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Abstract

We study how to make decisions that minimize

Bayesian regret in offline linear bandits. Prior

work suggests that one must take actions with

maximum lower confidence bound (LCB) on their

reward. We argue that the reliance on LCB is in-

herently flawed in this setting and propose a new

algorithm that directly minimizes upper bounds

on the Bayesian regret using efficient conic op-

timization solvers. Our bounds build heavily on

new connections to monetary risk measures. Prov-

ing a matching lower bound, we show that our up-

per bounds are tight, and by minimizing them we

are guaranteed to outperform the LCB approach.

Our numerical results on synthetic domains con-

firm that our approach is superior to LCB.

1. Introduction

The problem of offline bandits is an important special case of

offline reinforcement learning (RL) in which the model con-

sists of a single state and involves no state transitions (Hong

et al., 2023). Offline RL, a challenging research problem

with a rich history, is inspired by the need to make reliable

decisions when learning from a logged dataset (Lange et al.,

2012; Rashidinejad et al., 2022). Practical problems from

recommendations to search to ranking can be modeled as

offline bandits; see, for example, Hong et al. (2023) and

references therein. Moreover, gaining a deeper theoretical

understanding of offline bandits is a vital stepping stone in

understanding the complete offline RL problem.

We study the problem of minimizing the Bayesian regret in

the offline linear bandit setting. Bayesian regret differs sub-

stantially from its frequentist counterpart. While frequentist

regret assumes a fixed true model and studies algorithms’

response to random datasets, Bayesian regret assumes a

fixed dataset and studies algorithms’ regret as a function of
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the true model. When provided with good priors, Bayesian

methods offer sufficiently tight bounds to achieve excellent

practical results (Lattimore & Szepesvari, 2018; Gelman

et al., 2014; Vaart, 2000). As such, the strengths of Bayesian

methods complement the scalability and simplicity of the

frequentist algorithms.

Most prior work on Bayesian offline RL and bandits has

adopted a form of pessimism that chooses actions with the

highest lower confidence bounds (LCBs). These LCB-style

algorithms compute a policy or action with the largest ex-

pected return (or reward), penalized by its uncertainty. The

uncertainty penalty is computed from credible regions de-

rived from the posterior distribution (Delage & Mannor,

2010; Hong et al., 2023; Brown et al., 2020; Javed et al.,

2021; Lobo et al., 2023), and often gives rise to some form

of robust optimization (Behzadian et al., 2021; Petrik &

Russel, 2019). LCB-style Bayesian algorithms are generally

inspired by the success of this approach in frequentist set-

tings, where LCB is typically computed from concentration

inequalities (Xie et al., 2021; Rashidinejad et al., 2022; Jin

et al., 2022; Ghosh et al., 2022; Cheng et al., 2022).

In this paper, we propose a Bayesian regret minimiza-

tion algorithm, called BRMOB, that takes a new approach to

Bayesian offline bandits. Instead of adopting an LCB-style

strategy, we directly minimize new regret upper bounds.

To derive these bounds, we reformulate the usual high-

confidence objective as a Value-at-Risk (VaR) of the epis-

temic uncertainty. Then, we bound the VaR by combining

techniques from robust optimization and Chernoff analysis.

Our bounds apply to both Gaussian and sub-Gaussian poste-

riors over the latent reward parameter. BRMOB minimizes the

regret bounds efficiently using convex conic solvers. Finally,

we also establish a matching lower bound that shows our

upper bounds are tight.

Compared with prior work in Bayesian offline bandits,

BRMOB achieves tighter theoretical guarantees and better em-

pirical performance. Two main innovations enable these

improvements. First, BRMOB computes randomized policies.

Our numerical results show that randomizing among actions

results in hedging that can significantly reduce regret com-

pared to deterministic policies. In contrast to BRMOB, most

existing algorithms in Bayesian offline bandits (Hong et al.,

2023) and Bayesian offline RL (Delage & Mannor, 2010;
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Petrik & Russel, 2019; Behzadian et al., 2021; Angelotti

et al., 2021) are restricted to deterministic policies. Sec-

ond, BRMOB is the only algorithm that explicitly minimizes

Bayesian regret bounds. As discussed above, existing algo-

rithms usually maximize the LCB on returns (Hong et al.,

2023; Uehara & Sun, 2023), which does not guarantee to

reduce Bayesian regret. Similarly, recent algorithms that

maximize the expected return (Steimle et al., 2021; Su &

Petrik, 2023) are also not known to reduce Bayesian regret.

We also study the general suitability of LCB algorithms

for minimizing Bayesian regret. While BRMOB signifi-

cantly outperforms a particular LCB algorithm known as

FlatOPO (Hong et al., 2023), the more critical question is

whether the general LCB approach is viable for Bayesian

regret minimization. Using our new regret lower bounds,

we answer this question negatively. More precisely, we

show that penalizing reward uncertainty, the core of all LCB

algorithms, is guaranteed to increase the algorithm’s regret

even in very simple problems. This is because actions with

high uncertainty may also have a high upside and avoiding

them increases regret. Therefore, we believe that explicit

regret minimization, as in BRMOB, is a more promising future

direction than LCB-style algorithms.

Bayesian regret minimization in offline bandits can also be

framed as a chance-constrained optimization problem (Ben-

Tal et al., 2009). The recent chance-constrained optimiza-

tion literature is mostly focused on constraints in which

the function is concave or linear in the uncertain param-

eter (Gupta, 2019; Bertsimas et al., 2021). However, the

chance constraint in the Bayesian regret minimization prob-

lem is convex, preventing us from using these methods.

Another non-concave chance-constrained optimization ap-

proach is to resort to scenario-based or sample-based meth-

ods (Calafiore & Campi, 2005; Nemirovski & Shapiro,

2006; Luedtke & Ahmed, 2008; Brown et al., 2020). We

briefly discuss these methods in Section 3.2. Such sample-

based formulations are general, simple to implement and

work well in practice. However, they scale poorly to large

problems, provide no theoretical insights, and struggle to

compute randomized policies. The closest result to our

work is the Bernstein technique for bounding linear chance-

constrained programs (Nemirovski & Shapiro, 2007; Pintér,

1989), which is a special case of one of our bounds.

The paper is organized as follows. After introducing our

notations and the popular risk-measure Value-at-Risk (VaR)

in Section 2, we formally define the problem of Bayesian

regret minimization in offline bandits and connect it to min-

imizing VaR in Section 3. In Section 4, we derive two new

upper bounds on the Bayesian regret and propose our main

algorithm, BRMOB, that is based on a simultaneous minimiza-

tion of these two regret bounds. We also prove a lower

bound on the regret that shows our upper bound is tight. In

Section 5, we first derive a regret bound for BRMOB in terms

of problem parameters and show that it compares favorably

with LCB-based algorithms. We then argue that the general

LCB approach is unsuitable for minimizing Bayesian regret.

Finally, in Section 6, we compare BRMOB’s performance with

three baseline algorithms on synthetic domains and show

that it is preferable to LCB-style algorithms.

2. Preliminaries

We begin by defining the notations we use throughout the

paper. We use lower and upper case bold letters to denote

vectors and matrices, such as x ∈ R
N and A ∈ R

n×n, and

normal font for the elements of vectors and matrices, e.g., xi.

We define the weighted ℓ2-norm for any vector x ∈ R
d and

positive definite matrix A ∈ R
d×d as ∥x∥A =

√
xTAx.

We denote by ∆k, ∀k ∈ N the k-dimensional probability

simplex, and by I , 0, 1, and 1a the identity matrix, the

zero vector, the one vector, and the one-hot vector all with

appropriate dimensions. Random variables are adorned with

a tilde and are not capitalized. For example, x̃ represents a

vector-valued random variable. Finally, we denote by Ω the

probability space of a random variable.

Suppose that x̃ : Ω→ R is a random variable that represents

costs. Then, its value-at-risk (VaR) at a risk-level α ∈
[0, 1) is usually defined as the largest lower bound on its

α-quantile (e.g., Follmer & Schied 2016, definition 4.45,

and remark A.20):

VaRα [x̃] = inf {t ∈ R | P [x̃ > t] ≤ 1− α} (1a)

= sup {t ∈ R | P [x̃ ≥ t] > 1− α} . (1b)

The definition of VaR in the literature depends on whether

x̃ represents costs or rewards (Hau et al., 2023). If x̃
represents rewards, maximizing −VaRα [−x̃] is equiva-

lent to minimizing VaRα [x̃]. For Gaussian random vari-

ables, x̃ ∼ N (µ, σ2), VaR has the following analytical

form (Follmer & Schied, 2016):

VaRα [x̃] = µ+ σ · zα , (2)

where zα is the α-quantile of N (0, 1).

3. Bayesian Offline Bandits

In this section, we first formally define the problem of

Bayesian regret minimization in offline bandits and con-

nect it to monetary risk measures. We then describe two

techniques that have been used in solving this problem.

3.1. Problem Definition

Consider a stochastic linear bandit problem with k ∈ N arms

(actions) from the set A = {a1, . . . , ak}. Each arm a ∈ A
is associated with a d-dimensional feature vector φa ∈ R

d
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and its reward distribution has a mean r(a;θ) = φT

aθ for

some unknown parameter θ ∈ R
d. We define the feature

matrix Φ ∈ R
d×k as Φ = (φa)a∈A. The goal of the agent

is to learn a (possibly randomized) policy π ∈ ∆k to choose

its actions accordingly. We denote by πa the probability

according to which policy π selects an action a ∈ A. The

mean reward, or value, of a policy π is defined as

r(π;θ) = E[r(ã;θ) | ã ∼ π]

=
∑

a∈A

πa · r(a;θ) = πT
Φ

Tθ . (3)

An optimal policy π⋆(θ) is one that maximizes (3).

In the offline bandit setting, the agent only has access to

a logged dataset D̃ = {(ãi, ỹi)}ni=1, and is not capable of

interacting further with the environment. Each pair (ãi, ỹi)
in D̃ consists of an action ãi selected according to some

arbitrary logging policy and a sampled reward ỹi from the

reward distribution of action ãi. We use D to refer to an

instantiation of the random dataset D̃.

We take the Bayesian perspective in this paper and model

our uncertainty about the reward parameter θ̃ : Ω → R
d

by assuming it is a random variable with a known prior

Pθ̃(θ). Therefore, all quantities that depend on θ̃ are also

random. The logged dataset D is used to derive the posterior

density Pθ̃|D(θ) over the reward parameter. To streamline

the notation, we denote by θ̃D := (θ̃ | D̃ = D) the random

variable distributed according to this posterior distribution

Pθ̃|D. We discuss the derivation of the posterior in Section 5.

As described above, in the Bayesian offline bandit setting

we assume that the logged data D̃ is fixed to some D and

the uncertainty is over the reward parameter θ̃. This is

different than the frequentist offline setting in which the

reward parameter is fixed, θ̃ = θ⋆, and the randomness is

over different datasets generated by the logging policy.

In the Bayesian offline bandit setting, our goal is to com-

pute a policy π ∈ ∆k that minimizes the high-confidence

Bayesian regret Rδ : ∆k → R+ defined as

Rδ(π) := min ϵ subject to

P

[

max
a∈A

r(a; θ̃D)− r(π; θ̃D) ≤ ϵ

]

≥ 1− δ,
(4)

where δ ∈ (0, 1

2
) is the small error tolerance parameter. We

also use α = 1− δ to denote the confidence in the solution.

Note that (4) compares the value of a fixed policy π with

the reward of an action (max action) that depends on the

posterior random variable θ̃D. Thus, one cannot expect

to achieve a regret of zero. By taking a close look at the

definition of regret in (4) and using the definition of VaR

in (1a), we may equivalently write our objective in (4) as

Rδ(π) = VaR1−δ

[

max
a∈A

r(a; θ̃D)− r(π; θ̃D)

]

. (5)

One could optimize other objectives besides the high-

confidence regret in (5). Other objectives, such as maxi-

mizing the VaR of the reward, are easier to solve and Ap-

pendix E discusses them in greater detail.

3.2. Baseline Algorithms

We now provide a brief description of two methods that

have been used to solve Bayesian offline bandits (defined

in Section 3.1) and closely related problems.

Lower Confidence Bound (LCB) Pessimism to the un-

certainty in the problem’s parameter is the most common

approach in offline decision-making problems, ranging from

offline RL (Uehara & Sun, 2023; Rashidinejad et al., 2022;

Xie et al., 2022), to robust RL (Petrik & Russel, 2019;

Behzadian et al., 2021; Lobo et al., 2020), and offline ban-

dits (Hong et al., 2023). In the case of offline bandits, this

approach is compellingly simple and is known as maximiz-

ing a lower confidence bound, or LCB. The general recipe

of the LCB algorithm for Gaussian and sub-Gaussian poste-

riors θ̃D is to simply choose the action â ∈ A such that

â ∈ argmax
a∈A

ℓβ(a) :=

(

µT

nφa − β ·
√

φT
aΣnφa

)

, (6)

for some β > 0. The terms µT

nφa and
√

φT
aΣnφa

represent the posterior mean and standard deviation of

r(a, θ̃D) = φT

a θ̃D. The parameter β is typically chosen

to guarantee that ℓβ(a) is a high-probability lower bound

on the return of action a ∈ A:

P

[

ℓβ(a) ≤ r(a, θ̃D)
]

≥ 1− δ.

The FlatOPO algorithm (Hong et al., 2023) is a particular

instance of the LCB approach to offline bandits that uses

β =
√

5d log(1/δ) for Gaussian posteriors. When β = 0,

we refer to an algorithm that implements (6) as Greedy.

Scenario-based Methods Another natural approach to

minimizing the Bayesian regret in offline bandits is to treat

the optimization in (4) as a chance-constrained optimiza-

tion problem. The most general algorithm to solve chance-

constrained optimization is to use scenario-based tech-

niques to minimize the regret Rδ(π) (Calafiore & Campi,

2005; Nemirovski & Shapiro, 2006; Luedtke & Ahmed,

2008). A typical scenario-based algorithm first approxi-

mates θ̃D with a discrete random variable q̃ constructed by

sampling from its posterior Pθ̃|D(θ), and then computes a
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deterministic policy by solving

argmin
â∈A

VaR1−δ

[

max
a∈A

r(a; q̃)− r(â; q̃)

]

. (7)

The optimization in (7) can be solved by enumerating all

the actions and computing the VaR of the discrete random

variable within the brackets. The important question that

has been extensively studied here is the number of sam-

ples needed to obtain a solution with high confidence (Ne-

mirovski & Shapiro, 2007; 2006). The time complexity of

this algorithm is a function of the number of samples and

the desired confidence to guarantee a certain suboptimality

of the solution; we refer the interested reader to Nemirovski

& Shapiro (2007) for a detailed analysis discussion.

Despite the generality and simplicity of scenario-based

methods, they have several important drawbacks. They

require sampling from the posterior, with a sample com-

plexity that scales poorly with the dimension d, number of

actions k, and particularly confidence level 1 − δ. They

do not provide theoretical guarantees for the regret of the

obtained policy and offer no insights into how the regret

scales with the parameters of the problem.

Finally, minimizing the regret in (5) over the space of

randomized policies is challenging using scenario-based

methods because it requires solving a mixed-integer linear

program (Lobo et al., 2020). Other ideas have been ex-

plored (Calafiore & Campi, 2005; Brown et al., 2020) but a

detailed study of such algorithms is beyond our scope.

4. Minimizing Analytical Regret Bounds

In this section, we propose our new approach for minimizing

the Bayesian regret, Rδ(π), defined in (5). In particular, we

derive two upper bounds on Rδ(π) that complement each

other depending on the relative sizes of the feature vector d
and action space k. We also prove a lower bound on Rδ(π)
that shows our upper bound is tight. Finally, we propose our

BRMOB algorithm that aims at jointly minimizing our two

upper bounds. The proofs of this section are in Appendix B.

4.1. Bayesian Regret Bounds

To avoid unnecessary complexity, we assume in this section

that the posterior distribution over the reward parameter

is Gaussian. We show analogous results for the general

sub-Gaussian case in Appendix D.

Assumption 4.1. The posterior over the latent reward pa-

rameter is distributed as θ̃D ∼ N (µ,Σ), with mean µ ∈
R

d and a positive definite covariance matrix Σ ∈ R
d×d.

We begin by showing that under Assumption 4.1, the regret

r(a; θ̃D)− r(π; θ̃D) of any policy π ∈ ∆k with respect to

a ∈ A has a Gaussian distribution.

Lemma 4.2. Suppose that θ̃D ∼ N (µ,Σ). Then, for any

policy π ∈ ∆k, the Bayesian regret in (5) can be written as

Rδ(π) = VaR1−δ

[

max
a∈A

x̃π
a

]

, (8)

where x̃π
a ∼ N (µπ

a , σ
π
a ) with

µπ
a = µT

Φ(1a − π), σπ
a = ∥Φ(1a − π)∥

Σ
. (9)

Lemma 4.2 points to the main challenge in deriving tight

bounds on Rδ(π). Even when θ̃D is normally distributed,

the random variable maxa∈A x̃π
a is unlikely to be Gaussian.

The lack of normality prevents us from deriving an exact

analytical expression for Rδ(π) using (2). In the remainder

of the section, we derive two separate techniques for upper

bounding the VaR of the maximum of random variables

in (8), thereby also bounding the Bayesian regret Rδ(π).

Our first bound expresses the overall regret as a maximum

over individual action regrets. We refer to it as an action-set

bound, because it grows with the size of the action space k,

and state it in Theorem 4.3.

Theorem 4.3. The regret for any policy π ∈ ∆k satisfies

Rδ(π) ≤ min
ξ∈∆k

max
a∈A

µπ
a + σπ

a · z1−δξa (10a)

≤ min
ξ∈∆k

max
a∈A

µπ
a + σπ

a ·
√

2 log(1/δξa) , (10b)

where z1−δξa is the (1− δξa)-th standard normal quantile.

A special case of (10) is when ξ = 1/k · 1 is uniform, in

which case is simplifies to

Rδ(π) ≤ max
a∈A

µπ
a + σπ

a ·
√

2 log(k/δ) . (11)

This shows that the action-set bound in Theorem 4.3 grows

sub-logarithmically with the number of actions k.

Because the bound in Theorem 4.3 is based on a union

bound, the question of its tightness is particularly salient.

To address this, we prove a lower bound on the regret when

the arms are independent (e.g., multi-armed bandits).

Theorem 4.4. Suppose that π ∈ ∆k is a deterministic

policy such that πa1
= 1 for a1 ∈ A without loss of gen-

erality. When µ2 = µ3 = · · · = µk, Σ is diagonal with

Σ2,2 = Σ3,3 = . . .Σk,k, and Φ = I , then

Rδ(π) ≥ µπ
a2

+ σπ
a2
· κl(k − 1),

where

κl(k) = −1 +
√

1− log(
√
2π)− 2 log

(

1− (1− δ)1/k
)

.

The lower bound in Theorem 4.4 indicates that Theo-

rem 4.3 is tight. For an ease of reference we use κu(k) =

4
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Algorithm 1: BRMOB: Bayesian Regret Minimization for Offline Bandits

Input: Posterior parameters µ and Σ, risk tolerance δ ∈ (0, 1/2), feature matrix Φ ∈ R
d×k, # of iterations m

1 Initialize ν0a ← min
{

√

χ2
d(1− δ), z1−δ/k

}

, ∀a ∈ A ; i← 0 ;

2 Minimize regret bounds: Let ρi and πi be the optimizers of

minimize
π, s∈R

k
+
, ρ∈R

ρ subject to 1
Tπ = 1, ρ ≥ µπ

a + sa · νia, s2a ≥ (σπ
a )

2, ∀a ∈ A. (13)

3 for i = 1, . . . ,m do

4 Tighten regret bounds: Let ξi be an optimizer of

minimize
ξ, s∈R

k
+
, l∈Rk, ρ∈R

ρ subject to 1
Tξ = δ, ρ ≥ µπi−1

a +σπi−1

a ·sa, s2a ≥ −2la, la ≤ log ξa, ∀a ∈ A. (14)

5 Set νia ← z1−δξia
, ∀a ∈ A ;

6 Solve (13) and let ρi and πi be its optimizers ;

7 i⋆ ← argmini=0,...,m ρi ; // Choose policy with the best regret guarantee

8 return randomized policy πi⋆ , regret upper bound ρi
⋆

;

where η = min
{

√

2 log(k/δ),
√

5d log(1/δ)
}

.

5. Regret Analysis

In this section, we derive a regret bound for BRMOB and

compare it with that of FlatOPO (Hong et al., 2023), an

LCB-style algorithm. We use a frequentist analysis to bound

the Bayesian regret of BRMOB as a function of k, d, number

of samples n, and coverage of the dataset D. Section 5.3

concludes by arguing that the general LCB approach in (6) is

unsuitable for minimizing Bayesian regret; see Appendix E

for other objectives that can be optimized using LCB-style

algorithms. Our lower bound shows that LCB can match

BRMOB’s regret only if the confidence penalty β is very small

and decreases with k and d. All the proofs of this section

are reported in Appendix C.

5.1. Sample-Based Regret Bound

As in prior work (Hong et al., 2023), we assume a Gaus-

sian prior distribution over the reward parameter Pθ̃ =
N (µ0,Σ0) with an invertible Σ0, and Gaussian rewards

ỹ ∼ N
(

r(a; θ̃) = φT

a θ̃, σ̄
2
)

for each action a ∈ A.

As a result, the posterior distribution over the parame-

ter given a dataset D = {(ai, yi)}ni=1 is also Gaussian

θ̃D ∼ N (µn,Σn) with

Σn = (Σ−1
0 + σ̄−2Gn)

−1,

µn = Σn(Σ
−1
0 µ0 + σ̄−2Bnyn),

(16)

and where Bn = (ϕai
)ni=1 is the matrix with observed fea-

tures in its columns, yn = (yi)
n
i=1 is the vector of observed

rewards, and Gn = BT

nBn is the empirical covariance

matrix (see Bayesian linear regression for example in Ras-

mussen & Williams 2006; Deisenroth et al. 2021).

To express the regret bound as a function of the dataset D,

we make the following standard quality assumption.

Assumption 5.1. The feature vectors satisfy ∥φa∥2 ≤
1, ∀a ∈ A, and there exists a γ > 0 such that

Gn ⪰ γn · φaφ
T

a , ∀a ∈ A, ∀n ≥ 1 .

Intuitively, Assumption 5.1 states that the dataset provides

sufficient information such that the norm of the covariance

matrix Σn of the posterior distribution over θ̃D decreases

linearly with n. From a frequentist perspective, this assump-

tion holds with high probability by the Bernstein-Von-Mises

theorem under mild conditions (Vaart, 2000).

We are now ready to bound the Bayesian regret of BRMOB.

We state the bound for the general case and then tighten it

when µn = 0 (only the variance of actions matters).

Theorem 5.2. Suppose that the parameter has a Gaussian

posterior θ̃D ∼ N (µn,Σn) and BRMOB returns a policy

π̂. Then, the regret of BRMOB is bounded as Rδ(π̂) ≤ 2η,

where

η =

√

min {2 log(k/δ), 5d log(1/δ)}
λmax(Σ0)−1 + γnσ̄−2

. (17)

Moreover, if µn = 0 then Rδ(π̂) ≤ 2 (1−maxa′∈A π̂a′) η
with maxa′∈A π̂a′ ≥ 1/d+1 .

5.2. Comparison with FlatOPO

We now compare the regret bound of BRMOB with that of

FlatOPO (Hong et al., 2023), an LCB-based algorithm for re-
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7. Conclusion

We proposed BRMOB, a new approach for Bayesian regret

minimization in offline bandits, that is based on jointly min-

imizing two analytical upper bounds on the Bayesian regret.

We proved a regret bound for BRMOB and showed that it

compares favorably with an existing LCB-style algorithm

FlatOPO (Hong et al., 2023). Finally, we showed theoret-

ically and empirically that the popular LCB approach is

unsuitable for minimizing Bayesian regret.

Our approach can be extended to several more general set-

tings. The algorithm and bounds can generalize to sub-

Gaussian posterior distributions as described in Appendix D.

The algorithm can also be extended to contextual linear

bandits by computing a separate policy π for each context

individually or by assuming a random context. Another

important future direction is understanding the implications

of our results to frequentist settings where similar concerns

about the value of the LCB approach have been raised (Xie

et al., 2022; Xiao et al., 2021).
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A. Technical Background and Lemmas

A scalar random variable x̃ : Ω→ R with mean µ = E[x̃] is sub-Gaussian with a variance factor σ2 ≥ 0 when

E
[

exp
(

λ(x̃− µ)
)]

≤ exp
(

λ2σ2/2
)

, ∀λ ∈ R . (23)

A multivariate random variable x̃ : Ω→ R
d with a mean µ = E[x̃] is sub-Gaussian with a covariance factor Σ ∈ R

d×d

when (Vershynin, 2010; Jin et al., 2019)

E
[

exp
(

λwT(x̃− µ)
)]

≤ exp
(

λ2wT
Σw/2

)

, ∀λ ∈ R, ∀w ∈ ∆d . (24)

The Entropic Value at Risk (EVaR) is a risk measure related to VaR, defined as (Ahmadi-Javid, 2012)

EVaRα [x̃] = inf
β>0

β−1
(

E[exp(βx̃)]− log(1− α)
)

, ∀α ∈ [0, 1). (25)

The following lemma shows that EVaR is an upper bound on VaR. This is a property that will be useful in our proofs later

on.

Lemma A.1. For any random variable x̃ : Ω→ R, we have that

VaRα [x̃] ≤ EVaRα [x̃] , ∀α ∈ [0, 1).

Proof. This is a consequence of Proposition 3.2 in Ahmadi-Javid (2012) and the fact that CVaR upper bounds VaR.

Similar to (2) for VaR, we can show that for Gaussian random variables, x̃ ∼ N (µ, σ2), EVaR has the following analytical

form (Ahmadi-Javid, 2012):

EVaRα [x̃] = µ+ σ ·
√

−2 log(1− α). (26)

One advantage of EVaR over VaR is that we can bound it in the more general case of sub-Gaussian random variables by the

same bound as for a normal random variable in (26) (see the following lemma).

Lemma A.2. Let x̃ : Ω→ R be a sub-Gaussian random variable defined according to (23). Then, we have

EVaRα [x̃] ≤ µ+ σ ·
√

−2 log(1− α) , ∀α ∈ [0, 1) .

Proof. From the translation invariance of EVaR (Ahmadi-Javid, 2012, Theorem 3.1) and the definitions in (23) and (25), we

have

EVaRα [x̃] = µ+ EVaRα [x̃− µ] = µ+ inf
β>0

β−1 ·
(

E
[

exp
(

β · (x̃− µ)
)]

− log(1− α)
)

≤ µ+ inf
β>0

β−1 ·
(

β2σ2

2
− log(1− α)

)

= µ+ σ ·
√

−2 log(1− α) .

The last step follows by solving for the optimal β⋆ = σ−1
√

−2 log(1− α) from the first-order optimality conditions of the

convex objective function.

B. Proofs of Section 4

Proof of Lemma 4.2. We obtain by algebraic manipulation that

max
a∈A

r(a; θ̃D)− r(π; θ̃D) = max
a∈A

1
T

aΦ
Tθ̃D − πT

Φ
Tθ̃D = max

a∈A
1
T

a

(

Φ
Tθ̃D − 1πT

Φ
Tθ̃D

)

= max
a∈A

1
T

a

(

I − 1πT
)

Φ
Tθ̃D .

Let x̃π =
(

I − 1πT
)

Φ
Tθ̃D, which is a linear transformation of the normal random variable θ̃D. The result follows

because linear transformations preserve normality (Deisenroth et al., 2021).
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B.1. Proof of Theorem 4.3

We first report a result in the following lemma which we later use to prove Theorem 4.3.

Lemma B.1. Suppose x̃ : Ω → R
k is a random variable such that all α-quantiles, ∀α ∈ [0, 1), for each x̃a, a ∈ A are

unique. Then, the following inequality holds for each α ∈ [0, 1):

VaRα

[

max
a∈A

x̃a

]

≤ inf

{

max
a∈A

VaR1−ξa [x̃a] | ξ ∈ R
k
+, 1

Tξ = 1− α

}

.

We interpret the maximum of all −∞ as −∞.

Proof. The result develops as

VaRα

[

max
a∈A

x̃a

]

(a)
= sup

{

t ∈ R | P
[

max
a∈A

x̃a ≥ t

]

> 1− α

}

(b)

≤ sup

{

t ∈ R | P
[

max
a∈A

x̃a ≥ t

]

≥ 1− α

}

(c)

≤ sup

{

t ∈ R |
∑

a∈A

P [x̃a ≥ t] ≥ 1− α

}

(d)
= inf

{

sup

{

t ∈ R |
∑

a∈A

P [x̃a ≥ t] ≥
∑

a∈A

ξa

}

| ξ ∈ R
k
+,1

Tξ = 1− α

}

(e)

≤ inf

{

max
a∈A

sup {t ∈ R | P [x̃a ≥ t] ≥ ξa} | ξ ∈ R
k
+,1

Tξ = 1− α

}

(f)

≤ inf

{

max
a∈A

VaR1−ξa [x̃a] | ξ ∈ R
k
+,1

Tξ = 1− α

}

.

(a) is from the definition of VaR. (b) follows by relaxing the set by replacing the strict inequality with a non-strict one.

(c) follows by relaxing the constraint further using the union bound. (d) follows from algebraic manipulation because the

objective is constant in the choice of ξ. (e) holds by relaxing the sum constraints and then representing the supremum over a

union of sets by a maximum of the suprema of the sets as

sup

{

t ∈ R |
∑

a∈A

P [x̃a ≥ t] ≥
∑

a∈A

ξa

}

≤ sup {t ∈ R | P [x̃a ≥ t] ≥ ξa, ∃a ∈ A}

= max
a∈A

sup {t ∈ R | P [x̃a ≥ t] ≥ ξa} .

Finally, (f) follows from the definition of VaR and because then the quantiles are unique (Follmer & Schied, 2016)

VaR1−ξa [x̃a] = sup {t ∈ R | P [x̃a ≥ t] ≥ ξa} = sup {t ∈ R | P [x̃a ≥ t] > ξa} .

The first equality is the definition of the upper quantile q+ and the second equality is the definition of the lower quantile q−,

which are equal by the uniqueness assumption.

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. The first inequality in (10) follows from Lemma 4.2 and Lemma B.1 by some algebraic manipulation.

The second inequality in (10) follows from upper bounding the VaR of a Gaussian random variable using (2) and the fact

that x̃π
a is a Gaussian random variable with mean µT

Φ(1a − π) and standard deviation ∥Φ(1a − π)∥Σ.

The inequality z1−δξa ≤
√

2 log 1/δξa holds because for a standard normal random variable ỹ, we have that

z1−δξa = VaR1−δξa [ỹ]
(a)

≤ EVaR1−δξa [ỹ]
(b)
=

√

2 log(1/δξa) .

(a) follows from Lemma A.1 and (b) is by (26).
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B.2. Proof of Theorem 4.4

First, we prove a lower bound on the VaR of a single Gaussian random variable.

Lemma B.2. Suppose that x̃ ∼ N (0, 1) and α ≥ 1

2
. Then

VaRα [x̃] ≥ −1 +
√

1− log(
√
2π)− 2 log(1− α).

Proof. To establish this lower bound on VaR, we use the known bounds on the cumulative distribution function of a Gaussian

random variable as stated, for example, in eq. (13.1) in Lattimore & Szepesvari (2018). For any t ∈ R we have that

P [x̃ ≥ t] ≥
√
8π−1

2|t|+
√
4t2 + 16

exp

(

− t2

2

)

.

From the definition of VaR in (1b) we get that

VaRα [x̃] = sup {t ∈ R | P [x̃ ≥ t] > 1− α}
= sup {t ∈ R+ | P [x̃ ≥ t] > 1− α}

≥ sup

{

t ∈ R+ |
√
8π−1

2t+
√
4t2 + 16

exp

(

− t2

2

)

> 1− α

}

≥ sup

{

t ∈ R+ |
√
8π−1

4(t+ 1)
exp

(

− t2

2

)

> 1− α

}

.

Here, we restricted t to be non-negative, which does not impact the VaR value because for α ≥ 0.5 we have that

VaRα [x̃] ≥ 0. The first inequality is a lower bound that follows by tightening the feasible set in the supremum. The final

inequality follows since
√
4t2 + 16 ≤ 2t+ 4 from the triangle inequality.

Then, algebraic manipulation of the right-hand side above gives us that

VaRα [x̃] ≥ sup
{

t ∈ R+ | −t2 − 2t > 1 log(1− α) + 2 log
√
2π

}

.

Then, using the fact that the constraint is concave in t, we get the final lower bound on VaR by solving the quadratic

equation.

The following lemma bounds the VaR of a maximum of independent random variables. This is possible because the

maximum is the first order statistic which has an easy-to-represent CDF (David & Nagaraja, 2003).

Lemma B.3. Suppose that x̃i : Ω→ R, i = 1, . . . , n are i.i.d. random variables. Then

VaRα

[

max
i=1,...,n

x̃i

]

= VaRα1/n [x̃1] .

Proof. Recall i.i.d. random variables satisfy that

P

[

max
i=1,...,n

x̃i

]

=
∏

i=1,...,n

P [x̃i] = P [x̃1]
n
.

The result then follows from the definition of VaR in (1a) and from algebraic manipulation as

VaRα

[

max
i=1,...,n

x̃i

]

= inf

{

t ∈ R | P
[

max
i=1,...,n

x̃i > t

]

≤ 1− α

}

= inf

{

t ∈ R | P
[

max
i=1,...,n

x̃i ≤ t

]

≥ α

}

= inf {t ∈ R | P [x̃1 ≤ t]
n ≥ α} = inf

{

t ∈ R | P [x̃1 ≤ t] ≥ α
1/n

}

= VaRα1/n [x̃1] .
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Proof of Theorem 4.4. Define a restricted set of actionsA2 = A\{a1}. As in the remainder of the paper, we use α = 1− δ
to simplify the notation in this proof.

From the definition of regret in (5) and the monotonicity of VaR (Shapiro et al., 2014) we get that the regret of the π can be

lower bounded as the maximum regret compared only to actions in A2:

Rδ(π) = VaRα

[

max
a∈A

r(θ̃, a)− r(θ̃, a1)

]

≥ VaRα

[

max
a∈A2

r(θ̃, a)− r(θ̃, a1)

]

.

From the theorem’s assumptions, the random variables z̃a = r(θ̃, a)− r(θ̃, a1) for a ∈ A2 are independent and identically

distributed asN (µ2 − µ1, σ
2
2 + σ2

1) where σi = Σi,i for i = 1, . . . , k. Then, using the inequality above and Lemma B.3 we

get that

Rδ(π) = VaRα

[

max
a∈A2

r(θ̃, a)− r(θ̃, a1)

]

≥ VaR
1−α1/k [z̃]

= (µ2 − µ1) +
√

σ2
1 + σ2

2 ·VaR1−α1/k

[

z̃a2
− (µ2 − µ1)
√

σ2
1 + σ2

2

]

.

Here, we used the fact that VaR is positively homogenous and translation equivariant. The result follows by Lemma B.2

since the random variable inside of the VaR above is distributed as N (0, 1).

B.3. Proof of Theorem 4.5

This result follows from standard robust optimization techniques (see, for example, Gupta (2019); Petrik & Russel (2019)) as

well as bandit analysis. In fact, similar or perhaps almost identical analysis has been used to analyze the regret of FlatOPO

in Hong et al. (2023). We provide an independent proof for the sake of completeness.

The following two auxiliary lemmas are used to show that a robust optimization over a credible region can be used to upper

bound the VaR of any random variable. The first auxiliary lemma establishes a sufficient condition for a robust optimization

being an overestimate of VaR.

Lemma B.4. Suppose that we are given an ambiguity set P ⊆ X , a function g : X → R, and a random variable x̃ : Ω→ X .

If P ∩ Z ≠ ∅ for Z =
{

x ∈ X | g(x) ≥ VaRα [g(x̃)]
}

, then

VaRα [g(x̃)] ≤ sup
x∈P

g(x) .

Proof. By the hopothesis, there exists some x̂ ∈ P ∩ Z . Then, we have supx∈P g(x) ≥ g(x̂) ≥ VaRα [g(x̃)] that

concludes the proof, where the first inequality is by definition and the second one is from the definition of the set Z .

The second auxiliary lemma shows that a credible region is sufficient to upper bound VaR using a robust optimization

problem.

Lemma B.5. Suppose that we are given an ambiguity set P ⊆ X , a function g : X → R, and a random variable x̃ : Ω→ X .

Then, we have

P[x̃ ∈ P] ≥ α =⇒ VaRα [g(x̃)] ≤ sup
x∈P

g(x) .

Proof. Our proof is by contradiction using Lemma B.4. We start by assuming that P[x̃ ∈ P]. Define Z =
{

x ∈ X |
g(x) ≥ VaRα [g(x̃)]

}

as in Lemma B.4. From Lemma B.4, we know that if supx∈P g(x) ≥ VaRα [g(x̃)] is false, then

we should have P ∩ Z = ∅. By the definition of VaR, we have that P[x̃ ∈ Z] > 1− α. Then, we get a contradiction with

P ∩ Z = ∅ as follows

1 ≥ P[x̃ ∈ P ∪ Z] = P[x̃ ∈ P] + P[x̃ ∈ Z] > α+ 1− α > 1 .

The following lemma uses a standard technique for constructing a credible region for a multivariate normal distribution (Hong

et al., 2023; Gupta, 2019).
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Lemma B.6. Suppose that x̃ ∼ N (µ,Σ) is a multi-variate normal random variable with a mean µ ∈ R
d and a covariance

matrix Σ ∈ R
d×d. Then the set P ⊆ R

d, defined as

P =
{

x ∈ R
d | ∥x− µ∥2

Σ−1 ≤ χ2
d(α)

}

,

with χ2
d(α) being the α-quantile of the χ2

d distribution, satisfies that P[x̃ ∈ P] = α .

Proof. One can readily verify that Σ− 1
2 (x̃−µ) ∼ N (0, I) is a standard multivariate normal distribution. The norm of this

value is a sum of i.i.d. standard normal variables, and thus, is distributed according to the χ2
d distribution with d degrees of

freedom:
(

Σ
− 1

2 (x̃− µ)
)T (

Σ
− 1

2 (x̃− µ)
)

= ∥x̃− µ∥2
Σ−1 ∼ χ2

d .

Therefore, by algebraic manipulation and the definition of a quantile, we obtain that

P[x̃ ∈ P] = P
[

∥x̃− µ∥2
Σ−1 ≤ χ2

d(α)
]

= α .

Finally, the following lemma derives the optimal solution of a quadratic optimization problem that arises in the formulation.

Lemma B.7. The equality

max
p∈Rd

{

xTp | ∥p− p̂∥2C ≤ b, p ∈ R
k
}

= xTp̂+
√
b · ∥x∥C−1 (27)

holds for any given vectors x, p̂ ∈ R
d and a matrix C ∈ R

d×d that is positive definite: C ≻ 0.

Proof. From the convexity of the optimization problem in (27), we can construct the optimizer p⋆ using KKT conditions as

p⋆ = p̂+
√
b · ∥x∥C−1 ·C−1x .

The result then follows by substituting p⋆ into the maximization problem in the lemma.

We are now ready to prove the main theorem.

Proof of Theorem 4.5. We derive the bound in (12) using the robust representation of VaR (Ben-Tal et al., 2009). We first

construct the set Pδ ⊆ R
d as

Pδ =
{

θ ∈ R
d | ∥θ − µ∥2

Σ−1 ≤ χ2
d(1− δ)

}

. (28)

Using Lemma B.6 and the definition of Pδ in (28), we can see that Pδ is indeed a credible region:

P

[

θ̃ ∈ Pδ

]

= 1− δ .

Then, Lemma B.5 gives us the first inequality in (12):

Rδ(π) ≤ max
θ∈Pδ

max
a∈A

(r(a;θ)− r(π;θ)) .

The second inequality in (12) is a consequence of Lemma B.7 with x = Φ(1a − π), p̂ = µ, p = θ, C = Σ
−1, and

b =
√

χ2(1− δ).

Finally, the inequality
√

χ2
d(1− δ) ≤

√

5d log(1/δ) follows from Lemma 1 in Laurent & Massart (2000) as in the proof of

Lemma 3 in Hong et al. (2023).
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B.4. Proof of Proposition 4.6

Proof. The corollary is an immediate consequence of Theorems 4.3 and 4.5 and the construction of Algorithm 1. By

construction, π0 is the solution to

π0 ∈ arg min
π∈∆k

max
a∈A

µT
Φ(1a − π) + ∥Φ(1a − π)∥

Σ
· ν0a ,

where ν0a is defined in Algorithm 1. Therefore, using Theorems 4.3 and 4.5 to upper bound νa, we obtain

Rδ(π
0) ≤ min

π∈∆k

max
a∈A

µT
Φ(1a − π) + ∥Φ(1a − π)∥

Σ
·min

{

√

2 log(k/δ),
√

5d log(1/δ)
}

.

This proves the corollary when i⋆ = 0 in Algorithm 1. Then, using Theorem 4.3 with general ξ, we observe that the

algorithm selects i⋆ > 0 only when Rδ(π
i⋆) ≤ ρi

⋆ ≤ ρ0, which means that the corollary also holds.

C. Proofs of Section 5

C.1. Proof of Theorem 5.2

Proof. To prove the first claim of the theorem, let π̄ be a policy that minimizes the linear component of the regret:

π̄ ∈ arg min
π∈∆k

µT
Φ(1a − π) .

Note that the minimum above is upper-bounded by 0. Next we use Proposition 4.6 to bound the regret:

Rδ(π̂) ≤ min
π∈∆k

max
a∈A

µT
Φ(1a − π) + ∥Φ(1a − π)∥

Σn
·min

{

√

2 log(k/δ),
√

5d log(1/δ)
}

≤ max
a∈A

µT
Φ(1a − π̄) + ∥Φ(1a − π̄)∥

Σn
·min

{

√

2 log(k/δ),
√

5d log(1/δ)
}

≤ max
a∈A
∥Φ(1a − π̄)∥

Σn
·min

{

√

2 log(k/δ),
√

5d log(1/δ)
}

.

Now, we bound the term ∥Φ(1a − π̄)∥
Σn

. Recall that ∥π̄∥2 ≤ ∥π̄∥1 ≤ 1, since π̄ ∈ ∆k. Then, for each a ∈ A, we have

by algebraic manipulation that

∥Φ(1a − π̄)∥2
Σn

= (1a − π̄)TΦT
ΣnΦ(1a − π̄)

= 1
T

aΦ
T
ΣnΦ1a + π̄T

Φ
T
ΣnΦπ̄ − 2 · 1T

aΦ
T
ΣnΦπ̄

(a)

≤ 4max
a′∈A

1
T

a′Φ
T
ΣnΦ1a′ = 4max

a′∈A
φT

a′Σnφa′ .

(a) holds by the Cauchy-Schwartz inequality because

−1T

aΦ
T
ΣnΦπ̄ ≤ ∥Σ1/2

n Φ1a∥2∥Σ1/2
n Φπ̄∥2 ≤ max

a′∈A
∥Σ1/2

n Φ1a′∥22 .

The last inequality in the above equation is satisfied because ∥Σ1/2
n Φπ̄∥2 ≤ ∑

a′∈A π̄a′∥Σ1/2
n Φ1a′∥2 ≤

maxa′∈A ∥Σ
1/2
n Φ1a′∥2, which in turn follows by Jensen’s inequality from the convexity of the ℓ2-norm and the fact

that π̄ ∈ ∆k. The term π̄T
Φ

T
ΣnΦπ̄ is upper bounded by an analogous argument.

Now Assumption 5.1 implies the following for each a ∈ A:

Gn ⪰ γn · φaφ
T

a

Σ
−1
0 + σ̄−2Gn ⪰ Σ

−1
0 + σ̄−2 · γn · φaφ

T

a ≻ 0

(Σ−1
0 + σ̄−2Gn)

−1 ⪯ (Σ−1
0 + σ̄−2 · γn · φaφ

T

a )
−1

φT

a (Σ
−1
0 + σ̄−2Gn)

−1φa ≤ φT

a (Σ
−1
0 + σ̄−2 · γn · φaφ

T

a )
−1φa

φT

aΣnφa ≤ φT

a (Σ
−1
0 + σ̄−2 · γn · φaφ

T

a )
−1φa. (29)
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The second line holds because we assumed Σ0 ≻ 0, and thus, Σ−1
0 ≻ 0, and adding a positive definite matrix preserves

definiteness. The third line holds from the definiteness in the second line and Horn & Johnson (2013, corollary 7.7.4(a)).

Finally, the fourth line holds from the definition of positive semi-definiteness.

We continue by applying the Woodbury matrix identity to (29), which give us the following inequality for each a ∈ A:

φT

aΣnφa ≤ φT

a (Σ
−1
0 + σ̄−2 · γn · φaφ

T

a )
−1φa =

1

(φT
aΣ0φa)−1 + σ̄−2 · γn

≤ 1

λmax(Σ0)−1 + σ̄−2 · γn ,

where λmax computes the maximum eigenvalues of the matrix. The inequality above holds because

0 ≤ φT

aΣ0φa ≤ λmax(Σ0)∥φa∥,

which can be seen from the eigendecomposition of the symmetric matrix. Substituting the inequality above proves the

theorem.

To prove the special case of the theorem with µn = 0, let π0 be the solution in the first iteration of Algorithm 1. Given the

posterior distribution of θ̃D, the policy π0 is chosen as

π0 ∈ arg min
π∈∆k

max
a∈A

0
T
Φ(1a − π) + ∥Φ(1a − π)∥

Σ
· ν0a

= arg min
π∈∆k

max
a∈A

∥Φ(1a − π)∥
Σ
.

The square of this minimization problem can be formulated as a convex quadratic program

min
t∈R, π∈∆k

{

t | t ≥ ∥Σ1/2
n φa −Σ

1/2
Φπ∥2

2
, ∀a ∈ A

}

. (30)

Because Σ
1/2

Φπ ∈ R
d and is a convex combination of points in R

d, there exists an optimal π0 such that l =
|
{

a ∈ A | π0
a > 0

}

| ≤ d + 1 (Rockafellar & Wets, 2009). Then, let â ∈ argmaxa′∈A π0
a′ . We have that π0

â ≥ 1

l

because l actions are positive, and the constraint t ≥ ∥Σ1/2
n φa −Σ

1/2
Φπ∥2

2
is active (holds with equality). If the constraint

were not active, this would be a contradiction with the optimality of π0 because decreasing π0
â would reduce the objective.

Then, using the inequalities above and the triangle inequality, we get that the optimal t⋆ in (30) satisfies

√
t⋆ = ∥Σ1/2

n φâ −Σ
1/2

Φπ0∥
2
=

(

1− max
a′′∈A

π0
a′′

)

∥Σ1/2
n φâ −Σ

1/2
n φa′∥

2

≤
(

1− max
a′′∈A

π0
a′′

)

∥Σ1/2
n φâ −Σ

1/2
n φa′∥

2
≤ 2

(

1− max
a′′∈A

π0
a′′

)

∥Σ1/2
n φa′∥

2
.

The remainder of the proof follows from the same steps as the proof of Theorem 5.2. The lower bound on maxa′∈A π̂a′

holds from the existence of π0 with at most d+ 1 positive elements, as discussed above.

C.2. Proof of Theorem 5.3

Proof of Theorem 5.3. First, from the construction of Example 1, we have that

a1 ∈ argmin
a∈A

µa − β · σa = argmin
a∈A

β · σa − β · σa = A,

and therefore πLCB is the policy returned by LCB that breaks ties as specified. Then, using Theorem 4.4, we bound the

regret of LCB as

Rδ(πLCB) ≥ µa2
+ σa2

· κl(k − 1) = β · σa2
+ σa2

· κl(k − 1) = (β + κl(k − 1)) · σa2
.

In contrast, Greedy selects a2 deterministically since

a2 ∈ argmin
a∈A

µa = {a2, . . . , ak} .
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Then, using Theorem 4.3 and (11) in particular, we upper bound the regret of πG as

Rδ(πG) ≤ max
a∈A

µπG

a + σπG

a · κu(k)

= max
a∈{a2,...,ak}

µπG

a + σπG

a · κu(k)

= max
a∈{a2,...,ak}

√

σ2
a + σ2

a2
· κu(k)

= max
a∈{a2,...,ak}

√
2 · σa2

· κu(k).

The equalities follow from substituting the definitions of relative means and variances and from algebraic manipulation.

D. Sub-Gaussian Posterior

We discuss here how our results can extend to θ̃D with sub-Gaussian distributions. The modifications necessary are quite

minor. The key to the approach is to generalize Theorem 4.3 to a sub-Gaussian distribution as the following theorem states.

Theorem D.1. Suppose that θ̃D is a random variable with an atomless distribution that is sub-Gaussian with mean µ and

covariance factor Σ. Then the regret for each π ∈ ∆k satisfies that

Rδ(π) ≤ min
ξ∈∆k

max
a∈A

VaR1−δξa

[

r(a; θ̃D)− r(π; θ̃D)
]

≤ min
ξ∈∆k

max
a∈A

µT
Φ(1a − π) + ∥Φ(1a − π)∥

Σ
·
√

2 log(1/δξa).
(31)

Proof. The first inequality in (31) holds by Theorem 4.3 since this inequality does not require that the posterior is normal.

That is, we have that

Rδ(π) ≤ min
ξ∈∆k

max
a∈A

VaR1−δξa

[

r(a; θ̃D)− r(π; θ̃D)
]

= min
ξ∈∆k

max
a∈A

VaR1−δξa

[

(1a − π)TΦTθ̃D

]

≤ min
ξ∈∆k

max
a∈A

EVaR1−δξa

[

(1a − π)TΦTθ̃D

]

.

The last inequality follows from Lemma A.1. For each a ∈ A, the definition of a multi-variate sub-Gaussian random variable

in (24) with wT = (1a −π)TΦT implies that that (1a −π)TΦTθ̃D is sub-Gaussian with mean µ = (1a −π)TΦTµ and a

variance factor σ2 = (1a − π)TΦT
ΣΦ(1a − π). Therefore, from Lemma A.2 we have

min
ξ∈∆k

max
a∈A

EVaR1−δξa

[

(1a − π)TΦTθ̃D

]

≤ µT
Φ(1a − π) + ∥Φ(1a − π)∥

Σ
·
√

2 log(1/δξa) ,

which proves the result.

Theorem 4.5 can also be extended to the sub-Gaussian setting but seems to require an additional assumption that ∥θ̃−µ∥2
Σ−1

is a sub-gamma random variable, and we leave it for future work.

Armed with Theorem D.1, we can adapt Algorithm 1 to the sub-Gaussian setting simply by setting ν0a =
√

2 log(k/δ). Note

that (14) already uses the correct inequality for a sub-Gaussian distribution.

E. Other Objectives

We now briefly discuss two other related objectives as alternatives to minimizing the high-confidence Bayesian regret,

defined in (4) and (5). These objectives may be preferable in some settings because they can be solved optimally using

simple and tractable techniques.
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E.1. Expected Bayes Regret

The first objective we discuss is expected Bayes regret, which is obtained by simply replacing the VaR by expectation in (5).

In this case, the goal of the agent is to minimizes the expected regret, defined as

min
π∈∆k

E

[

max
a∈A

r(a; θ̃D)− r(π; θ̃D)

]

.

Using the linearity property of the expectation operator and the reward function r, we have

arg min
π∈∆k

E

[

max
a∈A

r(a; θ̃D)− r(π; θ̃D)

]

= arg max
π∈∆k

E

[

r(π; θ̃D)
]

= arg max
π∈∆k

r
(

π;E
[

θ̃D

])

.

This means it is sufficient to maximize the return for the mean posterior parameter value. In most case, such as when the

posterior over θ̃D is normal, this is an easy optimization problem to solve optimally.

E.2. High-confidence Return

The second objective we discuss is high-confidence return, which is obtained by simply replacing the regret with return

in (5). In this case, the goal of the agent is to minimizes the VaR of the return random variable as

min
π∈∆k

VaR1−δ

[

−r(π; θ̃D)
]

= min
π∈∆k

VaR1−δ

[

−πT
Φ

Tθ̃D)
]

. (32)

One may think of this objective as minimizing the regret with respect to 0. The reward inside is negated because we use VaR

which measures costs rather than rewards. Note that −VaR1−δ [−x̃] ≈ VaRδ [x̃] with an equality for atomless (continuous)

distributions.

When θ̃D ∼ N (µ,Σ), the optimization in (32) can be solved optimally using an LCB-style algorithm. Then, using the

properties of linear transformation of normal distributions, for each π ∈ ∆k, we obtain

πT
Φ

Tθ̃D ∼ N (πT
Φ

Tµ, πT
Φ

T
ΣΦπ) .

Combining the objective in (32) with (2), we get that the objective is

max
π∈∆k

πT
Φ

Tµ−
√
πTΦTΣΦπ · z1−δ . (33)

Recall that z1−δ is the 1 − δ-th quantile of the standard normal distribution. We can reformulate (33) as the following

second-order conic program (for δ ≤ 1/2)

maximize
π∈Rk, s∈R

πT
Φ

Tµ− z1−δ · s
subject to s2 ≤ πT

Φ
T
ΣΦπ,

1
Tπ = 1, π ≥ 0 .

When restricted to deterministic policies, the optimization in (33) reduces to a plain deterministic LCB algorithm. The

FlatOPO algorithm can be seen as an approximation of (33) in which z1−δ is replaced by its upper bound.

F. Additional Experimental Details

In this section, we provide some additional experimental results. First, Figures 5 and 6 report the same results as Figures 3

and 4 but also report the 95% confidence interval for the average regret over the 100 runs. Second, we report the effect

of the tightening step on the quality of the bounds in Figure 7 compared to a scenario-based estimation. In this simplified

example, we fix some policy π and assume the particular parameters of the distribution of x̃a = θ̃T

DΦ(1a − π), a ∈ A,

which is normal by Lemma 4.2. The results in the figure show that when the distribution x̃ is close to i.i.d. the tightening

step does not improve the bound. This is expected since the optimal ξ in (14) is nearly uniform. However, when the means

or variances of the x̃a vary across actions a ∈ A, then the tightening step can significantly reduce the error bound.
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