to a “linear direction” for
the phase functions in Lemma 3.5. In our earlier works on improved spectral projection
estimates this was done simply by choosing Fermi normal coordinates about the spatial
geodesic in (3.26). Since the kernels in Lemma 3.5 also involve a time variable, we
have to deal with our time management problem by working in what amounts to “Fermi-
Schrödinger” coordinates adapted to the Schrödinger tubes that we have described before.
As we shall see, when we use these coordinates we use a simple parabolic scaling argument
allowing us to apply the main estimate in [23]. We should also point out that the
coordinate system we are about to describe is associated to the tube ιν in (3.27) that is

associated with the amplitude aλ,ν of the kernel Kc0θ
λ,ν but not the amplitude other kernel

Kc0θ
λ,ν′ in the lemma.

To describe these coordinates we first recall that, by (3.28), the last spatial coordinate
xn−1 measures distance along the spatial geodesic partially defining ιν . The “Fermi-
Schrödinger” coordinates will preserve the first (n− 2) spatial coordinates but involve a
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linear change of variables in the last two coordinates (xn−1, t) that takes into account the

speeds of the spatial geodesics in (3.27), i.e., 2κc0θ` , with ν = (c0θj, c0θ`) as before and

κc0θ` as in (2.42). The “Schrödinger coordinates” that we employ are the quantum analog
of the “free-fall coordinates” in relativity theory described in Manasse and Misner [24].

We note that if

(3.36) ϕ(x, t; y, s) =
−(dg(x, y))

2

4(t− s)
,

is the phase function of the kernels in (3.30), then since we are working in Fermi normal
coordinates, we have along our spatial geodesic
(3.37)

∂

∂xj
ϕ,

∂

∂yj
ϕ = 0 if x = (0, . . . , 0, xn−1), y = (0, . . . , 0, yn−1) and j = 1, . . . , n− 2.

This is not valid, though, for either of the two remaining coordinates xn−1 or t that we
are currently using. We need to change coordinates so that, in the new variable, we will
have the analog of (3.37) for the (n− 1)-th variable, and, simultaneously, have that the
phase function is linear in the other remaining variable when restricted to ιν .

Fortunately, this is easy to do. We simply define new variables (x̃n−1, t̃) via

(3.38) (xn−1, t) = t̃(2κc0θ` ,−1) + x̃n−1(κ
c0θ
` ,−1) = (2κc0θ` t̃+ κc0θ` x̃n−1,−t̃− x̃n−1).

Note then, for later use that

(3.39) (x̃n−1, t̃) = −(κc0θ` )−1 ·
(
xn−1 + 2κc0θ` t,−xn−1 − κc0θ` t),

which means that the x̃n−1 is related to the concentration in (3.33) with κ = κc0θ` . As
mentioned before, we shall not change the first (n− 2) variables and so to be consistent
with our notation, we let

(3.40) x̃j = xj , 1 ≤ j ≤ n− 2.

Note that (x̃, t̃) is on the Schrödinger curve ιν in (3.28) if and only if x̃ = 0. Moreover,
we claim that our new coordinates fulfill the two additional goals for the behavior of the
phase function ϕ in (3.36) on ιν .

So, we need to check that we have the analog of (3.37) for all j = 1, . . . , n− 1, i.e.,

(3.41) ∇x̃ϕ, ∇ỹϕ = 0 if x̃ = ỹ = 0,

as well as

(3.42) ϕ(0, t̃, 0, s̃) = (κc0θ` )2 · (t̃− s̃).

To verify (3.41), we note that since x̃j = xj , 1 ≤ j ≤ n− 2, (3.37) yields ∂ϕ/∂xj = 0
and ∂ϕ/∂yj = 0 when x̃ = ỹ = 0 and 1 ≤ j ≤ n − 2. To see that this remains true for
j = n−1, which gives us the remaining part of (3.41), we note that, by (3.28) and (3.38),

(3.43) ϕ(0, . . . , x̃n−1, t̃, 0, . . . , 0, ỹn−1, s̃) =
(κc0θ` )2

4
· (2(t̃− s̃) + (x̃n−1 − ỹn−1))

2

t̃− s̃+ (x̃n−1 − ỹn−1)
,

and, consequently, by calculus, we also obtain ∂ϕ/∂x̃n−1, ∂ϕ/∂ỹn−1 = 0 when x̃ = ỹ = 0.
Finally, of course (3.43) yields (3.42) as well, meaning that our goals are fulfilled.

Next, we need to make a couple of more minor modifications to prove (3.24), which,
in the notation of Lemma 3.5, after a little bit of arithmetic, can be rewritten as follows:

(3.44)
∥∥(T1H1)(T2H2)

∥∥
L

q/2
t,x

.ε λ
− 2n

q +ε θ−
2

n+2 ‖H1‖L2
t,x

‖H2‖L2
t,x
, q = 2(n+2)

n ,
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assuming Hk(y, s) = 0, k = 1, 2, if |s| ≥ C log λ, where

(3.45) (T1H1)(x̃, t̃) = αm(t)

∫∫
eiλϕ(x̃,t̃,ỹ,s̃)aλ,ν(x̃, t̃; ỹ, s̃)H1(ỹ, s̃) dỹds̃

and

(3.46) (T2H2)(x̃, t̃) = αm(t)

∫∫
eiλϕ(x̃,t̃,ỹ,s̃)aλ,ν′(x̃, t̃; ỹ, s̃)H2(ỹ, s̃) dỹds̃.

We may neglect the O(λ−N ) errors in Lemma 3.5 since in (3.24) we are supposing that
Hj(s, ·) = 0 if |s| ≥ C log λ.

We also of course have

(3.47) (T1H1 · T2H2)(x̃, t̃) =
(
αm(t)

)2×
∫
eiλ(ϕ(x̃,t̃,ỹ,s̃)+ϕ(x̃,t̃,ỹ′,s̃′))aλ,ν(x̃, t̃, ỹ, s̃)aλ,ν′(x̃, t̃, ỹ′, s̃′)H1(ỹ, s̃)H2(ỹ

′, s̃′) dỹds̃dỹ′ds̃′.

Note that by (3.32), (3.34) and (3.39) we have that aλ,µ(x̃, t̃, ỹ, s̃) = 0, µ = ν, ν′ if
|(x̃1, . . . , x̃n−2)| ≥ C1θ, |(ỹ1, . . . , ỹn−2)| ≥ C1θ or |x̃n−1 − ỹn−1| ≥ C1θ. As a result, in
order to prove (3.44), it suffices to control the left side when the norm is taken over sets
where |x̃ − (0, . . . , 0, r)| ≤ C2θ, with C2 fixed, and so, since we may take r to be 0, we
have reduced matters to showing that for sufficiently small θ we have with C3 ≈ C2,

(3.48)
∥∥(T1H1)(T2H2)

∥∥
L

q/2
t,x ({|x̃|≤C3θ}×[−1,1])

.ε λ
− 2n

q +ε θ−
2

n+2 ‖H1‖L2
t̃,x̃

‖H2‖L2
t̃,x̃
, q = 2(n+2)

n ,

assuming, as above, that Hk(y, s) = 0, k = 1, 2, if |s| ≥ C log λ.
Next, we note that by (3.31), (3.38) and (3.39) we have that if we use the parabolic

scaling (x̃, t̃) → (θx̃, t̃) then

(3.49) Dβ

x̃,t̃,ỹ,s̃
aλ,µ(θx̃, t̃, θỹ, s̃) = Oβ(1).

This is clear for µ = ν since then 2κc0θ`
∂

∂xn−1
− ∂

∂t corresponds to
∂
∂t̃
, and the bounds also

hold for µ = ν′ since κc0θ` − κc0θ`′ = O(θ). Also note that the dilated amplitude in (3.49)
is O(λ−N ) when |x̃| or |ỹ| is larger than a fixed constant.

The phase function ϕ(x̃, t̃, ỹ, s̃) does not quite satisfy the bounds in (3.49); however, it
is straightforward to remedy this if we recall that we constructed our Fermi-Schrödinger
coordinates so that (3.41) and (3.42) would be valid. As a result

(3.50) ϕ̃(x̃, t̃, ỹ, s̃) = ϕ(x̃, t̃, ỹ, s̃)−
(
κc0θ`

)2
(t̃− s̃)

vanishes to second order when x̃ = 0 and ỹ = 0. This means that, after the above
parabolic scaling, we actually have

(3.51) Dβ

x̃,t̃,ỹ,s̃

(
θ−2ϕ̃(θx̃, t̃, θỹ, s̃)

)
= Oβ(1) if |x̃|, |ỹ| = O(1).

Clearly, in order to prove (3.48) we may replace ϕ by ϕ̃. Also, by Minkowski’s in-
equality and the Schwarz inequality, if we define the “frozen” bilinear oscillatory integral
operators

(3.52) Bs̃,s̃′

λ,ν,ν′(h1, h2)(x, t) = (αm(t))2×
∫∫

eiλ(ϕ̃(x̃,t̃,ỹ,s̃)+ϕ̃(x̃,t̃,ỹ′,s̃′))aλ,ν(x̃, t̃, ỹ, s̃)aλ,ν′(x̃, t̃, ỹ′, s̃′)h1(ỹ)h2(ỹ
′) dỹdỹ′,
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then it suffices to prove that

(3.53)
∥∥Bs̃,s̃′

λ,ν,ν′(h1, h2)
∥∥
L

q/2
t,x ({|x̃|≤C3θ}×[−1,1])

.ε λ
− 2n

q +ε θ−
2

n+2 ‖h1‖L2
x̃
‖h2‖L2

x̃
, q = 2(n+2)

n .

Note that Bs̃,s̃′

λ,ν,ν′(h1, h2) factors as the product of two oscillatory integral operators

involving the (x̃, t̃, ỹ) variables. The two phase functions are

(3.54) φs̃(x̃, t̃; ỹ) = ϕ̃(x̃, t̃, ỹ, s̃) and φs̃′(x̃, t̃; ỹ) = ϕ̃(x̃, t̃, ỹ, s̃′).

In order to apply the bilinear results in [23] we need to collect a few facts about the
support properties of the amplitudes of the bilinear oscillatory integrals in (3.52) which
are straightforward consequences of Lemma 3.5.

Lemma 3.6. Let δ < 1/8 as in (2.6) be given. Then we can fix c0 > 0 in (3.21) so that
there are constants cδ, Cδ ∈ (0,∞) so that for sufficiently small θ and |x̃| ≤ C0θ, with C0

fixed, we have

(3.55) if aλ,ν(x̃, t̃; ỹ, s̃) · aλ,ν′(x̃, t̃; ỹ′, s̃′) 6= 0, then |ỹ|, |ỹ′| ≤ Cδθ, and |ỹ − ỹ′| ≥ cδθ.

Additionally, if δ0 < 1/8 as in (2.6) is small enough, then for sufficiently small θ we have

(3.56) if aλ,ν(x̃, t̃; ỹ, s̃) 6= 0 then |δ − 2κc0θ` (t̃− s̃)| ≤ 4δ0δ,

and if aλ,ν′(x̃, t̃; ỹ, s̃′) 6= 0 then |δ − 2κc0θ` (t̃− s̃′)| ≤ 4δ0δ,

Proof. The first assertion in (3.55) about the size of ỹ and ỹ′ follows trivially from (3.34),
(3.39) and (3.40). To see the assertion regarding the important separation of the ỹ-
variables, recall that ν, ν′ ∈ c0θ · Z2n−3, and by (3.23), |ν − ν′| ∈ [ 14θ, 4

nθ]. Thus, if we
write ν = (c0θj, c0θ`) and ν

′ = (c0θj
′, c0θ`

′), we can divide into the following two cases:
(i) |j − j′| ≥ 1

8 . In this case, the spatial parts, γj and γj′ of the Schrödinger curves
ιν and ιν′ have angle ≈ θ. By (3.32) if the product of the amplitudes in (3.55) is
nonzero then we must have in our original Fermi normal coordinates that, for a fixed
constant C ′

1, x ∈ TC′

1c0θ
(γj) ∩ TC′

1c0θ
(γj′), y ∈ TC′

1c0θ
(γj) and y′ = TC′

1c0θ
(γj′). Here,

of course, Tr(γ) denotes an r-tube about γ in Mn−1. By (3.35) we must also have
dg(x, y), dg(x, y

′) ∈ [δ− δ0δ, δ+ δ0δ] for our small δ0 > 0 if the product is nonzero. Since
we are assuming (3.23) the two tubes of width ≈ c0θ intersect at angle ≈ θ at (x, t), which
implies that in our original Fermi normal coordinates |(y1, . . . , yn−2)−(y′1, . . . , y

′
n−2)| ≈ θ

if the above product is nonzero and c0 and θ are small. By (3.40), this yields the assertion
in (3.55) about the separation of ỹ and ỹ′ under our assumption that j 6= j′. Note that
the smaller δ becomes we have to choose c0 to be correspondingly small, but we are
assuming here that δ is fixed (as we shall do later).

(ii) |` − `′| ≥ 1
8 . In this case we have |` − `′| ≈ 1. Recall that in our Fermi normal

coordinates, we have

(3.57) dg(x, y) = |xn−1 − yn−1|,
∂

∂xj
dg(x, y),

∂

∂yj
dg(x, y) = 0,

if x = (0, . . . , 0, xn−1), y = (0, . . . , 0, yn−1), and j = 1, . . . , n− 2.

Also we know that by (3.34)

(3.58) |(x1, . . . , xn−2)|+ |(y1, . . . , yn−2)| ≤ C0θ, if aλ,νaλ,ν′ 6= 0.

Since the function dg(x, y) is smooth when dg(x, y) ≈ δ, by (3.57), (3.58) and Taylor’s
expansion, we have

|dg(x, y)− (xn−1 − yn−1)|, |dg(x, y′)− (xn−1 − y′n−1)| ≤ Cδθ
2, if aλ,νaλ,ν′ 6= 0,
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since by (3.35) both of the amplitudes vanish if xn−1 − yn−1 < 0. If we let θ to be

small enough, Cδθ
2 is much smaller than c0θ, consequently, if |(xn−1 − yn−1) + 2κc0θ` (t−

s)| ≥ C ′
0c0θ with C ′

0 large enough we must have that |dg(x, y) + 2κc0θ` (t − s)| ≥ C0c0θ

with C0 as in (3.33), which means that aν = 0 if |(xn−1 − yn−1) + 2κc0θ` (t − s)| ≥
C ′

0c0θ for this choice of C ′
0 (which is independent of c0). We similarly have aν′ = 0

if |(xn−1 − y′n−1) + 2κc0θ`′ (t − s)| ≥ C ′
0c0θ. By (3.39) this means that for a uniform

constant C1 if aν 6= 0 we must have |x̃n−1 − ỹn−1| ≤ C1c0θ, and if aν′ 6= 0 we must have

|(x̃n−1− ỹ′n−1)−2(κc0θ` )−1(κc0θ`′ −κc0` )(t−s)| ≤ C1c0θ. Since (3.33) and (3.35) imply that

−(t − s) ∼ δ on the support of the amplitudes and thus |2(κc0θ` )−1(κc0θ` − κc0θ`′ )(t − s)|
must be larger than a fixed multiple of θ if |` − `′| ≈ 1 and aλ,ν · aλ,ν′ 6= 0. So, in this
case, if c0 is small enough, we must have |ỹn−1 − ỹ′n−1| ≈ θ if aλ,ν · aλ,ν′ 6= 0, which
finishes the proof of the first assertion regarding the separation of ỹ and ỹ′ in (3.55) .

It remains to prove (3.56). Since we are assuming |x̃| ≤ C0θ, it follows from the
first part of (3.55) that both of the amplitudes in (3.56) will vanish if we do not have
|ỹ|, |ỹ′| = O(θ) and hence

(3.59) aλ,ν(x̃, t̃; ỹ, s̃) = aλ,ν′(x̃, t̃; ỹ, s̃) = 0 if |x̃n−1 − ỹn−1| ≥ C ′θ,

for some constant C ′. By (3.39)

(x̃n−1−ỹn−1, t̃−s̃) = −(κc0θ` )−1
(
xn−1−yn−1+2κc0θ` (t−s), −(xn−1−yn−1)−κc0θ` (t−s))

)
,

and so (x̃n−1 − ỹn−1) + (t̃− s̃) = −(t− s). Since |`− `′| ≈ 1 implies κc0θ` − κc0θ`′ = O(θ),
by (3.33) and (3.59), we conclude that both amplitudes vanish if we do not have

|dg(x, y)− 2κc0θ` (t̃− s̃)| ≤ C ′θ,

for some uniform constant C ′. By the first part of (3.35) we obtain (3.56) if θ is sufficiently
small. �

Let us now prove the bilinear oscillatory integral estimates (3.53) which will finish the
proof of Proposition 3.3.

To prove (3.53), in addition to following the proof of [23, Theorem 1.3], we shall also
follow related arguments of two of us [4] which proved analogous bilinear estimates in
the 1+ 2 dimensional setting (one lower dimension than here) using the simpler classical
bilinear oscillatory integral estimates implicit in Hörmander [19]. Similar arguments were
in the paper [5] by these two authors.

Just as in [23] we first perform a parabolic scaling as in (3.49) and (3.51) to be able
to apply the main estimate, Theorem 1.1, in Lee [23]. So for small λ−1/8 ≤ θ � 1, we let

(3.60) φθs̃(x̃, t̃; ỹ) = θ−2ϕ̃(θx̃, t̃; θỹ, s̃), and φθs̃′(x̃, t̃; ỹ
′) = θ−2ϕ̃(θx̃, t̃; θỹ′, s̃′).

and corresponding amplitudes

(3.61) aθλ,ν(x̃, t̃; ỹ, s̃) = aλ,ν(θx, t̃; θỹ, s̃) and aθλ,ν′(x̃, t̃; ỹ, s̃) = aλ,ν(θx, t̃; θỹ
′, s̃′).

Then, as we noted before

Dβ

x̃,t̃,ỹ
aθλ,µ = Oβ(1), µ = ν, ν′ and Dβ

x̃,t̃,ỹ
φj = Oβ(1), φ1 = φθ s̃, φ2 = φθs̃′ .

By (3.55) and (3.56) we also have the key separation properties for small enough θ

(3.62) if aθλ,ν(x̃, t̃; ỹ, s̃)a
θ
λ,ν′(x̃, t̃; ỹ′, s̃′) 6= 0

then |ỹ|, |ỹ′| = O(1), |ỹ − ỹ′| ≥ cδ and |s̃− s̃′| ≤ 8δ0δ,

with δ and δ0 as in (2.6).



STRICHARTZ ESTIMATES ON NEGATIVELY CURVED MANIFOLDS 37

Additionally, by a simple scaling argument, our remaining task of the section, (3.53),
is equivalent to the following for small enough θ:

(3.63)
∥∥Bθ,s̃,s̃′

λ,ν,ν′(h1, h2)
∥∥
L

q/2
t,x ({|x̃0|≤C1}×[−1,1])

.ε

(
λθ2

)− 2n
q +ε‖h1‖L2

x
‖h2‖L2

x
, q = 2(n+2)

n ,

where we have the scaled version of (3.52), i.e.,

(3.64) Bµ,s̃,s̃′

λ,ν,ν′(h1, h2)(x, t) = (αm(t))2×
∫∫

ei(λθ
2)[φθ

s̃(x̃,t̃;ỹ)+φθ
s̃′
(x̃,t̃;ỹ′)]aθλ,ν(x̃, t̃; ỹ, s̃)a

θ
λ,ν′(x̃, t̃; ỹ′, s̃′)h1(ỹ)h2(ỹ

′) dỹdỹ′.

To prove this, let us see how we can use our earlier observation that (3.41) and (3.50)
implies that ϕ̃ vanishes to second order when (x̃, ỹ) = (0, 0) to see that the scaled phase
functions in (3.60) closely resemble Euclidean ones if θ is small which will allow us to
verify the hypotheses of Lee’s bilinear oscillatory integral theorem [23, Theorem 1.3] if
δ, δ0 > 0 in (2.6) are fixed small enough.

To be more specific, let

(3.65) A(t̃, s̃) =
∂2ϕ̃

∂ỹj∂ỹk
(0, t̃; 0, s̃), B(t̃, s̃) =

∂2ϕ̃

∂x̃j∂ỹk
(0, t̃; 0, s̃),

and C(t̃, s̃) =
∂2ϕ̃

∂x̃j∂x̃k
(0, t̃; 0, s̃).

Then the Taylor expansion about (x̃, ỹ) = (0, 0) of ϕ̃ is

(3.66) ϕ̃(x̃, t̃; ỹ, s̃) = 1
2 ỹ

TA(t̃, s̃)ỹ + x̃TB(t̃, s̃)ỹ + 1
2 x̃

TC(t̃, s̃)x̃+ r(x̃, t̃; ỹ, s̃),

where r(x̃, t̃; ỹ, s̃) vanishes to third order at (x̃, ỹ) = (0, 0). So,

(3.67) Dβ

x̃,ỹ,t̃,s̃
rθ(x̃, t̃; ỹ, s̃) = O(θ), if rθ(x̃, t̃; ỹ, s̃) = θ−2r(θx̃, t̃; θỹ, s̃),

which means that rθ → 0 in the C∞ topology as θ → 0.
To use (3.66) we shall use parabolic scaling and the following lemma, whose proof we

postpone until the end of this subsection, which says that if δ, δ0 > 0 in (2.6) are small
enough then the phase functions φs̃ and φs̃′ in (3.54) satisfy the Carleson-Sjölin condition
(see [29, §2.2.2] and [33]).

Lemma 3.7. Let A(t̃, s̃) and B(t̃, s̃) be as in (3.65). Then if δ, δ0 > 0 in (2.6) are small
enough

(3.68) detB(t̃, s̃) = det
∂2ϕ̃(0, t̃; 0, s̃)

∂x̃j∂ỹk
6= 0, if aθλ,ν · aθλ,ν′ 6= 0.

Furthermore, on the support of aθλ,ν · aθλ,ν′ , −( ∂
∂t̃
A(t̃, s̃))−1 = −( ∂

∂t̃
∂2ϕ̃

∂ỹj∂ỹk
(0, t̃; 0, s̃))−1 is

positive definite, i.e.,

(3.69) ξt
(
− ∂

∂t̃
A(t̃, s̃)

)−1

ξ, ξt
(
− ∂

∂t̃
A(t̃, s̃′)

)−1

ξ ≥ cδ|ξ|2, if aθλ,ν · aθλ,ν′ 6= 0,

and also

(3.70)
∣∣∣ ∂
∂t̃
A(t̃, s̃)ξ

∣∣∣ ≥ cδ|ξ|,
∣∣∣ ∂
∂t̃
A(t̃, s̃′)ξ

∣∣∣ ≥ cδ|ξ| if aθλ,ν · aθλ,ν′ 6= 0,

Let us use (3.66) and (3.67) and this lemma to see that we can obtain our remaining
estimate (3.63) via Lee’s [23, Theorem 1.1]. As we shall see, it is crucial for us that
− ∂

∂t̃
A(t̃, s̃) is positive definite.

Note that, in addition to the θ parameter, (3.63) also involves the (s̃, s̃′) parameters.
For simplicity, let us first see how Lee’s result yields (3.63) in the case where these two
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parameters agree, i.e. s̃ = s̃′. We then will argue that if δ0 in (2.6) and hence (3.55) is
fixed small enough we can also handle the case where s̃ 6= s̃′.

To do this we first note that the parabolic scaling in (3.67), which agrees with that
in (3.60), preserves the first three terms in the right of (3.66) since they are quadratic.
Also, in proving (3.64), we may subtract 1

2 x̃
tC(t̃, s̃)x̃ from φθs̃ and 1

2 x̃
tC(t̃, s̃′)x̃ from φθs̃′

as these quadratic terms do not involve ỹ. We point out that this trivial reduction also
works if s̃ 6= s̃′.

Next, we note that, by (3.68) and our temporary assumption that s̃ = s̃′, after making
a linear change of variables in x̃ (depending on t̃, s̃), we may reduce to the case where
B(t̃, s̃) = In−1, the (n − 1) × (n − 1) identity matrix. This means for the case where
s̃ = s̃′ we have reduced matters to showing that (3.63) is valid where

(3.71) φθs̃(x̃, t̃; ỹ) = 〈x̃, ỹ〉+ 1

2

n−1∑

j,k=1

∂2ϕ̃

∂ỹj∂ỹk
(0, t̃; 0, s̃)ỹj ỹk + r̃θ(x̃, t̃; ỹ, s̃)

= 〈x̃, ỹ〉+ ỹtA(t̃, s̃)ỹ + r̃θ(x̃, t̃; ỹ, s̃),

with r̃θ denoting rθ rewritten in the new x̃ variables coming from B(t̃, s̃). In view of
(3.68), (3.67) remains valid for r̃θ. For later use, we note that if we change variables
according to s̃ as above, then for s̃′ near s̃ we have for

(3.72) B(t̃, s̃, s̃′) = (B(t̃, s̃′))t ((B(t̃, s̃)−1)t = In−1 +O(|s̃− s̃′|),

(3.73) φθs̃′(x̃, t̃, ỹ) = 〈x,B(t̃, s̃, s̃′)ỹ〉+ 1

2

n−1∑

j,k=1

∂2ϕ̃

∂ỹj∂ỹk
(0, t̃; 0, s̃′)ỹj ỹk + r̃θ(x̃, t̃; ỹ, s̃)

= φθs̃(x̃, t̃; ỹ) +O(|s̃− s̃′|).
We fix δ and δ0 in (2.6) so that the conclusions of Lemmas 3.5 and 3.7 are valid. We

can also now fix also finally fix c0 so that the results of Lemma 3.5 and Lemma 3.6 are
valid. If we only had to treat the case where s̃ = s̃′ in (3.63) then the above choice of δ0
would suffice; however, as we shall momentally see, to handle the cases where s̃ 6= s̃′ we
shall need to choose δ0 small enough so that we can exploit the last part of (3.62).

Let us now verify that we can apply [23, Theorem 1.3] to obtain (3.63) for sufficiently
small θ. This would complete the proof of Proposition 3.3. We recall that we are assuming
for now that s̃ = s̃′ and that we have reduced to the case where B(t̃, s̃) = In−1 and
C(t̃, s̃) = 0 in (3.66) and so

(3.74) φθs̃(x̃, t̃; ỹ) = 〈x̃, ỹ〉+ 1
2 ỹ

tA(t̃, s̃)ỹ + r̃θ(x̃, t̃; ỹ, s̃),

with r̃θ satisfying the bounds in (3.67).
By (3.67) and (3.74) we have

(3.75)
∂φθs̃
∂x̃

(x̃, t̃; ỹ) = ỹ +
∂r̃θ

∂x̃
(x̃, t̃; ỹ, s̃) = ỹ + ε(θ, x̃, t̃, s̃; ỹ),

where ỹ → ε(·; ỹ) and its derivatives are O(θ). Thus, for small enough θ, the inverse
function also satisfies

(3.76) ỹ →
(∂φθs̃
∂x̃

(x̃, t̃; · )
)−1

(ỹ) = ỹ + ε̃(θ, x̃, s̃; ỹ),

where

(3.77) Dβ
ỹ ε̃(θ, x̃, t̃, s̃; ỹ) = Oβ(θ).
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Define, in the notation of [23],

(3.78) qθs(x̃, t̃; ỹ) =
∂
∂t̃
φθs

(
x̃, t̃;

(∂φθ
s

∂x̃ (x̃, t̃; · )
)−1

(ỹ)
)

=
(

∂
∂t̃
φθs

)(
x̃, t̃; ỹ + ε̃(θ, x̃, t̃, s; ỹ)

)
, s = s̃, s̃′,

as well as

(3.79) δθs̃,s̃′(x̃, t̃; ỹ, ỹ
′) = ∂ỹq

θ
s̃(x̃, t̃; ∂x̃φ

θ
s̃(x̃, t̃; ỹ))− ∂ỹq

θ
s̃′(x̃, t̃; ∂x̃φ

θ
s̃′(x̃, t̃; ỹ

′)).

Even though we are assuming for the moment that s̃ = s̃′ these two quantities will be
needed for s̃ 6= s̃′ as well to be able to use [23, Theorem 1.1] to obtain (3.63).

Then [23, (1.4)], the conditions to ensure the bounds (3.63), are

(3.80)
∣∣〈∂2x̃ỹφθs̃(x̃, t̃; ỹ)δθs̃,s̃′ ,

[
∂2x̃,ỹφ

θ
s̃(x̃, t̃; ỹ)

]−1[
∂2ỹỹq

θ
s̃(x̃, t̃; ∂x̃φ

θ
s̃(x̃, t̃; ỹ))

]−1
δθs̃,s̃′

〉∣∣ > 0,

δθs̃,s̃′ = δθs̃,s̃′(x̃, t̃; ỹ, ỹ
′), on supp (aλ,ν · aλ,ν′),

as well as

(3.81)∣∣〈∂2x̃ỹφθs̃′(x̃, t̃; ỹ′)δθs̃,s̃′ ,
[
∂2x̃,ỹφ

θ
s̃′(x̃, t̃; ỹ

′)
]−1[

∂2ỹỹq
θ
s̃′(x̃, t̃; ∂x̃φ

θ
s̃′(x̃, t̃; ỹ

′))
]−1

δθs̃,s̃′
〉∣∣ > 0,

δθs̃,s̃′ = δθs̃,s̃′(x̃, t̃; ỹ, ỹ
′), on supp (aλ,ν · aλ,ν′).

Note that by (3.67), (3.71), (3.93), (3.77) and (3.78) for small θ we have

(3.82)
(
qθs̃(x̃, t̃; ỹ)

)−1
=

(
∂A
∂t̃

(t̃, s̃)
)−1

+O(θ),

and also, by (3.75) and (3.76),

(3.83) ∂2x̃,ỹφ
θ
s̃(x̃, t̃; ỹ) = In−1 +O(θ),

as well as

(3.84)
(
∂2x̃,ỹφ

θ
s̃(x̃, t̃; ỹ)

)−1
= In−1 +O(θ).

By (3.71), (3.70), (3.78) and the separation condition in (3.55), if s̃ = s̃′ we have

(3.85) |δθs̃,s̃(x̃, t̃; ỹ, ỹ′)| > 0 on supp (aλ,ν · aλ,ν′),

if θ is small enough. Thus, in this case the quantities inside the absolute values in (3.80)
and (3.81) equal

(3.86)
〈
δθs̃,s̃(x̃, t̃; ỹ, ỹ

′),
(
∂A
∂t (t̃, s)

)−1
δθs̃,s̃(x̃, t̃; ỹ, ỹ

′)
〉
+O(θ) on supp (aλ,ν · aλ,ν′),

and, therefore, by (3.69) and (3.85) the conditions (3.80) and (3.81) are valid for small
enough θ when s̃ = s̃′. So, by [23, Theorem 1.1], we obtain (3.63), we obtain (3.63) in
this case.

If s̃ 6= s̃′ in (3.63), we must replace δθs̃,s̃ by δθs̃,s̃′ . In order to accommodate this, we

first need to use the fact that, by the last part of (3.55),

δθs̃,s̃′(x̃, t̃; ỹ, ỹ
′) = δθs̃,s̃(x̃, t̃; ỹ, ỹ

′) +O(|s̃− s̃′|) on supp (aλ,ν · aλ,ν′).

Thus, by the last part of (3.62),

δθs̃,s̃′(x̃, t̃; ỹ, ỹ
′) = δθs̃,s̃(x̃, t̃; ỹ, ỹ

′) +O(δ0) on supp (aλ,ν · aλ,ν′).

This means that, if we replace O(θ) by O(θ + δ0) in (3.86), then the quanitity in (3.80)
is of this form.

The other condition, (3.81) involves the phase function φθs̃′ and the associated qθs̃′ .
However if B = B(t̃, s̃, s̃′) is as in (3.72), then we have the analog of (3.75) where we
replace the first term in the right side of (3.75) by Bỹ and the first term in the right
side of (3.76) by B−1ỹ. Also, of course ∂A

∂t̃
(t̃, s̃′) = ∂A

∂t̃
(t̃, s̃) + O(|s̃− s̃′|). Consequently,
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qθs̃′ will agree with qθs̃ when aλ,ν · aλ,ν′ 6= 0 up to a O(|s − s′|) = O(δ0) error, and by
(3.72) the analogs of (3.83) and (3.84) remain valid if s̃ is replaced by s̃′ if O(θ) there is
replaced by O(θ+ δ0). So, like (3.80), if we replace O(θ) by O(θ+ δ0) in (3.86), then the
quantity in (3.81) is of this form.

Thus, if δ0 in (2.6) is (finally) fixed small enough, and, as above, θ is small enough we
conclude that the condition (1.4) in [23] is valid, which yields (3.63) and completes the
proof of Proposition 3.3. �

Proof of Lemma 3.7. Let us first prove (3.69) and (3.70) since they are slightly more
difficult than the other estimate, (3.68), in the lemma.

If we recall (3.50) we see that

(3.87) A(t̃, s̃) =
∂2ϕ̃

∂ỹj∂ỹk
(0, t̃; 0, s̃) =

∂2ϕ

∂ỹj∂ỹk
(0, t̃; 0, s̃),

where ϕ is as in (3.36).
By (3.43) we have

(3.88)
∂2ϕ

∂ỹ2n−1

(0, t̃; 0, s̃) =
(κc0θ` )2

2(t̃− s̃)
.

Additionally, by (3.38) and (3.39) we have

(3.89) ϕ(0, t̃; ỹ, s̃) =

[
dg
(
(0, . . . , 0, 2κc0θ` t̃), (ỹ1, . . . , ỹn−2, 2κ

c0θ
` s̃+ κc0θ` ỹn−1)

)]2

4(t̃− s̃− ỹn−1)
.

By (3.89) we have

(3.90)
∂2ϕ

∂ỹj∂ỹn−1
(0, t̃; 0, s̃) ≡ 0, if j = 1, . . . , n− 2.

The remaining part of the Hessian in (3.87) is

(3.91)
∂2ϕ̃

∂ỹj∂ỹk
(0, t̃; 0, s̃) =

∂2

∂ỹj∂ỹk

[
dg
(
(0, . . . , 0, , 2κc0θ` t̃), (ỹ1, . . . , 2κ

c0θ
` s̃

)]2

4(t̃− s̃)
,

when ỹ1 = · · · = ỹn−2 = 0 and 1 ≤ j, k ≤ n− 2.

To compute this, we recall that the Schrödinger coordinates (x̃, t̃) in (3.39) and (3.40)
come from the Fermi normal coordinates (x1, . . . , xn−1) about the spatial geodesic γj ,
and that in these coordinates γj = (0, . . . , 0, t) and on this geodesic the metric is δj,k
(rectangular) and the Christoffel symbols vanish there as well

As a result, in the Fermi normal coordinates, we must have that the full Hessian of
the square of the distance function satisfies

∂2

∂yj∂yk

[
dg
(
(0, . . . , 0, 2κc0θ` t̃), y

)]2
= 2In−1, if y = (0, . . . , 0, 2κc0θ` t̃).

This along with (3.40) means that (3.91), the remaining piece of the Hessian in (3.87),
must be of the form

∂2ϕ

∂ỹj∂ỹk
=

1

2(t̃− s̃)
δj,k +O(1), if 1 ≤ j, k ≤ n− 2.

Note that since

(t̃, ỹ1, . . . , ỹn−2) → dg((0, . . . , 0, 2κ
c0θ
` t̃), (ỹ1, . . . , ỹn−2, 2κ

c0θ
` s̃′))
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is smooth we also obtain

(3.92)
∂

∂t̃

∂2ϕ

∂ỹj∂ỹk
(0, t̃; 0, s̃) =

−1

2(t̃− s̃)2
δj,k +O((t̃− s̃)−1), 1 ≤ j, k ≤ n− 2.

Therefore, by (3.65), (3.87), (3.88), (3.90) and (3.92), we have

(3.93) − 2(t̃− s̃)2
∂

∂t̃
A(t̃, s̃) = −2(t̃− s̃)2

∂

∂t̃

∂2ϕ̃

∂ỹj∂ỹk
(0, t̃; 0, s̃) = J

κ
c0θ

`

+O(|t̃− s̃|),

if J
κ
c0θ

`

= diag (1, . . . , 1, (κc0θ` )2).

Note that κc0θ` ∈ [1/10, 10]. Therefore by (3.56) if δ is fixed small enough in (2.6) and if

δ0 there is smaller than 1/8, by (3.56), we have that −(∂A(t̃, s̃)/∂t̃)−1 is positive definite
on the support of the amplitudes in (3.64). Thus, we obtain (3.69) and (3.70) for some
cδ > 0. Indeed, one may take cδ ∼ δ−2,

The proof of the other (3.68) is very similar. If we use (3.36) we see that since, by (3.35)
and (3.56), dg(x, y) ≈ |t− s| ≈ δ on supp aθλ,j · aθλ,ν′ , we may assume that |x|, |y| ≤ Cδ.
We then have

(dg(x, y))
2 = |x− y|2 + r(x, y), where r(x, y) = O

(
(|x|+ |y|)|x− y|2

)
and r ∈ C∞.

Therefore, by (3.38), (3.50) and (3.39), if x̄ = (x̃1, x̃2, . . . , x̃n−2) and ȳ = (ỹ1, ỹ2, . . . , ỹn−2)

(3.94) ϕ̃(x̃, t̃; ỹ, s̃) =
(κc0θ` )2(x̃n−1 − ỹn−1)

2 + |x̄− ȳ|2 + r(x, y)

4
(
t̃− s̃+ (x̃n−1 − ỹn−1)

) − (κc0θ` )2(t̃− s̃).

Consequently, by the proof of (3.69) and (3.70) we have that for J
κ
c0θ

`

as above

B(t̃, s̃) =
∂2ϕ̃

∂x̃j∂ỹk
(0, t̃; 0, s̃) = − 1

2(t̃− s̃)
J
κ
c0θ

`

+O(1),

which yields (3.68) if δ is small enough. �

4. Kernel estimates.

In this section we finish up matters by proving the various kernel estimates that we
have utilized.

4.1. Basic kernel estimates on manifolds of nonpositive curvature

Let us prove the kernel estimates that we used on A+.

Proposition 4.1. Let Sλ(x, t; y, s) denote the kernel

η(t/T )η(s/T )β2(P/λ)
(
e−i(t−s)λ−1∆g

)
(x, y).

Then if M = Mn−1 has nonpositive sectional curvatures and T = c0 log λ with c0 =
c0(M) > 0 sufficiently small, we have for λ� 1

(4.1) |Sλ(x, t; y, s)| ≤ Cλ
n−1
2 |t− s|−n−1

2 exp(CM |t− s|).

To prove this we note that for fixed t and s, β2(P/λ)e−i(t−s)λ−1∆g = β2(P/λ)ei(t−s)λ−1P 2

is the Fourier multiplier operator on Mn−1 with

(4.2) m(λ, t− s; τ) = β2(|τ |/λ)ei(t−s)λ−1τ2

.

We have extended m to be an even function of τ so that we can write

(4.3) β2(P/λ)e−i(t−s)λ−1∆g = (2π)−1

∫ ∞

−∞

m̂(λ, t− s; r) cos r
√
−∆g dr,
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where

(4.4) m̂(λ, t− s; r) =

∫ ∞

−∞

e−iτrβ2(|τ |/λ) ei(t−s)λ−1τ2

dτ.

We note that, by a simple integration by parts argument,

(4.5) ∂kr m̂(λ, t− s; r) = O(λ−N (1 + |r|)−N ) ∀N, if |t− s| ≤ 1 and |r| ≥ C0,

with C0 sufficiently large. Similarly

(4.6) ∂kr m̂(λ, t− s; r) = O(λ−N (1 + |r|)−N ) ∀N,
if |t− s| ∈ [2j−1, 2j ], and |r| ≥ C02

j , j = 1, 2, . . . ,

with C0 fixed large enough. Since β(|τ |/λ) = 0 if |τ | /∈ [λ/4, 2λ] one may take C0 = 100,
as we shall do.

To use this fix an even function a ∈ C∞
0 (R) satisfying

a(r) = 1, |r| ≤ 100 and a(r) = 0 if |r| ≥ 200.

Then by crude eigenfunction estimates and the Weyl formula, if we let

(4.7) S̃λ,0(x, t; y, s) = (2π)−1

∫
a(r)m̂(λ, t− s, r) cos rP dr

we have

(4.8) S̃λ,0(x, t; y, s)−
(
β2(P/λ)e−i(t−s)λ−1∆g

)
(x, y) = O(λ−N ) ∀N if |t− s| ≤ 1,

and if

(4.9) S̃λ,j(x, t; y, s) = (2π)−1

∫
a(2−jr)m̂(λ, t− s, r) cos rP dr

we have

(4.10) S̃λ,j(x, t; y, s)−
(
β2(P/λ)e−i(t−s)λ−1∆g

)
(x, y) = O(λ−N ) ∀N

if |t− s| ∈ [2j−1, 2j ], j = 1, 2, . . . .

Consequently, we would have (4.1) if we could show that

(4.11) |S̃λ,0(x, t; y, s)| ≤ λ
n−1
2 |t− s|−n−1

2 when |t− s| ≤ 1,

as well as

(4.12) |S̃λ,j(x, t; y, s)| ≤ λ
n−1
2 exp(C2j), if |t− s| ∈ [2j−1, 2j ]

with j = 1, 2, . . . and 2j ≤ c0 log λ

with c0 = c0(M) fixed small enough.
To prove (4.11) and (4.12) we shall argue as in Bérard [2] (see also [28, §3.6]). Just as

in [2], [6], [31] and other works we shall want to use the Hadamard parametrix and the
Cartan-Hadamard theorem to lift the calculations that will be needed up to the universal
cover (Rn−1, g̃) of (Mn−1, g).

We therefore let {α} = Γ denote the group of deck transfermations preserving the
associated covering map κ : R

n−1 → Mn−1 coming from the exponential map at the
point inMn−1 with coordinates 0 in Ω in §4 above. The metric g̃ on R

n−1 is the pullback
of the metric g onMn−1 via κ. Choose a Dirichlet domain D 'Mn−1 forMn−1 centered
at the lift of the point with coordinates 0.
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As in earlier works (see [28]) we recall that if x̃ denotes the lift of x ∈ Mn−1 to D,
then we have the following formula

(4.13) (cos tP )(x, y) = (cos t
√
−∆g)(x, y) =

∑

α∈Γ

(
cos t

√
−∆g̃

)
(x̃, α(ỹ)).

As a result, if we set

(4.14) Kλ,0(x̃, t; ỹ, s) = (2π)−1

∫
a(r)m̂(λ, t− s; r)

(
cos r

√
−∆g̃

)
(x̃, ỹ) dr,

we have the formula

(4.15) S̃λ,0(x, t; y, s) =
∑

α∈Γ

Kλ,0(x̃, t;α(ỹ), s)).

Similarly, if we set

(4.16) Kλ,j(x̃, t; ỹ, s) = (2π)−1

∫
a(2−jr)m̂(λ, t− s; r)

(
cos r

√
−∆g̃

)
(x̃, ỹ) dr,

we have

(4.17) S̃λ,j(x, t; y, s) =
∑

α∈Γ

Kλ,j(x̃, t;α(ỹ), s).

Also, by Huygen’s principle and the support properties of a, we have that

(4.18) Kλ,0(x̃, ỹ) = 0 if dg̃(x̃, ỹ) ≥ C1, and Kλ,j(x̃, ỹ) = 0 if dg̃(x̃, ỹ) ≥ C12
j

for a uniform constant C1. Based on this, we conclude that the number of non-zero
summands in the right side of (4.15) is O(1) since α(D) ∩ α′(D) = ∅ if α 6= α′. Also, by
simple volume estimates, the number of α ∈ Γ for which dg̃(D,α(D)) ≤ µ is O(exp(Cµ))
for a uniform constant C if µ = 2j , j = 1, 2, . . . , and so the number of nonzero summands
in the right side of (4.16) is O(exp(C2j)). As a result, we would obtain (4.11) if we could
show that

(4.19) |Kλ,0(x̃, t; ỹ, s)| ≤ Cλ
n−1
2 |t− s|−

n−1
2 , if |t− s| ≤ 1,

while (4.12) would follow from the estimate

(4.20) |Kλ,j(x̃, t; ỹ, s)| ≤ Cλ
n−1
2 exp(C2j),

if |t− s| ∈ [2j−1, 2j ], j = 1, 2, . . . , 2j ≤ c0 log λ,

with c0 = c0(M) sufficiently small.
To prove these two estimates, we can use the Hadamard parametrix for ∂2r −∆g̃ since

(Rn−1, g̃) is a Riemannian manifold without conjugate points, i.e., its injectivity radius
is infinite. Thus, we can use the Hadamard parametrix to write for x̃ ∈ D, ỹ ∈ R

n−1 and
|r| ≥ c0 > 0

(4.21)
(
cos r

√
−∆g̃

)
(x̃, ỹ) =

N∑

ν=0

wν(x̃, ỹ)Wν(r, x̃, ỹ) +RN (r, x̃, ỹ)

where wν ∈ C∞(Rn−1 × R
n−1),

(4.22) W0(r, x̃, ỹ) = (2π)−(n−1)

∫

Rn−1

eidg̃(x̃,ỹ)ξ1 cos r|ξ| dξ,

while for ν = 1, 2, . . . , Wν(t, x̃, ỹ) is a finite linear combination of Fourier integrals of the
form
(4.23)∫

Rn−1

eidg̃(x̃,ỹ)ξ1e±ir|ξ|αν(|ξ|) dξ, with αν(τ) = 0, for τ ≤ 1 and ∂jταν(τ) . τ−ν−j ,
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and, if N0 is given, then if N is large enough,

(4.24) |∂jrRN (r, x̃, ỹ)| ≤ C exp(Cr), 0 ≤ j ≤ N0

for a fixed constant C. Furthermore, the leading coefficient w0(x̃, ỹ) reflects the geometry
of (Rn−1, g̃). Specifically, in geodesic normal coordinates about x̃

w0(x̃, ỹ) =
(
det g̃ij(ỹ)

)−1/4
.

Thus, if in geodesic polar coordinates the volume element is given by

dVg̃(ỹ) =
(
A(r, ω)

)n−2
drdω, r = dg̃(x̃, ỹ),

then

w0(x̃, ỹ) =
(
r/A(r, ω)

)n−2
2 .

By the classical Günther comparison theorem from Riemannian geometry (see [12, §III.4])

(4.25) w0(x̃, ỹ) ≤ 1,

and, moreover, for later use, A(r, ω) ≥ 1
K sinh(Kr) if all the sectional curvatures are

≤ −K2 < 0, and so

(4.26) w0(x̃, ỹ) ≤ CK,Nµ
−N

if dg̃(x̃, ỹ) ≈ µ and all the sectional curvatures of Mn−1 are ≤ −K2 < 0.

The other coefficients in (4.21) are not as well behaved; however, Bérard [2] showed that
if N0 is fixed

(4.27) |∂βxwν(x̃, ỹ)| ≤ C exp(Cr), |β|, ν ≤ N0, r = dg̃(x̃, ỹ),

for some uniform constant C (depending on g̃ and N0).
The facts that we have just recited are well known. One can see, for instance, [2] or [28,

§1.1, §3.6] for background regarding the Hadamard parametrix, and [31] for a discussion
of properties of w0.

Let us next use the Hadamard parametrix to prove (4.19). By (4.21), it suffices to see
that if we replace (cos r

√
−∆g̃)(x̃, ỹ) in (4.14) by each of the terms in the right side of

(4.21) then each such expression will satisfy the bounds in (4.19).
Let us start with the contribution of the main term in the Hadamard parametrix which

is the ν = 0 term in (4.21). In view of (4.22) and (4.25) it would give rise to these bounds
if

(4.28) (2π)−n

∫ ∞

−∞

∫

Rn−1

eidg̃(x̃,ỹ)ξ1 cos(r|ξ|) a(r) m̂(λ, t− s; r) drdξ

= O(λ
n−1
2 |t− s|−n−1

2 ) when |t− s| ≤ 1.

However, by (4.2) and (4.5) and the support properties of a, if |t− s| ≤ 1

(2π)−1

∫ ∞

−∞

∫

Rn−1

eidg̃(x̃,ỹ)ξ1 cos(r|ξ|) a(r) m̂(λ, t− s; r) drdξ(4.29)

= (2π)−1

∫ ∞

−∞

∫

Rn−1

eidg̃(x̃,ỹ)ξ1 cos(r|ξ|)m̂(λ, t− s; r) drdξ +O(λ−N )

=

∫

Rn−1

eidg̃(x̃,ỹ)ξ1β2(|ξ|/λ)ei(t−s)λ−1|ξ|2 dξ +O(λ−N ).

A simple stationary phase argument shows that the last integral is O(λ
n−1
2 |t− s|−n−1

2 ),
and so we conclude that the main term in the Hadamard parametrix leads to the desired
bounds.
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To estimate the contributions of the higher order terms ν = 1, 2, . . . , we note that by
the first part of (4.18) we may assume that dg̃(x̃, ỹ) is bounded. So, by (4.23) the higher
order terms would lead to the desired bounds since

(4.30) (2π)−1

∫∫
eidg̃(x̃,ỹ)ξ1e±ir|ξ|αν(|ξ|) a(r)m̂(λ, t− s; r) drdξ

=

∫

Rn−1

eidg̃(x̃,ỹ)ξ1β2(|ξ|/λ)ei(t−s)λ−1|ξ|2 αν(|ξ|) dξ +O(λ−N ), if |t− s| ≤ 1,

and, by (4.23), together with a stationary phase argument, the last integral isO(λ
n−1
2 −ν |t−

s|−n−1
2 ).

We also need to see that the remainder term in (4.21) leads to the bounds

(4.31)

∫ ∞

−∞

a(r)m̂(λ, t− s; r)R(r, x̃, ỹ) dr

=

∫ ∞

−∞

β2(|τ |/λ)ei(t−s)λ−1τ2 [
a( · )R( · , x̃, ỹ)

]
̂(τ) dτ = O(λ

n−1
2 ), if dg̃(x̃, ỹ) = O(1).

By (4.24), the last factor in the integral in the right, which is the Fourier transform of
r → a(r)R(r, x̃, ỹ), is O(1) if dg̃(x̃, ỹ) = O(1). So, by the support properties of β, the last

integral in (4.31) is O(λ) = O(λ
n−1
2 ), as desired, since n ≥ 3.

Since each term in the Hadamard parametrix has the desired contribution, the proof
of (4.19) is complete.

Similar arguments will yield (4.20). We need to see that if we replace (cos r
√
−∆g̃)(x̃, ỹ)

in (4.16) by each of the terms in the right side of (4.21), then each will satisfy the bounds
in (4.20) if dg̃(x̃, ỹ) ≤ C2j and |t − s| ∈ [2j−1, 2j ] with j = 1, 2, . . . and 2j ≤ c0 log λ as
above.

By (4.6) and (4.25) and the above argument, the ν = 0 term in the Hadamard
parametrix will lead to a contribution of

(2π)−(n−1)

∫

Rn−1

eidg̃(x̃,ỹ)ξ1ei(t−s)λ−1|ξ|2β2(|ξ|/λ) dξ +O(λ−N ) = O(λ
n−1
2 ),

by stationary phase and the fact that we are assuming |t − s| ≥ 1. By (4.27) and
the above arguments each of the ν = 1, 2, . . . terms will have contributions which are

O(λ
n−1
2 −ν · exp(C2j)) = O(λ

n−1
2 ) if 2j ≤ c0 log λ with c0 > 0 small enough. If we

repeat the argument above for the contribution of the remainder term, we see that the
contributions here will be of the form

∫ ∞

−∞

β2(|τ |/λ)ei(t−s)λ−1τ2[
a(2−j · )R( · , x̃, ỹ)

]
̂(τ) dτ,

which, by (4.24) and the support properties of a, is O(λ exp(C2j)) = O(λ
n−1
2 exp(C2j)),

as desired.
Since each term in the Hadamard parametrix has the desired contribution, the proof

of (4.20) is complete, which finishes the proof of Proposition 4.1.
We should point out that the small |t− s| estimates are universally true as in [11].

4.2. Estimates for kernels of microlocalized operators

Let us prove the kernel estimates, (2.69) and (2.70), that we used in the proof of
Lqc(A−)-estimates.
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Proposition 4.2. For each m ∈ Z pick ν(m) ∈ Z
2n−3 as in (2.46) and let

(4.32) Kλ(x, t,m; y, s,m′) =

αm(t)αm′(s)
(
Aθ0

ν(m) ◦
(
β2(P/λ)e−iλ−1(t−s)∆g

)
◦ (Aθ0

ν(m′))
∗
)
(x, y).

Then if M =Mn−1 has nonpositive curvature

(4.33) |Kλ(x, t,m; y, s,m′)| ≤ Cλ
n−1
2 |t− s|−n−1

2 ,

provided that |t−s| ≤ c0 log λ with c0 = c0(M) > 0 sufficiently small. Moreover, for such
|t− s| we have

(4.34) |Kλ(x, t,m; y, s,m′)| ≤ Cλ
n−1
2 |t− s|−N ∀N,

if |t− s| ≥ 1 and all the sectional curvatures of Mn−1 are negative.

The uniform constants C = C(Mn−1) do not depend on the particular choice of the ν(m).

Proof. Since, as we mentioned before, the kernels of the Aθ0
ν operators satisfy the uniform

bounds

(4.35)

∫
|Aθ0

ν (x, y)| dx,
∫

|Aθ0
ν (x, y)| dy ≤ C,

by Proposition 4.1, we obtain the above bounds when |t− s| ≤ 1.
Also, by (4.35), if we let

(4.36) K̃λ(x, t,m; y, s,m′) =

αm(t)αm′(s)
(
Aθ0

ν ◦
(
β2(P/λ)e−iλ−1(t−s)∆g

))
(x, y), ν = ν(m),

it suffices to see that this kernel, which does not include the microlocal cutoffs in the
right satisfies the bounds in (4.33) and (4.34) when |t− s| ≥ 1.

Let us start by proving that (4.36) satisfies the bounds in (4.34) for |t−s| ≥ 1 ifMn−1

has nonpositive curvatures.
To do this recall that, by (2.42) and (2.46) with θ = θ0 = λ−1/8 , if ν(m) = (θ0k, θ0`)

then

(4.37) Aθ0
ν (x,D) = Ãθ0

k (x,D) ◦ b(λ−7/8(P − λκθ0` )), κθ0` = 1 + θ0`, |`| . θ−1
0 ,

if Ãθ0
k (x,D) = Aθ0

k (x,D) ◦ Υ̃(P/λ),

with b ∈ C∞
0 ((−1, 1)) and Υ as in (2.43). Here the Aθ0

k operators localize at scale

θ0 = λ−1/8 about a geodesic γk in Ω due to (2.37)–(2.41).
By (4.37) we now have the following variant of (4.3)

Aθ0
ν ◦

(
β2(P/λ)e−i(t−s)λ−1∆g

)
= Ãθ0

k ◦
(
β2(P/λ) b(λ−7/8(P − λκθ0` )) e−i(t−s)λ−1∆g

)
(4.38)

=
(
(2π)−1

∫
m̂`(λ, t− s; r)

(
Ãθ0

k ◦ cos r
√
−∆g

)
dr
)
,

if now (4.4) is replaced by

(4.39) m̂`(λ, t− s; r) =

∫ ∞

−∞

e−iτrβ2(|τ |/λ) b(λ−7/8(|τ | − λκθ0` ))ei(t−s)λ−1τ2

dτ.
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By a simple integration by parts argument we have the following analog of (4.6)

(4.40) ∂kr m̂`(λ, t− s; r) = O(λ−N (1 + |r|)−N ) ∀N
if |t− s| ≤ c0 log λ and |r| ≥ 100c0 log λ.

Thus, if a is as in the proof of Proposition 4.1, since the dyadic operators Ãθ0
k have kernels

as in (4.35), if we insert a factor of (1 − a(r/c0 log λ)) into the integral in the last term
in (4.38) the resulting kernels will be O(λ−N ) for all N . So, we have reduced the proof
of (4.33) to showing that we have the kernel estimates

(4.41)
(
Wλ,`,t−s

)
(x, y) = O(λ

n−1
2 |t− s|−n−1

2 ), if 1 ≤ |t− s| ≤ c0 log λ,

for small enough c0 > 0 if

(4.42) Wλ,`,t−s = (2π)−1

∫
a(r/c0 log λ) m̂`(λ, t− s; r)

(
Ãθ0

k cos r
√
−∆g

)
dr.

To estimate (4.41), we shall argue as in the last subsection. We first lift the calculation
up to the universal cover exactly as before by rewriting

(4.43) Wλ,`,t−s(x, y) =
∑

α∈Γ

Wα
λ,`,t−s(x̃, ỹ),

where

(4.44) Wα
λ,`,t−s(x̃, ỹ) =

(2π)−1

∫ ∞

−∞

a(r/c0 log λ) m̂`(λ, t− s; r)
(
Ãθ0

k cos r
√
−∆g̃

)
(x̃, α(ỹ)) dr,

and x̃, ỹ denote the lift of x, y, respectively, to the universal cover (Rn−1, g̃). By the
support properties of a and Huygens principle

(4.45) Wα
λ,`,t−s(x̃, α(ỹ)) = 0 if dg̃(x̃, α̃(ỹ)) ≥ Cc0 log λ,

with C being a fixed constant.
In the last subsection we had to deal with the fact that the sums that arose after

lifting the calculations up to the universal cover involved O(exp(Cc0 log λ)) terms. Here,
because of the ν = (k, `) localizations, it will turn out that, given |t − s| ≥ 1, there are
only O(1) summands above which are nontrivial.

Let us start by exploiting the localization coming from the Ãθ0
k operators which localize

about the geodesic γk in Ω. If we argue exactly in [6], just by using this operator and ele-
mentary arguments involving the calculus of Fourier integral operators and Toponogov’s
triangle comparison theorem, we shall be able to see that the overwhelming majority of
the terms in (4.43) are O(λ−1/2), which is much better than the bounds posited above.

To do this, just as in earlier works we start by modifying the coordinates in Ω so that
the 0 ∈ γk. Then, as in [6], we let γ̃(t), t ∈ R denote the lift of the geodesic γk to the
universal cover and

TR(γ̃) = {x : dg̃(γ̃, z̃) ≤ R}.
Then, just as in [6], if R is fixed large enough and α(D) ∩ TR(γ̃) = ∅, with, as before,
D 'Mn−1 being our fundamental domain, then the summand in (4.43) involving α must
by O(λ−1) by Toponogov’s theorem and microlocal arguments. This is exactly how (3.9)
in [6] was proved, and one can simply repeat the arguments there to obtain this bound.

Since there are O(λ1/2) non-zero terms in (4.43) if c0 in (4.44) is fixed small enough,
we obtain in this case∑

{α:α(D)∩TR(γ̃)=∅}

Wα
λ,`,t−s(x̃, ỹ) = O(λ−1/2), if 1 ≤ |t− s| ≤ c0 log λ,
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which is much better than the bounds in (4.41).
In order to obtain (4.41) we still have to deal with the terms for which α(D)∩TR(γ̃) 6= ∅;

however, fortunately for us, by (4.45) there are only O(log |t− s|) such non-zero terms in
(4.43). Having reduced out task to only considering such summands we no longer need

to use the microlocal cutoff Ãθ0
k . Since it satisfies the bounds in (4.35) we would have

(4.41) if

(4.46)
∑

{α:α(D)∩TR(γ̃) 6=∅}

(2π)−1

∫ ∞

−∞

a(r/c0 log λ) m̂`(λ, t− s; r)
(
cos r

√
−∆g̃

)
(x̃, α(ỹ)) dr

= O(λ
n−1
2 |t− s|−n−1

2 ), if 1 ≤ |t− s| ≤ c0 log λ.

To do this, just like before, we shall use the Hadamard parametrix (4.21). We need to
see that the contribution of each term gives a contribution satisfying the these bounds.

If we argue as before, and use (4.23) the contribution of the higher order terms to
(4.44) will be a linear combination of terms of the form

(4.47) (2π)−1wν(x̃, α(ỹ))

∫ ∞

−∞

∫
eidg̃(x̃,α(ỹ))ξ1e±ir|ξ|αν(|ξ|)a(r/c0 log λ)

× m̂`(λ, t− s; r) dξdr.

Assuming as we are that |t− s| ≤ c0 log λ, modulo a O(λ−N ) term, just as in (4.30), this
equals
(4.48)

wν(x̃, α(ỹ))

∫

Rn−1

β2(|ξ|/λ)b(λ−7/8(|ξ| − λκθ0` )) eidg̃(x̃,α(ỹ))ξ1 αν(|ξ|) ei(t−s)λ−1|ξ|2 dξ.

By an easy stationary phase calculation if |t−s| ≥ 1 the last integral is O(λ
n−1
2 −ν) in view

of the last part of (4.23). Since, as we noted before there are only O(log λ) summands
in (4.46), we conclude that the contribution of the higher order terms, ν = 1, 2, . . . , in

Hadamard parametrix will be O(λ
n−1
2 − 1

2 ), which is much better than we need for (4.46).
We next notice that, similar to (4.31), the contribution of the remainder term in (4.21)

will be∫ ∞

−∞

β2(|τ |/λ)ei(t−s)λ−1τ2

b(λ−7/8(|τ | − λκθ0` ))
[
a((c0 log λ)

−1 · )R( · , x̃, ỹ)
]
̂(τ) dτ.

By (4.24), the last factor in the integral is O(exp(Cc0 log λ)) ≤ λ1/16 if c0 is small
enough. Since the rest of the integrand is bounded and supported on a set of size λ7/8,
we conclude that the contribution of the remainder term in the Hadamard parametrix
to (4.41) also not only satisfies the bounds in (4.46), but, moreover, like the above terms
for ν = 1, 2, . . . in (4.21), satisfies the improved ones in (4.34). Indeed, its contribution
will be O(λ15/16 log λ) for such c0.

We still have to deal with the main term in the Hadamard parametrix, i.e., the con-
tribution of the ν = 0 term in (4.21) to (4.47). Arguing as before, the proof of (4.46)
would be complete if we could show that

(4.49)
∑

{α:α(D)∩TR(γ̃) 6=∅}

w0(x̃, α(ỹ))

∫

Rn−1

β2(|ξ|/λ) b(λ−7/8(|ξ| − λκθ0` ))

× cos(r|ξ|)eidg̃(x̃,α(ỹ)ξ1ei(t−s)λ−1|ξ|2 dr

= O(λ
n−1
2 |t− s|−n−1

2 ), if 1 ≤ |t− s| ≤ c0 log λ.
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To obtain (4.49) we shall use the fact that for |t− s| ≥ 1 we have:

(4.50)

∫

Rn−1

β2(|ξ|/λ)b(λ−7/8(|ξ| − λκ))eidg̃(x̃,α(ỹ))ξ1ei(t−s)λ−1|ξ|2 dξ = O(λ−N ) ∀N

if dg̃(x̃, α(ỹ)) /∈ It,s,κ =
[
2|t− s|(κ− Cλ−1/8), 2|t− s|(κ+ Cλ−1/8)

]
, if κ = κθ0`

with C large enough, and

(4.51)∫

Rn−1

β2(|ξ|/λ)b(λ−7/8(|ξ| − λκ))eidg̃(x̃,α(ỹ))ξ1ei(t−s)λ−1|ξ|2 dξ = O(λ
n−1
2 |t− s|−n−1

2 ),

if dg̃(x̃, α(ỹ)) ∈ It,s,κ, κ = κθ0` .

The first estimate just follows from a simple integration by parts argument. For if φ =
dg̃(x̃, ỹ)ξ1 + (t − s)λ−1|ξ|2, then, if C in the definition of It,s,κ is fixed large enough,

|∇ξφ| ≥ λ−1/8 if dg̃(x̃, ỹ) /∈ Iκ,t,s, and, also, derivatives of the amplitude of the integral

are O(λ−7/8). Thus, in this case, every integration by parts gains a power of λ−3/4,
resulting in (4.50). The other estimate, (4.51) just follows from stationary phase.

If we note that the interval It,s,κ has length O(|t − s|λ−1/8) which is much smaller
than 1, if as above we assume that |t− s| ≤ c0 log λ, we conclude that there can only be
O(1) terms in (4.49) which are not O(λ−N ), which leads to (4.49) since, by (4.25) w0, is
bounded.

This completes the proof of (4.33).
To prove the much stronger bounds (4.34) which require that Mn−1 have negative

sectional curvatures, we note that the contribution of all of the terms in the Hadamard
parametrix other than the main one, corresponding to ν = 0, involved a λ-power im-
provement of what was needed for (4.33) and thus lead to bounds of the form (4.34) since
we are assuming that |t− s| = O(log λ). Thus, to prove (4.34), it is enough to show that

under these curvature assumptions we have the analog of (4.49) with O(λ
n−1
2 |t−s|−n−1

2 )

replaced by O(λ
n−1
2 |t− s|−N ) for every N . To do this, we also use the simple fact, which

follows from an integration by parts argument, that we have the O(λ−N ) bounds in (4.50)
if dg̃(x̃, α(ỹ)) /∈ [C−1

1 |t−s|, C1|t−s|] with C1 fixed sufficiently large. In view of (4.26) each

of the O(1) nontrivial terms in the sum in the left side of (4.49) must be O(λ
n−1
2 |t−s|−N )

for every N , as desired. This completes the proof of Proposition 4.2. �

4.3. Estimates for kernels involving local auxiliary operators.

Let us prove the kernel estimates we used in §3.

Proof of Lemma 3.5. Let us now prove Lemma 3.5, which allowed us to use parabolic
scaling and results from [23] to obtain the bilinear estimates (3.63). This lemma follows
from a straightforward variation on the stationary phase arguments used to prove [29,
Lemma 5.1.2]. Moreover, Lemma 3.5 is essentially Lemma 3.2 in [5] or Lemma 4.3 in
[7], and in fact the latter result almost immediately gives our results given how we have
constructed the local operators in (2.5).

We first note that the kernel of our local operators are given by

(4.52) σ̃λ(x, t; y, s) =
(
B ◦ σλ

)
(x, t; y, s)

= (2π)−2

∫∫
ei(t−s)τeirλ

1/2τ1/2

β̃(τ/λ) σ̂(r)
(
B ◦ e−irP

)
(x, y) drdτ.
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Since (r, x, y) → (B ◦ e−irP )(x, y) is smooth when dg(x, y) 6= |r| and σ̂ is as in (2.6), by
a simple integration by parts argument,

(4.53) σ̃λ(x, t; y, s) = O(λ−N ) ∀N if |dg(x, y)− δ| ≥ 3
2δ0δ.

This leads to the first part of (3.35) if θ is small since the kernels of our microlocal cutoffs,
Ac0θ

ν , satisfy

(4.54) Ac0θ
ν (x, y) = O(λ−N ) ∀N if dg(x, y) ≥ C1θ,

for a uniform constant C1 since we are assuming that λ−1/2 � λ−1/8 ≤ θ. Also, since the
symbols Ac0θ

ν (x, ξ) = 0 if ξ is not in a small conic neighborhood of (0, . . . , 0, 1) ∈ R
n−1, it

follows that (r, x, y) →
(
B◦e−irP ◦Ac0θ

ν

)
(x, y) is smooth when xn−1−yn−1 < 0 and σ̂ 6= 0,

which yields the other half of (3.35) via another simple integration by parts argument.

Next, we recall that, by (2.46) Ac0θ
ν = Ac0θ

j (x,D)◦Ac0θ
` (P ), where Aj localizes to a c0θ

neighborhood of a geodesic γj ∈ Ω about which we have chosen Fermi normal coordinates

and Ac0θ
` (P ) is the “height operator” given by (2.42). The other operator Ac0θ

ν′ localizes

at scale c0θ to a geodesic γj′ and height operator Ac0θ
`′ which are θ-close to the above.

Next, let us use the fact that, by Lemma 3.2 in [4] or Lemma 4.3 in [7],2 if we just
consider the localizations coming from the ones arising from geodesics, we have, for ω ≈ λ,
that the following kernels on Mn−1 satisfy

(4.55)
(
σ̃(ω − P ) ◦Ac0θ

ι

)
(x, y) = ω

n−2
2 eiωdg(x,y)aι,θ(ω;x, y) +O(λ−N ), ι = j, j′,

where the amplitude satisfies aι,θ = 0 if (3.32) is valid, and, additionally, since we are
working in Fermi normal coordiates about γj

(4.56)
∣∣∂iω∂kxn−1

∂k
′

yn−1
Dβ

x,yaι,θ(ω;x, y)| ≤ Ci,k,k′,β ω
−iθ−|β|, ι = j, j′.

If i = 0, this just follows [7, Lemma 4.3] and our choice of coordinates. In order to get the
c0θ-scale concentration as in (3.32) that we used in the last section, we apply [7, Lemma
4.3] with θ there replaced by c0θ. The fact that we also have a ω−1 improvement for each
ω-derivative just comes from the fact that if we use parametrices for e−irP to represent
e−iωdg(x,y) times the right side of (4.55) as an oscillatory integral in the standard way,
such as in [7], each ω-derivative brings down a factor of the phase function (normalized to
vanish at the stationary points) and so results in a ω−1 improvement, just as in standard
stationary phase with parameters results (see e.g., [29, Corollary 1.1.8]).

To obtain (3.32) for our kernels, we first note that, by (4.52) and (2.46),

(4.57)
(
σ̃λ ◦Ac0θ

ν

)
(x, t; y, s)

=
([

(2π)−1

∫
eiτ(t−s) σ̃(λ1/2τ1/2 − P ) ◦Ac0θ

j ◦ β̃(τ/λ) dτ
]
◦Ac0θ

`

)
.

If we consider the kernel of the operator inside the square brackets, by (4.55), we can
write it as

(2π)−1

∫ ∞

−∞

eiτ(t−s)(λτ)
n−2
4 eiλ

1/2τ1/2dg(x,y)aj,θ(λ
1/2τ1/2;x, y) β̃(τ/λ) dτ +O(λ−N )

(4.58)

= (2π)−1λn/2
∫ ∞

−∞

eiλ[τ(t−s)+τ1/2dg(x,y)]aj,θ(λτ
1/2;x, y) τ

n−2
4 β̃(τ)dτ +O(λ−N ),

= π−1λn/2
∫ ∞

0

eiλ[τ
2(t−s)+τdg(x,y)]aj,θ(λτ ;x, y) τ

n/2 β̃(τ2) dτ +O(λ−N ),

2In [7] different notation was used to denote the pseudodifferential cutoff B due to the semiclassical

notation there.
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where aj,θ is as in (4.55) and so vanishes when x or y is outside a O(c0θ)-tube about γj .

Since the kernel of Ac0θ
` also satisfies (4.54), by combining (4.57) and (4.58), we obtain

(3.32) for ν = (c0θj, c0θ`). The same argument gives us this for ν′ = (c0θj
′, c0θ`

′).
Next, let us use (4.56)–(4.58) to prove the remaining parts of Lemma 3.5 saying that

the kernels are also O(λ−N ) in the regions described by (3.33) and (3.34) and that outside
of these and the ones in (3.32) and (3.35) (where we already know this), they are as in
(3.30) and (3.31).

In order to do this we argue as in Hörmander [18] or more specifically as in [29, §4.3]
to see that the we can write the kernel of the height operators, m = `, `′, as

Ac0θ
m (x, y)

(4.59)

=

∫

Rn−1

eiϕ(x,y;ξ)b
(
(c0θλ)

−1(p(x, ξ)− λκc0θm )
)
Υ(p(x, ξ)/λ) q(x, y, ξ) dξ +O(λ−N )

= λn−1

∫

Rn−1

eiλϕ(x,y;ξ)b
(
(c0θ)

−1(p(x, ξ)− κc0θm )
)
Υ(p(x, ξ)) q(x, y, λξ) dξ +O(λ−N ),

where b ∈ C∞
0 ((−1, 1)) is as in (2.42), Υ as in (2.43), and p(x, ξ) is the principal symbol

of P , q ∈ S0
1,0, (2π)

−(n−1)−q ∈ S−1
1,0 and ϕ is homogeneous of degree one in ξ and satisfies

(4.60) ϕ(x, y; ξ) = 〈x− y, ξ〉+O(|x− y|2|ξ|), on supp q.

So, in particular,

(4.61) ∇ξϕ = 0 ⇐⇒ x = y, and ∇xϕ = ξ as well as
∂2ϕ

∂x∂ξ
= In−1 if x = y.

Indeed, to see this, one recalls that the Lax parametrix allows to write for small |t|
(
eitP

)
(x, y) =

∫
eiϕ(x,y;ξ)+itp(x,ξ)q(x, y, t; ξ) dξ,

for q ∈ S0
1,0 solving a transport equation and so (2π)−(n−1) − q(0, x, y; ξ) ∈ S−1

1,0 . Using

this, and the fact that the Fourier transform of τ → b
(
(c0θλ)

−1(τ − λκc0θm )
)
Υ(τ/λ) is

O(λ−N ) and rapidly decreasing outside of a fixed interval about the origin, allows one to
argue as in [29, §4.3] or the previous two subsections here to obtain (4.59).

In the regions where we do not already know that the kernel Kc0θ
λ,µ in (3.30) is O(λ−N ),

by (4.57), (4.58) and (4.59), we can write

(4.62) Kc0θ
λ,µ(x, y) = cλ

n
2

∫ ∞

0

[
λn−1

∫

R2(n−1)

eiλ[τdg(x,z)+ϕ(z,y;ξ)]aι,θ(λτ ;x, z) τ
n
2 β̃(τ2)

× b((c0θ)
−1(p(z, ξ)− κc0θm ))Υ(p(z, ξ)/λ)q(z, y;λξ)dzdξ

]
eiλτ

2(t−s)dτ,

µ = ν, ν′, ι = j, j′, m = `, `′.

If we consider the oscillatory integral over R
2(n−1) in the square brackets here, the phase

function is

φ(z, ξ) = φ(x, y, τ ; z, ξ) = τdg(x, z) + ϕ(z, y; ξ).

It has a unique stationary point when

y = z and τ∇zdg(x, z) = −∇zϕ(z, y; ξ) = −ξ,
with the last inequality coming from the second part of (4.61). This stationary point
is non-degenerate by the last part of (4.61), and φ = τdg(x, y) there. Also, since
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p(z,∇zdg(x, z)) = 1 and p(z, ξ) = p(z,−ξ), we conclude that

(4.63) τ = p(z, ξ) and ϕ = 0 when ∇z,ξφ = 0.

Since θ ≥ λ−1/8 � λ−1/2 we may use (4.61) and (4.63) along with stationary phase to
evaluate λn−1 times the oscillatory integral inside the square brackets in (4.62). It must
be of the form
(4.64)

eiτdg(x,y)ãι,θ(λτ ;x, y) τ
n
2 β̃(τ2) b̃

(
(c0θ)

−1(τ − κc0θm )
)
q̃(x, y;λτ)

= eiτdg(x,y)aι,θ(λτ ;x, y) τ
n
2 β̃(τ2) b

(
(c0θ)

−1(τ − κc0θm )
)
Υ(τ/λ)q(y, y;−λτ∇ydg(x, y))

+O(λ−3/4).

Here ãι,θ satisfies the bounds in (4.56), like b, the smooth function b̃ vanishes outside of
[−1, 1], and, finally, q̃ ∈ S0

1,0.
If we combine (4.62) and (4.63), we conclude that

(4.65) Kc0θ
λ,µ(x, y) = cλ

n
2

∫ ∞

0

eiλ[τdg(x,y)+τ2(t−s)]ãι,θ(λτ ;x, y)τ
n
2 β̃(τ2)

× b̃
(
(c0θ)

−1(τ − κc0θm )
)
q̃(x, y;λτ) dτ, µ = ν, ν′, ι = j, j′, m = `, `′.

Now we shall prove (3.32)-(3.34), by a simple integration by parts argument, we obtain
(3.33) from (4.65), and, by using the properties of the amplitude function ãι,θ(λτ ;x, y),
we have the assertion in (3.34) that the amplitudes are O(λ−N ) when |(x1, . . . , xn−2| +
|(y1, . . . , yn−2)| is larger than a fixed multiple of θ for both µ = ν, ν′ since |ν−ν′| = O(θ).
For the last part of (3.34), saying that the amplitudes are also trivial when |(xn−1 −
yn−1) + 2κc0θ` (t− s)| is larger than a fixed multiple of θ, we use the fact that dg(x, y) =
xn−1 − yn−1 + O(θ) in our Fermi normal coordinates if (3.35) is valid and x, y are in a
O(θ)-tube about γj as in (3.32). By (3.34), along with the earlier steps, we conclude that
these kernels are O(λ−N ) in the regions described by (3.32)–(3.35).

Also, since the phase function in (4.65) has a unique stationary point when τ =
−dg(x, y)/2(t−s) which is non-degenerate, and since the phase equals −(dg(x, y))

2/4(t−
s) there, we conclude that the kernels in (4.64) must be of the form (3.30). It is also
straightforward that the amplitudes must satisfy the estimates in (3.31) in the special
cases where both m1 and m2 are zero due to (4.56).

To prove the estimates (3.31) involving (m1,m2) 6= (0, 0), we first note that

(dg(x, y))
2/4(t− s) + τdg(x, y) + τ2(t− s) = (t− s) ·

(
τ + dg(x, y)/2(t− s)

)2
,

and, also, by (3.34) and (3.35) t − s ≈ −δ when the kernel is non-trivial. Therefore, by
(4.65), the amplitude in (3.30) is of the form

(4.66) aλ,µ(x, t; y, s) =

λ
1
2

∫ ∞

−∞

e−iλτ2

hλ,ι,θ
(
x, t; y, s; (τ− (s−t)1/2dg(x,y)

2(t−s) ); 1
(s−t)1/2c0θ

(τ−(s−t)1/2[κc0θm +
dg(x,y)
2(t−s) ])

)
dτ,

µ = ν = (j, k), ν′ = (j′, `′), ι = j, j′, m = `, `′,

with

(4.67) hλ,ι,θ(x, t; y, s;u; r)

= ãι,θ(λu/(s− t)1/2;x, y) (u+/(s− t)1/2)n/2 β̃
(
u2/(s− t)

)
q̃
(
x, y;λu/(s− t)1/2

)
b̃(r).
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Here u+ = u if u ≥ 0 and 0 otherwise. What is important for us and follows from the

fact that ãι,θ satisfies(4.56), the support properties of b̃ and β̃, as well as the fact that
s− t is bounded away from zero and q̃ ∈ S0

1,0, is that we have

(4.68) hλ,ι,θ(x, t; y, s;u; r) = 0 if |u|+ |r| ≥ C or |u| ≤ C−1,

for some fixed C = Cδ, and, moreover

(4.69) Dβ1

t,s,u,r,xn−1,yn−1
(θDx′,y′)β2hλ,ι,θ(x, t; y, s;u; r) = Oβ1,β2(1).

Let us now use this to prove (3.31) for (m1,m2) 6= 0. We shall first consider the special
case where µ = ν and on x, y ∈ γj , which is a portion of the (n − 1)-axis in the Fermi
normal coordinate system in which we are working. We then have dg(x, y) = xn−1−yn−1

if the kernel is nontrivial by (3.35). Note that (3.33) tells us that the amplitude aλ,ν in
(3.30) is also very highly concentrated on the Schrödinger curve where we also have

xn−1 − yn−1 = −2κc0θ` (t− s). With this in mind, let us prove (3.31) when β = 0, m2 = 0

andm1 = 1 and we are on this Schrödinger curve. We then have −dg(x, y)/2(t−s) ≡ κc0θ` .

In this case we take κc0θm = κc0θ` , ι = j and µ = ν in (4.66) and see that we would have
(3.31) for this special case if

(4.70)

∫
e−iλτ2(

∂uhλ,ι,θ
)
(x, t; y, s; τ+(s− t)1/2κc0θ` ; ((s− t)1/2c0θ)−1τ) dτ = O(λ−1/2),

as well as

(4.71) θ−1

∫
τe−iλτ2(

∂rhλ,ι,θ
)
(x, t; y, s; τ + (s− t)1/2κc0θ` ; ((s− t)1/2c0θ)

−1τ) dτ

= O(λ−1/2).

The first estimate, (4.70) just follows from stationary phase and (4.69). We obtain the
second estimate by realizing that, after integrating by parts, we can rewrite the left side
as

(4.72)

(2iλθ)−1

∫
e−iλτ2 ∂

∂τ

[(
∂rhλ,ι,θ

)
(x, t; y, s; τ + (s− t)1/2κc0θ` ; ((s− t)1/2c0θ)

−1τ)
]
dτ

= O((λθ2)−1λ−1/2) = O(λ−1/2),

with the bounds in the right holding by (4.69) along with stationary phase and the fact
that θ � λ−1/2. In view of (4.69), it is clear that by induction this argument will give the
rest of (3.31) in this special case where both (x, t) and (y, s) lie on this special Schrödinger
curve.

If x, y are in a O(θ)-tube about γj with dg(x, y) ≈ δ and we let γ( · ) be the unit speed
geodesic in Mn−1 with γ(0) = 0 and γ(r) = x, r = dg(x, y), then the argument also
yields

(
2κc0θ` ∂r − ∂t

)
aλ,ν(γ(r), t; y, s) = O(1) if r = dg(x, y) and r = −2κc0θ` (t− s),

due to the fact that the Schrödinger curve connecting (x, t) and (y, s) is as in (3.27).
Since we are working in Fermi normal coordinates about γj this equals

(2κc0θ∂xn−1
− ∂t)aλ,ν(x, t; y, s) +O(θ|∇xaλ,ν |),

and the error term here is O(1) by our known estimate in (3.31) where |β| = 1 and

m1 = m2 = 0. Thus, if there is a κc0θ` -speed Schrödinger curve connecting (x, t) and
(y, s) and the kernel is not O(λ−N ) we have (3.31) with m1 = 1, m2 = 0 and µ = ν. By
an induction argument, it must be valid for all (m1,m2, β) in this case.
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If the kernel is non-trivial at at (x, t; y, s), then by (3.34) and (3.35) there is a

Schrödinger curve as in (3.27) with associated speed κ = κc0θ` + O(θ), passing through
(x, t) and (y, s). So, by the above argument, we would we have (3.31) for µ = ν, m1 = 1
and m2 = 0 if we had the following variants of (4.70) and (4.71):

(4.73)∫
e−iλτ2(

∂uhλ,ι,θ
)
(x, t; y, s; τ+(s− t)1/2κ; ((s− t)1/2c0θ)−1(τ−(s− t)1/2(κc0θ` −κ)) dτ

= O(λ−1/2),

as well as

(4.74) θ−1

∫
(τ − (κc0θ` − κ)) · e−iλτ2

×
(
∂rhλ,ι,θ

)
(x, t; y, s; τ + (s− t)1/2κ; ((s− t)1/2c0θ)

−1(τ − (s− t)1/2(κc0θ` − κ)) dτ

= O(λ−1/2).

Just as with (4.70), (4.73) follows immediately from stationary phase arguments and

(4.68)–(4.69). We also get (4.74) since, as we mentioned before, we must have κc0θ` −κ =
O(θ), and so the left side of (4.74) splits into two terms, one of which is of the form
(4.70), while the other is of the form (4.71). Thus, (4.73) and (4.74) imply (3.31) for
µ = ν when m1 = 1 and m2 = 0. Also, just as before, one obtains the remaining cases of
(3.31) by an induction argument.

Finally, since |κc0θ` − κc0θ`′ |, θ|j − j′| = O(θ), it is also clear that (3.31) also must hold
when ν = (c0θj, c0θ`) is replaced by ν′ = (c0θj

′, c0θ`
′), which completes the proof of

Lemma 3.5.
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