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Abstract

We study how to make decisions that minimize
Bayesian regret in offline linear bandits. Prior
work suggests that one must take actions with
maximum lower confidence bound (LCB) on their
reward. We argue that the reliance on LCB is in-
herently flawed in this setting and propose a new
algorithm that directly minimizes upper bounds
on the Bayesian regret using efficient conic op-
timization solvers. Our bounds build heavily on
new connections to monetary risk measures. Prov-
ing a matching lower bound, we show that our up-
per bounds are tight, and by minimizing them we
are guaranteed to outperform the LCB approach.
Our numerical results on synthetic domains con-
firm that our approach is superior to LCB.

1. Introduction

The problem of offline bandits is an important special case of
offline reinforcement learning (RL) in which the model con-
sists of a single state and involves no state transitions (Hong
et al., 2023). Offline RL, a challenging research problem
with a rich history, is inspired by the need to make reliable
decisions when learning from a logged dataset (Lange et al.,
2012; Rashidinejad et al., 2022). Practical problems from
recommendations to search to ranking can be modeled as
offline bandits; see, for example, Hong et al. (2023) and
references therein. Moreover, gaining a deeper theoretical
understanding of offline bandits is a vital stepping stone in
understanding the complete offline RL problem.

We study the problem of minimizing the Bayesian regret in
the offline linear bandit setting. Bayesian regret differs sub-
stantially from its frequentist counterpart. While frequentist
regret assumes a fixed true model and studies algorithms’
response to random datasets, Bayesian regret assumes a
fixed dataset and studies algorithms’ regret as a function of
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the true model. When provided with good priors, Bayesian
methods offer sufficiently tight bounds to achieve excellent
practical results (Lattimore & Szepesvari, 2018; Gelman
et al., 2014; Vaart, 2000). As such, the strengths of Bayesian
methods complement the scalability and simplicity of the
frequentist algorithms.

Most prior work on Bayesian offline RL and bandits has
adopted a form of pessimism that chooses actions with the
highest lower confidence bounds (LCBs). These LCB-style
algorithms compute a policy or action with the largest ex-
pected return (or reward), penalized by its uncertainty. The
uncertainty penalty is computed from credible regions de-
rived from the posterior distribution (Delage & Mannor,
2010; Hong et al., 2023; Brown et al., 2020; Javed et al.,
2021; Lobo et al., 2023), and often gives rise to some form
of robust optimization (Behzadian et al., 2021; Petrik &
Russel, 2019). LCB-style Bayesian algorithms are generally
inspired by the success of this approach in frequentist set-
tings, where LCB is typically computed from concentration
inequalities (Xie et al., 2021; Rashidinejad et al., 2022; Jin
et al., 2022; Ghosh et al., 2022; Cheng et al., 2022).

In this paper, we propose a Bayesian regret minimiza-
tion algorithm, called BRMOB, that takes a new approach to
Bayesian offline bandits. Instead of adopting an LCB-style
strategy, we directly minimize new regret upper bounds.
To derive these bounds, we reformulate the usual high-
confidence objective as a Value-at-Risk (VaR) of the epis-
temic uncertainty. Then, we bound the VaR by combining
techniques from robust optimization and Chernoff analysis.
Our bounds apply to both Gaussian and sub-Gaussian poste-
riors over the latent reward parameter. BRMOB minimizes the
regret bounds efficiently using convex conic solvers. Finally,
we also establish a matching lower bound that shows our
upper bounds are tight.

Compared with prior work in Bayesian offline bandits,
BRMOB achieves tighter theoretical guarantees and better em-
pirical performance. Two main innovations enable these
improvements. First, BRMOB computes randomized policies.
Our numerical results show that randomizing among actions
results in hedging that can significantly reduce regret com-
pared to deterministic policies. In contrast to BRMOB, most
existing algorithms in Bayesian offline bandits (Hong et al.,
2023) and Bayesian offline RL (Delage & Mannor, 2010;
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Petrik & Russel, 2019; Behzadian et al., 2021; Angelotti
et al., 2021) are restricted to deterministic policies. Sec-
ond, BRMOB is the only algorithm that explicitly minimizes
Bayesian regret bounds. As discussed above, existing algo-
rithms usually maximize the LCB on returns (Hong et al.,
2023; Uehara & Sun, 2023), which does not guarantee to
reduce Bayesian regret. Similarly, recent algorithms that
maximize the expected return (Steimle et al., 2021; Su &
Petrik, 2023) are also not known to reduce Bayesian regret.

We also study the general suitability of LCB algorithms
for minimizing Bayesian regret. While BRMOB signifi-
cantly outperforms a particular LCB algorithm known as
F1atOPO (Hong et al., 2023), the more critical question is
whether the general LCB approach is viable for Bayesian
regret minimization. Using our new regret lower bounds,
we answer this question negatively. More precisely, we
show that penalizing reward uncertainty, the core of all LCB
algorithms, is guaranteed to increase the algorithm’s regret
even in very simple problems. This is because actions with
high uncertainty may also have a high upside and avoiding
them increases regret. Therefore, we believe that explicit
regret minimization, as in BRMOB, is a more promising future
direction than LCB-style algorithms.

Bayesian regret minimization in offline bandits can also be
framed as a chance-constrained optimization problem (Ben-
Tal et al., 2009). The recent chance-constrained optimiza-
tion literature is mostly focused on constraints in which
the function is concave or linear in the uncertain param-
eter (Gupta, 2019; Bertsimas et al., 2021). However, the
chance constraint in the Bayesian regret minimization prob-
lem is convex, preventing us from using these methods.
Another non-concave chance-constrained optimization ap-
proach is to resort to scenario-based or sample-based meth-
ods (Calafiore & Campi, 2005; Nemirovski & Shapiro,
2006; Luedtke & Ahmed, 2008; Brown et al., 2020). We
briefly discuss these methods in Section 3.2. Such sample-
based formulations are general, simple to implement and
work well in practice. However, they scale poorly to large
problems, provide no theoretical insights, and struggle to
compute randomized policies. The closest result to our
work is the Bernstein technique for bounding linear chance-
constrained programs (Nemirovski & Shapiro, 2007; Pintér,
1989), which is a special case of one of our bounds.

The paper is organized as follows. After introducing our
notations and the popular risk-measure Value-at-Risk (VaR)
in Section 2, we formally define the problem of Bayesian
regret minimization in offline bandits and connect it to min-
imizing VaR in Section 3. In Section 4, we derive two new
upper bounds on the Bayesian regret and propose our main
algorithm, BRMOB, that is based on a simultaneous minimiza-
tion of these two regret bounds. We also prove a lower
bound on the regret that shows our upper bound is tight. In

Section 5, we first derive a regret bound for BRMOB in terms
of problem parameters and show that it compares favorably
with LCB-based algorithms. We then argue that the general
LCB approach is unsuitable for minimizing Bayesian regret.
Finally, in Section 6, we compare BRMOB’s performance with
three baseline algorithms on synthetic domains and show
that it is preferable to LCB-style algorithms.

2. Preliminaries

We begin by defining the notations we use throughout the
paper. We use lower and upper case bold letters to denote
vectors and matrices, such as & € RY and A € R**", and
normal font for the elements of vectors and matrices, e.g., z;.
We define the weighted £5-norm for any vector = € R and
positive definite matrix A € R™? as |z||a = VT Az.
We denote by Ay, Vk € N the k-dimensional probability
simplex, and by I, 0, 1, and 1, the identity matrix, the
zero vector, the one vector, and the one-hot vector all with
appropriate dimensions. Random variables are adorned with
a tilde and are not capitalized. For example, & represents a
vector-valued random variable. Finally, we denote by €2 the
probability space of a random variable.

Suppose that Z: {2 — R is a random variable that represents
costs. Then, its value-at-risk (VaR) at a risk-level o €
[0,1) is usually defined as the largest lower bound on its
a-quantile (e.g., Follmer & Schied 2016, definition 4.45,
and remark A.20):

VaR, [Z]| =inf{t e R|P[Z >¢] <1—a} (1a)
=sup{teR|P[z>¢|>1—-a}. (Ib)

The definition of VaR in the literature depends on whether
T represents costs or rewards (Hau et al., 2023). If x
represents rewards, maximizing — VaR,, [—Z] is equiva-
lent to minimizing VaR,, [Z]. For Gaussian random vari-
ables, ¥ ~ N(u,0?), VaR has the following analytical
form (Follmer & Schied, 2016):

VaR, [Z] = p+0- 24, 2)

where 2, is the a-quantile of N'(0,1).

3. Bayesian Offline Bandits

In this section, we first formally define the problem of
Bayesian regret minimization in offline bandits and con-
nect it to monetary risk measures. We then describe two
techniques that have been used in solving this problem.

3.1. Problem Definition

Consider a stochastic linear bandit problem with k£ € N arms
(actions) from the set A = {a1,...,a;}. Eacharma € A
is associated with a d-dimensional feature vector ¢, € R¢
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and its reward distribution has a mean r(a; 0) = ¢! for
some unknown parameter € R?. We define the feature
matrix ® € R4* as & = (¢,)ac.a. The goal of the agent
is to learn a (possibly randomized) policy 7 € Ay to choose
its actions accordingly. We denote by 7, the probability
according to which policy 7 selects an action a € A. The
mean reward, or value, of a policy 7 is defined as

r(mw;0) = E[r(a;0) | a~ =]

= Z g -17(a;0) =7 PO )
acA

An optimal policy 7v*(0) is one that maximizes (3).

In the offline bandit setting, the agent only has access to
a logged dataset D = {(a;, ;) }7,, and is not capable of
interacting further with the environment. Each pair (a;, §;)
in D consists of an action @, selected according to some
arbitrary logging policy and a sampled reward ¢; from the
reward distribution of action a;. We use D to refer to an
instantiation of the random dataset D.

We take the Bayesian perspective in this paper and model
our uncertainty about the reward parameter 6: Q — RY
by assuming it is a random variable with a known prior
Pj(0). Therefore, all quantities that depend on @ are also
random. The logged dataset D is used to derive the posterior
density Pél p(80) over the reward parameter. To streamline

the notation, we denote by 8p := (6 | D = D) the random
variable distributed according to this posterior distribution
P§| p- We discuss the derivation of the posterior in Section 5.

As described above, in the Bayesian offline bandit setting
we assume that the logged data D is fixed to some D and
the uncertainty is over the reward parameter 6. This is
different than the frequentist offline setting in which the
reward parameter is fixed, § = 6*, and the randomness is
over different datasets generated by the logging policy.

In the Bayesian offline bandit setting, our goal is to com-
pute a policy w € Ay, that minimizes the high-confidence
Bayesian regret Rs: A — R, defined as

Rs(7) := min € subject to

8 - 4
P max r(a;0p) —r(m;0p) <e| >1-4, @

where § € (0, %) is the small error tolerance parameter. We
also use & = 1 — ¢ to denote the confidence in the solution.

Note that (4) compares the value of a fixed policy w with
the reward of an action (max action) that depends on the
posterior random variable 6p. Thus, one cannot expect
to achieve a regret of zero. By taking a close look at the
definition of regret in (4) and using the definition of VaR

in (1a), we may equivalently write our objective in (4) as

Rs(mw) = VaRy_s max r(a;0p) —r(mw;0p)| . (5)

One could optimize other objectives besides the high-
confidence regret in (5). Other objectives, such as maxi-
mizing the VaR of the reward, are easier to solve and Ap-
pendix E discusses them in greater detail.

3.2. Baseline Algorithms

We now provide a brief description of two methods that
have been used to solve Bayesian offline bandits (defined
in Section 3.1) and closely related problems.

Lower Confidence Bound (LCB) Pessimism to the un-
certainty in the problem’s parameter is the most common
approach in offline decision-making problems, ranging from
offline RL (Uehara & Sun, 2023; Rashidinejad et al., 2022;
Xie et al., 2022), to robust RL (Petrik & Russel, 2019;
Behzadian et al., 2021; Lobo et al., 2020), and offline ban-
dits (Hong et al., 2023). In the case of offline bandits, this
approach is compellingly simple and is known as maximiz-
ing a lower confidence bound, or LCB. The general recipe
of the LCB algorithm for Gaussian and sub-Gaussian poste-
riors @p is to simply choose the action @ € A such that

ac arg max l5(a) = (ulqﬁa —B- \/¢Zzn¢u> , (6)

for some 3 > 0. The terms pu!d, and /P! X, ¢,
represent the posterior mean and standard deviation of
r(a,0p) = ¢lOp. The parameter 3 is typically chosen
to guarantee that £5(a) is a high-probability lower bound
on the return of action a € A:

P[eﬁ(a)gr(a,é[))} > 1-4.

The F1atOPO algorithm (Hong et al., 2023) is a particular
instance of the LCB approach to offline bandits that uses

B = /bdlog(1/s) for Gaussian posteriors. When § = 0,

we refer to an algorithm that implements (6) as Greedy.

Scenario-based Methods Another natural approach to
minimizing the Bayesian regret in offline bandits is to treat
the optimization in (4) as a chance-constrained optimiza-
tion problem. The most general algorithm to solve chance-
constrained optimization is to use scenario-based tech-
niques to minimize the regret R () (Calafiore & Campi,
2005; Nemirovski & Shapiro, 2006; Luedtke & Ahmed,
2008). A typical scenario-based algorithm first approxi-
mates @ with a discrete random variable g constructed by
sampling from its posterior Pél p(6), and then computes a
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deterministic policy by solving
in VaR;_ 1q) —r(a;q)| . 7
argmin VaR;_s \max7(a;§) —(a; ) M

The optimization in (7) can be solved by enumerating all
the actions and computing the VaR of the discrete random
variable within the brackets. The important question that
has been extensively studied here is the number of sam-
ples needed to obtain a solution with high confidence (Ne-
mirovski & Shapiro, 2007; 2006). The time complexity of
this algorithm is a function of the number of samples and
the desired confidence to guarantee a certain suboptimality
of the solution; we refer the interested reader to Nemirovski
& Shapiro (2007) for a detailed analysis discussion.

Despite the generality and simplicity of scenario-based
methods, they have several important drawbacks. They
require sampling from the posterior, with a sample com-
plexity that scales poorly with the dimension d, number of
actions k, and particularly confidence level 1 — §. They
do not provide theoretical guarantees for the regret of the
obtained policy and offer no insights into how the regret
scales with the parameters of the problem.

Finally, minimizing the regret in (5) over the space of
randomized policies is challenging using scenario-based
methods because it requires solving a mixed-integer linear
program (Lobo et al., 2020). Other ideas have been ex-
plored (Calafiore & Campi, 2005; Brown et al., 2020) but a
detailed study of such algorithms is beyond our scope.

4. Minimizing Analytical Regret Bounds

In this section, we propose our new approach for minimizing
the Bayesian regret, %5 (7), defined in (5). In particular, we
derive two upper bounds on 35 () that complement each
other depending on the relative sizes of the feature vector d
and action space k. We also prove a lower bound on 9is(7)
that shows our upper bound is tight. Finally, we propose our
BRMOB algorithm that aims at jointly minimizing our two
upper bounds. The proofs of this section are in Appendix B.

4.1. Bayesian Regret Bounds

To avoid unnecessary complexity, we assume in this section
that the posterior distribution over the reward parameter
is Gaussian. We show analogous results for the general
sub-Gaussian case in Appendix D.

Assumption 4.1. The posterior over the latent reward pa-
rameter is distributed as Op ~ N (p, X)), with mean p €
R? and a positive definite covariance matrix 3 € R%*¢,

We begin by showing that under Assumption 4.1, the regret
r(a;0p) — r(m;0p) of any policy w € A, with respect to
a € A has a Gaussian distribution.

Lemma 4.2. Suppose that Op ~ N(u, ). Then, for any
policy w € Ay, the Bayesian regret in (5) can be written as

Rs(m) = VaR;_s [gleaj( xa] , )

where T ~ N (uZ,oT) with

pr =p'®1e—m), of=[®1a-7)g. ©
Lemma 4.2 points to the main challenge in deriving tight
bounds on R;(7). Even when 6 is normally distributed,
the random variable max,c 4 27 is unlikely to be Gaussian.
The lack of normality prevents us from deriving an exact
analytical expression for fis(7) using (2). In the remainder
of the section, we derive two separate techniques for upper
bounding the VaR of the maximum of random variables
in (8), thereby also bounding the Bayesian regret Rs(7).

Our first bound expresses the overall regret as a maximum
over individual action regrets. We refer to it as an action-set
bound, because it grows with the size of the action space k,
and state it in Theorem 4.3.

Theorem 4.3. The regret for any policy w € Ay, satisfies

EF{ < 1 —+ -z 1021
6(7[ ) I'Illl'iC max f, T, 1-38&, ( )
< mi T +o” - +/2log(1/se,) 10b

n’llI}c IglaX Ha a g( / ) ( )

where z1_s¢, is the (1 — 0&,)-th standard normal quantile.

A special case of (10) is when € = 1/k - 1 is uniform, in
which case is simplifies to

Rs(mw) < max pr + ol y/2log(k/s) . (11)

This shows that the action-set bound in Theorem 4.3 grows
sub-logarithmically with the number of actions k.

Because the bound in Theorem 4.3 is based on a union
bound, the question of its tightness is particularly salient.
To address this, we prove a lower bound on the regret when
the arms are independent (e.g., multi-armed bandits).

Theorem 4.4. Suppose that @ € Ay is a deterministic
policy such that m,, = 1 for a1 € A without loss of gen-
erality. When py = ps = --- = pg, 3 is diagonal with
22’2 = 2313 =... Ek,k, and ® = 1, then

Rs(m) = pg, +oq, - wilk—1),

where

ki(k)=—-1+ \/1 — log(\/ﬂ) — 2log (1 —(1- 5)%)_

The lower bound in Theorem 4.4 indicates that Theo-
rem 4.3 is tight. For an ease of reference we use x, (k) =
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Figure 1. The quotient of the upper bound coefficient k., (k) and
the lower bound coefficient (k).

v/2log(k/d) to refer to the coefficient on the RHS of (11).
The main difference between the upper and lower bounds
are the coefficients k, (k) and k;(k — 1). One can readily
show that ky (k) € O(ki(k — 1)), since #u(L)/ki(1) < 10
when ¢ < 1/2 and #u(¥)/k,(k—1) is a non-increasing function
of k. Figure 1 depicts the quotient of the upper and lower
bound coefficients as a function of k for 6 = 0.1.

We now state our second upper bound on the regret in The-
orem 4.5. We refer to it as the parameter-space bound
because it grows with the dimension d of the parameter.

Theorem 4.5. The regret for any policy w € Ay, satisfies

Rs(m) < max pi 4ol /x3(1=6) (12a)
< max pun + o - bdlog(1/6), (12b)
ac

where x%(1 — 0) is the (1 — 8)-th quantile of the x? distri-
bution with d degrees of freedom.

Note that a growing body of literature argues that using
credible regions in constructing robust approximations of
VaR is overly conservative when used with linear or concave
functions (Gupta, 2019; Bertsimas et al., 2021; Petrik &
Russel, 2019). However, these results do not apply to our
setting because the maximum in (8) is non-concave.

To compare our two upper bounds in (10) and (12), it is suf-
ficient to compare the terms z1_s¢, and /x3(1 — §). From
Theorems 4.3 and 4.5, we can conclude that the second
upper bound is preferable when d < log k.

4.2. Optimization Algorithm

We now describe our main algorithm, Bayesian Regret Mini-
mization for Offline Bandits (BRMOB), whose pseudo-code is
reported in Algorithm 1. Before describing BRMOB in greater
detail, it is important to note that it returns a randomized
policy. Unlike in online bandits, here the goal of randomiza-
tion among the actions is not to explore, but rather to reduce
the risk of incurring high regret. The numerical results in

Section 6 show that the ability to randomize over actions
significantly reduces Bayesian regret in many situations.

BRMOB’s strategy is to compute a policy with the minimum
regret guarantee. In Line 2, it computes a policy 7° that
simultaneously minimizes our two proposed upper bounds:
the one in Theorem 4.3 with a uniform & as given in (11),
and the one in Theorem 4.5 as given in (12). The bounds
can be optimized jointly because they differ only in con-
stant v. The optimization in (13) is a second-order conic
program (SOCP), because v > 0 and can be solved very
efficiently (ApS, 2022; Lubin et al., 2023). The actual time
complexity depends on the particular SOCP solver used, but
most interior-point algorithms run in O(k%) complexity or
faster (Kitahara & Tsuchiya, 2018).

After completing Line 2, BRMOB proceeds with m iterations
of tightening the regret bound and improving the policy. In
each iteration 1, it tightens the regret bound in Theorem 4.3
by optimizing &% in (14) for the incumbent policy 7w~ 1. The
minimum in (14) can be computed efficiently using expo-
nential and second-order cones (ApS, 2022; Lubin et al.,
2023). Exponential conic optimization is hypothesized to
be polynomial time, but this fact has not been established
yet to the best of our knowledge. The algorithm then mini-
mizes the tightened bound by solving (13) and obtains an
improved policy 7.

The tightening steps in Algorithm 1 can be seen as a coor-
dinate descent procedure for joint minimization of 7 and
& in (10). It would be preferable to minimize the bound
simultaneously over 7 and &, but such optimization appears
to be intractable.

Finally, Algorithm 1 returns a policy in the set {m’}™
with the smallest regret bound p’ in Line 6. Although p’
will be generally non-increasing with an increasing ¢, this is
not guaranteed. This is because the tightening step in (14)
minimizes the bounds in (10b) and (12b). These bounds
are generally looser than the bounds in (10a) and (12a)
optimized by (13).

We provide a worst-case error bound on the regret of BRMOB
in Section 5. Our regret bound holds for any number of
tightening steps, including m = 0. We focus on bounds that
are independent of m for the sake of simplicity, since the
improvements that arise from the tightening procedure can
be difficult to quantify cleanly.

We conclude this section with the following result that shows
BRMOB indeed minimizes the regret upper bounds in Theo-
rems 4.3 and 4.5 as intended.

Proposition 4.6. Suppose that BRMOB returns a policy &t €
Ay and a regret bound p. Then

Rs(7) < p < mi 5 T(n)-n, (15
5() < p < min max pg(n) +og(n)-n, (15)
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Algorithm 1: BRMOB: Bayesian Regret Minimization for Offline Bandits

Input: Posterior parameters g and 3,
Initialize 0 < min{ x3(1—9), Zl_é/k} ,Vae A;

Minimize regret bounds: Let p’ and 7? be the optimizers of
L. T
minimize p 1'm=1,

subject to
T, SGRE_, pER

for i=1,...,m do
Tighten regret bounds: Let £¢ be an optimizer of

minimize
£, SER?_, LERF, peR

Set Vi + 21 sgis Va € Aj
| Solve (13) and let p* and 7" be its optimizers ;

i* + argmini_o,__m p' ;
return randomized policy 7%, regret upper bound p  ;

risk tolerance § € (0, 1/2),
1+ 0;

P>y +Sa vy Sa >

p subjectto 1T€=46, p> M(’;FI—I—UZ{i

feature matrix ® € RY*% # of iterations m

(6™)?, Va € A. (13)

“Sa, si > =2, g <log&,, Ya e A. (14)

// Choose policy with the best regret guarantee

where 1 = min{\/Q log(k/9d), \/5dlog(1/5)} .

5. Regret Analysis

In this section, we derive a regret bound for BRMOB and
compare it with that of F1atOPO (Hong et al., 2023), an
LCB-style algorithm. We use a frequentist analysis to bound
the Bayesian regret of BRMOB as a function of k, d, number
of samples n, and coverage of the dataset D. Section 5.3
concludes by arguing that the general LCB approach in (6) is
unsuitable for minimizing Bayesian regret; see Appendix E
for other objectives that can be optimized using LCB-style
algorithms. Our lower bound shows that LCB can match
BRMOB’s regret only if the confidence penalty [ is very small
and decreases with k and d. All the proofs of this section
are reported in Appendix C.

5.1. Sample-Based Regret Bound

As in prior work (Hong et al., 2023), we assume a Gaus-
sian prior distribution over the reward parameter P; =
N (po, Xo) with an invertible 3, and Gaussian rewards
g~ N(r(a 6) = (]515,62) for each action a € A.
As a result, the posterior distribution over the parame-
ter given a dataset D = {(a;,y;)}, is also Gaussian
6p ~ N (ptn, S, with

2, = (8 +57%G)Y

_ _ (16)
Hn = z:71(23[) 1“0 +0 2Bnyn)v

and where B,, = (¢,,)"_; is the matrix with observed fea-
tures in its columns, y, = (y;)7; is the vector of observed
rewards, and G,, = B,Tl B,, is the empirical covariance

matrix (see Bayesian linear regression for example in Ras-
mussen & Williams 2006; Deisenroth et al. 2021).

To express the regret bound as a function of the dataset D,
we make the following standard quality assumption.

Assumption 5.1. The feature vectors satisfy ||¢g]l2 <
1,Va € A, and there exists a y > 0 such that

G, = Y- ¢.p!, Vaec A, Vn>1.

Intuitively, Assumption 5.1 states that the dataset provides
sufficient information such that the norm of the covariance
matrix 32, of the posterior distribution over 0 p decreases
linearly with n. From a frequentist perspective, this assump-
tion holds with high probability by the Bernstein-Von-Mises
theorem under mild conditions (Vaart, 2000).

We are now ready to bound the Bayesian regret of BRMOB.
We state the bound for the general case and then tighten it
when p,, = 0 (only the variance of actions matters).
Theorem 5.2. Suppose that the parameter has a Gaussian
posterior Op ~ N (py,, 3,,) and BRMOB returns a policy
7. Then, the regret of BRMOB is bounded as Rs(7) < 2n,
where

= ¢ min {2log(t/s), bdlog(*/o)} )

)\max<20)_1 + 7”6_2

Moreover, if p, = 0 then Rs(7) < 2(1 — maxgrca fa) N
with maxg e A Trgr > 1/d+1.

5.2. Comparison with FlatOPO

We now compare the regret bound of BRMOB with that of
F1atOPO (Hong et al., 2023), an LCB-based algorithm for re-
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gret minimization in Bayesian offline bandits. As discussed
in Section 3.2, using the LCB principle is the most common
approach to regret minimization in offline decision-making.
Hong et al. (2023) derived the following regret bound for
F1atOPO under Assumption 5.1:

. 5d? log(1/s)
< 2 18
Palm) < \/Amax(Eo)—lJrﬁmo*’ (1%)

where 7 is a deterministic policy returned by the algorithm.

Comparing our regret bound for BRMOB in (17) with
F1atOPQ’s in (18), we notice two main improvements. The
first one is that the BRMOB’s regret is bounded by +/log k.
Thus, when the number of actions k satisfies k < exp(d),
the regret guarantee of BRMOB can be dramatically lower
than that achieved by F1atOPO. It is unclear how one could
extend the existing analysis in Hong et al. (2023) to bound
its regret in terms of k. Its design and analysis rely on a
robust set, which is difficult to restrict using k.

The second improvement is that the regret bound of BRMOB
grows \/d slower than F1atOPQ’s, which is a significant
reduction in regret. This improvement is probably a conse-
quence of our tighter analysis rather than better algorithmic
design. The analysis in Hong et al. (2023) uses a general
upper bound on the trace of a rank one matrix, which intro-
duces an unnecessary v/d term. Yet, applying our techniques
to F1atOPO yields additional constant terms missing in (18).

5.3. Limitation of LCB

In this section, we argue that the popular LCB approach
is inherently unsuitable for minimizing Bayesian regret in
offline bandits. As we discussed in Section 5.2, BRMOB
achieves significantly better regret guarantees than F1atOPO.
Our numerical results in Section 6 also show that BRMOB
outperforms FLatOPO. However, these results are obtained
for a particular value of 3 in (6). Our theoretical analysis
suggests that even a simple Greedy algorithm, which uses
B = 0 in (6), can significantly outperform LCB. The in-
tuition behind the LCB approach is that one should prefer
actions with low uncertainty, and thus, limited downside.
This intuition is correct when the goal is to maximize the
VaR of reward as shown in Appendix E.1. However, this
intuition does not apply when the objective is regret min-
imization. In fact, actions with low uncertainty also have
limited upside and high regret, and thus, as we show, penal-
izing high variance actions is counterproductive.

We now construct a simple class of offline bandit problems
to illustrate LCB’s limitations. For this class of problems,
we show that the lower bound on the regret of LCB can be
far greater than the upper bound on BRMOB, or even Greedy,
policy. In what follows, we assume that LCB computes the
high-confidence lower bound as in (6) for some value of .

B8*

1010 --- Boro

8

1005

1000 |
5 10 15 20

No. of actions: k

Figure 2. The value of § used by F1atOPO in Example 1, Sopo,
and the upper bound 8 that may avoid the under-performance of
LCB, defined in (22), as functions of the number of actions k.

Example 1. Consider a class of offline bandit problems
parametrized with the [ used in (6). The bandit has & > 2
arms, feature dimension d = k, and a feature matrix ® =
I. Suppose that the posterior covariance over the reward
parameter X € R¥*¥ ig diagonal with the diagonal elements
o1 =0and 09 = - -- = 0y, and the posterior mean has the
following form: py =0and o = -+ = pp = - 02 > 0.

The intuition underlying the bandit problems in Example 1
is as follows. It has one action, ay, with low reward and
low variance. The other k — 1 arms are i.i.d. with higher
mean and variance. LCB prefers to take action a; because
of its low variance and forgoing the higher mean of the
other actions. The next theorem shows that taking any of
the other actions with a higher mean, as would be chosen
by BRMOB, or even Greedy that selects an action with the
largest posterior mean, leads to a far lower regret.

Theorem 5.3. Consider the bandit problems in Example 1
and assume a realization of LCB with a coefficient 3 > 0
that breaks ties by choosing an a; with the smallest i. Then,
LCB returns w,cp € A with wreg(ar) = 1 and

Rs(mres) > (B+ki(k)) - 0q,- (19)

Moreover, Greedy with the same tie-breaks will return a
policy wg € Ay with wg(az) = 1 and

Rs(mq) < V204, - ku(k). (20)
Finally, BRMOB’s regret also satisfies the bound in (20).

Theorem 5.3 shows that even in a simple class of problems,
Greedy (or BRMOB) computes a policy that outperforms LCB
significantly. The increase in regret of LCB versus Greedy
(or BRMOB) can be bounded from below as

Rs(mLes) —NRs(ma) > (,34—/-@1(]@)—\/5/111(@) Tay- (21)

Note that the bound, when positive, can be made arbitrarily
large by scaling o,

Using algebraic manipulation of the bound in (21), we can
show that 8 should satisfy the following condition for LCB
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Figure 3. Bayesian regret with k = d = 5 (left), k = d = 50 (middle and right). The prior mean is po = O (left and middle) and

(o0)a = v/a fora =1,...50 (right).
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Figure 4. Bayesian regret with d = 4 and k = 10 (left), k = 50 (middle), and k = 100 (right).

to perform better than Greedy and BRMOB:

* \/iﬁu(k)

pp =Gy b (22)
The inequality in (22) indicates that penalizing an action’s
uncertainty with a S greater than 8* increases the regret
of LCB. For comparison, the 5 used by F1atOPO for the
class of problems in Example 1 in which d = k is Sopo =
v/bklog(1/s). Figure 2 shows that for 6 = 0.1, Sopo
exceeds 5*, and thus, violates the condition in (22) and
performs worse than Greedy and BRMOB for all values of k.

6. Numerical Results

In this section, we compare BRMOB to several baselines on
synthetic domains. Here, we evaluate the basic version
of BRMOB with m = 0 iterations and defer results that
demonstrate the improvement from the tightening step to Ap-
pendix F. Particularly, we compare it to (i) FlatOPO (Hong
et al., 2023) that is based on the LCB principle, (ii) Greedy
method which selects an action a with the largest value of
la, and finally, (iii) Scenario, the scenario-based method
described in (7) in Section 3.2. We execute Scenario with
4000 samples from the posterior. Increasing this number
did not improve our results.

Our experiments use synthetic domains, each defined by a
normal prior (o, I) and a feature matrix ®. To evaluate
the Bayesian regret as a function of data size n, we first
sample a single large dataset and then vary the number of
data points n from this set used to estimate the posterior

distributions. The regret for each policy is computed by a
scenario-based algorithm that samples from the posterior
and computes the empirical VaR. We use the error tolerance
of 9 = 0.1 throughout. Results are averaged over 100 runs
of this process to reduce variance. As confidence intervals
were negligible for all algorithms except F1atOPO, to avoid
clutter, we do not plot them here and refer the reader to
Appendix F for additional details.

We evaluate the algorithms on three domains. The first
one uses k = d actions, an identity feature matrix ® = I,
and zero prior mean gy = 0. The second one is the same,
except (p0)q = v/a to simulate varying rewards for actions.
Finally, the third one fixes dimension d = 4 and varies k
while using randomly generated features from the /.-ball.

Figures 3 and 4 summarize our numerical results. They con-
sistently show across all domains that BRMOB significantly
outperforms all the other algorithms, particularly when the
posterior uncertainty is large. The only challenging setting
for BRMOB is when & > d. Note that F1atOPOQ’s perfor-
mance is noisy in Figure 3 because its 8 coefficient grows
fast with d. A common practice is to tune (3, but we did not
find any value of /3 for which F1atOPO performs better than
Greedy, which is consistent with our theoretical analysis in
Section 5.3. It is also notable that Greedy outperforms LCB
significantly, furnishing further evidence that LCB is unsuit-
able for minimizing regret. We provide additional results,
including confidence bounds and runtime, in Appendix F.
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7. Conclusion

We proposed BRMOB, a new approach for Bayesian regret
minimization in offline bandits, that is based on jointly min-
imizing two analytical upper bounds on the Bayesian regret.
We proved a regret bound for BRMOB and showed that it
compares favorably with an existing LCB-style algorithm
F1atOPO (Hong et al., 2023). Finally, we showed theoret-
ically and empirically that the popular LCB approach is
unsuitable for minimizing Bayesian regret.

Our approach can be extended to several more general set-
tings. The algorithm and bounds can generalize to sub-
Gaussian posterior distributions as described in Appendix D.
The algorithm can also be extended to contextual linear
bandits by computing a separate policy 7 for each context
individually or by assuming a random context. Another
important future direction is understanding the implications
of our results to frequentist settings where similar concerns
about the value of the LCB approach have been raised (Xie
et al., 2022; Xiao et al., 2021).
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A. Technical Background and Lemmas

A scalar random variable 7: Q2 — R with mean y = E[Z] is sub-Gaussian with a variance factor o > 0 when
Elexp (M@ — p))] < exp(A\?0?/2), VAER. (23)

A multivariate random variable Z: ) — R? with a mean pu = E[&] is sub-Gaussian with a covariance factor ¥ € R¢*4
when (Vershynin, 2010; Jin et al., 2019)

Elexp(Mw' (2 — p))] < exp (Nw'Zw/2), VAER, Vw e A,. 24)
The Entropic Value at Risk (EVaR) is a risk measure related to VaR, defined as (Ahmadi-Javid, 2012)
EVaRq [#] = inf 57! (Elexp(57)] —log(1 =), Va €[0,1). (25)

The following lemma shows that EVaR is an upper bound on VaR. This is a property that will be useful in our proofs later
on.

Lemma A.1. For any random variable T : ) — R, we have that

VaR,, [Z] < EVaR, [7], Va € 10,1).
Proof. This is a consequence of Proposition 3.2 in Ahmadi-Javid (2012) and the fact that CVaR upper bounds VaR. O

Similar to (2) for VaR, we can show that for Gaussian random variables, Z ~ N (u1, o), EVaR has the following analytical

form (Ahmadi-Javid, 2012):
EVaR, [Z] = p+o0-+y/—2log(1 — ). (26)

One advantage of EVaR over VaR is that we can bound it in the more general case of sub-Gaussian random variables by the
same bound as for a normal random variable in (26) (see the following lemma).

Lemma A.2. Let Z: Q) — R be a sub-Gaussian random variable defined according to (23). Then, we have
EVaR, [Z] < pu+o0-+4/—2log(l —a), Va €10,1) .

Proof. From the translation invariance of EVaR (Ahmadi-Javid, 2012, Theorem 3.1) and the definitions in (23) and (25), we
have

EVaRq [#] =y + EVaRa [# — ] = i+ fnf 57 (E [exp (8- (7 — p))] —log(1 — a))
< M+}32f0 gt (/62202 —log(1 — a)> =pu+o-+y/—2log(l—a).

The last step follows by solving for the optimal 3* = o~1,/—21og(1 — «) from the first-order optimality conditions of the
convex objective function. O

B. Proofs of Section 4

Proof of Lemma 4.2. We obtain by algebraic manipulation that

100) = 7(m:6p) = max 11876p — w86 = max 1] (270 — 177976 )
max r(a;0p) — r(m;0p) max 1, p—T p=max 1, p— 1w D

= max 17 (I-17")®@"6p.

Let 2™ = (I — 171'T) 70 p, which is a linear transformation of the normal random variable éD. The result follows
because linear transformations preserve normality (Deisenroth et al., 2021). O

11
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B.1. Proof of Theorem 4.3

We first report a result in the following lemma which we later use to prove Theorem 4.3.

Lemma B.1. Suppose &: Q — R¥ is a random variable such that all a-quantiles, Yo € [0, 1), for each %,,a € A are
unique. Then, the following inequality holds for each o € [0, 1):

VaR, |:I;lea(ja:| < inf {I;lea}Vanga [#.) | € €RE, 1Te =1~ a} .
We interpret the maximum of all —oo as —oo.

Proof. The result develops as

VaR, [maxxa} = sup t€R|IP[maxxa>t] >1—a}

©
<supqt€R| E ]P’acazt]>1—a}
acA

(b)
<sup{t€R|P[maxma2t} 21—04}

acA acA

(e)
< inf maxsup{teR|]P’[xa>t] > &) EeRE 1T£:1—a}

mf{sup{t6R|Zan2t Zfa}|§eRi,1T5:1—a}

< inf {maXVaRl e, [Ba) | €E€RE1TE =1~ a} .

(a) is from the definition of VaR. (b) follows by relaxing the set by replacing the strict inequality with a non-strict one.
(c) follows by relaxing the constraint further using the union bound. (d) follows from algebraic manipulation because the
objective is constant in the choice of €. (e) holds by relaxing the sum constraints and then representing the supremum over a
union of sets by a maximum of the suprema of the sets as

sup{t€R| > Plia >t > Zga} <sup{t €R|P[Z, >t] > &, Ja € A}
acA acA
zmeaj(sup{teRHP’[i“a >t > &}

Finally, (f) follows from the definition of VaR and because then the quantiles are unique (Follmer & Schied, 2016)
VaRi_¢, [Za] =sup{t e R |P[Z, > ] > &} =sup{t e R |P[Z, > t] > &} -

The first equality is the definition of the upper quantile g% and the second equality is the definition of the lower quantile g,
which are equal by the uniqueness assumption. O

We are now ready to prove Theorem 4.3.
Proof of Theorem 4.3. The first inequality in (10) follows from Lemma 4.2 and Lemma B.1 by some algebraic manipulation.

The second inequality in (10) follows from upper bounding the VaR of a Gaussian random variable using (2) and the fact
that 7 is a Gaussian random variable with mean pu" ®(1, — 7r) and standard deviation | ®(1, — 7)||x.

The inequality z1_s¢, < 1/2log /s, holds because for a standard normal random variable ¢, we have that

(a)
21_se, = VaRi_ge, [§] < EVaRi_se, [7] 2 v/2log(1/6€,) .

(a) follows from Lemma A.1 and (b) is by (26). O

12
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B.2. Proof of Theorem 4.4

First, we prove a lower bound on the VaR of a single Gaussian random variable.

Lemma B.2. Suppose that & ~ N(0,1) and oo > 5. Then

VaR, [7] > -1+ \/1 — log(v/27) — 2log(1 — a).

Proof. To establish this lower bound on VaR, we use the known bounds on the cumulative distribution function of a Gaussian
random variable as stated, for example, in eq. (13.1) in Lattimore & Szepesvari (2018). For any £ € R we have that

—1 t2
P>t > — Vo0 V&Texp(>.
2|t] + V4t? + 16 2
From the definition of VaR in (1b) we get that

VaRy [Z] =sup{t e R|P[Z >¢t] > 1—a}
=sup{teRy |P[Z>¢t]>1—-a}

S e R V8r—1 t? 1
>supst € +|mexp —5)>1-a

V8r—1 t2
> teRy | —— —— 1-— .
_sup{ € +|4(t+1)exp( 2>> «

Here, we restricted ¢ to be non-negative, which does not impact the VaR value because for o > 0.5 we have that
VaR,, [#] > 0. The first inequality is a lower bound that follows by tightening the feasible set in the supremum. The final
inequality follows since v/4t2 + 16 < 2t + 4 from the triangle inequality.

Then, algebraic manipulation of the right-hand side above gives us that
VaR,, [Z] > sup {t ER, | —t* —2t > 1log(1 — a) + 2log \/2#} .

Then, using the fact that the constraint is concave in ¢, we get the final lower bound on VaR by solving the quadratic
equation. O

The following lemma bounds the VaR of a maximum of independent random variables. This is possible because the
maximum is the first order statistic which has an easy-to-represent CDF (David & Nagaraja, 2003).

Lemma B.3. Suppose that &;: QO — R,i =1,...,n are i.i.d. random variables. Then

VaR, |:i max i‘z:| = VaRa1/n [531] .

=1,...,n

Proof. Recall i.i.d. random variables satisfy that

P | o | =

i=1,...,n

H IP .Z‘l]n .

= I
The result then follows from the definition of VaR in (1a) and from algebraic manipulation as
VaR, {nllax L} inf{tERP[_nllaX ii>t} gla}inf{tERHP’{ nllax xlgt} Za}

:inf{teRHP’[;%lgt]”ZQ}:inf{teRHF’[:%lgt]Za ”}:VaRal/n [#1] .

13
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Proof of Theorem 4.4. Define a restricted set of actions Az = A\ {a;}. As in the remainder of the paper, weuse « = 1 — ¢
to simplify the notation in this proof.

From the definition of regret in (5) and the monotonicity of VaR (Shapiro et al., 2014) we get that the regret of the 7 can be
lower bounded as the maximum regret compared only to actions in As:

Rs(m) = VaR, [maj‘( r(8,a) — (6, al)} > VaR, {max r(0,a) — (8, a,)
ac

acAs

From the theorem’s assumptions, the random variables Z, = (8, a) — r(6, a,) for a € Aj are independent and identically
distributed as N (po — p11, 0% + 07) where 0; = 3, ; fori = 1,..., k. Then, using the inequality above and Lemma B.3 we
get that

Rs(m) = VaR, [max r(0,a) — 7"(97a1):| > VaR,_ x [Z]

ac Az

S — (12 —
= (p2 — p1) + /o7 + 03 - VaR,_ 1 [z(mul)] ,

\/0% —1—03

Here, we used the fact that VaR is positively homogenous and translation equivariant. The result follows by Lemma B.2
since the random variable inside of the VaR above is distributed as N'(0, 1). O

B.3. Proof of Theorem 4.5

This result follows from standard robust optimization techniques (see, for example, Gupta (2019); Petrik & Russel (2019)) as
well as bandit analysis. In fact, similar or perhaps almost identical analysis has been used to analyze the regret of F1atOPO
in Hong et al. (2023). We provide an independent proof for the sake of completeness.

The following two auxiliary lemmas are used to show that a robust optimization over a credible region can be used to upper
bound the VaR of any random variable. The first auxiliary lemma establishes a sufficient condition for a robust optimization
being an overestimate of VaR.

Lemma B.4. Suppose that we are given an ambiguity set P C X, a function g: X — R, and a random variable & : Q) — X.
IfPNZ#0for Z2={x e X|g(x) > VaR, [g(&)] } then

VaR, [g(2)] < sup g(z).
xeP

Proof. By the hopothesis, there exists some & € P N Z. Then, we have sup,cp g(x) > g(&) > VaR, [g(Z)] that
concludes the proof, where the first inequality is by definition and the second one is from the definition of the set Z. [

The second auxiliary lemma shows that a credible region is sufficient to upper bound VaR using a robust optimization
problem.

Lemma B.5. Suppose that we are given an ambiguity set P C X, a function g: X — R, and a random variable & : () — X.
Then, we have

Pz eP] >« = VaR,, [g(Z)] < stelgg(m) :

Proof. Our proof is by contradiction using Lemma B.4. We start by assuming that P[Z € P]. Define Z = { T e X |
g(x) > VaR, [g(€)] } as in Lemma B.4. From Lemma B.4, we know that if sup,p g(x) > VaR, [g(Z)] is false, then
we should have P N Z = (). By the definition of VaR, we have that P[Z € Z] > 1 — a. Then, we get a contradiction with
PN Z = () as follows

1>PlzePUZ]=PlZeP]+P[xecZ]l>a+1—-a>1.

O

The following lemma uses a standard technique for constructing a credible region for a multivariate normal distribution (Hong
et al., 2023; Gupta, 2019).
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Lemma B.6. Suppose that & ~ N (u, ) is a multi-variate normal random variable with a mean p € R and a covariance
matrix ¥ € R4%?, Then the set P C R%, defined as

P={zeR’| |z pl5- <xi(a)},
with x%(«) being the a-quantile of the x? distribution, satisfies that P[Z € P] = «.
Proof. One can readily verify that ¥ (2 — p) ~ N(0,I) is a standard multivariate normal distribution. The norm of this

value is a sum of i.i.d. standard normal variables, and thus, is distributed according to the Xﬁ distribution with d degrees of
freedom:

T
(= t@-w) (TH@E-w) =12 - ulk ~ 3
Therefore, by algebraic manipulation and the definition of a quantile, we obtain that
PlE € P =P[5 ul} < x3@)] =a.
O

Finally, the following lemma derives the optimal solution of a quadratic optimization problem that arises in the formulation.

Lemma B.7. The equality
max {«™p | [p—~ pll < b, p € R} = 2Tp+ V- [@cs @7)
p

holds for any given vectors z,p € R? and a matrix C € R**¢ that is positive definite: C > 0.

Proof. From the convexity of the optimization problem in (27), we can construct the optimizer p* using KKT conditions as
p*=p+Vb-||z|c-1-C .

The result then follows by substituting p* into the maximization problem in the lemma. O
We are now ready to prove the main theorem.

Proof of Theorem 4.5. We derive the bound in (12) using the robust representation of VaR (Ben-Tal et al., 2009). We first
construct the set Ps C R? as

Ps = {0 R[]0 —pf5-1 <xi(1-9)} - (28)
Using Lemma B.6 and the definition of P; in (28), we can see that Py is indeed a credible region:
P[éeﬂ;} —1-54.
Then, Lemma B.5 gives us the first inequality in (12):

< ; — ; .
Rs(m) < IaX max (r(a;0) —r(m;0))

The second inequality in (12) is a consequence of Lemma B.7 withx = ®(1, —«w),p = u,p = 0, C = >-1 and
b=+/x2(1-9).

Finally, the inequality \/x%(1 — &) < /5dlog(1/6) follows from Lemma 1 in Laurent & Massart (2000) as in the proof of
Lemma 3 in Hong et al. (2023). O
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B.4. Proof of Proposition 4.6

Proof. The corollary is an immediate consequence of Theorems 4.3 and 4.5 and the construction of Algorithm 1. By
construction, 7° is the solution to

0 . T 0
" € arg min max p' (Lo —7) + [8(1e — 7)ll5 - v,

where /0 is defined in Algorithm 1. Therefore, using Theorems 4.3 and 4.5 to upper bound v,, we obtain

P (n) < min max w7 (L, — ) + | (L, — )| min { /210g(k/3), /5d1og(1/9) |

This proves the corollary when i* = 0 in Algorithm 1. Then, using Theorem 4.3 with general £, we observe that the
algorithm selects * > 0 only when Rs(7"") < p*" < p°, which means that the corollary also holds. O
C. Proofs of Section 5
C.1. Proof of Theorem 5.2

Proof. To prove the first claim of the theorem, let 7 be a policy that minimizes the linear component of the regret:

7 € arg min p'®(1, — 7).

TEA

Note that the minimum above is upper-bounded by 0. Next we use Proposition 4.6 to bound the regret:

P () < min max pTB(Ly — ) + [B(1e — )|y, - min {/210g(73), V/5dlog(5) |

< max p1TB(1, — ) + @ (1, — 7) |, - min { v/2log(H5), /5 log(1/5)}

< max | (1, — )|y, - min { \/21og (5, v/5dlog(1/5) }

Now, we bound the term ||®(1, — )||5; . Recall that [|[7|[2 < ||[7[[1 < 1, since @ € Ay. Then, for each a € A, we have
by algebraic manipulation that

[®(1a — )3, = (Lo—7) @7, &(1, —7)

17’01, +7'@'y, 87 -2-1/8"y, &7

INE

4max 1], @S, 1, = 4max ol 2, 0. .
a’'€A a’'€A
(a) holds by the Cauchy-Schwartz inequality because

—1787S, d7 < ||Z/2®1,|.||Z @7, < maﬁuzj{%blalng.
a’'e

The last inequality in the above equation is satisfied because ||E:{2‘I'7_r||2 < YaeaTa HE;/z‘I"la/ o <
maXg/ e A ||Eib/ *®1,/||2, which in turn follows by Jensen’s inequality from the convexity of the ¢;-norm and the fact
that ¥ € A. The term 7' ® "X, &7 is upper bounded by an analogous argument.

Now Assumption 5.1 implies the following for each a € A:

G, = - bady
S0P 4G, = Byt 4+ e ?oyn-gady = 0
(B 452G 2 (B Ha P mgag,) !
Gy (' +07°Gn) T < LS 5 dadd)) B
OITnde < GI(EF T2 n- Pady) L ba. (29)
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The second line holds because we assumed X >~ 0, and thus, 3 !~ 0, and adding a positive definite matrix preserves
definiteness. The third line holds from the definiteness in the second line and Horn & Johnson (2013, corollary 7.7.4(a)).
Finally, the fourth line holds from the definition of positive semi-definiteness.

We continue by applying the Woodbury matrix identity to (29), which give us the following inequality for each a € A:

1
(i Zoa)~" +07%-yn

O Tnde < OISy 402 An-dad)) by =
1
)\max(EO)_l + g2 mn ,

where A\ ax computes the maximum eigenvalues of the matrix. The inequality above holds because

0 S ¢IEO¢LL S )\IIIaX(EO)H(ﬁ(L”?

which can be seen from the eigendecomposition of the symmetric matrix. Substituting the inequality above proves the
theorem.

To prove the special case of the theorem with p,, = 0, let 70 be the solution in the first iteration of Algorithm 1. Given the
posterior distribution of @p, the policy 7 is chosen as

0 : T T 0
e 0'®(1, —m)+ ||P(1, — :
arg;relglk Eaeaj( (14 )+ [[®(1, s - va

= arg min max [|2(L, — )|z -

The square of this minimization problem can be formulated as a convex quadratic program

. > V2 o /2 2 } ’
N {t [t > || 22, — X787, ,Vac A (30)

Because X7/°®7w € R and is a convex combination of points in R, there exists an optimal 7w° such that [ =

|[{a€ A|7x)>0}| < d+ 1 (Rockafellar & Wets, 2009). Then, let @ € argmaxqcamy,. We have that 7J > 1

because [ actions are positive, and the constraint ¢ > || 2:1/ ‘o — BV 2‘I>71'||§ is active (holds with equality). If the constraint
were not active, this would be a contradiction with the optimality of ¥ because decreasing 79 would reduce the objective.
Then, using the inequalities above and the triangle inequality, we get that the optimal ¢* in (30) satisfies

Vs = |22 ¢, — V2 @x0|, = (1 - ma}ng/) =20 — =2l
a’’e

< (1 — max wg”> 122 — 2|, < 2 (1 — max 7r2,,> 122 bar |-
a”’eA a’’€e A

The remainder of the proof follows from the same steps as the proof of Theorem 5.2. The lower bound on max,/ ¢ 4 7o/
holds from the existence of 7° with at most d + 1 positive elements, as discussed above. O

C.2. Proof of Theorem 5.3
Proof of Theorem 5.3. First, from the construction of Example 1, we have that
a1 €argminpu, — B3 -0, =argminf-o, — -0, = A,
acA acA

and therefore 7r1,cp is the policy returned by LCB that breaks ties as specified. Then, using Theorem 4.4, we bound the
regret of LCB as

Rs(TLeB) > fay + 0ay - KI(k—1) =04, + 04, - ki(k—1) = (B+ ki(k — 1)) - 04,.
In contrast, Greedy selects ay deterministically since

ag € argmin g = {ag,...,ax}.
acA
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Then, using Theorem 4.3 and (11) in particular, we upper bound the regret of g as

Rs(ma) < maxpg® +oge - kulk)
ac

= max p;¢+05% - ku(k)
a€{az,...,ar}

= max 1/oZ+02 -ku(k)
ac{az,...,ar}

= max V204, - ku(k).

ac{az,...,ar}

The equalities follow from substituting the definitions of relative means and variances and from algebraic manipulation. [J

D. Sub-Gaussian Posterior

We discuss here how our results can extend to 6, with sub-Gaussian distributions. The modifications necessary are quite
minor. The key to the approach is to generalize Theorem 4.3 to a sub-Gaussian distribution as the following theorem states.

Theorem D.1. Suppose that 0p is a random variable with an atomless distribution that is sub-Gaussian with mean n and
covariance factor 3. Then the regret for each ™ € Ay, satisfies that

9%7r<'aVaR_[;éf7r;é}
s(m) < Ioin max 1-s¢, |7(a;0p) —7(m;0p) an
< auin max pTR(L, — )+ [ @(1, — )| - v/21og(Voe).
€Ak a

Proof. The first inequality in (31) holds by Theorem 4.3 since this inequality does not require that the posterior is normal.
That is, we have that

Rs(mw) < i VaR_ [ ;é - 7‘55 }
6( ) srglrtr;leax aRi_se, r(a D) 7”( D)
= i VaR;_ [la*ﬂ'T‘I’Té}
glgni raneax an—s¢, ( ) D
< i EV _ [ 1, —7)T®TH } .
E%ur}c gleax aRi_s¢, (1, ) D

The last inequality follows from Lemma A.1. For each a € A, the definition of a multi-variate sub-Gaussian random variable
in (24) withw" = (1, — ) T®T implies that that (1, — )" ®78p is sub-Gaussian with mean = (1, — 7)"® "y and a
variance factor 02 = (1, — w)T®"X®(1, — 7). Therefore, from Lemma A.2 we have

min max EVaRy s, [(1a —m)T®Thp| < pTB(1, — ) + | B(1, — )5 - v/2log(Voe,) |
[SYAVANAS 7

which proves the result. O

Theorem 4.5 can also be extended to the sub-Gaussian setting but seems to require an additional assumption that ||4§ —pllE,
is a sub-gamma random variable, and we leave it for future work.

Armed with Theorem D.1, we can adapt Algorithm 1 to the sub-Gaussian setting simply by setting v{ = /2log(¥/s). Note
that (14) already uses the correct inequality for a sub-Gaussian distribution.

E. Other Objectives

We now briefly discuss two other related objectives as alternatives to minimizing the high-confidence Bayesian regret,
defined in (4) and (5). These objectives may be preferable in some settings because they can be solved optimally using
simple and tractable techniques.
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E.1. Expected Bayes Regret

The first objective we discuss is expected Bayes regret, which is obtained by simply replacing the VaR by expectation in (5).
In this case, the goal of the agent is to minimizes the expected regret, defined as

in E |:I(fleaj‘( r(a;0p) — r(m; 0D)} .

Using the linearity property of the expectation operator and the reward function r, we have

in E ;é — ;é = ]E[ ;é }: (,]E[é })
arg min B |max r(a;0p) —r(mw D)] arg max r(m;0p) arg max r ( m D

This means it is sufficient to maximize the return for the mean posterior parameter value. In most case, such as when the
posterior over 6, is normal, this is an easy optimization problem to solve optimally.

E.2. High-confidence Return

The second objective we discuss is high-confidence return, which is obtained by simply replacing the regret with return
in (5). In this case, the goal of the agent is to minimizes the VaR of the return random variable as

min VaR,_s [—r(w; éD)} — min VaR;_; [—nT@TéD)} . (32)
TEA TEA

One may think of this objective as minimizing the regret with respect to 0. The reward inside is negated because we use VaR

which measures costs rather than rewards. Note that — VaR; _5 [—Z] & VaRs [£] with an equality for atomless (continuous)

distributions.

When 6p ~ N (p, 3), the optimization in (32) can be solved optimally using an LCB-style algorithm. Then, using the
properties of linear transformation of normal distributions, for each w € Ay, we obtain

7' ® 0 ~N(x'® p, 7B TPT).
Combining the objective in (32) with (2), we get that the objective is

max w' @y — VrTRTE®T - 2y _5. (33)

TwEAL

Recall that z;_4 is the 1 — J-th quantile of the standard normal distribution. We can reformulate (33) as the following
second-order conic program (for § < 1/2)

maximize 7rT<I’Tp, —Z1_6-8
weRF seR

subject to 2 < 7TT<I’T2‘I’7T,
1"r=1, =©>0.

When restricted to deterministic policies, the optimization in (33) reduces to a plain deterministic LCB algorithm. The
F1atOPO algorithm can be seen as an approximation of (33) in which z; _ is replaced by its upper bound.

F. Additional Experimental Details

In this section, we provide some additional experimental results. First, Figures 5 and 6 report the same results as Figures 3
and 4 but also report the 95% confidence interval for the average regret over the 100 runs. Second, we report the effect
of the tightening step on the quality of the bounds in Figure 7 compared to a scenario-based estimation. In this simplified
example, we fix some policy 7 and assume the particular parameters of the distribution of z, = 5},@(1,1, —m),a € A,
which is normal by Lemma 4.2. The results in the figure show that when the distribution & is close to i.i.d. the tightening
step does not improve the bound. This is expected since the optimal & in (14) is nearly uniform. However, when the means
or variances of the Z, vary across actions a € A, then the tightening step can significantly reduce the error bound.
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Figure 5. Bayesian regret with k = d = 5 (left), k = d = 50 (middle and right). The prior mean is po = O (left and middle) and

(p0)a = +/a fora =1,...50 (right).
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Figure 6. Bayesian regret with d = 4 and k = 10 (left), k = 50 (middle), and k = 100 (right).
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Figure 7. Regret bounds in Theorem 4.3 for different choices of £ as a function of k. The posterior distribution of & is normal with
w=0,%=1I(left) g = 0, Loo = a*/k (middle), and p1o = a/k, Taa = a/k (right) witha = 1,..., k.
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Figure 8. Runtime comparison of algorithms in seconds for a problem with 4 = 0 and 3 = 1.

Figure 8 compares the runtime of the algorithms considered as a function of the number of arms. The runtime excludes the
time to compute the posterior distribution which is independent of the particular method considered. We use MOSEK to
compute the SOCP optimization and do not run any tightening steps. The number of samples m needed for the Scenario
algorithm was derived from the Dvoretzky-Kiefer-Wolfowitz bound as

m = 7100 lo ﬂ
T 1-0952 *®\005/)

This number of samples guarantees a small sub-optimality gap with probability 95%. We suspect, however, that this number
of samples can be reduced with more careful assumptions and algorithmic design (Calafiore & Campi, 2005; Nemirovski &
Shapiro, 2007; 2006). Such analysis is beyond the scope of this work.
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