Smudged Fingerprints:
Characterizing and Improving the Performance of Web Application Fingerprinting

Brian Kondracki
Stony Brook University
bkondracki@ cs.stonybrook.edu

Abstract

Open-source web applications have given everyone the
ability to deploy complex web applications on their site(s),
ranging from blogs and personal clouds, to server administra-
tion tools and webmail clients. Given that there exists millions
of deployments of this software in the wild, the ability to finger-
print a particular release of a web application residing at a web
endpoint is of interest to both attackers and defenders alike.

In this work, we study modern web application finger-
printing techniques and identify their inherent strengths and
weaknesses. We design WASABO, a web application testing
framework and use it to measure the performance of six web
application fingerprinting tools against 1,360 releases of
popular web applications. While 94.8% of all web application
releases were correctly labeled by at least one fingerprinting
tool in ideal conditions, many tools are unable to produce a
single version prediction for a particular release. This leads
to instances where a release is labeled as multiple disparate
versions, resulting in administrator confusion on the security
posture of an unknown web application.

We also measure the accuracy of each tool against real-
world deployments of the studied web applications, observing
up to an 80% drop-off in performance compared to our offline
results. To identify causes for this performance degradation, as
well as to improve the robustness of these tools in the wild, we
design a web-application-agnostic middleware which applies
a series of transformations to the traffic of each fingerprinting
tool. Overall, we are able to improve the performance of
popular web application fingerprinting tools by up to 22.9%),
without any modification to the evaluated tools.

1 Introduction

From its static origins, the web has evolved into the ubiquitous
position it occupies in our lives in large part due to the prolif-
eration of web applications. Web applications provide the dy-
namic functionality required for the numerous online services
we have come to depend upon. Additionally, open-source web

Nick Nikiforakis
Stony Brook University
nick@cs.stonybrook.edu

application software, such as WordPress [35] and Drupal [20],
has provided anyone the ability to create immersive experi-
ences on their own websites, with minimal effort. The popular-
ity of open-source web applications is at an all time high, with
43% of all websites on the Internet running WordPress [32].

This immense popularity, along with the sensitive nature of
transactions conducted by online services, has increased the
attention paid to web applications by attackers. Moreover, the
widespread use of web applications has further widened the
asymmetric gap enjoyed by attackers, as a single vulnerability
in a version of a popular web application allows attackers to
exploit all websites utilizing it. This has led to instances where
millions of websites each running the same vulnerable ver-
sion of a particular web application have been attacked at the
same time [9]. Moreover, the failure of many website admin-
istrators to keep web application deployments up-to-date, in
conjunction with public cataloging of known attack payloads,
can make it trivial for even non-sophisticated attackers to exe-
cute attack campaigns [24]. Due to the impracticality and blind
spots of manually cataloging and updating services at scale,
organizations with large numbers of servers are highly suscep-
tible to these attacks. In the past, vulnerable web application
deployments on such networks have resulted in large-scale
compromise, leading to billions in damages [16, 17]. The most
infamous of these was the 2017 Equifax data breach in which
attackers gained access to the private financial data of over 140
million consumers due to the failure of administrators to update
a vulnerable deployment of Apache Struts on their network [5].

Therefore, it has become increasingly apparent that the
ability to identify the type and version of web application
software running at a particular web address is paramount
not only for attackers, but also defenders to find and remedy
vulnerable endpoints before they are exploited. This form of
intelligence gathering, known as web application fingerprint-
ing, assesses the content and behavior of a web endpoint to
garner information regarding the application that produced it.
Web application fingerprinting tools such as BlindElephant [4],
WhatWeb [10], and Wappalyzer [34] have grown in popularity,

providing a quick and easy way for anyone to identify the type
and version of an active web application.

In this paper, we analyze the state of web application
fingerprinting, filling a knowledge gap on the techniques
utilized, and their effectiveness in practice. We perform a liter-
ature review of all web application fingerprinting techniques,
ultimately distilling this information into a list of six web appli-
cation fingerprinting tools that fully summarizes the scope of
actively-utilized academic and commercial work in this area.
We then develop WASABO, a container-based web application
testbed system allowing us to stage any version of a web
application for laboratory testing of each fingerprinting tool,
as well automate large-scale online fingerprinting campaigns.

Using WASABO, we audit the performance of each finger-
printing tool against 1,360 versions of popular web application
software in their default installation states. Through this, we
learn the distinct behaviors of each web application finger-
printing technique, as well as their upper-bound performance
in the most ideal fingerprinting settings. By cross-referencing
the results produced by each fingerprinting tool with the most
severe vulnerabilities recorded for each of the web applications
we study (average severity score of 7.7 out of 10), we find
82 instances where a vulnerable version of a web application
would be incorrectly labeled as a non-vulnerable version.

Finally, we gauge the performance of the studied finger-
printing tools against real-world web application deployments,
determining the effect of administrator-applied customizations.
We find that the performance of each tool suffers greatly in this
setting, with accuracy scores decreasing 20%-80% compared
to laboratory performance. However, using the network
middleware module of WASABO, we bridge this performance
gap by applying a series of scanner-agnostic transformations
to the traffic produced by the fingerprinting tools, including the
use of a real browser to communicate with each site, reducing
instances of bot-detection. Overall, we find WASABO is able
to improve the performance of web application fingerprinting
tools by up to 22.9% against real web applications in the wild.

Our main contributions are as follows:

* We summarize the current state-of-the-art in actively-
utilized web application fingerprinting techniques,
including the most popular tools in the space.

* We design and develop a web application sandbox
framework, called WASABO, to automate the processes
of deploying a wide-range of web applications, and the
auditing of web application fingerprinting tools.

* We audit the performance of each fingerprinting tool in
ideal and real-world deployments of web applications,
allowing us to identify common website customizations
that stifle their effectiveness.

* As part of WASABO, we build a network middleware
module that dynamically alters the traffic transmitted

<link href="https://example.com/wp—content/...’
/>

<meta name="generator" content="WordPress 5.8" />

<p>

Powered by

WordPress
</p>

Listing 1: Examples of potential fingerprinting sources in dynamic
content generated by WordPress.

by each fingerprinting tool, allowing us to improve their
performance in a scanner-agnostic manner

To enable future research in understanding and evaluating
web-application fingerprinting, we are making our WASABO
system available to other researchers [1].

2 Background on Web Application
Fingerprinting

The ability to accurately identify the web application respon-
sible for the content present on a particular web endpoint is
a valuable tool for both attackers and defenders. Due to the
public cataloging of exploits in CVE databases, attackers
who can pinpoint the version of a web application can easily
produce a list of exploits to compromise it. Conversely,
administrators of large, undocumented/partially-documented
networks must identify and patch vulnerable web applications
before they are exploited. Current fingerprinting solutions
rely heavily on the content generated by each particular web
application—with decision boundaries drawn based on the
dynamic and static content produced.

Dynamic Content
One of the primary uses of web applications is to generate
dynamic content, based upon the current user and context.
This means that visits to the same endpoint by two distinct
users, or subsequent visits by the same user, will likely
result in unique content returned. However, certain elements
within this content are likely to remain static, leading to
patterns that could be used to fingerprint the application.
This includes HTML elements (e.g., meta tags), filesystem
artifacts present in hyperlinks (e.g., the WordPress content
directory, wp—-content), and static strings within the content
body (e.g., page headings/section titles). Moreover, some web
applications include the entire version string within these
elements by default, with the option to disable it either through
configuration settings or the installation of third-party plugins.
An example of this is demonstrated in Code Listing 1, which
shows lines taken from a real WordPress deployment that
contains these sources of information leakage.

Leakage of this information in dynamic content results
in trivial identification of the underlying web application.
The consistent format of software version strings allows

for the usage of regular expression searches of web content,
reducing the effort required to create fingerprinting scripts.
Moreover, this content is typically included in multiple
locations throughout a website, including locations commonly
frequented by visitors. This complicates the process of
distinguishing fingerprinting bots from real users.

Static Content

In support of dynamically-generated HTML content, web
applications also serve static content consisting of supplemen-
tary material (e.g., CSS and JavaScript files), documentation
(e.g., README and Changelog files), and multimedia (e.g.,
image files). As this content is not state-dependent, it remains
consistent for each user, and each subsequent visit to a site.
Changes to these files will only occur when a new version
of the particular web application is released, coinciding with
changes to application functionality (e.g., the addition of new
lines of code in a JavaScript file to support a new feature).

As this content will always remain the same for any
deployment of a particular web application, its modification
history can be used as a proxy for the version history of
the web application as a whole. For instance, if one knows
that only the newest version of a particular web application
contains a certain function in a JavaScript file, they could
accurately identify deployments of that version in the wild by
requesting that JavaScript file, and checking for the existence
of that function. To automate and extend this process, one
could pre-compute the hashes of all static files in all versions
of a web application, allowing for the identification of any
version of a web application by determining which release has
the greatest number of matching hashes to that of an arbitrary
site. An example of this is demonstrated in Listing 2 in which
the file wp-includes/js/media-models.js had a single
change between WordPress versions 5.8 and 5.8.1, resulting
in an entirely different hash value.

This method of fingerprinting does not rely on the inclusion
of a version string within content, as is the case of dynamic con-
tent fingerprinting. However, it is prone to version collisions,
where two or more web application versions are equally likely,
due to limited changes occurring in static content between
those versions. Additionally, web administrators conscious
of site fingerprintability can, in theory, limit the effectiveness
of this approach by denying access to certain static files, or
modifying them so as to change the expected hashes.

3 Experimental Setup and Methodology

In this section, we first present our process for selecting web
application fingerprinting tools. We then describe WASABO,
our system for evaluating the performance of each technique
in a laboratory setting. Lastly, we detail the methodology and
motivation behind each experiment.

1 /*xxxxx/ (function (modules) { // webpackBootstrap

1412 posts_per_page: 40

1708 /xxxxsn/ });

1 /*%%%%%/ (function (modules) { // webpackBootstrap

1412 posts_per_page: 80

1708 Jorxxxxx) 1) ;

Listing 2: Change in file wp-includes/js/media-models.js between
WordPress versions 5.8 and 5.8.1. A minor change in this file between
these subsequent versions results in a completely different MDS5 hash
of the file contents, leading to a potential fingerprinting source.

3.1 Collection of Web Applications and
Fingerprinting Tools

Due to their widespread use and history of serious vulnerabil-
ities, open-source PHP web applications are likely targets for
attackers. Furthermore, the techniques used to fingerprint these
web applications (i.e. the static and dynamic fingerprinting
methods reviewed in Section 2), and the countermeasures
utilized to prevent such fingerprinting, apply to any web
application, regardless of the underlying web framework.
Therefore, we narrow the scope of our work to open-source
PHP web applications, without any loss of generality.

Of all the possible web applications, we select the following
for our study: WordPress [35], Drupal [20], Joomla [22],
MediaWiki [25], and phpMyAdmin [30]. Together, these
five web applications power over 45% of all websites [33],
providing services such as: content management, wiki
development, and database management. With a wide range of
functionalities and use-cases, these web applications provide
a diverse set of test cases to gauge the performance of each
fingerprinting technique.

For each of the five web applications, we download all avail-
able mainline releases from the previous decade (e.g., 2013—
2023). We do not test any development versions of the web
applications to avoid the bugs introduced in these versions from
influencing the results of the subsequent experiments. More-
over, as most public websites are unlikely to deploy develop-
ment versions of their chosen web applications, the fingerprint-
ing results against these versions would not accurately describe
expected real-world performance. Statistics on all web applica-
tions studied in this work are located in Table 5 in the Appendix.

To systematically search for all current web application fin-
gerprinting tools, we conducted a literature review in the field
of web application fingerprinting. Additionally, we utilized
search engine queries for terms such as “Web Application
Fingerprinting Tool” and “Web Application Identification
Tool”. This search resulted in a large collection of web
application fingerprinting tools, ranging from academic tools

Table 1: List of all web application fingerprinting tools we audit in
this work, including the type of fingerprinting techniques utilized as
well as the upper bound of requests sent to target sites. Cells with
two request quantities indicate the tool has varying behavior when
scanning a known/unknown web application.

Tool Fingerprinting Type #Requests
Dynamic Static Default Aggressive
BlindElephant [4] o ° 109/10! 1097104
WhatWeb [10] ° ° 10° 10
VersionInferer [8] [) o 10° 10!
Wappalyzer [34] [J o 100 100
Metasploit-Joomla [6]) [e] 10° -
Metasploit-WordPress [7] [) (o] 102

to commercial services. However, we limit the fingerprinting
tools we audit in this study to only those that provide support
for the chosen PHP web applications, and are open-source.
Inspecting the source code of each fingerprinting tool allows us
to fully understand the utilized techniques and their limitations.
Table | lists the web application fingerprinting tools we
audit in this study. For each tool, we examine the source
code to determine the techniques utilized to fingerprint web
applications. We note that the six fingerprinting tools chosen
for this study do not represent an exhaustive list of all available
fingerprinting tools, but represent a comprehensive summary
of the techniques used by available fingerprinting tools.
For instance, there exists a number of WordPress-specific
fingerprinting tools such as WPScan [37] and Plecost [31].
However, as these tools are specific to only one web application
and utilize the same fingerprinting techniques as the more
general tools we identified, we consider them out-of-scope
for this study. We chose to include two Metasploit modules
for WordPress and Joomla since the Metasploit framework
provides scaffolding for the authors of each module, allowing
us to treat the overall framework as a single generic tool.
Moreover, we note prior work has presented other methods
to fingerprint web applications using analysis of HTML
XPaths [48], as well as JavaScript and CSS attributes [43], but
since these works have not materialized into available tools
that can be utilized from the client-side, we also consider them
to be out-of-scope. We qualitatively compare these papers
against the ones that are in-scope for this paper in Section 7.
The selected fingerprinting tools are diverse in behavior,
with five utilizing dynamic content to identify each web
application and three utilizing static content—including
WhatWeb and VersionInferrer that utilize both to varying
degrees. We observe that the majority of these tools provide
the user with the option to tune the number of probes sent to
each site, sending a greater number of probes to potentially
increase performance while decreasing stealthiness. For this
study, we measure the performance of each tool in both the
default “out-of-the-box” settings as well as the maximum

settings, referred to as Default and Aggressive, respectively.

We note that the Aggressive setting varies for each tool,

oo 3+

dock _a

ocker Prerequisite Images Staged Webapp -,,°

TSRS 1 BE

php| |php| | & (WSl
44 7.4 ' volE

|k

mysaL| [mysaL . | Php |8
50 || 57 AN

AR

jmmmmmmmmmmmmmmmmma ' — Fingerprinting

! Tools

dus| POD]

Webapp Sources Webapp Install Scripts

Figure 1: Architecture of WASABO.

with some providing a simple command line flag for a more
“aggressive” scanning approach, with others simply allowing
the user to specify a maximum number of probes. In the latter
case, we set this number to total number of probes available
to each tool, determined by examining the source code.

3.2 WASABO: Web Application Sandbox

To comprehensively audit the performance of each fingerprint-
ing tool against the chosen web applications, we design and
develop WASABO (Web Application SAndBOx), a web ap-
plication sandbox framework. This Docker-based [19] system,
illustrated in Figure 1, allows for the automated testing of web
applications in both an offline and online setting. Additionally,
traffic between any web client and the end web application
can be inspected and modified using our network middleware
module. Below, we describe the technical details of WASABO,
and explain its benefits. Upon publication of this paper, we will
be releasing WASABO to inspire the community to perform
additional work in the space of web-application fingerprinting.

Offline Web Application Testing
To facilitate the large-scale offline testing of web applications,
WASABO provides a method to automate the deployment of any
version of a web application from its source code. The offline
functionality of WASABO is divided into five main categories:
(1) Prerequisite Docker images, (2) Web Application Source
Code, (3) Web Application Installation Scripts, (4) Network
Transformation Middleware, and (5) Test-case Scripts. Web-
application-specific options for each of these five categories are
specified in configuration files for that web application version.
Each web application chosen for this study, and all relevant
versions, require a unique set of prerequisite technologies to
function properly. Specifically, they each require an installa-
tion of PHP as well as access to a MySQL database. However,
the version combinations of each of these technologies can
vary drastically between each web application, and over time
(releases between 2013-2023). It is for this reason that we

chose to utilize Docker as the foundation of WASABO. The
ability to isolate installations of PHP and MySQL into distinct
images, and then join arbitrary versions of each using Docker’s
software-defined networking features, allow us to efficiently
create the proper execution environments of any version of the
five chosen web applications using only a handful of Docker
images. We note that the PHP Docker image also contains an
Apache web server [14] to host all web application content.

When a particular version of a web application is chosen
for deployment, its configuration file is read by WASABO,
specifying the particular versions of PHP and MySQL it
requires. Docker containers for each of these images are then
created and configured, including mounting the source code
for the chosen web application version into the Apache web
content directory of the PHP container.

Once a web application is deployed in its required execution
environment, it must still be configured by completing its
default installation steps. For each of the web applications
chosen, this involves completing a series of HTML forms
received when visiting the IP address of the site. The user
provides information such as the title of the newly created site,
and the address of the MySQL server. Typically, this process
is completed through a GUI interface in a browser window.
However, since we aim to completely automate the process
of deploying web applications, we capture the HTTP POST
requests transmitted by a browser during the installation
process of each web application version, and encode them
into installation scripts to be replayed at a later date. When
the HTML installation forms do not change between versions,
one captured installation session can be reused by WASABO
to install multiple web-application versions. The encoding
process is manual and exhaustive in order to ensure each
version of each web application can be installed consistently
for each execution of WASABO. Once this encoding process
is completed, no additional manual effort is required to
(re)deploy all versions of that particular web application.

Finally, upon verification of successful installation (by iden-
tifying strings within the content implying success), a user-
provided test-case script is executed on the staged web applica-
tion. For our purposes, we create simple scripts to execute fin-
gerprinting attempts from each of the fingerprinting tools, and
log the results of each run. However, any arbitrary code can be
executed, meaning WASABO could — in the future — be used for
cases unrelated to fingerprinting or web application security.

Online Web Application Testing

Next to experimenting with web applications in a laboratory
setting, WASABO also makes it easy to perform tests against
web application deployments in the wild. Similarly to the
offline testing module, arbitrary code can be run against one or
more live URLs on the Internet. This reduces the time and effort
required for one to perform large-scale web application testing.
Network Middleware

When performing experiments with web applications, either
online or offline, it may be useful to inspect or modify network

traffic in transit. This can assist in understanding the functional-
ity of a web application, or debugging any particular issues that
may arise in its operation. The network middleware module of
WASABO enables this functionality by intercepting all network
traffic to and from each web application deployment using
mitmproxy [28]. This includes both cleartext traffic as well as
encrypted traffic, assuming the client is configured to accept
the mitmproxy TLS certificate. Similar to the PHP and MySQL
deployments used in the offline module of WASABO, mitm-
proxy is deployed using a Docker image, greatly decreasing
the time required to configure the testing environment.

Users may provide a mitmproxy addon script [29] which
can contain arbitrary logging or transformation instructions
for network traffic. It is important to note that since all web
content transformations occur at the network level, they
are completely agnostic to both the client as well as web
application. This means that, for the fingerprinting use case
described in this paper, web content modifications to improve
the performance of fingerprinting tools can be made on-the-fly
without modifying the source code of any fingerprinting tool.
In Section 5, we describe the network middleware addon
scripts we utilized to improve the real-world performance of
the web application fingerprinting tools studied in this work.

4 Laboratory Fingerprinting Performance

To gauge the upper-bound performance of the identified
web application fingerprinting tools, we measure their identifi-
cation accuracy when encountering fresh installations of web
applications, with no user-customizations applied. This means
that steps commonly taken to “harden” the deployment of each
web application are not included, such as deleting or removing
access to unnecessary files, or installing anti-fingerprinting
plugins. Additionally, we note that we also do not modify
any web application-specific configuration options that
are not necessary to complete installation. This means all
“out-of-the-box™ settings are configured, and any default
behaviors are present. By testing against fresh installations
of each web application, we ensure that each fingerprinting
tool is provided the greatest amount of information regarding
the identity of the web application it is interacting with.

As mentioned in Section 3.1, we record the performance
of each tool in both Default and Aggressive scanning modes.
In doing so, we can determine the expected performance
of each tool without any fine-grained tuning of arguments.
Conversely, we can observe the change in performance at the
most aggressive state of each tool, and compare the number
of probes required to achieve that performance. Intuitively,
a fingerprinting tool that is able to achieve high identification
accuracy while keeping the number of probes low is superior
to one which requires a large number of probes (since the
former increases the stealthiness of the attack).

Additionally, we note that one of the evaluated finger-
printing tools, BlindElephant, permits the user to specify
the type of web application running on the target, allowing
for more focused probes for determining the exact version
of that particular web application. For this tool, we test the
two options in which the user provides the name of the web
application, versus when they do not. In doing this, we can
observe the effect of this additional input on its performance.

Using WASABO, we record the outputs of each fingerprinting
tool in the states previously described against all web applica-
tion versions. Prior to conducting any experiments, we ensure
each tool is updated to the most current release and, if relevant,
trained on the source code of all web application versions.
This “training” process is required for VersionInferrer and
BlindElephant, allowing each tool to build maps of static file
hashes to web application versions, as described in Section 2.

4.1 Experimental Evaluation and Results

We leverage the automated web application testing function-
ality of WASABO to audit each tool against 1,360 versions
of popular web applications dating back as far as 2013. We
note that this scale of laboratory testing would not have been
possible without WASABO due to the manual effort required
to install and configure each web application release.

Analysis of the performance of web application fingerprint-
ing tools must occur on a sliding-scale: there is not always one
correct answer. Rather, the amount of information garnered
by a fingerprinting scan can range from no result, to only the
type of the web application produced, to finally the entire
version string. Therefore, we separate the analysis of these
tools into two distinct categories: the ability to produce the
correct web application type (e.g., WordPress vs. Drupal),
and the ability to produce the correct web application version
(e.g., WordPress 5.8 vs. WordPress 5.9). While producing
the entire version string is optimal for the user, there is still
value in producing only the web application type. Moreover,
we note that the former group is a subset of the latter, as a
fingerprinting tool that is able to produce the full version string
is also able to produce the web application type.

We also explore the tendency of each fingerprinting tool
to output more than one version for each fingerprinting scan.
While a particular fingerprinting tool may be able to produce a
correct result (i.e., a correct web application type and version),
that prediction will not hold much value if it is simply one
of a large set of possible versions. An optimal result for a
fingerprinting tool would be one that is able to produce one,
correct, prediction for each host it encounters.

4.2 Web Application Type Prediction

Figure 2 shows the performance of each fingerprinting tool in
producing the correct web application type, as a percentage of

Default — mmm Aggressive

o o =
o ®© o

% Name Correct
I
IS

o
N

o
=)

Joomla
Drupal
Joomla
Mediawiki
WordPress
Drupal
Joomla
Mediawiki
WordPress
Drupal
Joomla
Mediawiki
WordPress

o
@
o
a
e
S
=

Mediawiki
phpMyAdmin
phpMyAdmin
phpMyAdmin

phpMyAdmin

Figure 2: Performance of fingerprinting tools when attempting
to guess web application name with both default and aggressive
scanning modes. Areas shaded with “X” indicate that particular
result is not applicable due to fingerprinting tool capability.

BlindElephant VersionInferrer Wappalyzer WhatWeb

all versions of each web application, in both default and aggres-
sive scanning modes. We note that the probes contained within
the Metasploit framework are not listed in this figure as they are
specific to particular web applications and, thus, their use pre-
sumes that the user has knowledge of the web application type.
Additionally, as BlindElephant does not support an aggressive
scanning mode when guessing the web application type, only
the results for the default scanning mode are present. Likewise,
as VersionInferrer does not currently support fingerprinting ph-
pMyAdmin releases, such results are not applicable. All such
non-applicable cases are signified by areas shaded with Xs.

In ideal conditions, we observe varying accuracy among
each fingerprinting tool. The two tools that only utilize static
content fingerprinting, BlindElephant and VersionInferrer,
perform consistently worse than Wappalyzer and WhatWeb,
which utilize regular expression searches of dynamic content.
This indicates that, in most cases, identification of a web
application is performed best when utilizing strings present in
dynamic content. This makes sense as many web applications
will, by default, include information about their identities
within webpage content in either HTML meta tags, or page
titles and headers. Meanwhile, using only the hashes of
static content can lead to misidentification, if content that is
utilized by a wide-range of websites (e.g., common JavaScript
libraries) is attributed to the wrong web application.

Generally, utilizing a more aggressive scanning approach
does not garner greater performance. The only case in which
this is true is WhatWeb’s fingerprinting of Joomla deployments.
In its Default scanning mode, WhatWeb attempts to reduce the
number of requests sent to the target site by only downloading
the URL provided by the user, and searching the returned
content with regular expressions for each web application
plugin supported by it. By studying WhatWeb’s performance,
we discovered errors in the regular expressions specified in
its Joomla plugin file [12]. This prevents WhatWeb from
trivially identifying over 50% of all Joomla installations in its
Default scanning mode. It is only when additional probes are

Table 2: Performance of web application fingerprinting tools in
guessing web application version when provided with no prior
knowledge of web application type. D indicates that the default
settings were used, whereas A indicates most aggressive scanning.

Version Matched (%)
Tool Webapp Type Major Minor Full
VersionInferrer ~ Drupal D 53.6 53.6 53.6
A 40.8 40.8 40.8
Joomla DA 100.0 100.0 100.0
Mediawiki D,A 0.0 0.0 0.0
WordPress D 56.5 56.5 55.9

A 50.9 50.9 50.2
phpMyAdmin D.A 0.0 0.0 0.0

Wappalyzer Drupal D,A 96.4 8.2 0.0
Joomla DA 0.0 0.0 0.0
Mediawiki DA 87.3 873 813
‘WordPress D,A 100.0 100.0 100.0

phpMyAdmin D,A 0.0 0.0 0.0

‘WhatWeb Drupal D 0.0 0.0 0.0
A 97.4 724 655

Joomla D 0.0 0.0 0.0

A 100.0 100.0 100.0

Mediawiki D 46.1 46.1 46.1

A 46.7 46.7 467

WordPress D,A 100.0 100.0 100.0

phpMyAdmin D 31.2 312 312

A 349 349 349

transmitted in Aggressive mode that a correct identification is
made for these releases. In all other cases, Aggressive scanning
mode has no discernible positive effect: it either provides
no additional performance benefits, or causes confusion by
transmitting unnecessary probes, reducing performance.
Interestingly, we find that VersionInferrer is unable to
identify any release of Mediawiki. Analysis of the behavior
of both VersionInferrer and Mediawiki reveals the web
application unintentionally bypasses the fingerprinting tool’s

static content analysis with one of its default behaviors.

Specifically, Mediawiki by default redirects visitors requesting
the domain root path to a subdirectory containing the name
of the website’s homepage [26]. When requesting static files
to analyze, Versionlnferrer simply appends the relative path
of each file to the end of the redirected URL, rather than the
domain root, resulting in requests for non-existing files. While
this behavior prevents correct fingerprinting in this scenario, it
is not necessarily incorrect. For instance, if a web application
is in fact hosted in a sub directory of a domain’s root, this
would ensure static files could still be reached. Conversely,
BlindElephant, which ignores such redirects, would not be able
to retrieve any static files in this scenario. Therefore, it follows
that in order to ensure static files could be reached even in the
scenario in which a web application is hosted in a subdirectory
of a domain’s root, future fingerprinting techniques should
include checks for such behavior and dynamically generate
request URLs to match the current circumstances.

4.3 Web Application Version Prediction

While identifying the type of web application behind a particu-
lar website is useful in narrowing the scope of reconnaissance
scans, the vast number of releases available for any popular
web application makes it difficult to draw any meaningful
conclusion about a site’s security posture. Therefore, a web
application fingerprinting tool that can not only identify the
type of web application, but also the version currently present
allows attackers to craft exploits for known vulnerabilities,
and defenders to discover and patch vulnerable hosts.

Table 2 presents the accuracy of each fingerprinting tool
in determining the version of a web application with both
Default and Aggressive scanning settings, when provided
no prior information on the type of web application present.
We note that while BlindElephant is able to operate without
prior information to produce the type of the current web
application, it does not provide a version prediction in this
setting. Therefore, it is excluded from this table. Table 3 shows
the performance of the fingerprinting tools when provided
with prior information on the type of web application present.

The three result columns in these tables (Major, Minor, and
Full) indicate the percentage of web application releases in
which each tool was able to identify: only the major version,
only the major and minor version, and the entire version string,
respectively. The former of these groups is a subset of the
latter (i.e., a tool that can identify the full version string can
also identify just the major version). Similar to the distinction
made between the ability of a fingerprinting tool to determine
the type and version of a web application, there exists a
performance gradient based on the granularity of the version
string produced. For instance, a fingerprinting tool that can
determine the full version string (including the major, minor,
and incremental version numbers) is more useful than a tool
that can only identify the major version.

We find that, generally, these tools do not decrease the
granularity of their prediction in the face of uncertainty. That
is, the accuracy of each tool does not increase as we focus on
major and minor versions of each web application compared
to the entire version string. The nature of the fingerprinting
techniques utilized makes it such that a tool is unable to
determine a “rough-estimate” of the version present. In the
case of static content fingerprinting, a prediction is generated
by matching the hashes of enough static files to determine
one or more potential versions. Similarly, dynamic content
fingerprinting will either find a version string within the
webpage, or it will not. In the majority of cases where the
major version of a web application is predicted correctly but
not the minor version or full version string, we find that these
correspond to web application versions that are bordering two
major versions (i.e., the last or first release of a major version).

The only case in which this is not true is Wappalyzer’s
fingerprinting of Drupal releases. We find that this tool utilizes
anumber of sources within Drupal’s content that only reveals

Table 3: Performance of web application fingerprinting tools
in guessing web application version when provided with prior
knowledge of web application type. D indicates the default settings
were used, whereas A indicates most aggressive scanning.

Version Matched (%)

Tool Webapp Type Major Minor Full
BlindElephant ~ Drupal D 18.8 18.8 18.8
A 71.4 714 704

Joomla D, A 100.0 100.0 100.0

Mediawiki D,A 98.2 97.6 952

‘WordPress D,A 100.0 100.0 93.9

phpMyAdmin D,A 54.2 542 54.2

Metasploit Joomla D 100.0 100.0 100.0
WordPress D 100.0 100.0 100.0

the major version of the current release. For example, Drupal
includes an X-Generator header to all responses with the
current release’s major version (e.g., Drupal 7, Drupal 8, etc.).
Wappalyzer uses this header to identify all versions of Drupal,
meaning the most information this tool will ever provide the
user is the major version of any Drupal deployment. While the
intended purpose of the Drupal X-Generator HTTP header
is to announce the major version of the current deployment,
we note that this can be interpreted as a full version string if
the user assumes this is the first release of a major revision
(i.e., 7.0, 8.0, etc.). Therefore, we count the cases in which
Wappalyzer identifies such a release as a correct prediction.
We observe varying performance advantages between the
two studied fingerprinting techniques, likely due to the content
produced by each web application. For instance, VersionIn-
ferrer, which leans heavily on static content fingerprinting,
is able to produce a correct version string for less than half
of WordPress releases; while Wappalyzer, Metasploit, and
WhatWeb, which make use of dynamic content fingerprinting,
are able to produce full version strings for all WordPress
releases. Conversely, Wappalyzer and WhatWeb struggle to
identify Joomla releases in their default scanning modes, while
VersionInferrer and Metasploit exhibit near-perfect accuracy.
This dichotomy is best understood by analyzing the
WhatWeb’s plugin files for both WordPress [13] and Dru-
pal [11]. These plugins separate behavior into “passive”
and “aggressive” modes (equivalent to our Default and
Aggressive labels). Typically, in WhatWeb’s Default scanning
mode, dynamic content fingerprinting is utilized to identify
a web application using a single request to the target site’s
homepage. In Aggressive scanning mode however, WhatWeb
greatly increases the number of requests transmitted and
includes static content fingerprinting to expand the breadth
of information sources. Therefore, in cases such as WordPress,
which commonly divulges the current version in a number
of locations, dynamic fingerprinting is sufficient. This leads
to WhatWeb’s consistent performance across both Default
and Aggressive scanning modes: the static fingerprinting
probes sent in Aggressive scanning mode are not necessary

3000 -
2500 1
2000 1

1500 -

1000 A
500 A !
0 - I

BlindElephant

Days Between Prediction Releases

Versioninferrer WhatWeb

Figure 3: Distribution of the number of days between the minimum
and maximum releases in each prediction.

as the version determination is made using the, less aggressive,
dynamic fingerprinting probes.

4.4 Version Collisions

Even though the accuracy of a fingerprinting tool is a vital
measure of its overall performance, the number of predictions
required to produce a correct result is also an important factor
in determining the practicality of that tool. It is common
for web application fingerprinting tools to output a set of
predictions in cases where it is not certain which of the group
the current target is using. However, even if a fingerprinting
tool is able to produce a correct prediction, it will not be of
much use to the user if that is one of many predictions.
Figure 4 shows the CDFs of the number of predictions
produced per version of each web application in both default
and aggressive scanning modes. Here, we see the benefits
of dynamic content fingerprinting when compared to static
content content fingerprinting. Wappalyzer, Metasploit, and
WhatWeb (in Default scanning mode) each utilize only dy-
namic fingerprinting, meaning a prediction is produced if and
only if a version string if found within the content. Therefore,
there will not be a case in which there is an equal probability
between two or more different releases: there will either be
a correct prediction, or there will be no prediction produced.
On the other hand, tools such as VersionInferrer, BlindEle-
phant, and WhatWeb (in Aggressive scanning mode), utilize
static content fingerprinting to varying degrees. As described
in Section 2, this means that an identification is made by match-
ing one or more hash values of static files from a target site
against a pre-computed database. Unlike dynamic content fin-
gerprinting, this technique could result in collisions between
versions if there are a number of sequential releases in which
these static files do not change. This severely degrades the prac-
ticality of using such tools as the operator must decipher which
prediction of the group is correct. For instance, while WhatWeb
in its Aggressive scanning mode is able to correctly identify
all WordPress releases, over 75% of those result in collisions
between more than one possible version. This shows how using
accuracy as the only measure of a fingerprinting tool’s perfor-

—— Drupal —— Joomla

WhatWeb Wappalyzer

—— Mediawiki

Versioninferrer

—— phpMyAdmin —— WordPress

BlindElephant Metasploit

1.0 1 1
0.8 1

0.6 1

Default

0.4 1 : 1 d

0.2 1 4 {1 H

0.0

104 1
0.8 1
0.6 1

0.4 : 1 H

Aggressive

0.2 A 1 1T

0.0

| | N/A

0 10 20 o0 10 20 o0

10 20 0 10 20 o0 10 20

Number of Versions in Prediction

Figure 4: Distribution of number of versions returned for each fingerprinting attempt.

mance can be misleading, as a correct identification does not
hold much value if it is one of over 10 possible releases.

A consequence of version collisions is the potential of a
large temporal range of the predicted versions. A prediction
from a web application fingerprinting tool can include web
application releases that are multiple months or years apart
from each other, with drastically different behaviors and
potential vulnerabilities. Figure 3 shows the distributions in
temporal range of the three fingerprinting tools that produce
multiple predictions for at least one web application. We
observe that each of these tools produce a large number of
predictions that have release date ranges spanning over the
course of multiple years. The most drastic of these cases occurs
with WhatWeb’s fingerprinting of WordPress 3.7.36 in which
the versions 3.7, 3.7.1 and 3.7.36 are produced, with 2,758
days (i.e., 7.5 years) between the earliest and latest versions.

CVE Coverage
Administrators require web application fingerprinting tools
to discover outdated and vulnerable hosts on large, undocu-
mented, networks. One critical example of such a need would
be when a serious vulnerability is discovered in a particular
web application, and documented in a Common Vulnerability
Enumeration (CVE) database. CVE entries list the severity of a
vulnerability, the versions of the application that are affected by
the vulnerability, and details regarding how the vulnerability
is triggered. In such a scenario, network administrators would
utilize a web application fingerprinting tool to determine if
deployments of the affected web application on their networks
are vulnerable to the particular CVE, or not. Therefore,
collisions between vulnerable and non-vulnerable versions
could lead to confusion where an administrator believes a
particular deployment is patched, when in reality it is not.

To determine the extent in which this scenario is possible,
we explored the tendency for each fingerprinting tool to label

a vulnerable version of a web application as a non-vulnerable
version. To do this, we recorded the top-10 most severe CVEs
(by CVE severity score) on cvedetails.com [18], affecting
versions of the web applications we study (i.e., we do not
include vulnerabilities that affect versions earlier than 2013).
On average, the CVEs we include in this experiment have a
CVE severity score of 7.7 out of 10, indicating they correspond
to attacks that result in high damage. We map these CVEs
to the results of our experiments, and search for cases in
which a web application version affected by one of these
vulnerabilities is labeled as a non-vulnerable version. All
recorded CVEs are listed in Table 6 in the Appendix.

In total, we find 82 cases in which a vulnerable web applica-
tion was predicted to be anon-vulnerable version. Each of these
cases occur with the three tools that utilize static content finger-
printing: BlindElephant, VersionInferrer, and WhatWeb. This
is alarming as we only study a small portion of all vulnerabili-
ties affecting each web application version. Furthermore, since
the studied vulnerabilities allow attackers to affect serious
harm on a website, such as exfiltrating sensitive information
or compromising administrator accounts, any such case where
this mislabeling occurs can lead to disastrous consequences.
We emphasize that defenders are more negatively affected by
misclassifications such as these, as attackers can still perform
exploits to determine vulnerability while defenders are
completely reliant on the output of monitoring/telemetry tools.

For instance, CVE-2020-13664 is a severe vulnerability in
recent versions of Drupal which could allow for an attacker to
remotely execute code on the victim web server. This vulnera-
bility affects Drupal version 9.0.0, and was patched in version
9.0.1. When attempting to fingerprint this vulnerable version
of Drupal using VersionInferrer in its aggressive scanning
mode, the user is presented with the results: Drupal 9.0.0
and Drupal 9.0.1. Common intuition would suggest to trust

the most recent version when presented with more than one
prediction. Therefore, an administrator would likely assume
this particular Drupal deployment is not vulnerable, and take
no action, allowing for potential exploitation by attackers.

5 Real-world Fingerprinting Performance

In Section 4, we investigated the expected “best-case”
performance of popular web application fingerprinting tools.
Generally, we observed high accuracy scores from tools uti-
lizing both static and dynamic fingerprinting against unaltered
(“out-of-the-box’’) web application deployments. However,
performance in a laboratory setting does not necessarily trans-
late to equally-strong real-world performance, due to the pos-
sible changes made by website administrators to fit their needs.
To learn how these techniques perform in the wild, we direct
each fingerprinting tool to live websites online utilizing the tar-
get web applications. We aim to determine how successful each
tool is in identifying a web application behind a completely
unknown website, as well as the modifications made that
hinder fingerprintability, either inadvertently or on purpose.

To do this, we must first compile a list of real websites
powered by the web applications we study in this work. We
note, however, that curating a groundtruth list of websites
utilizing specific releases of web applications is not a
straightforward process. Website administrators are unlikely
to advertise the type or version of web application they are
using for obvious security reasons. Moreover, third-party lists
that provide this information, such as BuiltWith [15], can not
be trusted as a groundtruth source as they themselves utilize
fingerprinting techniques to identify web technologies.

Therefore, we utilize the ‘“showcase” pages on each
web-application vendor website, which advertise examples
of popular websites utilizing their software. We find that
four of the five web applications we included in this study
provide such lists [21, 23, 27, 36]; with phpMyAdmin, a
web application primarily used as an internal service, not
providing such a list. We therefore exclude it from this section.
Additionally, we supplement our list using a small dataset
of known real-world web application deployments which we
curate by contacting third parties with first-hand knowledge
of the type of software running on their endpoints. This list
contained additional sites for: WordPress, Drupal, and Joomla.

In total, we curated a list of 726 websites powered by the
web applications studied in this work. The breakdown of
our set is as follows: 231 WordPress web applications, 231
Joomla, 169 Drupal, 95 Mediawiki. We note that our only
source of ground truth is the presence of a particular type
of web application at any web address, not the exact version
utilized. We therefore measure the performance of each tool
by determining how many sites each tool can correctly predict
the type of web application powering it. Similar to Section 4.2,
we exclude Metasploit from this analysis as its probes operate

under the assumption that the user is already aware of the web
application type utilized by a site, whereas the remaining tools
require no such prior knowledge.

Ethical considerations: As these are real websites, we limit
our scans to only the Default scanning modes for each tool.
In this scanning mode, each of the studied fingerprinting tools
produces a minimal number of GET requests (fetching the
main page and, optionally, a small number of static resources),
resulting in behavior similar to that of a regular user or benign
automated crawler. Therefore, we are confident this experiment
does not negatively affect any of the tested sites. We describe
our ethical considerations in more detail in the A.1 appendix.

5.1 Network Middleware

Next to determining the performance of each fingerprinting
tool against real-world web-application deployments, we also
seek to determine the cause of any performance decreases
compared to laboratory scanning, and attempt to remedy these
sources of degradation. To do this, we develop a series of
network transformation scripts that transparently modify the
traffic generated by each fingerprinting tool.

To identify which transformations WASABO should support,
we used both our domain expertise in web security as well
as experience when using the evaluated web-application
fingerprinting tools and the ways that they unexpectedly failed
when scanning real-world websites. A guiding principle for
all our transformations was that they can be performed at the
network level (no modification of scanning tools required)
and that they are not tied to any specific tool (i.e. all current
and future request-issuing clients can benefit from WASABO).
Below, we describe the functionality and intended purpose
of each WASABO transformation:

Cache-breakers. It is common for websites that experience
large amounts of user traffic to place static resources behind
caching proxy servers. One common feature of caching ser-
vices is to minify static web resources [3]. While this can help
to improve the performance of sites, it has the added side-effect
of thwarting fingerprinting by introducing a discrepancy be-
tween the content expected by a fingerprinting tool and what is
actually returned. That s, if a fingerprinting tool requests a non-
minified version of a resource, but the caching server returns
aminified version, the produced file hash will differ from what
is expected. To prevent this from occurring, our WASABO mid-
dleware appends a query parameter containing a random string
to all requests produced by each fingerprinting tool (following
the format msgID=a23k...). This prevents any potential proxy
server from returning a cached version of a requested resource,
and instead retrieving the actual file from the origin web server.

Web Path Prediction. Another potential source of fingerprint-
ing tool performance degradation is the serving of web re-
sources from unexpected subdirectories. For instance, if an
administrator moves all WordPress installation files from the

Algorithm 1 Algorithm used to predict alternate path for
requested resource

1: function REQUEST(url)

2 resp <— http_get(url)
3: if resp.status_code != 404 then
4: return resp
5 tree <— get_resource_tree(url.hostname)
6: branch <— get_url_branch(url)
7: candidate_paths <— branch_search(tree, branch, 2)
8: for path in candidate_paths do
9: resp < http_get(path)
10: if resp.status_code == 200 then
11: return resp
12:
13: function BRANCH_SEARCH(tree, branch, level)
14: paths +]
15: nodes < tree.get_level_n_nodes(level)
16: for node in nodes do
17: if branch.head == node then
18: paths.append(node.parent.path + branch)
19: return paths

web server root to a subdirectory called wp, all resource re-
quests would need to include the new parent directory at the
start of all queries (e.g., /readme.html — /wp/readme.html).
To address this possibility, our WASABO middleware analyzes
the homepages of each targeted website to generate a file tree
of all known resources. Using this tree, we can identify com-
mon subdirectories between those on each site’s homepage
and those requested by the fingerprinting tools. This process is
demonstrated in Algorithm 1. By utilizing a site’s homepage as
groundtruth on the web server’s filesystem layout, we can iden-
tify common parent directories of static resources, and transpar-
ently modify request paths to accommodate for these changes.

Real-browser Web Requests. To prevent resource strain and
potential abuse, it is common for sites to restrict access to per-
ceived web bots. This is accomplished by analyzing attributes
of all requests received to identify signs of automated brows-
ing. One of the most common methods utilized is browser
fingerprinting, specifically to determine if a client is utilizing
a fully-fledged browser or not [38]. The fingerprinting tools
we study in this work utilize the light-weight network requests
libraries of popular scripting languages. This greatly increases
the efficiency of website scanning, at the cost of potential bot
detection. To resolve this possibility, we utilize the network
middleware of WASABO to intercept all HTTP GET requests
originating from each fingerprinting tool and instead make
the same requests with a real web browser, using the popular
undetected-chromedriver library [2]. This library allows for au-
tomated browsing with a patched version of the chromedriver
engine to remove sources of information that anti-bot services
utilize, greatly decreasing the chances of detection [39].

5.2 Experimental Results

Table 4 shows the scan results from each fingerprinting tool
against our curated list of real web application deployments.
Generally, we find that the performance of each fingerprinting
tool decreases by 20%-80% when compared to our offline
lab results, with BlindElephant seeing the greatest decrease
between offline and online tests. For instance, while it was
able to correctly identify nearly all WordPress releases
out-of-the-box, it was only able to identify 46% of real
WordPress sites encountered. Conversely, Wappalyzer had the
least performance degradation, though it still saw double-digit
accuracy decreases for nearly all web applications.

This performance discrepancy can be explained by the
inevitable noise added to web application deployments when
they are customized for each site owner’s needs. By analyzing
the varying performance of each tool when under the influence
of each middleware module, we can begin to understand the
peculiarities of not only the websites scanned, but also the
fingerprinting tools themselves. In the cases of BlindElephant
and VersionInferrer, tools entirely dependent on static content
fingerprinting, the greatest instances of performance improve-
ment can be seen using the Cache Break middleware module.
As caching servers may modify the static resources they serve
for performance reasons, retrieving this content directly from
origin web servers allows these tools to successfully identify
the underlying web applications. Most strikingly, VersionInfer-
rer is able to fingerprint twice as many real-world Mediawiki
sites through our WASABO middleware than by default.

For the tools that utilize regular expression searches of
dynamic content (Wappalyzer and WhatWeb), bypassing
bot detection services such as Cloudflare is of the utmost
importance, as being redirected to a CAPTCHA page can
completely neutralize any fingerprinting possibility. While
the use of a fully-fledged browser to initiate requests does
generally help improve performance, it is not a perfect solution.
We find that both Wappalyzer and WhatWeb are still flagged
by Cloudflare bot detection on a handful of sites, with this
affecting Wappalyzer more often due to the larger number of
requests it transmits to each site. Surprisingly, these same tools
can also suffer from adding cache breaking query parameters
to requests, as is the case of WhatWeb when fingerprinting
Drupal sites. In its default scanning mode, WhatWeb places
high importance on the X-Drupal-Dynamic-Cache HTTP
header, which is removed from responses of a handful of sites
when including a cache break, preventing fingerprinting even
with an HTML Generator tag specifying the use of Drupal.

Overall, utilizing each of the three middleware modules in
unison provides the greatest fingerprinting performance boost
for nearly all web application-fingerprinting tool combinations.
We see an average fingerprinting accuracy increase of 5.8%,
with a maximum increase of 22.9%. However, this improve-
ment is heavily weighted on static content fingerprinting
tools. This is due to the fact that this method of fingerprinting

Table 4: Performance of each web application fingerprinting tool in guessing the web application type of a set of real world websites, both
with and without the intervention of our network middleware module. Lab accuracy of each tool (Section 4.1) included for contrast. The
“Combined” column indicates the performance when combining all transformations into one, with the A being the difference between the default
and Combined performances and the Improvement Factor being the percentage change of fingerprintable sites.

Real-world Fingerprinting Accuracy (%)

Lab
Tool Webapp Accuracy (%) Default Cache Break Path Predictor ~ChromeDriver ~Combined A Imp. Factor (%)
BlindElephant Drupal 26.97 10.00 12.94 12.94 12.94 13.02 3.02 30.18
Joomla 100.00 29.74 30.17 32.76 32.76 33.77 4.02 13.53
Mediawiki 73.94 15.79 16.84 15.79 15.79 17.89 2.11 13.33
WordPress 100.00 46.52 56.09 56.52 57.39 59.74 13.22 28.41
VersionInferrer ~ Drupal 54.60 30.00 31.76 30.00 36.47 42.01 12.01 40.04
Joomla 100.00 12.07 12.50 12.93 18.10 23.81 11.74 97.28
Mediawiki 00.00 3.16 6.32 3.16 4.21 6.32 3.16 100.00
WordPress 56.45 39.39 40.00 40.87 53.04 62.34 2294 58.24
Wappalyzer Drupal 100.00 73.96 73.96 70.41 71.60 71.60 -2.37 -3.20
Joomla 100.00 60.17 58.44 61.90 66.23 66.23 6.06 10.07
Mediawiki 87.27 90.53 90.53 90.53 90.53 91.58 1.05 1.16
WordPress 100.00 67.53 66.67 68.83 68.83 70.13 2.60 3.85
WhatWeb Drupal 99.67 58.58 57.40 58.58 59.76 59.17 0.59 1.01
Joomla 29.78 18.18 19.91 18.18 19.48 21.21 3.03 16.67
Mediawiki 84.84 85.26 85.26 85.26 89.47 90.53 5.26 6.17
WordPress 100.00 65.37 64.94 65.37 69.26 69.70 4.33 6.62

is more sensitive to content changes than dynamic content
fingerprinting. By applying the middleware improvements
to these tools, we are able to bring the content closer to the
expected out-of-the-box state. Meanwhile, dynamic content
fingerprinting techniques can either find the particular strings
they are searching for, or they cannot. This makes it more
difficult for application-agnostic network middleware like
WASABO to tease out greater performance from these tools.

6 Discussion and Future Work

6.1 Key Takeaways

o Benefits of Web Application Containerization: Our
comprehensive analysis of web application fingerprinting
techniques would not have been possible had it not been for
the development of our web application sandbox framework,
WASABO. This Docker-based framework allows for the
automated deployment of any version of a supported web
application using only a handful of Docker containers, and
the improvement of any web application fingerprinting tool
through the use of its network middleware module. While we
utilized WASABO for evaluating the performance of web appli-
cation fingerprinting tools, we emphasize that it is not limited
to only collecting such data. Rather, the modularity of WASABO
allows for test scripts to be created to serve any web application
testing purpose, such as website response time analysis or web
application extension compatibility tests. We plan to release
WASABO to the community, upon publication of this paper.

o Improved Web Application Fingerprinting: Our results
have demonstrated the limitations of current web application
fingerprinting techniques. The over-reliance on content re-

maining unchanged between the development and training of
tools to their deployment on the web, reduces their robustness.
Therefore, we emphasize the need of creating improved web ap-
plication fingerprinting techniques which utilize the functional
aspects of application content to conduct fingerprinting, rather
than all content in general. For instance, rather than utilizing
the hashes of JavaScript files as a whole, one could normalize
these files by removing all whitespace and comments prior to
computing their hash values. Similarly, utilizing the structure
and style of dynamic HTML web pages could prove more
robust [45]. As mentioned previously, the works of Marquardt
et al. [48] and Dresen et al. [43] provide a great starting-point
for the development of better performing tools. Future work
could explore the ideal amount of normalization that increases
the robustness of these tools without increasing the rate of
version collisions. Until then, we have shown that utilization of
anetwork middleware such as ours can immediately improve
the performance of current web application fingerprinting
tools without making any changes to each individual tool.

¢ Fingerprinting Defenses: Current fingerprinting techniques
are highly reliant on the assumption that website administrators
will not modify or remove access to web application content
provided “out-of-the-box.” As such, minor changes to the state
of this content is enough to severely degrade the ability for
these tools to accurately identify a web application. Therefore,
it is trivial for administrators to prevent fingerprinting of
their web application deployments by modeling the changes
we demonstrated in our experiments. Similar to how we
improved web application fingerprinting performance, reverse
proxy server middleware can be deployed at the egress of
networks to apply web-application-agnostic measures to all
outgoing traffic, preventing fingerprinting by attackers on the

Internet, while also allowing for the continual internal use of
fingerprinting tools to discover and patch outdated systems.

6.2 Limitations

While WASABO allows for automated testing of a large number
of web application versions, providing compatibility for
each web application requires manual effort to map out the
installation steps required for each web application version. It
is for this reason that we limit the number of web applications
included in our study. However, we emphasize that the chosen
web applications make up a large portion of the overall
web application marketshare, representing a wide-range of
functionalities and information sources that are common
to all web applications. Likewise, we acknowledge that the
web application fingerprinting tools chosen for this study do
not constitute an exhaustive list of all fingerprinting tools.
Rather, we focus our efforts on evaluating fingerprinting
tools that allow for the identification of a wide-range of web
applications, rather than tools specialized for a particular web
application that could overly rely on specific artifacts of their
targets, as opposed to generalizable fingerprinting techniques.

7 Related Work

To the best of our knowledge, this work is the first to system-
atically explore the performance of current web application
fingerprinting techniques. In addition to works that have
introduced the fingerprinting tools which we study in this
paper [53], prior work has utilized static and dynamic finger-
printing techniques to create web application fingerprinting
and vulnerability scanning tools [31,37,46,47,49].

Marquardt et al. propose a web application fingerprinting
approach that builds upon those studied in this work by using
only the HTML and associated assets of the root URL of each
website, decreasing the number of required requests [48]. In
addition to utilizing the hash values of CSS and JavaScript
files included in the homepage of each site, the authors also
utilize XPath profiling to parse out the HTML-tree structure
of the website homepage Generally, the reported performance
of this technique is equal to, or lower than the tools we study
in this work.

Dresen et al. evaluate to what extent attackers outside of
critical networks can identify services (e.g. the ones running
on IoT devices) in these networks [43]. Because these devices
cannot be directly probed, the authors have to use a victim
user’s browser to probe for resources on the user’s local
network, as much as the Same-Origin Policy allows them to.
Because of that constraint, the tool that the authors develop
(CORSICA) can either check for the presence of files (e.g. is
a specific PNG of a specific IoT device present on an internal
IP address) or, for limited cases, check for the effects of other
files in the user’s browser (e.g. try to load a JS library and
then check for the existence of global variables and functions

that should be present if that library was indeed loaded and
executed). CORSICA’s file-existence checks are a weaker
form of static content fingerprinting (where the content is
hashed by tools such as BlindElephant) compared to the tools
we evaluated in WASABO. Contrastingly, their JavaScript
checks are on-par with dynamic-content fingerprinting (such
as the one used by Wappalyzer and WhatWeb).

In addition to utilizing the content produced by web
applications to identify them [50], prior work has also
presented methods to utilize side-channel data to fingerprint
web application platforms [40,41]. Schmitt et al. demonstrated
that in addition to fingerprinting the web application name and
version powering a website, attackers can also fingerprint web
application firewall (WAF) rules [52].

Prior work has also explored the use of network middleware
to improve the performance of security-focused scanning tools.
Particularly, Drakonakis et al. recently introduce ReScan,
a network middleware used to increase the effectiveness of
popular web vulnerability scanners [42]. Unlike WASABO,
ReScan takes a more active role in improving the performance
of vulnerability scanners by seeking out relevant information
regarding a web application’s attributes and appending this
information to responses so the underlying scanner can “dis-
cover” them. Conversely, the network transformation scripts
we developed for this work passively normalize web applica-
tion content to reduce the effects of real world customizations.

8 Conclusion

In this paper, we studied modern web application finger-
printing techniques, measuring the performance of six
popular tools utilizing information from both static and
dynamic web application content, against 1,360 releases of
five of the most popular web applications in use today. We
designed and developed WASABO, a web application sandbox
framework to analyze the identification accuracy of each
fingerprinting tool offline in ideal conditions, in which all
possible web application content is available. While 94.8%
of web application releases are identified by at least one tool,
many are unable to produce a single version prediction for any
release, instead returning many disparate versions, sometimes
distributed over 7 years apart. Moreover, we find 82 instances
in which a web application release which contains a severe
vulnerability is labeled as a non-vulnerable version.

Next to evaluating web-application fingerprinting tools in
ideal conditions, we measured their robustness to the organic
noise added to web application deployments in the wild. We
find that, by default, these tools struggle to determine the web
application present on a host, with accuracy decreasing 20%-
80% compared to our offline results. To understand the reasons
for this performance degradation and to remedy it, we designed
network middleware modules for WASABO capable of transpar-
ently applying a series of traffic modifications. In doing so, we
were able to increase the real-world performance of the studied

fingerprinting tools by up to 22.9%. Crucially, WASABO
provides these improvements in a scanner-agnostic manner,
meaning any current or future web application fingerprinting
tool immediately benefits from them without modification.

Availability. We built WASABO to automate the process
of auditing web application fingerprinting tools against
thousands of versions of popular web applications, each with
distinct prerequisite technologies and installation procedures.
To assist the research community in further understanding the
fingerprintability of web applications and inspire additional
research, we are making our system publicly available [1].

Acknowledgements

We thank the anonymous reviewers for their helpful feedback.
This work was supported by the Office of Naval Research
(ONR) under grant N0O0014-24-1-2193 as well as by the Na-
tional Science Foundation (NSF) under grants CNS-2211575
and CNS-1941617.

References

[1] Smudged fingerprints project website. https://
pragseclab.github.io/smudged-fingerprints/.

[2] undetected-chromedriver. https://github.com/
ultrafunkamsterdam/undetected-chromedriver.

[3] Using cloudflare auto minify. https:
//developers.cloudflare.com/support/speed/
optimization-file-size/using-cloudflare-
auto-minify/.

[4] Blindelephant. https://github.com/lokifer/
BlindElephant, 2016.

[5] Equifax had patch 2 months before hack and didn’tinstall
it, security group says. https://www.usatoday.com/
story/money/2017/09/14/equifax-identity-
theft-hackers-apache-struts/665100001/,
2017.

[6] Metasploit joomla version scanner.
//www.rapid7.com/db/modules/auxiliary/
scanner/http/joomla_version/,2017.

https:

[7] Metasploit wordpress
//www.rapid7.com/db/modules/auxiliary/
scanner/http/wordpress_scanner/, 2018.

scanner. https:

[8] Versioninferrer. https://github.com/wichmannpas/
VersionInferrer, 2020.

[9] 1.6 million wordpress sites hit with 13.7 mil-
lion attacks in 36 hours from 16,000 ips.
https://www.wordfence.com/blog/2021/12/
massive-wordpress-attack-campaign/, 2021.

[10] Whatweb. https://github.com/urbanadventurer/
WhatWeb, 2021.

[11] Whatweb drupal plugin. https://github.com/
urbanadventurer/WhatWeb/blob/master/
plugins/drupal.rb, 2021.

[12] Whatweb joomla plugin. https://github.com/
urbanadventurer/WhatWeb/blob/master/
plugins/joomla.rb, 2021.

[13] Whatweb wordpress plugin. https://github.com/
urbanadventurer/WhatWeb/blob/master/
plugins/wordpress.rb,2021.

[14] Apache web server.
2022.

https://httpd.apache.org/,

[15] builtwith.com. https://builtwith.com, 2022.

[16] China-linked group hacks cow monitoring app to
Spy on six states. https://www.forbes.com/sites/
leemathews/2022/03/14/china-1inked-group-
hacks-cow-monitoring-app-to-spy-on-six-
states, 2022.

[17] Chinese hackers target taiwanese financial
institutions with a new stealthy backdoor.
https://thehackernews.com/2022/02/chinese-
hackers-target-taiwanese.html, 2022.

[18] cvedetails.com. https://cvedetails.com, 2022.
[19] Docker. https://docker.io,2022.
[20] Drupal. https://drupal.org, 2022.

[21] Drupal website showcase. https://www.drupal.org/
case-studies, 2022.

[22] Joomla. https://joomla.org, 2022.

[23] Joomla website showcase. https://showcase.joomla.org,
2022.

[24] List of wordpress security vulnerabilities.
https://www.cvedetails.com/vulnerability-
list/vendor_id-2337/product_id-4096/
Wordpress-Wordpress.html, 2022.

[25] Mediawiki. https://mediawiki.net,2022.

[26] Mediawiki manual:short url. https://
www.mediawiki.org/wiki/Manual:Short_URL,
2022.

[27] Mediawiki website
https://www.mediawiki.org/wiki/
Sites_using_MediaWiki/en, 2022.

showcase.

[28] mitmproxy. https://mitmproxy.org/,2022.

[29] mitmproxy - addons. https://docs.mitmproxy.org/
stable/addons-overview/, 2022.

[30] phpmyadmin. https://phpmyadmin.net, 2022.

[31] Plecost.
2022.

https://github.com/iniqua/plecost,

[32] Usage statistics and market share of wordpress.
https://w3techs.com/technologies/details/
cm-wordpress, 2022.

[33] Usage statistics of content management systems.
https://w3techs.com/technologies/overview/
content_management, 2022.

[34] Wappalyzer. https://www.wappalyzer.com/,2022.
[35] Wordpress. https://wordpress.org, 2022.

[36] Wordpress website showcase.
//wordpress.org/showcase/, 2022.

https:

[37] Wpscan. https://wpscan.com/wordpress—
security-scanner, 2022.

[38] Babak Amin Azad, Oleksii Starov, Pierre Laperdrix,
and Nick Nikiforakis. Web runner 2049: Evaluating
third-party anti-bot services. In Detection of Intrusions
and Malware, and Vulnerability Assessment: 17th Inter-
national Conference, DIMVA 2020, Lisbon, Portugal,
June 24-26, 2020, Proceedings 17, pages 135-159.
Springer, 2020.

[39] Ajay Sudhir Bale, Naveen Ghorpade, S Rohith, S Ka-
malesh, R Rohith, and BS Rohan. =~ Web scraping
approaches and their performance on modern websites.
In 2022 3rd International Conference on Electronics and

Sustainable Communication Systems (ICESC), pages
956-959. IEEE, 2022.

[40] Dominique Bongard. Fingerprinting web application
platforms by variations in png implementations, 2014.

[41] Hyunseok Chang, Murali Kodialam, TV Lakshman,
and Sarit Mukherjee. Microservice fingerprinting and
classification using machine learning. In 2019 IEEE

27th International Conference on Network Protocols
(ICNP), pages 1-11. IEEE, 2019.

[42] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis.
Rescan: A middleware framework for realistic and robust
black-box web application scanning. In 2023 Network
and Distributed Systems Symposium (NDSS), 2023.

[43] Christian Dresen, Fabian Ising, Damian Poddebniak,
Tobias Kappert, Thorsten Holz, and Sebastian Schinzel.
Corsica: Cross-origin web service identification. In Pro-
ceedings of the 15th ACM Asia Conference on Computer
and Communications Security, pages 409-419, 2020.

[44] Steven Englehardt and Arvind Narayanan. Online
tracking: A 1-million-site measurement and analysis. In
Proceedings of ACM CCS 2016, 2016.

[45] Thamme Gowda and Chris A Mattmann. Clustering web
pages based on structure and style similarity (application
paper). In 2016 IEEE 17th International conference on
information reuse and integration (IRI), pages 175-180.
IEEE, 2016.

[46] Hao He, Lulu Chen, and Wenpu Guo. Research on
web application vulnerability scanning system based on
fingerprint feature. 2017.

[47] Raghavendra Karthik, Sowmya Kamath, et al. W3-
scrape-a windows based reconnaissance tool for
web application fingerprinting. arXiv preprint
arXiv:1306.6839,2013.

[48] Fabian Marquardt and Lennart Buhl. Déja vu? client-side
fingerprinting and version detection of web application
software. In 2021 IEEE 46th Conference on Local
Computer Networks (LCN), pages 81-89. IEEE, 2021.

[49] Fabian Marquardt and Lennart Buhl. Large scale
monitoring of web application software distribution
to measure threat response behavior. Electronic
Communications of the EASST, 80, 2021.

[50] Tony Nasr, Sadegh Torabi, Elias Bou-Harb, Claude
Fachkha, and Chadi Assi. Chargeprint: A framework
for internet-scale discovery and security analysis of ev
charging management systems.

[51] Studies using OpenWPM. https://
openwpm.readthedocs.io/en/latest/Papers.html,
2023.

[52] Isabell Schmitt and Sebastian Schinzel. Walffle:
Fingerprinting filter rules of web application firewalls.
In WOOT, pages 3440, 2012.

[53] Pascal Wichmann. Automated inference of web software
packages and their versions. 2018.

A Appendix

A.1 [Ethical Considerations

In this paper, we evaluated web-application fingerprinting
tools against off-the-shelf web applications in a laboratory
setting as well as against real web applications deployed in the
wild. Our decision to evaluate these tools against real-world
web applications was based on our understanding that some
of their fingerprinting vectors were brittle (such as the hashing
of static files like JavaScript and CSS) and therefore highly
susceptible to small changes at the server side. Our results

Table 5: List of all web applications we audit in this work.

Releases Studied
Web App # Earliest Latest
WordPress [35] 558 3.5.1 6.1.1
Drupal [20] 304 6.28 10.0.2
Joomla [22] 141 2.5.10 427

MediaWiki [25] 165 1.19.10 1.39.1
phpMyAdmin [30] 192 3.5.6 5.2.1

confirmed these suspicions showing a drop-off in the tools’
accuracy by as much as 80% compared to our lab experiments.

We are confident that our in-the-wild experiments were
conducted ethically and caused no issues for the scanned
web applications. First, all evaluated tools are not attempting
to exploit any vulnerabilities on web applications. Instead,
they request content that is already there and either parse that
content searching for version information (such as in the case
of dynamic-content fingerprinting) or hash that content at
the client side and perform set-membership tests, associating
hashes with known web-application versions. The tools per-
form a small number of HTTP GET requests (no POST or other
state-changing requests) requesting commonly-accessed files
by regular users, such as, the main page of a web application,
JavaScript files, and CSS files. Moreover, whenever available,
we always chose the tool configuration that emitted the fewest
HTTP requests when scanning real-world web applications.

The transformations added by our WASABO system are
also non-intrusive in nature. Namely, WASABO adds a random
cache-breaking parameter at the end of the requests that the
tools make, finds alternative hosting paths for server-side
resources, and performs the requests over a real browser to
avoid anti-bot mechanisms. None of these changes endanger
the server side of the scanned web applications in any way.
While we do have to try and evade any anti-bot mechanism
that may be available at the server side (via the use of a real
browser) that evasion is not harmful in our setting (i.e. where
a handful of pages and static resources are requested from
the web application). The need to avoid anti-bot technologies
for ethically-conducted research is well established by prior
work. For example, the OpenWPM web-privacy measurement
framework by Engelhardt and Narayanan [44] has been used
by 75 different studies (according to statistics tracked by the
authors [51]) and uses specific anti-bot mechanisms (such
as simulated mouse movements and page scrolls) to try and
evade detection by the evaluated web applications.

Without these in-the-wild measurements, we would
have greatly overestimated the accuracy of the evaluated

fingerprinting tools thereby misleading penetration testers
and giving a false sense of security to administrators and
organizations who rely upon them for discovering software
that needs to be updated.

Table 6: CVEs studied to uncover cases in which fingerprinting tools
label vulnerable versions of web applications as non-vulnerable ver-
sions. Version cells with a “*” indicate the vulnerability is believed
to have affected all versions of the web application, until patched.

Webapp CVEID CVSS Earliest Version Patched Version
WordPress CVE-2013-4338 75 % 3.6.1
CVE-2013-4339 75 % 3.6.1
CVE-2014-5203 75 39 392
CVE-2015-2213 75 * 4.2.4
CVE-2016-10033 75 5.2.18
CVE-2016-10045 75 5.2.20
CVE-2017-5611 75 % 4.7.2
CVE-2017-14723 75 % 4.82
CVE-2017-16510 75 % 483
CVE-2018-20148 75 % 499
Drupal CVE-2020-13664 93 838 8.8.8
CVE-2020-13664 93 9 9.0.1
CVE-2016-3168 85 6 6.38
CVE-2014-1475 75 6 6.3
CVE-2014-3704 75 7 7.32
CVE-2015-6659 75 7 7.39
CVE-2017-6920 75 8 834
CVE-2017-6925 75 8 8.3.7
CVE-2018-7600 75 % 7.58
CVE-2019-6339 75 85.0 8.5.9
Joomla CVE-2013-1453 75 3.00 3.03
CVE-2014-6632 75 330 335
CVE-2014-7228 75 254 2.5.26
CVE-2014-7981 75 320 323
CVE-2014-7984 75 250 2.5.19
CVE-2015-7297 75 320 344
CVE-2015-7857 75 320 345
CVE-2016-9081 75 344 3.6.4
CVE-2016-9836 75 % 3.6.5
CVE-2016-10033 75 % 5.2.18
Mediawiki CVE-2013-4304 75 1.21.0 1.21.2
CVE-2013-4571 75 1220 1.22.1
CVE-2013-6453 7.5 1.20.0 1214
CVE-2014-9277 75 1230 1.23.7
CVE-2014-9487 75 1240 1.24.1
CVE-2015-6728 75 1250 1.25.2
CVE-2017-8809 75 1.29.0 1.29.2
CVE-2019-12468 75 1270 1.32.2
CVE-2020-10534 75 % 1.34.1
CVE-2021-31556 75 % 1.35.3
phpMyAdmin CVE-2016-5703 75 440 4.4.15.7
CVE-2016-5734 75 4.0.0 4.0.10.16
CVE-2016-6620 75 4.6.0 4.6.4
CVE-2016-9849 75 4.0.0 4.0.10.18
CVE-2016-9865 75 4.6.0 4.6.5
CVE-2019-6798 75 % 4.8.5
CVE-2019-11768 75 % 4.9.0.1
CVE-2019-18622 75 % 49.2
CVE-2020-26935 75 5 5.03
CVE-2020-26935 75 % 4.9.6

	Introduction
	Background on Web ApplicationFingerprinting
	Experimental Setup and Methodology
	Collection of Web Applications and Fingerprinting Tools
	WASABO: Web Application Sandbox

	Laboratory Fingerprinting Performance
	Experimental Evaluation and Results
	Web Application Type Prediction
	Web Application Version Prediction
	Version Collisions

	Real-world Fingerprinting Performance
	Network Middleware
	Experimental Results

	Discussion and Future Work
	Key Takeaways
	Limitations

	Related Work
	Conclusion
	Appendix
	Ethical Considerations

