
Secrets are forever:
Characterizing sensitive file leaks on IPFS

Zhengyu Wu, Brian Kondracki, Nick Nikiforakis, Aruna Balasubramanian
Stony Brook University

Stony Brook, U.S.A
Emails: {zhenwu, bkondracki, nick, arunab}@cs.stonybrook.edu

Abstract—The InterPlanetary File System (IPFS) is an emerging
peer-to-peer hypermedia protocol designed to enhance the speed,
security, and openness of the web. Utilizing content-based addressing,
IPFS establishes a decentralized, distributed, and trustless network
for data storage and delivery. Despite its growing popularity,
the inherent openness of IPFS raises concerns about accidental
sharing of sensitive files, posing potential threats to user privacy
and security. In this paper, we conduct a measurement study to
investigate the extent of sensitive file sharing on the IPFS network.

Using IPFS-search, a widely-used search engine indexing
IPFS content, we identified over 2,000 files containing sensitive
information such as API keys and private SSH keys. However,
as IPFS-search operates on a centralized infrastructure, access
restrictions may limit opportunistic attacks. To demonstrate the
feasibility of identifying sensitive content, we deployed two IPFS
nodes, recording file announcements from nearby peers, and
identified over 700 sensitive files.

Furthermore, we deployed honeypot IPFS nodes to gauge
potential exploitation of these sensitive files by malicious actors over
a six-month period. Our findings indicate that while sensitive files
are indeed being shared on the IPFS network, there is currently no
evidence of exploitation by attackers. However, with the increasing
popularity of IPFS, the risk of such attacks is likely to rise. Our study
underscores the importance of acknowledging the risks associated
with sharing files on the IPFS network. As IPFS continues to gain
traction, proactive measures must be taken to address vulnerabilities
and safeguard sensitive data from potential exploitation.

I. INTRODUCTION

The InterPlanetary File System (IPFS)[1] is a peer-to-peer
distributed storage platform that utilizes decentralized, trustless
data storage backed by a distributed hash table. A recent
study[2] highlights IPFS’s popularity, noting over 3 million web
client accesses and billions of daily file shares across more than
300K unique nodes. The platform’s broad adoption includes
uses from transferring Netflix docker images [3] to native
support in browsers like Chromium, Brave, and Opera as an
HTTP alternative [4], [5], [6]. IPFS also supports decentralized
web applications, social networks, and content search [2].

Given IPFS’s decentralized nature, we investigate whether
users inadvertently share sensitive files on the platform. Research
indicates that file-sharing platforms often host private data
inadvertently [7], [8], [9]. On IPFS, shared files are public and
retrievable by their Content Identifier (CID), allowing access
to anyone with the CID. Even if users remove files, they can
persist in the network through caching by intermediate nodes,
heightening privacy risks.

To address these issues, we conduct a measurement study
and security analysis on sensitive file sharing within IPFS.
We define sensitive information as data such as passwords,

private keys, and API keys, which if compromised, could
enable unauthorized access, financial fraud, or other malicious
activities. This study aims to understand the scope of sensitive
data exposure and its implications on IPFS.

The main challenge with IPFS is its extensive network size,
making it infeasible to search through all files across all peers. We
utilize IPFS-search [10], a community-built search engine, similar
to Google, which indexes metadata of files without needing
their CIDs. This search engine connects to over 40 IPFS nodes
worldwide, indexing roughly half a million documents daily.
To effectively search for sensitive content within these indexed
files, we implemented a series of increasingly complex filters
to reduce the occurrence of benign files. This approach includes
keyword matching, regular expression matching, and manual
inspections to refine the results and remove false positives.

Over a three-month period, we analyzed files using
IPFS-Search and identified 10,777 files potentially containing
sensitive content. Through our filtering process, we discovered
129 private keys and 23 API keys in uncompressed files, and
1,788 sensitive files in compressed code repositories, mainly
containing hardcoded API keys. These keys could enable
unauthorized access, posing severe risks to businesses [11].

We also evaluated the security risks from attackers potentially
setting up their own IPFS nodes to find sensitive files. Over four
months, using two vantage points, we identified 752 sensitive files,
demonstrating the limitations of IPFS-Search’s safety measures
and emphasizing the need for more robust security strategies.

Further, we traced sensitive files back to their original
repositories to understand the persistence of sensitive data on
IPFS. We found that while 60% of sensitive files in GitHub
repositories had been patched, these patched files remained
accessible on IPFS. Similarly, 40% of sensitive Node.js files
had been patched in their respective online repositories. As
part of our responsible disclosure process, we contacted
repository owners to help them address these security issues.
We continue to update them with our findings to help mitigate
risks associated with leaked sensitive information.

Finally, our honeypot experiment aimed to determine if
attackers are exploiting sensitive files on IPFS. We deployed
500 decoy files across five locations and monitored them for
six months. Our findings showed no attempts by attackers to
exploit these files, indicating that the IPFS network has not
yet been targeted for such activities.

To conclude, our study reveals the presence of sensitive
files being shared on IPFS. These files can be discovered by
leveraging centralized search services like IPFS-search using an
opportunistic approach. Furthermore, our findings highlight thatISBN 978-3-903176-63-8 © 2024 IFIP

are frequently leaked in IPFS files [12], [13]. Details of these
expressions are provided in Table VI in the Appendix.
API Keys across platforms: We use a set of 13 regular
expressions to identify API key leaks, crucial for maintaining
service security. The impact of such leaks is significant, as they
can enable unauthorized transactions or access to services [12].

c) Removing false positives

To minimize false positives, we compare the hash of each
file against all matched files to remove duplicates. Additionally,
we manually review files that appear in different formats, such
as JSON and YAML, ensuring our final dataset reflects a unique
and accurate count of sensitive files.

B. Sensitive leaks in IPFS files: Results

In total, we downloaded 10,777 files of different MIME
types that match our extension/keyword-based filtering. Table I
classifies the top file categories. Based on the MIME type, the
majority of the files are either compressed files (62%) or plain
text files (37%). We separate the compressed and uncompressed
files and identify sensitive leaks within each set.

TABLE I: Top 10 MIME Type for 10,777 files downloaded from
IPFS-search using the first keyword-based filter

MIME Type Count MIME Type Count
gzip 4,353 epub+zip 176
plain/text 2,449 octet-stream 84
zip 2,178 html 73
json 902 x-java 35
pgp-signature 396 x-c 34

other (pgp-keys, python, x-c++ ...) 124

Sensitive file leaks in plain text files

First, we analyze the non-compressed plain text files by
applying regular-expression filters. We found 236 file matches
with 149 private key matches and 87 matches on API keys.
After removing the false positives we identified 129 unique
private keys and 23 unique API key matches.

Table II shows the type of private key leaks. 60% of the leaks
are RSA private keys, 17% are SSH keys, and the rest of other
keys. While the key itself does not contain any host information,
the attacker could do further reconnaissance (e.g. from which
node was the file retrieved [16]) to identify the specific hosts
that could be exploited using these stolen keys. For API key
matches, we identified 23 unique API keys belonging to various
services, shown in Table III. Most of the credentials are from
Google and are all hardcoded into source-code files to interact
with Google’s services.

Sensitive file leaks in compressed files

We next look at compressed files that match our keyword
filters. The files were largely code repositories. Out of the 6,716
compressed files, 61% (4,075) are Node.js libraries from npm,
29% (1,969) are GitHub Go libraries, 6.8% (461) contain some
source code in the directory, and the rest are categorized as
“other” (i.e., compressed files that are not code repositories).

In total, we identified 9,119 sensitive files based on our
regular expression mapping; after removing duplicates, we
identified 8,309 unique sensitive files. However, there are still

TABLE II: A total of 149 private
key matches were found using the
regular expression matching out
of which 129 were unique matches
(post false positive removal).

Private Key Type Total Match Unique Match

RSA 82 77
SSH 36 22
General 25 24
EC 4 3
DSA 2 2
PGP 1 1

TABLE III: A total of 87 API
key matches were found using the
regular expression matching, and
23 unique key matches were found
after removing false positives.

Platform/API Total Match Unique Match

Google OAuthID 25 10
Google API 21 7
Amazon AWS 24 4
Stripe Standard API Key 17 2

false positives since repositories have testing code with valid
matches that are not necessarily used in production. For example,
the code may contain an example file or a test file with a dummy

key. To reduce these false positives, we implement an additional
filtering strategy where we examine the path of each matched file.
If the path or the filename contains one of test, example, dummy,

sample, or readme, we consider them as false positives. After
the filtering, we identified 1,788 files with sensitive information.

Fig. 2 shows the distribution of each regular expression
match after the filtering. The majority of the sensitive leaks
involve Google OAuth IDs (36%) and GoogleAPI keys (18%).
The presence of these hardcoded credentials in compressed
files matches our earlier observation of hardcoded credentials
in non-compressed files. As before, if any of these files fall
into the hands of attackers, they can be abused to launch
attacks against the owners of the corresponding applications.
For instance, previous studies have shown various attacks using
OAuth leaks [17], [18], [19], [20].

C. Case study: Leaks in repositories

In our aforementioned analysis, we discovered 4,075 Node.js
libraries and 1,969 GitHub Golang library repositories. Sharing
libraries over IPFS has additional security implications. Prior
work has established that developers inadvertently include
sensitive information in code repositories [12]. In the context
of this work, if the owner or another user with access to a
repository with sensitive information uploads the codebase to
IPFS, the sensitive information can persist indefinitely, even after
the leak is identified and removed from the original repository.
Similarly, if a developer decides to make their repository private,
a version of that repository can still be obtained over IPFS.

As a case study, we analyze Node.js and GitHub files shared on
IPFS and compare them to their corresponding public repositories.
All repositories are publicly available on GitHub, suggesting their
intended public nature. In addition, in our responsible disclosure
VI, we inform the repository owners about any sensitive leaks

TABLE IV: Repositories status for Node.js and GitHub Golang
libraries shared on IPFS.

Type Libraries found on IPFS Unique Libraries Corresponding repository found Online

Node.js Library 4,075 1,835 1,727
GitHub Golang Library 1,969 1,043 990

1) Identifying online GitHub/Node repositories

Table IV shows the status of both library types. We identified
1,835 unique Node.js libraries and 1,043 unique GitHub libraries
shared on IPFS that have sensitive information (after deleting dif-
ferent versions of the same library). For Github Golang libraries,
we tracked 990 of the 1043 libraries to their corresponding

repositories on GitHub online. The remaining 53 were not
searchable using the GitHub API. We then queried the owners of
these repositories and found that 48 of the owners are still active
on GitHub. So we speculate that these repositories were either
moved to private repos, or the owners deleted these repositories.
For Node.js repositories, for 1,727 of the 1,835 libraries shared
on IPFS, we were able to track the original repository.

2) Comparing sensitive leaks on IPFS and the original repository

We next compare each sensitive file shared on IPFS with
the original online repository (Node.js or GitHub). The goal
here is to characterize the persistence of these sensitive files; in
other words, to find if the repository owner removed or patched
the sensitive files in the online version. For this study, we focus
on warnings regarding Amazon AWS and RSA private keys
as they have distinct characteristics.

We categorize the differences as follows:

• Sensitive information persists: Sensitive information is
present in both the IPFS library and the original repository.

• Sensitive information patched: Sensitive information is
present in IPFS but does not exist in the original repository
(i.e., the file is patched).

• Sensitive information patched, but new sensitive

information present: Sensitive information is present in
IPFS. This sensitive information does not appear in the
original repository but the repository has new and different
sensitive leaks.

• Sensitive information removed: Sensitive information
is present in IPFS. But the file that contains sensitive
information does not exist in the original repository.

We found for GitHub’s repository, nearly 60% of all sensitive
information is no longer available. Of these, for over half
of them, the original file with sensitive leaks is removed
from the GitHub repository’s latest version. For the Node.js
repository, 70%, of the sensitive information are unchanged. But
for information that is changed, the majority of the sensitive
information is removed. This difference between GitHub and
Node.js is likely because developers are more active on GitHub
and fix warnings more frequently.

Further, for all IPFS repositories that contain sensitive infor-
mation, we compare the time difference between the version that
was shared on IPFS and the newest online repository version. We
identified that over 50% of the cases, the IPFS version is at least
two years older than the current online version. This indicates
that the sensitive leaks on IPFS can persist for an extended
period of time (as long as at least one node retains a copy of the
sensitive file). This also shows that pruning the older versions
of code from GitHub to deal with secret leaks is insufficient.

D. Deploying our own monitoring

In the previous section, we used the IPFS-search infrastructure
to identify sensitive information leaks. However, IPFS-search
is a centralized service and can potentially use filtering or other
techniques to stop opportunistic attackers from trivially finding
sensitive files.

An alternative technique for attackers is to deploy their own
IPFS network monitoring, thereby bypassing any content filtering
done by the IPFS-search infrastructure. To characterize the

volume of sensitive information attackers could potentially gather
using their own IPFS-search instances, we deployed two instances
(both on US East Coast) from August 1, 2022, to November 30,
2022. Due to the limitation of the disk space, we only downloaded
files that are plain text and compressed files, as they are the
most dominant file type from our IPFS-search study (§III-B). In
total, we downloaded 1,678,170 files out of 3.1 million unique
CIDs collected and most of the files are JSON data files likely
because developers use IPFS to share web-related content.

We then applied the methodology described in §III-A. In all,
we identified 105 unique files that contain sensitive information.
The most frequent leak across non-compressed files are Google
API Keys which is similar to our observation when using IPFS-
search. Among the 24,331 compressed files, we identified 647
unique files that contain sensitive information. The majority of the
sensitive file leaks are Google OAuth ID and Google API keys,
again, similar to the study of the sensitive file using IPFS-search.

E. IPFS file availability over time

One of the unique features of IPFS is that files can be cached
and replicated throughout the network. On the other hand, a
previous study [2] shows that the churn rate of IPFS providers
is high. This means providers join and leave the IPFS network
relatively quickly, which means that providers may become
unavailable quickly. This in-turn affects the availability of files.

To characterize the availability of sensitive files over a long
period of time, we conducted the following experiment: for each
sensitive file we identified on IPFS, we searched for the file
after a 6-month gap. We conducted this experiment for 1,033
CIDs that we identified as sensitive files from both IPFS-search
and our own deployment. We found that even after 6 months,
over 40% of the files have at least one provider, which means
they are still available. More importantly about 20% of the
sensitive files have more than one provider; with an extreme
case of over 20 providers having a copy of a sensitive file. This
result further indicates that once sensitive leaks appear on IPFS,
they can persist for an extended time.

F. Takeaway

Our analysis confirms the presence of sensitive files being
shared on IPFS, where such sharing can occur accidentally
or due to a misunderstanding regarding the public nature of
IPFS content.The majority of the identified sensitive files were
compressed files associated with code repositories, with API keys
being the most commonly leaked information. Exposure of even
a single secret from code repositories can have a catastrophic
impact on business operations. For instance, the SolarWinds
attack, which affected Fortune 500 companies and multiple US
government agencies, is believed to have originated from the
attacker discovering a weak password within a GitHub repository
[21]. This example underscores the importance of safeguarding
sensitive information. We also show that, a malicious user can de-
ploy their own IPFS instance with just two vantage points and can
identify hundreds of IPFS files that contain sensitive information.

IV. GAUGING MALICIOUS ACTIVITY ON IPFS

In the previous sections of this paper, we investigated the
population of sensitive files on IPFS and highlighted the potential
that these files provide to prospective attackers. At the same

time, just because attackers could be using the IPFS network to
steal sensitive content, does not necessarily mean that they are
currently engaging in that activity. To this end, in this section, we
report on the findings of deploying our own honeypot experiment
involving fake sensitive files (called decoy files) that lead back
to monitored infrastructure under our control. Researchers have
been using the concept of honeypots for over three decades [22],
[23], [24], [7], deploying fake files and fake infrastructure for the
express purpose of being compromised, so that attackers can be
studied while keeping them away from real production systems.

A. Setup

To set up the honeypot experiment, we craft different types
of decoy files that will be uploaded to the IPFS network:

• HTML: the file contains a redirect link (also known as a
“beacon”) which will notify us that the file was opened.

• Microsoft Word, PDF: the file contains login credentials
to our honeypot server. In addition, the file embeds a beacon
that will trigger upon opening the document.

• SSH Private Keys: the private key can be used to directly
login to our honeypot server.

• Cryptocurrency wallet: contains seed/private-key data
allowing attackers to steal a small amount of funds.

• Control files: randomly generated files.

To further attract attackers, all the files are given attractive
naming such as online logins, password backups, etc.

B. Data generation

To simulate accidental leaks we utilized an online fake
information generator 1 to generate 300 unique people with
usernames, passwords, as well as fake banking information.
Further, we registered 5 domain names and point them to our
honeypot server so that each password login leak corresponds
to one of these domain names.

C. Deployment

To upload the decoy files to the IPFS network, we deployed
5 IPFS nodes in the US, UK, Brazil, Japan, and Australia
and uploaded 20 HTML, PDF, Microsoft Word, and SSH
Private keys from each node. We also uploaded 30 control
files and one wallet file. Since IPFS uses content addressing,
when a single file is uploaded to the network, the file name
will not be retained. To address this downside (downside in
terms of discoverability by prospective attackers), we utilized
the so-called wrapped option 4 which will wrap the file into
a single directory and thus retain the filename when uploaded.
The honeypot server was deployed in the US.

Each IPFS node re-announces the provider record to its peers
every 12 hours. Further, for every 12 hours each IPFS node
will retrieve all the decoy files from the other four so that the
CID will spread across the network.

1https://www.fakenamegenerator.com/
4https://docs.ipfs.tech/reference/kubo/cli/#ipfs-add

D. Results

We deployed our honeypot from August 5, 2022, to February
16, 2023. In total, we observed that 56 decoy files were down-
loaded across various categories. Figure 3 shows the downloaded
file-type distribution with respect to each IPFS node, where no
clear download pattern emerges. While our decoy files were down-
loaded by a number of IPFS peers, we did not observe any mali-
cious action against our honeypot server. To understand the char-
acteristics of the peers who downloaded our files, we used their IP
addresses to obtain geolocation and ASN information. The major-
ity of these clients were located in Germany (shown in Figure 4)
and the ASes belong to Hetzner Online GmbH. We confirm that
these peers are IPFS-search nodes using a reverse DNS lookup.

E. Takeaway

At the time of our honeypot experiments, we observed only
machine-to-machine traffic to our IPFS nodes, and the majority
of our files were indexed by IPFS-search. While this is good
news for the owners who leak files that contain sensitive content
on IPFS, however, these files can stay on IPFS indefinitely,
essentially waiting for future attackers to discover them.

V. RELATED WORK

Studies on IPFS have mainly focused on evaluating IPFS
performance [2], network size [25], the transport layer protocol
Bitswap [26], and I/O performance [27]. There are fewer studies
on the security implications of IPFS. One study identifies
critical security issues regarding Sybil and Eclipse attacks on
the IPFS network [28]. The study found that a single attacker
can manipulate the network by generating massive peer IDs and
flooding the network. Once the network is saturated with fake
peers, then the attacker can advertise fake routing information
to the victim’s IPFS nodes and isolate the victim from the
network. Another study focused on how IPFS is being utilized
by ransomware services [29] where attackers host Web pages
that ask for ransom on IPFS, benefiting from the robustness
and resilience of IPFS. Related research has also discovered
that botnets deployed into the IPFS networks enable attackers
to exert fine-grained control over their victims [30].

To the best of our knowledge, while studies exist for
characterizing the presence of sensitive content on centralized
platforms (such as Github [12] and file-hosting services [7]),
there has been no study of sensitive-file sharing on IPFS. The
core functionality of IPFS and its intended use for building
decentralized applications makes it different from GitHub and
therefore meriting its own investigation.

VI. ETHICS

Even though all the files that we accessed in this study are by
definition public, the entire premise of this paper is that some
of the files stored on IPFS are sensitive in nature. As such, in
this section, we describe how we conducted our experiments
to ensure that we preserve the privacy of users and the overall
ethics of our work.

Our focus is solely on identifying whether sensitive files
are being shared on IPFS, without revealing the providers (i.e.
potential users) of these files. Throughout our data collection
process via IPFS-search and our own search instance, we
retrieved files without recording any information about the

are in fact currently shared through IPFS, even though they are
not being weaponized by bad actors yet. Given the growing pop-
ularity of IPFS and decentralized platforms, our study shows that
public sharing of sensitive content on these platforms warrants
the attention and additional research by the community, in order
to devise methods that protect users while not compromising
on the decentralized nature of the underlying protocols.

IX. ACKNOWLEDGEMENTS

We thank all the reviewers for their constructive feedback.
This work was supported in part by NSF grants CNS-1941617,
CNS-2211575, and CNS-1909356.

REFERENCES

[1] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[2] D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott, M. Schubotz,
B. Gipp, and Y. Psaras, “Design and evaluation of ipfs: a storage layer
for the decentralized web,” in Proceedings of the ACM SIGCOMM 2022
Conference, 2022, pp. 739–752.

[3] E. L. Dirk McCormick, “New improvements to ipfs bitswap for faster
container image distribution,” https://blog.ipfs.io/2020-02-14-improved-
bitswap-for-container-distribution/, 2020.

[4] “Adding ipfs protocol support to chromium,” Nov 2022. [Online].
Available: https://blog.ipfs.tech/14-11-2022-igalia-chromium/

[5] B. Bondy, “Ipfs support in brave,” https://brave.com/ipfs-support/, 2021.
[6] S. Batt, “Your files for keeps forever with ipfs,” https://blogs.opera.com/tips-

and-tricks/2021/02/opera-crypto-files-for-keeps-ipfs-unstoppable-
domains/, 2021.

[7] N. Nikiforakis, M. Balduzzi, S. Van Acker, W. Joosen, and D. Balzarotti,
“Exposing the lack of privacy in file hosting services,” LEET, 2011.

[8] B. Kaleli, M. Egele, and G. Stringhini, “On the perils of leaking referrers in
online collaboration services,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, R. Perdisci, C. Maurice, G. Giacinto, and M. Alm-
gren, Eds. Cham: Springer International Publishing, 2019, pp. 67–85.

[9] M. E. Johnson, D. McGuire, and N. D. Willey, “The evolution of the
peer-to-peer file sharing industry and the security risks for users,” in
Proceedings of the 41st Annual Hawaii International Conference on
System Sciences (HICSS 2008), 2008, pp. 383–383.

[10] “Ipfs search.” [Online]. Available: https://ipfs-search.com
[11] D. Goodin, “Thousands of servers found leaking 750mb

worth of passwords and keys,” Mar 2018. [Online]. Available:
https://arstechnica.com/information-technology/2018/03/thousands-of-s
ervers-found-leaking-750-mb-worth-of-passwords-and-keys/

[12] M. Meli, M. R. McNiece, and B. Reaves, “How bad can it git?
characterizing secret leakage in public github repositories.” in NDSS, 2019.

[13] V. S. Sinha, D. Saha, P. Dhoolia, R. Padhye, and S. Mani, “Detecting
and mitigating secret-key leaks in source code repositories,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories,
2015, pp. 396–400.

[14] D. Trautwein, “Network-measurements/results/rfm21-hydras-performance-
contribution.md at master · protocol/network-measurements,” Jan 2023.
[Online]. Available: https://github.com/protocol/network-measurement
s/blob/master/results/rfm21-hydras-performance-contribution.md

[15] S. Henningsen, M. Florian, S. Rust, and B. Scheuermann, “Mapping
the interplanetary filesystem,” in 2020 IFIP Networking Conference
(Networking), 2020, pp. 289–297.

[16] L. Balduf, S. Henningsen, M. Florian, S. Rust, and B. Scheuermann,
“Monitoring data requests in decentralized data storage systems: A case
study of ipfs,” in 2022 IEEE 42nd International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2022, pp. 658–668.

[17] S. Farooqi, F. Zaffar, N. Leontiadis, and Z. Shafiq, “Measuring
and mitigating oauth access token abuse by collusion networks,” in
Proceedings of the 2017 Internet Measurement Conference, ser. IMC
’17. New York, NY, USA: Association for Computing Machinery, 2017,
p. 355–368. [Online]. Available: https://doi.org/10.1145/3131365.3131404

[18] D. Fett, R. Küsters, and G. Schmitz, “A comprehensive formal security
analysis of oauth 2.0,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
1204–1215. [Online]. Available: https://doi.org/10.1145/2976749.2978385

[19] S.-T. Sun and K. Beznosov, “The devil is in the (implementation) details:
An empirical analysis of oauth sso systems,” in Proceedings of the 2012
ACM Conference on Computer and Communications Security, ser. CCS
’12. New York, NY, USA: Association for Computing Machinery, 2012,
p. 378–390. [Online]. Available: https://doi.org/10.1145/2382196.2382238

[20] T. Lodderstedt, M. McGloin, and P. Hunt, OAuth 2.0 Threat Model and
Security Considerations, Jan 2013, no. RFC 6819. [Online]. Available:
https://datatracker.ietf.org/doc/rfc6819/

[21] G. Sands, Brian Fung, “Former solarwinds ceo blames intern for
“solarwinds123” password leak — cnn politics,” Feb 2021. [Online].
Available: https://www.cnn.com/2021/02/26/politics/solarwinds123-pas
sword-intern/index.html

[22] C. Stoll, The cuckoo’s egg: tracking a spy through the maze of computer
espionage. Simon and Schuster, 1990.

[23] N. Provos and T. Holz, Virtual honeypots: from botnet tracking to intrusion
detection. Pearson Education, 2007.

[24] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo, “Baiting
inside attackers using decoy documents,” in Security and Privacy
in Communication Networks: 5th International ICST Conference,
SecureComm. Springer, 2009, pp. 51–70.

[25] E. Daniel and F. Tschorsch, “Passively measuring ipfs churn and network
size,” in 2022 IEEE 42nd International Conference on Distributed
Computing Systems Workshops (ICDCSW). IEEE, 2022, pp. 60–65.

[26] A. De la Rocha, D. Dias, and Y. Psaras, “Accelerating content routing with
bitswap: A multi-path file transfer protocol in ipfs and filecoin,” 2021.

[27] J. Shen, Y. Li, Y. Zhou, and X. Wang, “Understanding i/o performance
of ipfs storage: a client’s perspective,” in Proceedings of the International
Symposium on Quality of Service, 2019, pp. 1–10.

[28] B. Prünster, A. Marsalek, and T. Zefferer, “Total eclipse of the heart–
disrupting the {InterPlanetary} file system,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 3735–3752.

[29] C. Karapapas, I. Pittaras, N. Fotiou, and G. C. Polyzos, “Ransomware as
a service using smart contracts and ipfs,” in 2020 IEEE International Con-
ference on Blockchain and Cryptocurrency (ICBC). IEEE, 2020, pp. 1–5.

[30] A. T. Research, “The interplanetary storm: New malware in
wild using interplanetary file system’s (ipfs) p2p network,”
https://www.anomali.com/blog/the-interplanetary-storm-new-malware-
in-wild-using-interplanetary-file-systems-ipfs-p2p-network, 2019.

[31] [Online]. Available: https://github.com/ipfs/specs/pull/373

APPENDIX

A. Regular Expressions

TABLE V: Regular expressions targeting different service platforms’
API Key

Platform/API Key Type Target Regular Expression

Amazon AWS Access Key ID AKIA[0-9A-Z]{16}

Amazon MWS Auth Token amzn\.mws\.[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}

Google
API Key AIza[0-9A-Za-z\-]{35}

OAuth ID [0-9]+-[0-9A-Za-z]{32}\.apps\.googleusercontent\.com

Stripe
Standard API Key sk live [0-9a-zA-Z]{24}

Restricted API Key rk live [0-9a-zA-Z]{24}

Square
Access Token sq0atp-[0-9A-Za-z\-]{22}

OAuth Secret sq0csp-[0-9A-Za-z\-]{43}

PayPal Braintree Access Token access token$production$[0-9a-z]{16}$[0-9a-f]{32}

Meta Access Token EAACEdEose0cBA[0-9A-Za-z]+

Twilio API Key SK[0-9a-fA-F]{32}

MailGun API Key key-[0-9a-zA-Z]{32}

Picatic API Key sk live [0-9a-z]{32}

TABLE VI: Regular expression to identify private keys and they have
a distinct structure mainly due to their PEM header

Asymmetric Key Type Target Regular Expression Asymmetric Key Type Target Regular Expression

RSA Private Key

—–BEGIN RSA PRIVATE KEY—–
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+

—–END RSA PRIVATE KEY—–

PGP Private Key

—–BEGIN PGP PRIVATE KEY BLOCK—–
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+=
[0-9a-zA-Z+\/=]{4}[\r\n]+

—–END PGP PRIVATE KEY BLOCK—–

EC Private Key

—–BEGIN EC PRIVATE KEY—–
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+

—–END EC PRIVATE KEY—–

SSH Private Key

—–BEGIN OPENSSH PRIVATE KEY—–
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+

—–END OPENSSH PRIVATE KEY—–

DSA Private Key

—–BEGIN DSA PRIVATE KEY—–
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+

—–END DSA PRIVATE KEY—–

General Private Key

—–BEGIN PRIVATE KEY—–
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+

—–END PRIVATE KEY—–

