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Abstract: While it is generally acknowledged that force feedback is beneficial to

robotic control, applications of policy learning to robotic manipulation typically

only leverage visual feedback. Recently, symmetric neural models have been used

to significantly improve the sample efficiency and performance of policy learning

across a variety of robotic manipulation domains. This paper explores an appli-

cation of symmetric policy learning to visual-force problems. We present Sym-

metric Visual Force Learning (SVFL), a novel method for robotic control which

leverages visual and force feedback. We demonstrate that SVFL can significantly

outperform state of the art baselines for visual force learning and report several in-

teresting empirical findings related to the utility of learning force feedback control

policies in both general manipulation tasks and scenarios with low visual acuity.

Keywords: Force Feedback, Policy Learning, Manipulation

1 Introduction

There are a variety of manipulation tasks where it is essential to use both vision and force feedback

as part of the control policy. Peg insertion with tight tolerances, for example, is a task that is nearly

impossible to solve without leveraging force feedback in some form. The classical approach is to use

an admittance controller with a remote center of compliance to help the peg slide into the hole [1].

However, this is a very limited use of force feedback and it seems like it should be possible to use

force information in a more comprehensive way. Nevertheless, after decades of research, it is still

not clear how to accomplish this. One of the core obstacles is the difficulty in simulating the complex

force interactions that happen at the robot end effector. These depend upon the complex mechanics

of the robotic drive train – harmonic drives or planetary gearheads that cannot be modeled with any

accuracy. While there have been major efforts in the past to circumvent this challenge with series

elastic drives [2] or direct drives [3], each of these approaches comes with its own set of challenges.

An obvious alternative approach is to leverage machine learning, i.e. model free reinforcement

learning (RL), to obtain force feedback assisted policies. This is in contrast to vision-only RL where

the policy only takes visual feedback [4, 5]. In visual force RL, there is the possibility to adapt

control policies directly to the mechanical characteristics of the system as they exist in the physical

world, without the need to model those dynamics first. However, this assumes that we can run RL

online directly in the physical world, something that is hard to do due to the poor sample efficiency

of RL. RL is well known to require an enormous amount of data in order to learn even simple

policies effectively. While visual force RL might, in principle, be able to learn effective policies,

this sample inefficiency prevents us from learning policies directly on physical equipment. In order
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to improve the sample efficiency of RL in visual force problems, one common approach is to learn

a helpful latent representation during a pretraining phase [6, 7, 8, 9]. This generally takes the form

of self-supervised robot “play” in the domain of interest that must precede actual policy learning.

Unfortunately, this is both cumbersome and brittle as the latent representation does not generalize

well outside the situations experienced during the play phase. This is especially prevalent in the

visual force domain as the noisy nature of force sensors means there will be many force observations

not experienced during pretraining leading to poor latent predictions during policy learning.

This paper develops an alternative approach to the problem of visual force learning based on ex-

ploiting domain symmetries using equivariant learning [10]. Recently, symmetric neural networks

have been shown to dramatically improve the sample efficiency of RL in robotic manipulation do-

mains [11, 12]. However, this work has focused exclusively on visual feedback and has not yet been

applied to visual force learning. Here, there are several open questions. Can symmetric neural mod-

els improve sample efficiency in problems with force feedback? What might the model architecture

look like to accomplish that? On what sorts of manipulation tasks might this approach be most help-

ful? This paper makes three main contributions. First, we propose a novel method for visual force

policy learning called Symmetric Visual Force Learning (SVFL) which exploits the underlying sym-

metry of manipulation tasks to improve sample efficiency and performance. Second, we empirically

evaluate the importance of force feedback assisted control across a variety of manipulation domains

and find that force feedback is helpful for nearly all tasks, not just contact-rich domains like peg

insertion where we would expect it to be important. Finally, we explore the role of force-assisted

policies in domains with low visual acuity and characterize the degree to which force models can

compensate for poor visual information.

2 Related Work

Contact-Rich Manipulation. Contact-rich manipulation tasks, i.e. peg insertion, screw fastening,

edge following, etc., are well-studied areas in robotic manipulation due to their prevalence in man-

ufacturing domains. These tasks often are solved by hand-engineered polices which utilize force

feedback and very accurate state estimation [1], resulting in policies that perform well in structured

environments but do not generalize to the large range of real-world variability. More recent work

has proposed the use of reinforcement learning to address these variations [4, 13, 14] by training

neural network policies which combine vision and proprioception. However, while these methods

have been shown to perform well across a variety of domains and task variations, they require a high

level of visual acuity, such that the task is solvable solely using image observations. In practice,

this means these methods are unsuitable for a large portion of contact-rich manipulation tasks which

require a high degree of precision and often include visual obstructions.

Multimodal Learning. A common approach to multimodal learning is to first learn a latent dynam-

ics model which compactly represents the high-dimensional observations and then use this model

for model-based learning. This technique has recently been adapted for use in various robotics do-

mains to combine various types of heterogeneous data. Li et al. [15] combine vision and haptic

information using a GAN but do not utilize their latent representation for manipulation policies.

Fazeli et al. [9] first learn a physics model using both vision and force data and use this model as

input to a handcrafted policy to play a game of Jenga. Similarly, Zheng et al. [8] propose a model

which learns a cross-modal visual-tactile model for a series of tasks, reusing past knowledge to

perform lifelong learning. However, similar to [15] they do not use this learned representation for

either a hand-crafted policy or policy learning. Our work is most closely related to [7, 6] which

we use as baselines in this work. Lee et al. [7] combine vision, force, and proprioceptive data us-

ing a variational latent model learned from self-supervision and use this model to learn a policy for

peg insertion. Chen et al. [6] learn a multimodal latent heatmap using a cross-modal visual-tactile

transformer (VTT) which distributes attention spatially. They show that by combining VTT with

stochastic latent actor critic (SLAC), they can learn policies that can solve a number of manipula-

tion tasks. In comparison to these works, we propose a sample-efficient deterministic multimodal

representation that is learned end-to-end without the need for pretraining. This is achieved through
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the use of a fully equivariant model which exploits the symmetry inherent in the SO(2) domain

to improve sample efficiency. Furthermore, we remove the need for the heavily structured, dense

reward functions used in these previous works.

Equivariant Neural Networks. Equivariant networks were first introduced as G-Convolutions [16]

and Steerable CNNs [10, 17, 18]. Since their inception they have been applied across var-

ied datatypes including images [17], spherical data [19], and point clouds [20]. More recent

work has expanded the use of equivariant networks to reinforcement learning [12, 5, 21] and

robotics [22, 23, 24, 25]. Compared to these prior works which focus on a single data modality, this

works studies the effectiveness of combining various heterogeneous datatypes while preserving the

symmetry inherit in each of these data modalities.

3 Background

Equivariant Neural Networks. A function is equivariant if it respects the symmetries of its input

and output spaces. Specifically, a function f : X → Y is equivariant with respect to a symmetry

group G if it commutes with all transformations g ∈ G, f(ρx(g)x) = ρy(g)f(x), where ρx and ρy
are the representations of the group G that define how the group element g ∈ G acts on x ∈ X

and y ∈ Y , respectively. An equivariant function is a mathematical way of expressing that f is

symmetric with respect to G: if we evaluate f for various transformed versions of the same input,

we should obtain transformed versions of the same output. Although this symmetry can be learned

[26], in this work we require the symmetry group G and representation ρx to be known at design

time. For example, in a convolutional model, this can be accomplished by tying the kernel weights

together to satisfy K(gy) = ρout(g)K(y)ρin(g)
−1, where ρin and ρout denote the representation

of the group operator at the input and output of the layer [27]. End-to-end equivariant models can

be constructed by combining equivariant convolutional layers and equivariant activation functions.

In order to leverage symmetry in this way, it is common to transform the input so that standard

group representations work correctly, e.g., to transform an image to a top-down view so that image

rotations correspond to object rotations.

Extrinsic Equivariance. Often real-world problems contain symmetry corruptions such as oblique

viewing angles and occlusions. This is particularly prevalent in robotics domains where the state

of the world is rarely fully observable. In these domains we consider the symmetry to be latent

where we know that some symmetry is present in the problem but cannot easily express how that

symmetry acts in the input space. We refer to this relationship as extrinsic equivariance [21], where

the equivariant constraint in the equivariant network enforces equivariance to out-of-distribution

data. While extrinsic equivariance is not ideal, it does not necessarily increase error and has been

shown to provide significant performance improvements in reinforcement learning [21].

4 Approach

4.1 Problem Statement

We model the visual force control problem as a discrete time finite horizon Markov decision pro-

cess (MDP), M = (S,A, T,R, γ), where states s ∈ S encode visual, force, and proprioceptive

data and actions a ∈ A command small end effector displacements. This MDP transitions at a

frequency of 20 Hz and the commanded hand displacements are provided as positional inputs to a

lower level Cartesian space admittance controller that runs at 500Hz with a fixed stiffness. The hand

is constrained to point straight down at the table (along the −z direction).

State is a tuple s = (I, f, e) ∈ S. I ∈ R
4×h×w is a 4-channel RGB-D image captured from a

fixed camera pointed at the workspace. f = (fxy, fz,mxy,mz) ∈ R
T×6 is a T × 6 time series of

the last T measurements from a six-axis wrist force-torque sensor transformed into the robot base

frame. e = (eλ, exy, ez, eθ) ∈ R
5 is the configuration of the end effector where eλ ∈ Eλ is the

hand open width, (exy, ez) are the Cartesian coordinates of the hand, and eθ is the orientation of
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the hand about the −z axis. Actions are represented by a = (λ,∆p) ∈ A ¦ R
5 where λ ∈ R is

the desired gripper open width and ∆p = (∆pxy,∆pz,∆pθ) ∈ R
4 is the desired delta pose of the

gripper with respect to the current pose p. As we discuss in the next section, we assume that the

problem is O(2)-symmetric in the sense that the transition and reward functions are invariant with

respect to planar rotations and reflections, for an appropriate definition of the action of O(2) on S

and A.

4.2 O(2) Symmetries in Visual Force Domains

Figure 1: O(2) Symmetries.

In order to leverage symmetric models for visual force

policy learning, we utilize the group invariant MDP

framework. A group invariant MDP is an MDP with

reward and transition functions that are invariant un-

der the group action, R(s, a) = R(ρs(g)s, ρa(g)a) and

T (s, a, s′) = T (ρs(g)s, ρa(g)a, ρs(g)s
′), for elements of

an appropriate symmetry group g ∈ G [11]. ρs and ρa
are representations of the group G that define how group

elements act on state and action. This paper focuses on

discrete subgroups of O(2) such as the dihedral groups

D4 or D8 that represent rotations and reflections in the

xy plane, i.e. the plane of the table. We utilize the D8

group in our experiments (see Appendix 7.4.1 for abla-

tions on the effect of group size).

In order to express visual force manipulation as a group

invariant MDP, we must define how the group operates on state and action such that the tran-

sition and reward invariance equalities described above are approximately satisfied. State is

s = (I, f, e) = (I, fxy, fz,mxy,mz, exy, ez, eλ). Since we are focused on rotations and re-

flections in the plane about the z axis, only the xy variables are affected. Therefore, the group

g ∈ SO(2) acts on s via ρs(g)s = (ρ0(g)I, ρ1(g)fxy, fz, ρ1(g)mxy,mz, ρ1(g)exy, ez, eλ) where

ρ0(g) is a linear operator that rotates/reflects the pixels in an image by g and ρ1(g) is the stan-

dard representation of rotation/reflection in the form of a 2 × 2 orthonormal matrix. Turning to

action, a = (λ,∆pxy,∆pz,∆pθ), we define ρa(g)a = (λ, ρ1(g)∆pxy,∆pz,∆pθ). Given these

definitions, visual force manipulation satisfies the transition and reward invariance constraints,

R(s, a) = R(ρs(g)s, ρa(g)a) and T (s, a, s′) = T (ρs(g)s, ρa(g)a, ρs(g)s
′). This is illustrated for

transition invariance in Figure 1.

4.3 Model Architecture

Figure 2: High level model architecture.

As we discuss in the next section, we do policy learn-

ing using SAC which requires both a critic (a Q-function)

and an actor. In our method, both actor and critic employ

the same encoder architecture which encodes state into a

latent representation. Since our state s = (I, f, e) ∈ S

is multimodal (i.e. vision, force, and proprioception) our

backbone is actually three encoders, the output of which

is concatenated (Figure 2). The image encoder (top left

in Figure 2) is a series of seven equivariant convolutional

layers. The force encoder (middle left) is a single equiv-

ariant self-attention layer. The proprioceptive encoder

(bottom left) is a four-layer equivariant MLP. More details on each of these encoders can be found

in the Appendix in Section 7.2. In each of these encoders, the model respects the equivariance and

invariance of each data modality corresponding to the relationships described in Section 4.2.
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The force encoder is of particular note due to its use of single-headed self-attention. The input is

a set of T tokens, f ∈ R
T×6, that encode the most recent T measurements from the force-torque

sensor. In order to make this model equivariant, we simply convert each of the key, query, and

value networks to become equivariant models. For the standard implementation of self-attention,

Attention = softmax(fWQ(fWK)T )fWV , the resulting group self attention operation is equivari-

ant [28]:

Attention(XfΓ) = softmax(XfΓW
Q(XfΓW

K)T )XfΓW
V

= softmax(XfW
QΓ(XfW

KΓ)T )XfW
V Γ

= softmax(XfW
QΓΓT (XfW

K)T )XfW
V Γ

= softmax(XfW
Q(XfW

k)T )XfW
V Γ = Attention(Xf )Γ,

where, for simplicity of this analysis, we define Γ to be the linear representation of the action of

a group element g ∈ G and Xf ∈ R
T×6×|G|. 1 We informally explored alternative force-torque

encoder models but found that this self attention approach worked best.

4.4 Equivariant SAC

For policy learning, we use Soft Actor Critic (SAC) [29] combined with the model architecture

described above. This can be viewed as a variation of Equivariant SAC [11] that is adapted to visual

force control problems. The policy is a network π : S → A × Aσ , where Aσ is the space of

action standard deviations. We define the group action on the action space of the policy network

ā ∈ A × Aσ as: ρā(g)ā = (ρa(g)a, aσ), where aσ ∈ Aσ and g ∈ G. The actor network π

is defined as a mapping s 7→ ā that satisfies the following equivariance constraint: π(ρs(g)s) =
ρa(g)(π(s)). The critic is a Double Q-network: q : S×A → R that satisfies an invariant constraint:

q(ρs(g)s, ρa(g)a) = q(s, a).

5 Experiments

We performed a series of experiments both in simulation and on physical hardware to validate our

approach, Symmetric Visual Force Learning (SVFL). First, we benchmark SVFL’s performance in

simulation against alternative approaches in the literature. Second, we perform ablations that mea-

sure the contributions of different input modalities for different tasks under both ideal and degraded

visual observations. Finally, we validate the approach on physical hardware.

5.1 Simulated Experiments

Tasks. We evaluate SVFL across nine manipulation tasks from the BulletArm benchmark [30]

which uses the PyBullet [31] simulator: Block Picking, Block Pushing, Block Pulling, Block Corner

Pulling, Mug Picking, Household Picking, Peg Insertion, Drawer Opening, and Drawer Closing

(Figure 7). For all tasks, a sparse reward function is used where a reward of +1 is given at task

completion and 0 otherwise. Further task details can be found in the Appendix (Section 7.1, 7.3).

Baselines. We benchmark our method against two prominent alternative methods for visual force

(or visual tactile) learning that have been proposed recently: Visual-Tactile Transformers (VTT) [6]

and Product of Experts (PoE) [7]. We also compare against a non-symmetric version of our model

that is the same in every way except that it does not use equivariant layers (CNN). Both PoE and

VTT are latent representation methods which rely on a self-supervised pretraining phase to build a

compact latent representation of the underlying states providing increased sample efficiency. Due

to this pretraining, these methods represent attractive options for on-robot policy learning. While

our method does not use any pretraining, and is therefore at a disadvantage relative to these two

methods, we maintained this pretraining phase as originally proposed in [7] and [6] as it is a core

component of latent representation learning. In both baselines we used the encoder architectures

1Although we omit the positional encoding here, this does not affect the result [28].
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Figure 3: Baseline Comparison. Comparison of SVFL (gray) with baselines. Greedy evaluation
policy is shown in terms of success rate. In all of our experiments, results are averaged over 5
random seeds and the evaluation is performed every 500 training steps. Shading denotes standard
error.

proposed in [6] which were shown to outperform those in [7]. PoE encodes the different input

modalities independently using separate encoders and combines them using product of experts [7].

VTT combines modalities by using self and cross-modal attention to build latent representations

that focus attention on important task features in the visual state space [6]. For further details on

these baselines, see [6, 7]. The latent encoders are pretrained for 104 steps on expert data to predict

the reconstruction of the state, contact and alignment embeddings, and the reward. All methods use

Prioritized Experience Relay (PER) [32] pre-loaded with 50 episodes of the expert data. For more

details, see the Appendix (Section 7.3).

Results. We compared our method (SVFL) against the two baselines (POE and VTT) and the non-

symmetric model (CNN) on the nine domains described above. Results from six representative

domains are shown in Figure 3 and results for all nine can be found in the Appendix (Figure 14).

All results are averaged over five runs starting from independent random seeds. When compared to

the baselines, SVFL has significantly higher success rates and sample efficiency in all cases.

5.2 Sensor Modality Ablation

Although it is intuitive that force data should help learn better policies on manipulation tasks, es-

pecially on contact rich tasks like peg insertion, it is important to validate this assumption and to

measure the benefits that can be gained by using both vision and force feedback rather than vision

alone. Recall that our state representation can be factored into three modalities, s = (I, f, e), where

I is an image (vision), f is force, and e is the configuration of the robot hand (proprioception).

Here, we compare the performance of SVFL with all three modalities against a vision-only model, a

vision/force model, and a vision/proprioception model on the same tasks as in Section 5.1. Results

for six tasks are shown in Figure 4 and complete results are given in Figure 15 in the Appendix. The

results indicate that the inclusion of each additional sensor modality improves sample efficiency

and performance for policy learning with all three sensor modalities performing best in most cases.

However, notice that the degree to which force (and proprioceptive) data helps depends upon the

task. For example, the addition of force feedback drastically improves performance in Peg Insertion

but has almost no effect in Block Pulling. There are, however, many tasks between these extremes.

In Drawer Opening and Block Picking the force-aware policy converges to a slightly higher success

rate than the non-force assisted policies. The fact that force feedback is usually helpful, even in tasks

6



Figure 4: Sensor Modality Ablation. Comparison of the full SVFL model (gray) versus SVFL with
subsets of the data modalities.

Figure 5: Performance Under Degraded Visual Acuity. Comparison of the full SVFL model
(gray) versus SVFL with subsets of the data modalities under visual acuity degradation. Performance
is given after all models are trained to convergence.

where one might not expect it, is interesting. This suggests that there is real value in incorporating

force feedback into a robotic learning pipeline, even when there is a non-trivial cost to doing so.

5.3 Role of Force Feedback When Visual Acuity is Degraded

We also perform experiments in the context of degraded visual acuity to determine what happens if

the visual input to our model is scaled down significantly. Specifically, we evaluate the model on

RGB-D images rescaled (bilinear interpolation) to four different sizes: 64×64, 32×32, 16×16, and

8 × 8. Aside from the rescaling, all other aspects of the model match the SVFL method detailed in

the previous section. This experiment gives an indication of how force data can compensate for low

resolution cameras, cloudy environments, or smudged camera lenses. Figure 5 shows performance

at convergence for six of the tasks at the four different levels of visual resolution (see Figure 13 in

the supplementary material for corresponding results on all nine domains). We note several inter-

esting observations. First, the importance of visual acuity is dependant on the task, e.g. high visual

acuity is very important for Block Picking but not very important for Block Pulling. Second, force

7



Figure 6: On-Robot Policy Learning. (Left) Robotic setup. (Right) Comparison of the full SVFL
model (gray) versus SVFL with subsets of the data modalities in the real-world on the Block Picking
task. Results are averaged over 3 runs.

information generally tends to help the most in low visual acuity scenarios. Finally, while force data

generally improves performance, it cannot compensate for the loss of information in extreme visual

degradation in tasks which require high visual acuity.

5.4 Real-World On-Robot Policy Learning

We repeat the simulated Block Picking policy learning experiment from Section 5.2 in the real world

to evaluate our methods performance in the real-world. Figure 6 shows the experimental setup which

includes a UR5e robotic arm, a Robotiq Gripper, a wrist-mounted force-torque sensor, and a Intel

RealSense camera. The block is a 5mm wooden cube that is randomly posed in the workspace.

We utilize AprilTags to track the block for use in reward/termination checking and to automatically

reset the workspace by moving the block to a new pose at the start of each episode. These tags are

not utilized during policy learning. In order to facilitate faster learning, we modify a number of

environmental parameters in our real-world setup. We use a workspace size as of 0.3m × 0.3m ×
×0.25m and a sparse reward function. We increase the number of expert demonstrations to 100
(from 50) and reduce the maximum number of steps per episode to 25 (from 50). Additionally, we

reduce the action space by removing control of the gripper orientation and increase the maximum

amount of movement the policy can take in one step to 5cm (from 2.5cm). We utilize the same

model architecture as in Section 5.1.

Figure 6 shows the learning curve of the full SVFL model alongside the various subsets of data

modalities available to our method. We train all models for 3000 steps taking around 4 hours. As

in the simulation results, the full SVFL model is both more sample efficient and outperforms SVFL.

Additionally, we see that force sensing is a vital component in this setting with the force-aware

models achieving a 90% success rate compared to the 60% success rate of the non-force aware

models (at 3000 training steps).

6 Discussion & Limitations

This paper proposes Symmetric Visual Force Learning (SVFL), an approach to policy learning with

visual force feedback that incorporates SE(2) symmetries into the model. Our experiments demon-

strate that SVFL outperforms two recent high profile benchmarks, PoE [7] and VTT [6], by a sig-

nificant margin both in terms of learning speed and final performance. We also report a couple of

interesting empirical findings. First, we find that force feedback is helpful across a wide variety of

policy learning scenarios, not just those where one would expect force feedback to help, i.e. Peg

Insertion. Second, we find that the positive effect of incorporating force feedback increases as vi-

sual acuity decreases. A limitation of this work is that although we expect that our framework is

extensible to haptic feedback, this paper focuses on force feedback only. Additionally, we constrain

our problem to top-down manipulation and planar symmetries in SE(2) and therefor there is sig-
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nificant scope to extend this to SE(3) symmetries. Finally, this paper focuses primarily on RL but

the encoder architectures should be widely applicable to other learning techniques such as imitation

learning.
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7 Appendix

7.1 Manipulation Tasks

We benchmark SVFL and the baselines across nine simulated tasks using the BulletArm Benchmark

[30] implemented in the PyBullet simulator [31]. The initial and goal states of each of these tasks

can be seen in Figure 7. All tasks use a sparse reward function where a reward of +1 is returned at

task completion and 0 otherwise. Task definition and parameters are detailed below. Further details

about each of these tasks can be found in the BulletArm benchmark [30].

(a) Block Picking (b) Block Pulling (c) Block Pushing (d) Block Pulling Corner

(e) Mug Picking (f) Household Picking (g) Drawer Opening (h) Peg Insertion

Figure 7: Tasks. The manipulation domains from the BulletArm benchmark [30] implemented in
PyBullet [31]. (Left) Initial state. (Right) Goal state.

Block Picking: Pick up a cubic block and lift it to a specified height. In this task, we vary the initial

pose, mass, size, and friction parameters of the block.

Block Pulling: Pull two cubic blocks together so that they are touching. In this task, we vary the

initial poses, masses, sizes, and friction parameters of both blocks.

Block Pushing: Push a cubic block to a target position indicated by a blue marker. In this task, we

vary the initial pose, mass, size, and friction parameters of the block.

Block Pulling Corner: Pull a cubic block away from its initial pose nestled in the corner of a fixture.

Due to the positioning of the block against these two walls, the robot must drag the block away from

the corner using the tips of its gripper. In this task, we vary the initial pose, mass, size, and friction

parameters of the block and the initial pose and fiction parameters of the fixture.

Mug Picking: Grasp a mug by its handle and lift it to a specified height. Grasping the mug in any

other manner is not considered a success. In this task, we vary the initial pose, mass, and size of the

mug.

Household Picking: Grasp a randomly selected household object and lift it to a specified height.

At the start of each episode, a random common household object is placed in a bin from a large

collection of such objects. In this task, the object and its initial pose are randomized.

Drawer Opening/Closing: In drawer opening, the robot is tasked with pulling a drawer open using

its handle until the drawer is opened to a specified position. Similarly, in drawer closing the robot

is tasked with closing a drawer which is initialized to the open configuration. In both of these tasks,

the initial pose of the drawer is randomized.

Peg Insertion: Insert a round peg into a round hole. The peg is modified with a square handle to

provide the robot with a more stable grip on the peg and the task is initialized with the robot gripping

the peg. In this task, only the initial pose of the hole is randomized.
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(a) Vision Architecture

(b) Force Architecture

Symmetric Models for Visual Force Policy
Learning

(c) Proprioception Architecture

Figure 8: Equivariant Encoder Architectures. Network architectures of the equivariant encoders
used in SVFL.

(a) Equivariant Actor Architecture. (b) Equivariant Critic Architecture.

Figure 9: Equivariant Soft Actor-Critic Architecture. Network architectures of the equivariant
actor and critic used in SVFL.

Network SVFL CNN VTT POE

# of Parameters 2.4E6 2.5E6 1.19E6 2.9E5

Table 1: Number of trainable parameters of SVFL, CNN, VTT, and POE in the reinforcement learn-
ing robotic manipulation tasks. Notice that due to being latent representation learning methods, VTT
and PoE utilize shared encoders between the actor and the critic so that the number of parameters is
smaller than SVFL and CNN. Additionally, we utilize a smaller PoE as increasing the size of PoE
has been shown to worsen performance[6].
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Network SVFL CNN

# of Parameters 2.3E6 2.2E6

Figure 10: Equivariant Classifier. (Left) The network architecture used in the supervised learning
experiment. (Right) Number of trainable parameters of equivariant (SVFL) and conventional (CNN)
models in the supervised learning task.

7.2 Network Architectures

7.2.1 Simulated Manipulation Policy Learning

SVFL/CNN Implementation Details: Figure 8 shows the network architecture of the equivariant

encoders and Figure 9 shows the network architecture of the Equivariant SAC in Section 5.1. The

CNN network mimics the structure of the SVFL network but the equivariant convolutions are re-

placed with normal convolutions. In order to provide a fair comparison between the two methods,

we increase the number of kernels in the CNN model such that the two methods have a comparable

number of trainable parameters (Table 1). The equivariant network is implemented using the escnn

[33, 34] library, where all the hidden layers are defined using the regular representations. For the

critic, the output is a trivial representation. For the actor, the output is a mixed representation con-

taining one standard representation for the (x, y) actions, one signed representation for the θ action,

and seven trivial representations for the (λ, z) actions alongside the standard deviations of all action

components.

VTT/PoE Implementation Details: We utilize the same network architectures for PoE and VTT

as used in the original VTT work[6] which can be found here: https://github.com/yich7045/

Visuo-Tactile-Transformers-for-Manipulation.

7.2.2 Supervised Block Centering

We utilize the same network architectures for the vision and force encoders as in the reinforcement

learning tasks (Figure 8). The two representations are combined using 2 convolutional layers and

a final convolutional layer acts as the classification layer (Figure 10). Figure 10 (Right) shows the

numbers of trainable parameters in both networks, where both networks have a similar number with

SVFL having slightly more.

7.3 Training Details

7.3.1 Simulated Robotic Manipulation

We utilize the manipulation tasks detailed in Section 7.1. The workspace’s size is 0.4m × 0.4m ×
0.26m. The minimum z height is slightly beneath the table allowing the arm to come in contact with

the table. The pixel size of the visual observation is 4×76×76 and is cropped to 4×64×64 during

training and testing. We utilize a random crop during training and a center crop during testing.

The force data consists of the most recent 64 readings from the F/T sensor. We zero the force data

using the first reading from the sensor after resetting the arm to its home position. The maximum

movement allowed for any action is limited to ∆x,∆y,∆z ∈ [−2.5cm, 2.5cm], ∆θ ∈ [− π
16
, π
16

,

λ ∈ [emin, emax] where emin and emax are the joint limits of the gripper. During training, we use

5 parallel environments where a training step is performed after all 5 parallel environments perform

14



0 5000 10000 15000 20000 25000 30000 35000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

Ra
te

 (
%

)

Mug Picking
D4
D8
D12

0 5000 10000 15000 20000 25000 30000 35000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

Ra
te

 (
%

)

Drawer Opening
D4
D8
D12

Figure 11: Symmetry Group Size Comparison. Effect of symmetry group on Mug Picking and
Drawer Opening tasks.

an action step. The evaluation is performed every 500 training steps. The training is implemented

in PyTorch [35].

SVFL/CNN Training: We train using the Adam optimizer [36] and the best learning rate and its

decay were chosen to be 10−3 and 0.95 respectively. The learning rate is multiplied by the decay

every 500 training steps. We use the prioritized replay buffer [32] with prioritized replay exponent

α = 0.6 and prioritized importance sampling exponent B0 = 0.4 annealed to 1 over training. We

use a batch size of 64.

VTT/PoE Training: We pretrain the dynamics model for both VTT and PoE for 10, 000 steps as

in [6]. We train using the Adam optimizer [36] using a learning rate of 10−4 for the latent model

and a batch size of 32. For policy training, we use a learning rate of 30−4 and a batch size of 64.

We use the prioritized replay buffer [32] with prioritized replay exponent α = 0.6 and prioritized

importance sampling exponent B0 = 0.4 annealed to 1 over training.

7.3.2 Block Centering

The block is located in a workspace with a size of 0.4m × 0.4m × 0.26m. The pixel size of the

visual observation is 4 × 76 × 76 and is cropped to 4 × 64 × 64 during training and testing. We

utilize a random crop during training and a center crop during testing. The force data consists of the

most recent 64 readings from the F/T sensor. We zero the force data using the first reading from the

sensor after resetting the arm to its home position. We train using the Adam optimizer [36] with a

learning rate of 10−3 and a cross-entropy loss. We use a batch size of 64. The training is terminated

when the test prediction success rate does not improve for 50 epochs or when the maximum epoch

of 500 is reached.

7.4 Additional Experiments

7.4.1 Effect of Dihedral Group Size

We compare the performance of SVFL in simulation while varying the size of the symmetry group.

In this ablation, we are primarily interested in exploring the effect of the size of the discrete dihedral

group as prior works have shown that this discrete group outperforms the continuous group SO(2)
in both supervised learning [17] and reinforcement learning [37]. Figure 11 shows the effect of

increasing the size of the dihedral group for d4, d8, and d12. While the overall performance is

similar, we note an exponential increase in computational time as the size of the group increases

(Table 2).
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Group Size 4 8 12

Time (Hours) 5.4 7.3 16.7

Table 2: Symmetry Group Wall-Clock Training Time. Average wall-clock training time for the
Mug Picking task for different symmetry group sizes. Averaged over three runs.

# of Training Samples

Encoder 10 25 50 100

V
CNN 38.7± 1.3 41.4± 2.5 35.1± 6.6 59.5± 5.8

SVFL 51.3± 3.4 59.5± 4.6 67.7± 3.8 94.6± 4.4

F
CNN 21.6± 1.3 36.0± 2.5 42.3± 1.3 45.9± 6.6

SVFL 30.6± 3.3 54.5± 2.2 81.1± 3.8 92.8± 1.3

V+F
CNN 38.7± 2.5 38.7± 5.5 45.0± 3.4 73.9± 2.5

SVFL 57.8± 4.4 63.2± 2.5 87.6± 9.2 98.4± 1.3

Figure 12: Experiment on Robotic Hardware. (Left) Robotic setup. (Right) Prediction accuracy
(%) on the test set for models trained with different amounts of training data. We compare the
performance of equivariant and non-symmetric versions of the vision encoder (V), the force encoder
(F), and the fusion of these two encoders (V+F). Mean and standard error is given over three runs.

7.4.2 Real World Block Centering

We conduct an experiment using the Block Picking task to evaluate how well our model can lever-

age force observations from real-world robot interactions. Here we do supervised learning rather

than policy learning in order to focus on the model itself and to reduce the variance of our results.

Figure 12 shows the experimental setup which includes a UR5e robotic arm, a RG2 Gripper, a

wrist-mounted force-torque sensor, and a Intel RealSense camera. The block is a 5mm wooden

cube that is randomly posed in the workspace. We learn a function, h : (I, f) 7→ {0, 1}4, that maps

visual-force observations to a four-way classification denoting the direction in which the gripper

would need to move in order to grasp the block after a finger collides with the block. The idea was

to mimic the most common failure case we see during policy learning in block picking where the

grasp was slightly offset from the block. In simulation, we observed that the force aware policy

was able to determine the correct direction to move to correct the failed grasp more often than the

models without force. The dataset is generated by a human teleoperator where each sample is the

most recent sensor observations immediately following the collision. The goal of the teleoperator

was to mimic a failed grasp where one finger came into contact with the block. We generate 200
data samples and split the dataset into 100 training samples and 100 testing samples. We generated

a diverse set of interactions between the block and the gripper varying the position of the gripper in

relation to the block, the amount of force (by varying the amount of movement when coming into

contact with the block), and the pose of the block.

We compared the classification accuracy of the baseline SVFL model against the non-symmetric

version of the model with a similar number of trainable parameters (Section 7.2, 7.3). We examine

the effect of three different types of input: Vision Only (V), Force Only (F), and Vision & Force

(V+F). In each case, in order to measure the models’ ability to generalize, we evaluated the perfor-

mance on training sets of differing sizes including 10, 25, 50, and 100 samples. Figure 12 shows the

accuracy of the models on the held-out test dataset. Notice that in all cases, the symmetric model

does much better than its non-symmetric counterpart, both for differently sized training sets as well

as for all input types.
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# of Training Samples

Encoder 10 25 50 100

V
CNN 48.5± 1.8 53.7± 3.6 72.2± 2.4 87.1± 3.8

SVFL 58.3± 5.9 66.2± 3.4 81.1± 4.1 98.6± 2.3

F
CNN 42.1± 0.8 48.8± 1.6 78.8± 1.9 87.2± 3.2

SVFL 48.4± 1.7 61.1± 3.2 89.2± 2.3 95.3± 1.1

V+F
CNN 56.8± 1.4 72.8± 4.3 92.1± 6.2 98.8± 1.1

SVFL 67.1± 5.1 77.3± 2.2 91.8± 4.7 99.3± 0.4

Table 3: Simulated Block Centering. Prediction accuracy (%) on the test set for models trained
with different amounts of simulated training data. We compare the performance of equivariant and
conventional versions of the vision encoder (V), the force encoder (F), and the fusion of the two
(V+F). Mean and standard error is given over three random seeds.

Figure 13: Performance Under Degraded Visual Acuity. Comparison of the full SVFL model
(gray) versus SVFL with subsets of the data modalities under visual acuity degradation. Performance
is given after all models are trained to convergence.

7.4.3 Simulated Block Centering

We repeat the real-world block centering supervised learning task in simulation using the BulletArm

block picking domain. We generate the simulated block centering dataset by modifying the state-

based planner such that one of the gripper fingers comes in contact with the block while attempting

a picking action. Similar to the real-world dataset, we utilize a RGB-D sensor pointed at the center

of the workspace and a wrist-mounted F/T sensor on a Franka Panda robot. We generate a dataset

of 200 samples and split this into 100 training and 100 test samples. We use the same SVFL and

CNN modes as in Section 5.4. Table 3 shows the test accuracy of both models on the held-out test

dataset after being trained to convergence on training datasets of varying sizes. Similar to the real-

world results, SVFL outperforms the conventional encoders but the difference is much smaller in

simulation, this is especially true when using larger amounts of training data.

7.4.4 Additional Simulated Manipulation Tasks

In this section, we report the full results for the nine simulated manipulation tasks specified in

Section 5.1. The baseline comparisons are shown in Figure 14, the sensor modality ablations are

shown in Figure 15, and the visual acuity ablations are shown in Figure 13.
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Figure 14: Baseline Comparison. Comparison of SVFL (gray) with baselines. Greedy evaluation
policy is shown in terms of success rate. In all of our experiments, results are averaged over 5
random seeds and the evaluation is performed every 500 training steps. Shading denotes standard
error.
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Figure 15: Sensor Modality Ablation. Comparison of the full SVFL model (gray) versus SVFL
with subsets of the data modalities.
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