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Abstract

We introduce the Blackwell discount factor for Markov Decision Processes (MDPs).
Classical objectives for MDPs include discounted, average, and Blackwell opti-
mality. Many existing approaches to computing average-optimal policies solve
for discount-optimal policies with a discount factor close to 1, but they only work
under strong or hard-to-verify assumptions such as unichain or ergodicity. We high-
light the shortcomings of the classical definition of Blackwell optimality, which
does not lead to simple algorithms for computing Blackwell-optimal policies and
overlooks the pathological behaviors of optimal value functions with respect to the
discount factors. To resolve this issue, we show that when the discount factor is
larger than the Blackwell discount factor ., all discount-optimal policies become
Blackwell- and average-optimal, and we derive a general upper bound on 7. Our
upper bound on y,, parametrized by the biz-size of the rewards and transition
probabilities of the MDP instance, provides the first reduction from average and
Blackwell optimality to discounted optimality, without any assumptions, along with
new polynomial-time algorithms. Our work brings new ideas from polynomials
and algebraic numbers to the analysis of MDPs. Our results also apply to robust
MDPs, enabling the first algorithms to compute robust Blackwell-optimal policies.

1 Introduction

Markov Decision Processes (MDPs) provide a widely-used framework for modeling sequential
decision-making problems (Puterman, 2014). In a (finite) MDP, the decision maker repeatedly
interacts with an environment characterized by a finite set of states and a finite set of available
actions. The decision maker follows a policy that prescribes an action at a state at every period. An
instantaneous reward is obtained at every period, depending on the current state-action pair, and the
system transitions to the next state at the next period. MDPs provide the underlying model for the
applications of reinforcement learning (RL), ranging from healthcare (Gottesman et al., 2019) to
game solving (Mnih et al., 2013) and finance (Deng et al., 2016).

There are several optimality criteria that measure a decision maker’s performance in an MDP. In
discounted optimality, the decision maker optimizes the discounted return, defined as the sum of the
instantaneous rewards over the infinite horizon, where future rewards are discounted with a discount
factor v € [0, 1). In average optimality, the decision maker optimizes the average return, defined
as the average of the instantaneous rewards obtained over the infinite horizon. The average return
ignores any return gathered in finite time, i.e., it does not reflect the transient performance of a policy
and it only focuses on the steady-state behavior. The most selective optimality criterion in MDPs is
Blackwell optimality (Puterman, 2014). A policy is Blackwell-optimal if it optimizes the discounted
return simultaneously for all discount factors sufficiently close to 1. Since a discount factor close
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to 1 can be interpreted as a preference for rewards obtained in later periods, Blackwell-optimal
policies are also average-optimal. However, average-optimal policies need not be Blackwell-optimal.
Blackwell optimality can be a useful criterion in environments with no natural, or known, discount
factor. Also, any algorithm that computes a Blackwell-optimal policy also immediately computes an
average-optimal policy. This is one of the reasons why better understanding the Blackwell optimality
criterion is mentioned as “one of the pressing questions in RL” in the list of open research problems
from a recent survey on RL for average reward optimality (Dewanto et al., 2020).

Average-optimal policies can be computed via linear programming (section 9.3, (Puterman, 2014)).
However, virtually all of the recent algorithms for computing average-optimal policies require strong
assumptions on the underlying Markov chains associated with the policies in the MDP instance,
such as ergodicity (Wang, 2017), the unichain and aperiodicity properties (Schneckenreither, 2020),
weakly communicating MDPs (Wang et al., 2022), or assumptions on the mixing time associated
with any deterministic policies (Jin and Sidford, 2020, 2021). These assumptions are motivated by
technical considerations (e.g., ensuring that the average reward is uniform across all states) and can
be restrictive in practice (Puterman, 2014) and NP-hard to verify, such as unichain (Tsitsiklis, 2007).
Existing methods for computing Blackwell-optimal policies rely on linear programming over the
field of power series including negative coefficients (Hordijk et al., 1985), or on an algorithm based
on a nested sequence of optimality equations (O’Sullivan and Veinott Jr, 2017) which requires to
solve multiple linear programs sequentially. These algorithms are complex, difficult to implement,
and have no complexity guarantees or known implementations.

In summary, existing algorithms for average optimality require restrictive assumptions, and algorithms
for Blackwell-optimality are very complex. This is in stark contrast with the vast literature on solving
discounted MDPs, where general and well-understood methods exist, including value iteration, policy
iteration, and linear programming (chapter 6, (Puterman, 2014)). This is the starting point of this
paper, which aims to develop new algorithms for computing average-optimal and Blackwell-optimal
policies through a reduction to discounted MDPs. We make the following three main contributions.

1) A new definition of Blackwell optimality via the Blackwell discount factor ~uy € [0, 1). Our first
main contribution is to highlight that the standard definition of Blackwell optimality cannot be used
to compute Blackwell-optimal policies with simple algorithms. Standard definitions have focused on
necessary condition for Blackwell optimal policies to be discount optimal. However, we show that
this condition needs to be revised when one seeks to compute a Blackwell-optimal policy. We do so by
highlighting the potential pathological behaviors of the value functions: a Blackwell-optimal policy
may be optimal on an arbitrary number of arbitrary disjoint intervals, and other non-Blackwell optimal
policies may also be discount-optimal for some discount factors very close to 1. Demonstrating this
issue is important because previous literature has repeatedly overlooked it. To address this issue, we
introduce and show the existence of a discount factor 7y, such that discount optimality for v > Yuw
is sufficient for Blackwell optimality. Knowing the discount factor ~,, is vital because it enables
one to compute Blackwell- and average-optimal policies simply by solving a discounted MDP with
¥ € (Ybw, 1), for which there exist well-studied, simple, and efficient algorithms.

2) Upper-bound the Blackwell discount factor. As our second main contribution, we provide a strict
upper bound on 7, given an MDP instance. We show that an upper bound must depend on r and P,
and we compute a bound that is parametrized by the number of states and the number of bits required
to represent the MDP instance. Solving a discounted MDP with a discount factor larger or equal
than our strict upper bound returns a Blackwell-optimal policy. Crucially, our strict upper bound
requires no assumptions on the underlying structure of the MDP, which is a significant improvement
on existing literature. Interestingly, the construction of our upper bound relies on novel techniques
for analyzing MDPs. We interpret vy, € [0, 1) as the root of a polynomial equation p(y) = 0 in ,
show p(1) = 0, and use a lower bound sep(p) on the distance between any two roots of a polynomial
p, known as the separation of algebraic numbers. This shows that y,, < 1 — sep(p), where sep(p)
depends on the MDP instance. Since Blackwell optimality implies average optimality, we also obtain
the first reduction from average optimality to discounted optimality, without any assumption on the
MBDP structure. Our upper bound on vy, is itself of polynomial size in the bit-size of the MDP data.
Combining this bound with interior-point methods for solving discounted MDPs, we obtain new
weakly-polynomial time algorithms for computing Blackwell-optimal and average-optimal policies.

3) Blackwell discount factor for robust MDPs. We consider the case of robust reinforcement learning
where the transition probabilities are unknown and, instead, belong to an uncertainty set. As our



third main contribution, we show that the robust Blackwell discount factor vy, exists for popular
models of uncertainty, such as sa-rectangular robust MDPs with polyhedral uncertainty (Goyal and
Grand-Clément, 2023b, Iyengar, 2005). For this setting, we generalize our upper bound on ~y,, for
MDPs to an upper bound on 7y, for robust MDPs. Since robust MDPs with discounted optimality
can be solved via value iteration and policy iteration, we provide the very first algorithms to compute
Blackwell-optimal policies for robust MDPs.

We conclude this section with a discussion on related works. Several papers study the reduction
of average optimality policy to discounted optimality under strong assumptions. Early attempts
include (Ross, 1968), assuming that all transition probabilities are lower bounded by € > 0. Recent
extensions assume bounded times of first returns (Akian and Gaubert, 2013, Huang, 2016), or
weakly-communicating MDPs (Wang et al., 2022). Note that checking that an MDP instance is
weakly-communicating can be done in polynomial-time (Kallenberg, 2002), in contrast to the unichain
assumption (Tsitsiklis, 2007). The case of deterministic MDPs is treated in (Friedmann, 2011, Perotto
and Vercouter, 2018, Zwick and Paterson, 1996). Other reductions require assumptions on the mixing
times of the Markov chains induced by deterministic policies (Jin and Sidford, 2021). (Boone and
Gaujal, 2022) propose a sampling algorithm to learn a Blackwell-optimal policy, in a special case in
which it reduces to bias optimality. Under the condition that the robust MDP is unichain and that
there is a unique average optimal policy, (Wang et al., 2023) show the existence of Blackwell-optimal
policies for sa-rectangular robust MDPs, which is connected to the existence results in (Tewari and
Bartlett, 2007) and (Goyal and Grand-Clément, 2023b) for polyhedral uncertainty. In contrast to
the existing literature, one of the core strengths of our results is that we do not need any structural
assumption on the Markov chains of the underlying MDP to obtain our reduction from Blackwell
optimality and average optimality to discounted optimality.

2 Preliminaries on MDPs

An MDP instance is characterized by a tuple M = (S, A, r, P), where S is a finite set of states and
A is a finite set of actions. The instantaneous rewards are denoted by € RS> and the transition
probabilities are denoted by P € (A(S))°**, where A(S) is the simplex over S. At any time
period ¢, the decision maker is in a state s; € S, chooses an action a; € A, obtains an instantaneous
reward r5,,, € R, and transitions to state s, ; with probability Py, 4., , € [0,1]. A deterministic
stationary policy m: S — A assigns an action to each state. Importantly, there exists an optimal
deterministic stationary policy for all the criteria considered in this paper (discounted, Blackwell,
and average optimality) (Puterman, 2014), so we simply refer to them as policies and denote them
as I1 = A°. A policy 7 € IT induces a vector of expected instantaneous reward r, € RS, defined
aS T s = Tan(s)> V s € §, as well as a Markov chain over S, evolving via a transition matrix P, €

RS*S, defined as Pr, 55 = Pyr(s5)s,V 8,8’ € S. We also write ro, = max{|rsq| | (s,a) € S x A}.
Given a discount factor v € [0, 1) and a policy 7 € I, the value function v} € R represents the

discounted value obtained starting from each state: vJ ; = E™-F {2;08 YTsya, | S0 = s} ,VseS8.

We start with discounted optimality, the most popular optimality criterion in RL.

Definition 2.1. Given v € [0, 1), a policy = € II is y-discount-optimal if vJ ; > v’;:yv e
I,V s € S. We call I C 1I the set of y-discount-optimal policies.

The discount factor v € [0, 1) represents the preference for current rewards compared to future
rewards. The difficulty of choosing the discount factor y is well recognized in RL (Tang et al., 2021).
In some applications, it is reasonable to choose values of y close to 1, e.g., in finance (Deng et al.,
2016), in healthcare (Garcia et al., 2021, Neumann et al., 2016) or in game solving (Brockman
et al., 2016). In other applications, -y is merely treated as a parameter introduced for algorithmic
purposes, e.g., controlling the variance of the policy gradient estimates (Baxter and Bartlett, 2001),
or ensuring convergence of algorithms. A discount-optimal policy can be computed efficiently with
value iteration, policy iteration, and linear programming (Puterman, 2014). Notably, these algorithms
do not require any assumptions on the MDP instance M.

Another fundamental optimality criterion is average optimality, where the average reward g™ € RS
So = s} ,V s € S. This limit always

. . . T
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exists for stationary policies (Puterman, 2014). A policy 7 is average-optimal if g™ > g”/ WV ell
Average optimality has been extensively studied in the RL literature, as it alleviates the introduction
of a potentially artificial discount factor. Classical algorithms include relative value iteration (Dong
etal., 2019, Yang et al., 2016), and gradient-based methods (Bhatnagar et al., 2007, Iwaki and Asada,
2019). We refer to (Dewanto et al., 2020) for a survey on average optimality in RL.

Several technical complications arise from considering average optimality instead of discounted
optimality. First, the average reward g™ of a policy is not a continuous function of the policy 7 (e.g.,
chapter 4, (Feinberg and Shwartz, 2012)). This can make gradient-based methods inefficient, since
a small change in the policy may result in drastic changes in the average reward. Additionally, the
Bellman operator associated with the average optimality criterion is not a contraction and may have
multiple fixed points. These complications can be circumvented by assuming structural properties on
the MDP instance, such as bounded times of first returns and weakly-communicating MDPs (Akian
and Gaubert, 2013, Wang et al., 2022). Some of these assumptions may be hard to verify in a
simulation environment where only samples are available, or NP-hard to verify even when the MDP
instance is fully known, as is the case for the unichain assumption (Tsitsiklis, 2007). One of our
goals in this paper is to provide a method to compute average-optimal policies via solving discounted
MDPs, without any restrictive structural assumptions on the MDP instance. We will do so via the
notion of Blackwell optimality.

3 Classical theory of Blackwell optimality

In this section, we describe the classical definition of Blackwell optimality in MDPs and summarize
its main limitations. We first give this definition of a Blackwell-optimal policy and outline the proof
of its existence. This proof will serve as a building block of our main result in Section 4. We then
highlight the main limitations of the existing definition of Blackwell optimality.

Existing definition and algorithms. We start with the following classical definition.

Definition 3.1. A policy 7 is Blackwell-optimal if there exists v € [0, 1), such that 7 € 1z, Vv e
[v,1). We call ITf , the set of Blackwell-optimal policies.

In short, a Blackwell-optimal policy is y-discount-optimal for all discount factors  sufficiently close
to 1 (Blackwell, 1962). This notion has become popular in the field of reinforcement learning, mainly
due to its connection to average optimality (Dewanto and Gallagher, 2021). Blackwell optimality
bridges the gap between the different optimality criteria: it is defined in terms of discounted optimality,
yet, crucially, Blackwell-optimal policies are average-optimal (theorem 10.1.5, (Puterman, 2014)).
Therefore, any advances in computing Blackwell-optimal policies transfer to advances in computing
average-optimal policies. A Blackwell-optimal policy is guaranteed to exist for finite MDPs.

Theorem 3.2 ((Blackwell, 1962)). When |S| < +00, | A| < +00, there exists at least one Blackwell-
optimal policy: TI},, # (.

We highlight the proof of Theorem 3.2 based on section 10.1.1 in (Puterman, 2014). Summarizing
this proof is important because it is not well-known and serves as a building block for our results.
Step 1. Let m, ' € II, s € S. Through this paper use the notation qﬁg’”/ for d)f;’”/ Pyl — v;r,/s.
We first show that qﬁg’”/ has finitely many zeros in [0, 1). This is a consequence of the next lemma.

Lemma 3.3. Form € Il and s € S, v+ v7 | is a rational function on [0, 1), i.e., it is the ratio of
two polynomials.

Lemma 3.3 follows from the Bellman equation for the value function v™: v™ = r, + vP,v™. There-
fore, v™ is the unique solution to the equation Az = b, for b = r, and A = I — vP,. Lemma 3.3
then follows directly from Cramer’s rule for the solution of a system of linear equations: since A is
invertible, then Az = b has a unique solution x, which satisfies z; = det(A;)/ det(A),V s € S,
with det(-) the determinant of a matrix and A the matrix formed by replacing the s-th column of A
by the vector b. A consequence of Lemma 3.3 is that the function gb;”r, is a rational function, and

therefore its zeros are the zeros of a polynomial. This shows that qS;“’T/ is either identically equal to O,
or it has only has finitely many roots in [0, 1).



Step 2. We now conclude the proof of Theorem 3.2. Let m, 7’ € I, s € S. If (;S;“’T/ is not identically
equal to 0, let y(m, 7/, s) € [0,1) be its the largest zero of ¢™™ in [0,1): (7, 7', s) = max{y €
[0,1)[v] s — UZ;:S = 0}. We let y(m, 7, s) = 0if 7" is identically equal to 0 in [0, 1). We now let

5 = ! s). 3.1
y ﬂyﬁ;gg{;esv(ﬂm,S) (3.1

We have 7 < 1 since there is a finite number of (stationary, deterministic) policies and |S| < +oc.

Let 7 be y-discount-optimal for a certain v > 7. We have, for any s € §,v] ; > UZ;:S, vV ' € II. By

definition of 4, the map qﬁ’;’”/ cannot change a sign on [y, 1) (because it cannot be equal to 0), for any

policy 7 € IT and any state s € S, i.e., we have v7, > vf;:ys, vV r' eIV~ € (v,1). This shows

that 7 remains ~/-discount-optimal for all 7' > ~y, and, therefore, 7 is Blackwell-optimal.

Remark 3.4. At this point, the reader may wonder if some Blackwell optimal policies are “better"”
than others, e.g., for instance, if we can find a Blackwell optimal policy that is «y-discount optimal for
~ as small as possible. Interestingly, all Blackwell optimal policies are y-discount optimal (or not) for
the same discount factors. This follows from the key property that the value functions of Blackwell
optimal policies coincide for all v € (0, 1) at all states s € S. Indeed, these value functions must
coincide on an entire interval close enough to 1, and they are rational functions. Hence, if they are
equal for an infinite number of discount factors, they are equal on the entire interval (0, 1).

To the best of our knowledge, there are only two existing algorithms to compute a Blackwell-optimal
policy. The first algorithm (Hordijk et al., 1985) formulates MDPs with varying discount factors as
linear programs (LPs) over the field of power series with potentially negative coefficients, known as
Laurent series. The simplex method for solving LPs over power series explores [0, 1) and computes
the subintervals of [0, 1) where an optimal policy can be chosen constant (as a function of ~). It
returns a Blackwell-optimal policy in a finite number of operations, but there are no complexity
guarantees for this algorithm. The second algorithm is based on n-discount optimality, described with
a set of (|S| 4 1)-nested equations indexed by n = —1, ..., |S| — 1 that need to be solved sequentially
by solving three LPs at each stage n (O’Sullivan and Veinott Jr, 2017). This gives a polynomial-time
algorithm for computing Blackwell-optimal policies, requiring solving 3(|S| + 1) linear programs of
dimension O (|S|). A simpler description is in section 10.3.4 in (Puterman, 2014), but only finite
convergence is proved. We are not aware of any available implementations of these algorithms.

Limitations of existing approaches. We now highlight the shortcomings of the existing definition of
Blackwell optimality. In particular, we demonstrate that the current approach is insufficient to reduce
Blackwell optimality to discount optimality, we show that it does not lead to simple algorithms, and
we show that it completely overlooks the potential pathological behaviors of the value functions.

First, Definition 3.1 leads to methods that are significantly more involved than solving discounted
MDPs. The two existing algorithms for computing Blackwell-optimal policies handle complex
objects, e.g., the simplex algorithm over the field of power series and nested optimality equations with
multiple subproblems that need to be solved sequentially. The intricacy of both algorithms makes
them difficult to implement, and these algorithms are not widely used in practice.

Second, Definition 3.1 implicitly introduces, for each Blackwell-optimal policy = € II}; , a discount

factor y(7) € [0,1), defined as the smallest discount factor after which 7 remains discount-optimal:
y(r) =min{y € [0,1) | 7 € II5,,V " € [, 1)}. (3.2)

We now show that v(7) provides insufficient information to compute a Blackwell-optimal policy.

Proposition 3.5. There exists an MDP instance M, a Blackwell-optimal policy = € 11, and
discount factors v1,v2 € [0,1) with v1 < () < 2 such that:

1. the policy 7 is 1 -discount-optimal, and
2. there exists ™' # T that is vya-discount-optimal and not Blackwell-optimal.

Proposition 3.5 shows the naive approach of solving a y-discounted MDP for discount factor y > ()
does not compute a Blackwell-optimal policy. That is, the policy 7" in Proposition 3.5 is optimal for
~2 > () but is not Blackwell-optimal. It also shows that () is not even the smallest discount
factor for which 7 is discount-optimal. Note that we are the first to highlight this shortcoming of
the classical definition of Blackwell optimality. We also note that Proposition 3.5 remains true even
under the assumption that MDP instance is unichain, as we prove in Appendix A.Overall, we have



shown that the discount factor (), appearing in the classical definition of Blackwell optimality,
cannot be exploited to compute a Blackwell-optimal policy.

The limitation outlined above calls for the definition of another discount factor that can adequately
describe when does the set of discount-optimal policies equals to the set of Blackwell optimal policies.
We introduce this Blackwell discount factor in the next section. The proof of Proposition 3.5 is based
on the following very simple example, with |S| = 8, |.A| = 3, and deterministic transitions.

Example 3.6. We consider the MDP instance from Figure 1. The decision maker starts in state
0 and chooses one of three actions {a1, az, az}; there is no choice in other states, all transitions
are deterministic, and the rewards are indicated above the transition arcs. The reward for a; is 1
and the process transitions to the absorbing state 7, which gives a reward of 0. The reward for as
is 0, and the process transitions to states 1,2, 3 before reaching the absorbing state 7. The value
functions equal to v§* = r1y + ro7y?, vy =14y + rsy2, vit = 1. Choosing (r1,12) = (6,—8)
and (r4,75) = (8/3,—16/9) gives the value functions shown in Figure 1 (left figure). In particular,
vS? is the parabola that is equal to 0 at v = 0, and equal to 1 at v € {1/4,1/2}, and vS? is the
parabola that is equal to 0 at v = 0 and equal to its maximum 1 at v = 3/4. This shows that a,
is Blackwell-optimal with ~v(a1) = 1/2. Additionally, for v1 € [0,1/4], ay is y1-discount-optimal.
Finally, a3 is vo-discount-optimal for v2 = 3/4, but it is not Blackwell-optimal.

T =
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Figure 1: MDP instance (left) and value functions (right) for Example 3.6.

In the next proposition, we show that the subintervals of [0, 1) where a policy is discount-optimal may
be much more complex than usually alluded to in the literature. In particular, there exists a simple
MDP instance with only two policies, but where a Blackwell-optimal policy may be discount-optimal
in an arbitrary number of arbitrary disjoint subintervals of [0, 1).

Theorem 3.7. For any odd integer N € N and any sequence 0 = v < 71 < ... < ynv-1 < YN = 1,
there exists an MDP instance (S, A, r, P) with |S| = N + 1 and | A| = 2, and two policies w1, o
such that 1 is the unique optimal policy on any of the intervals (Y2;, Y2i41) fori = 0,...,(N —1)/2
and Ty is the unique optimal policy on (Yy2;—1,72i), fori = 1,...,(N — 1)/2.

Theorem 3.7 shows that the algorithm that explore the entire interval of (0, 1) to compute discount-
optimal policies (Hordijk et al., 1985) may visit a number of subintervals that is impractical. We
present a detailed proof in Appendix B. The proof relies on interpreting value functions as polynomials
and using Lagrange interpolation polynomials to tune the instantaneous rewards to ensure that the
value functions intersect at the given discount factors. Overall, our results in this section highlight the
pitfalls of the existing approach to Blackwell optimality and the potential pathological behaviors of
the value functions, even in simple MDP instances. We ameliorate this issue in the next section.

4 Introducing the Blackwell discount factor

This section introduces the notion of the Blackwell discount factor, which we use to reduce Blackwell
optimality and average optimality to discounted optimality. This reduction leads to algorithms to
compute Blackwell-optimal and average policies that are significantly simpler than the state-of-the-art.
Intuitively, we need the following condition to reduce Blackwell optimality to discounted optimality:
there must exist a discount factor yp,, € [0, 1) such that any y-discount-optimal policy for vy > . is
also +/-discount-optimal for any other 4" > 4p,,. The following definition formalizes this intuition.



Definition 4.1. The Blackwell discount factor ypy € [0, 1) is equal to Yoy = inf{y € [0,1) [ II%, =
IT;,,. ¥V v € (v,1)}, where I}, is the set of Blackwell-optimal policies.

We establish the existence of a Blackwell discount factor in the next theorem.
Theorem 4.2. The Blackwell discount factor ~y,, in Definition 4.1 exists in any finite MDP.

Proof. We show that there exists a discount factor v € [0,1) such that IT}, = IIy,,V 7" € (v,1).

bw

Let 7 defined as in Equation (3.1). We show ¥ v € [¥,1), 11} =TI . Lety’ € (¥,1) and let 7 be a

policy that is +'-discount-optimal. By definition, we have vl g 2 v;r:’s, Vo' ell,VseS. Since

' > 4, the map ¢™™ does not change sign on [¥,1). This shows that r is y-discount-optimal for
all v € (¥, 1). Therefore, 7 is Blackwell optimal, and any ~y-discount-optimal policy is Blackwell
optimal, for any v € (%, 1), i.e., this shows IIZ C Il . The inclusion II, C II% follows from
the definition of 7: if 7 is Blackwell-optimal but not discount-optimal for 7, then it must become
discount-optimal for a larger v’ > ¥, which is impossible since 7 is the largest discount factors where
the value functions of any two stationary policies can intersect. O

Difference from the existing definition. It is important to elaborate on the difference between
Definition 3.1 (classical definition of Blackwell optimality) and Definition 4.1 (Blackwell discount
factor). While the proof for the existence of 7, is relatively concise, the distinction between p,
and () has been utterly overlooked in the literature, where it is common to find statements that
suggest that v > () implies Blackwell optimality of all discount-optimal policies, e.g. in Dewanto
and Gallagher (2021), Wang et al. (2023). To the best of our knowledge, we are the first to properly
introduce the Blackwell discount factor 7, to show its sufficiency to compute Blackwell-optimal
policies, to emphasize the shortcomings of the classical approach to Blackwell optimality, and to
clarify the distinction between 7, and (7). In particular, in Definition 3.1, a Blackwell-optimal
policy 7 is optimal for any v € [y(7),1). However, for some v € [y(r), 1), there may be other
optimal policies that are not Blackwell-optimal, as shown in Proposition 3.5. We show an MDP
instance like this in Example 3.6, where 7, = 3/4 but where y(a;) = 1/2, and a, is the only
Blackwell-optimal policy. Hence in all generality, we may have v (7) < ~pw, and y(7) # Ypw. Note
that the authors in (Dewanto and Gallagher, 2021, Dewanto et al., 2020) also introduce the notation
“vpw~ but they use it to denote (7).

Reduction to discounted optimality. If ,, is known for a given MDP instance, it is straightforward
to compute a Blackwell-optimal policy, by solving a discounted MDP with -y > ,,. Therefore, the
notion of Blackwell discount factor provides a method to reduce the criteria of Blackwell optimality
and average optimality to the well-studied criterion of discounted optimality. As we have discussed
before, efficient methods for solving discounted MDPs such as value iteration or linear programming
have been extensively studied. These algorithms are much simpler than the two existing algorithms
for computing Blackwell-optimal policies. Note that it is enough to compute an upper bound on .
In particular, if we are able to show that ~y,,, < 7' for some 4" € [0, 1), then following the definition
of vpw, we can compute a Blackwell-optimal policy by solving a discounted MDP with a discount
factor v = 7. Therefore, in the rest of Section 4, we focus on obtaining an upper bound on ~y,.

4.1 Upper bound on ~y,,

We now obtain an instance-dependent upper bound on ., i.e., we construct a scalar n(M) € (0,1)
for each MDP instance M = (S, A, r, P), such that v, < 1 — n(M). Our main contribution in
this section is Theorem 4.4, which gives a closed-form expression for 77(M) as a function of the
maximum bit-size of the data of the MDP instance M. We start by showing that it is impossible to
obtain a bound on ~y,, that is independent of r or P.

Proposition 4.3. For any n > 0, there exists an MDP instance M = (S, A,r, P) with |S| =
2, |A| = 2 and deterministic transitions, such that Ve, > 1 — 1.

Proof. Let S = {s1,82}, A = {a1,a2}. In state s, action a; transitions to s; (with reward 0)
and action as transitions to so (with reward —1). There is no action to choose in state s5 which is
absorbing with a reward € > 0. It is straightforward to check that ag is Blackwell optimal, with
Yow = (1 4+ €) 71, so that 7p,, can be chosen arbitrarily close to 1 by choosing small values fore. [J



We show that Proposition 4.3 still holds even under the assumption that the MDP instances are
weakly-communicating in Appendix C. Proposition 4.3 shows that an instance-dependent bound on
Yow must depend on the “coarseness” of r and P. This suggests parametrizing our upper bound by
the bit-sizes of the MDP instance. MDPs with finite bit-sizes parameters are the MDP instances that
can be exactly encoded in a computer and practically solved by existing algorithms. We first recall the
definitions pertaining to bit-size, necessary to describe the complexity of classical weakly-polynomial
time algorithms like interior-point methods (section 4.6 in (Ben-Tal and Nemirovski, 2001)) and
the ellipsoid method (Bland et al., 1981). The bit-size of r € N is |log, (r)], the number of bits
necessary to represent r with standard binary encoding. The bit-size of a rational number is the sum
of the bit-size of its numerator and its denominator. The maximum bit-size of an MDP instance is the
maximum bit-size of any r, and Py,s for (s,a,s’) € S x A x S. Its total bit-size is the sum of
the bit-sizes of the components of 7 and P. For instance, in the riverswim instance, the maximum
bit-size of the reward is 14, since the largest rewards are bounded by 10* in the terminal states. Our
main theorem in this section provides a strict upper bound on 7y, as follows.

Theorem 4.4. Let M = (S, A, r, P) be an MDP instance with finite bit-size and let m € N be the
maximum bit-size of the instance M. Then we have ypy < 1 —n(M), withn(M) € (0,1) defined as

(M) !

= N =28~ 1,L=2-|S] 1o - m?S| . 4IS],
ANN/2+2 ([ 4 1)

Our proof uses ideas that are new in the MDP literature, such as the separation of algebraic numbers.
We provide an outline of the proof below and defer the full statement to Appendix D.

In the first step of the proof, by carefully inspecting the proofs of Theorem 3.2 and of Theorem 4.2,
we note that an upper bound for 7,y is 7, as defined in (3.1): ¥ = max, rem,ses ¥(m, 7, ), where

form,n’ € and s € S, y(m, ', s) is the largest discount factor ~ in [0, 1) for which ¢™™ (v) = 0

when gbg’“/ 1y =] o — vl ¢ is not identically equal to 0, and 0 otherwise. Therefore, we focus on

obtaining an upper bound on (7, 7', s) for any two policies 7, 7’ € II and any state s € S.

In the second step, following Lemma 3.3, the value functions vy +— v7, vy — v;T' are rational functions,

i.e., they are ratios of two polynomials. Therefore, we interpret ¢§’”/(7) = 0 as a polynomial
equation in 7, i.e., as p(y) = 0 for a certain polynomial p. With this notation, v(r, 7', s) € [0,1) is
aroot of p. We show that v = 1 is always a root of p, even though value functions are a priori not
defined for v = 1. We then precisely characterize the degree [V and the sum L of the absolute values
of the coefficients of the polynomial p, depending on the MDP instance M.

Theorem 4.5. The polynomial p has degree N = 2|S|—1. Moreover, m2Slp has integral coefficients.
The sum of the absolute values of the coefficients of m?'S\p is bounded by L = 2- |S] 700 -.m?2IS1. 4181,

In the third step, we lower-bound the distance between any two distinct roots of p. To do this, we rely
on the following separation bounds of algebraic numbers.

Theorem 4.6 (Rump, 1979)). Let p be a polynomial of degree N with integer coefficients. Let L be
the sum of the absolute values of its coefficients. The distance between any two distinct roots of p is

strictly larger than 1) > 0, with n = 2N ~N/2+2 (I 4 1)_N.

Recall that v(7, 7', s) and 1 are two always roots of p, with (7, 7/, s) < 1. Combining Theorem 4.5
with Theorem 4.6, we conclude that (7, 7', s) < 1—n(M) for n(M) > 0 defined as in Theorem 4.4.
Therefore, ¥ < 1 — n(M), and ypw < 1 — n(M). This concludes our proof of Theorem 4.4.

Discussion. Using Theorem 4.4, we obtain the first reduction from Blackwell optimality to dis-
counted optimality: solving a discounted MDP with v > 1—n (M) returns a Blackwell-optimal policy.
Blackwell optimality implies average optimality, so we also obtain the first reduction from average op-
timality to discounted optimality without any assumptions on the structure of the underlying Markov
chains of the MDP. We also discuss the complexity results for computing a Blackwell-optimal policy

using our reduction. Policy iteration returns a discounted optimal policy in O (\Slliil;‘\\ log (ﬁ))
iterations (Scherrer, 2013), but it may be slow to converge when v = 1 — n(M) as in Theo-
rem 4.4, since (M) may be close to 0. Various algorithms exist to obtain convergence faster than
O(1/(1 — 7)), such as accelerated value iteration (Goyal and Grand-Clément, 2023a) and Anderson

acceleration (Zhang et al., 2020). However, note that |log, (n(M))], the bit-size of the scalar n(M),



is polynomial in the bit-size of the MDP instance M. Since discounted MDPs can be formulated as
linear programs, which can be solved in polynomial-time in the input size of the MDP (Ye, 2011), we
obtain a weakly-polynomial time algorithm for computing Blackwell-optimal policies. We present
the proof of the following theorem in Appendix E.

Theorem 4.7. Let M = (S, A, r, P) be an MDP instance with total bit-size Q(r, P) € N. Then
we can compute a Blackwell-optimal policy in O (|S||A|?Q(r, P)) arithmetic operations.

Note that with Theorem 4.4 and Theorem 4.7, we have reduced the complex problem of computing
a Blackwell optimal policy to a much simpler and well-studied problem: solving a linear program,
which can be done in weakly-polynomial time. Potential improvements for our upper bound on
Ybw are an important future direction: more precise separation bounds than Theorem 4.6 could be
obtained for the specific polynomial p appearing in the proof of Theorem 4.4, or for a specific MDP
instances, e.g. ergodic or unichain MDPs. Going beyond the case of finite sets of states and actions is
interesting but this may be difficult, as in both cases there may not exist a Blackwell optimal policy
anymore (Chitashvili, 1976, Maitra, 1965).

4.2 The case of robust MDPs

In practice, the value function v7 may be very sensitive to the values of the transition probabilities P.
To emphasize this dependence, in this section we note 'UZ;’P for the value function associated with a
policy 7 and a transition probability P, defined similarly as in Section 2. Robust MDPs (RMDPs)
ameliorate this issue by considering an uncertainty set U, which can be seen as a plausible region for
the transition probabilities P € U{. We focus on the case of sa-rectangular MDPs (Iyengar, 2005),
where U = X (5,q)esxaUsa TOr Usa C A(S). The worst-case value function vy U ¢ RS of a policy
7 is defined as v”;g” = minpgy v;r;f ,V s € S. In discounted RMDPs, the goal is to compute a
robust discountec? optimal policy, defined as follows.

Definition 4.8. Given~ € [0,1), a policy 7 € II is robust y-discount-optimal if vf;? > vf;:s’u, Ve
ILV s € S. We write I, the set of robust y-discount-optimal policies.

Robust Blackwell optimality is studied in (Goyal and Grand-Clément, 2023b, Tewari and Bartlett,
2007), to address the sensitivity of the robust value functions as regards the discount factors. Its
connection to average reward RMDPs is discussed in (Tewari and Bartlett, 2007, Wang et al., 2023).
Definition 4.9. A policy w € II is robust Blackwell-optimal if there exists v € [0, 1), such that
melly, ,Vv" € [y,1). Wecall I, _ the set of robust Blackwell-optimal policies.

(Goyal and Grand-Clément, 2023b) shows the existence of a Blackwell-optimal policy for RMDPs,
under the condition that I/ is sa-rectangular and has finitely many extreme points. This is the case for
popular polyhedral uncertainty sets, e.g., when U, is based on the ¢, distance, for p € {1, co} (Givan
etal., 1997, Ho et al., 2018, Iyengar, 2005), for some estimated kernel P?Y and some radius a, > 0:

Usa ={p € A(S) | |lp - Psoa”p < Qsa ) 4.1)

Definition 4.10. We define the robust Blackwell discount factor yp,,r € [0,1) as Yow,r = inf {y €
[07 1) | H;Qr = H,b(wJav,Y/ € (77 1)}

We provide a detailed proof of the existence of the robust Blackwell discount factor in Appendix F.
The proof strategy is the same as for the existence of the Blackwell discount factor for MDPs. We
can obtain the same upper bound on 7y, r, by studying the values of v for which v A

™ P" cancels, for any two policies m, 7’ € II and any two extreme points P, P’ of ¢{. Writing

7,8
y(m, 7', s, P, P") for the largest zero in [0,1) of the function v — oI-F — o7 ;F if it is not

identically equal to zero, or y(m, 7', s, P, P') = 0 otherwise, an upper bound on 7., for RMDPs
can be computed as 7,, defined as §, = max /em,ses Maxp, prey, V(T 7, 8, P, P") with Uex
the set of extreme points of /. This leads to the following theorem.

Theorem 4.11. Let M = (S, A r, PO) be an MDP instance with maximum bit-size m € N. Assume
that U is sa-rectangular, where for each (s,a) € S x A, Us, is constructed as in (4.1) based on {1
or U, distance, and with the scalars (asa)s,a of maximum bit-size m. Then Yy, < 1 —n(M), with
n(M) defined as in Theorem 4.4 with m’ = 2m instead of m.

Y58
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Based on Theorem 4.11, we obtain the first reduction from robust Blackwell optimality to robust
discounted optimality. Since discounted RMDPs can be solved with value iteration or policy iteration,
we provide the first algorithms to compute a robust Blackwell-optimal policy for RMDPs with
sa-rectangular uncertainty, when the uncertainty set is based on the ¢; or the /., distance. Note that
there is no known convex (or linear) formulation for RMDPs (Grand-Clément and Petrik, 2022), so
we are not able to provide a complexity statement akin to Theorem 4.7.

5 Conclusion

We highlight the shortcomings of the existing approach to Blackwell optimality and we introduce
the Blackwell discount factor to ameliorate this issue. We provide an upper bound for MDPs and
RMDPs in all generality, parametrized by the bit-sizes of the instances. Any progress in solving
discounted MDPs, one of the most active research directions in RL, can be combined with our results
to obtain new algorithms for computing average- and Blackwell-optimal policies. Our work also
opens new research avenues for MDPs and RMDPs: the proof techniques for our bound on ~,, and
“Ybw,r» based on the separation of algebraic numbers, are novel and they could be tightened for specific
instances or different optimality criteria, such as bias optimality or n-discount optimality. The notion
of approximate Blackwell optimality as well as the existence of the robust Blackwell discount factor
for other uncertainty sets, e.g., s-rectangular or non-polyhedral sa-rectangular uncertainty sets, or for
distributionally robust MDPs, are also interesting directions of research.

Funding. J. Grand-Clément is supported by the Agence Nationale de la Recherche [Grant 11-
LABX-0047] and by Hi! Paris. M. Petrik’s work was supported, in part, by NSF grants 2144601 and
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A Unichain instance for Proposition 3.5

We can extend Example 3.5 to a unichain MDP as follows: we add a transition from state 7 to state
0, with a reward of 0. We also add three intermediate states from O to 7 for action a1, so that it
takes as many periods to reach state 7 from state O for the three actions a;, a2, a3. Note that this
new MDP is unichain. We represent it in Figure 3a. Additionally, for this new MDP instance, we
have vt = 1/(1—~°),v%* = (r1y+7127%) /(1 —7°), 0% = (r4y +r57*)/(1 —~°), which are the
same expressions as in Example 3.5, up to the common denominator (1 — +°) ™. Therefore, we have
proved that the same conclusion as Proposition 3.4 holds for unichain MDPs.

B Proof of Theorem 3.7

Proof. Consider the following MDP instance, represented in Figure 2a. The initial state is state
0, where there are two actions to be chosen, a; or ay. Action a; yields an instantaneous reward
of 1 and then the decision maker transitions to the absorbing state N, where there is a reward of
0. Otherwise, choosing action a9 yields an instantaneous reward ry and takes the decision maker
through a deterministic sequence of states 1, ..., N — 1 with rewards 71, ..., 7y _1, before transitioning

to state V. For a given v € [0, 1), the closed-form expressions for the value functions vt vi? are
vd =1land v3? = Zi\[:f)l Tyt

Note that v — v3? is a polynomial of degree N — 1. Using Lagrange interpolation polynomials
(section 0.9.11, (Horn and Johnson, 2012)), we can find coefficients rg, ..., 7y_1 such that v —
v is equal to 1 for all N — 1 discount factors =i, ..., yny—1 and equal to 0.9 at g = 0. The

v

value function v3? resulting from this construction is highlighted in Figure 2b for N = 5 and

(705 71,725 V3,74, ¥5) = (0,0.2,0.4,0.6,0.8,1.0). Let us note g: v + v5* — v32. Our choice of
the rewards ensures that ¢ is a polynomial of degree N — 1, with ¢(0) > 0, and ¢(y) = 0 for
~v € {7,...,yn-1}- Because v — ¢(vy) — 1 is a polynomial of degree N — 1 with N — 1 different

real roots, it changes signs at every root. This shows that v — v§! — v5? is positive on (yo,71),

negative on (71, vy2), then positive on (72, v3), etc.. Action a; is optimal on (yn—1,vn) = (YN-1,1)
because NNV is odd. This concludes the proof of Theorem 3.7.
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Figure 2: MDP instance for our proof of Theorem 3.7 (Figure 2a) and the value functions for N = 5
(Figure 2b).

O

C Weakly-communicating instances for Proposition 4.3

Consider the MDP instance from the proof of Proposition 4.3. We now add a deterministic transition
from state s, to state s1, with a reward of O for action a; and a reward of ¢ for action as. The new
MDP instance is represented in Figure 3b.
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(a) Unichain instance for Proposition 3.5 (b) Weakly-communicating instance for
Proposition 4.3

Figure 3: MDP instances to generalize Proposition 4.3 and Proposition 3.5.

First, this MDP instance is weakly-communicating since {s1, s2} is strongly connected under policy
az. In this new MDP instance, we still have v5* = 0 but v52 = (-1 + €vy)/(1 — ). Hence a3 is
Blackwell optimal when v > 1/e. By choosing e larger than 1 and € — 1, we obtain 7y, — 1. This
shows that we can extend Proposition 4.3 to weakly-communicating MDPs.

D Proof of Theorem 4.4

In this appendix, we provide the proof for Theorem 4.4. As noted in Section 4.1, to bound Yy,
it is enough to obtain an upper bound on (7w, 7', s) for any w,7’ € Il and s € S such that
Y vl — v;rjs is not identically equal to 0, since Yhw < max, e, ses Y(m, 7, s). Since m is the
maximum bit-size of the input data, we can write, for any (s, a,s’) € S X A X S, Psas' = Nsas’ /M,
for ngesr € Ny ngqer < m, and 754 = gsa/m, |¢sa| < 7oo. Examples of MDPs with finite bit-sizes
include any real instances used for applications where the transition probabilities are estimated as
empirical frequencies from some data, e.g. examining patients’ transfers in hospitals as in (Hu et al.,
2018) and (Grand-Clément et al., 2022), MDPs for hypertension treatment (Garcia et al., 2021),
diabetes management (Steimle et al., 2021) and cancer detection (Goh et al., 2018), as well as the
machine maintenance studied in (Wiesemann et al., 2013) and (Delage and Mannor, 2010). We now
proceed to proving Theorem 4.4.

Step 1. We start by studying in more detail the properties of the value functions. The following
lemma follows directly from Cramer’s rule, as explained in Section 3.

Lemma D.1. We have
_ det (M(y,s,m))

Y1 T et (I — 4 Py)
with M (v, s, ) the matrix formed by replacing the s-th column of I — v Py by the vector r.

D.1)

From Lemma D.1, we have

- _ n(y,sm)

T2 d(y, )

for n(~, s, m) = det (M (v, s, 7)) and d(, 7) = det (I — vPy). We choose the letter n for nomina-
tor and the letter d for denominator.

(%

Note that v — n(~, s, 7) is a polynomial of degree at most |S|—1, while v — d(~, ) is a polynomial
of degree at most |S].
We have, by definition,
!/
o = s n(y,s )

T T i) )

n(Vv 5, ﬂ-)d(’% ﬂ-/) — Tl(’)/, S, ﬂ')d(’}/, 71')
d(y, m)d(y, )
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Therefore, vl o — v;r’/s = (0 fory € [0, 1) implies that ~y is a root of the following polynomial equation
in~y:

p(y) =0, (D.2)
for p the polynomial defined as

p(y) = n(y, s, m)d(y,7") — n(y,s,7")d(y, ). (D.3)

Step 2. 'We now study the properties of the polynomial p. Note that it is straightforward that p is a
polynomial of degree N = 2|S| — 1. We first study the properties of the polynomial v — d(, ).
We have the following lemma.

Lemma D.2. We have
d(v,m) > 0,Vy €[0,1),V m €I,
and d(1,7) =0,V 7 € IL.

Proof of Lemma D.2. This lemma follows from the relation between the determinant of a matrix and
its eigenvalues, through the characteristic polynomial:

diy,m) =det (T —vPr)= ][ (1-y0)™,
AESp(Pr)
with ), the algebraic multiplicity of the (potentially complex) eigenvalue A in the spectrum Sp(Py)
of P,. Since P; is the transition matrix of a Markov chain, we know that the modulus of any
eigenvalue \ of P; is smaller or equal to 1. This shows that d(y,7) > 0,V v € [0,1),V 7 € II. To

show d(1,7) = 0, we simply note that 1 € Sp(P;) since P; is the transition matrix of a Markov
chain. O

From Lemma D.2 and the definition of p as in (D.3), it is straightforward that p(1) = 0.
Lemma D.3. v = 1 is a root of p.

We now bound the sum of the absolute values of the coefficients of p. We have the following theorem.

Theorem D.4. The polynomial m?°! - p has integral coefficients, potentially negative. The sum of
the absolute values of the coefficients of m?'Sp is bounded by

L=2-1S| 7o -m2ISt . 4lST

Theorem D.4 is based on the following three propositions. We note C’f the binomial coefficient
defined as C¥ = £1/k!(¢ — k)!.

Proposition D.5. For any 7 € 11, the function v — d(m,~y) is a polynomial of degree |S|. Moreover,
v — mlSl. d(m, ) is a polynomial with integral coefficients (potentially negative), and the absolute
value of its coefficient of degree k is bounded by m!S! C’llfg‘.

Therefore, the sum of the absolute values of the coefficients of v — m!S| - d(m, ) is upper bounded
by

Ly = m!Sl.2ISI
Proposition D.6. For any policy m € II and any state s € S, the function v — n(vy,s,7) is
a polynomial of degree |S| — 1. Moreover, v — mlSl. n(vy, s, m) is a polynomial with integral
coefficients (potentially negative), and the absolute value of its coefficient of degree k is bounded by
mlS! . S| Too - C\]sz .9,

Therefore, the sum of the absolute values of the coefficients of v — m!S! -n(~v, s, 7) is upper bounded
v gl
by
Ln — m|8‘71 . ‘S| CToo 2“5'
Proposition D.7. Let P = Y ja, X", Q = Yo b;X7. Then PQ = S0 ep X%, ¢ =
D itk @ibj. Additionally, suppose that 37" |a;| < Lp, > 7" |bj] < L. Then

n+m

Z ‘Ck‘ < LPLQ.
k=0
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Combining Proposition D.5, Proposition D.6 and Proposition D.7 with the definition of the polynomial
p in (D.3) yields Theorem D.4.

To conclude Step 2 of our proof, let us prove Proposition D.5 and Proposition D.6. Proposition D.7
simply follows from the multiplication rule for polynomials.

Proof of Proposition D.5. By definition,

S|
d(v,m) =det (I —vPy) Zak (vPy)

where M — ay, (M) is the (|S| — k)-th coefficient of the characteristic polynomial of a matrix M.
By definition, aj (M) is the sum of all the principal minors of size k of M (section 0.7.1, (Horn and
Johnson, 2012)). This first shows that ay, (YP,) = v*ay, (P ), and therefore, that

S|

= Z veay, (P
k=0

‘We will show that
ar(Pr) < Cls Vk=1,...,18].

Let g be a principal minor of P, of size k. By definition, g is the determinant of a submatrix M
of size k of P, obtained by deleting rows and columns with the same indices: g = det(M). For
any matrix square M, we always have det(M) = det(M ). Now Hadamard’s inequality shows

that det(M ) < [T, [|Cols(M T)||, with Col;(M T) the i-th column of M T, and therefore we

have det(M ") < Hle |Col;(M T)||;. Note that the columns of M " have ¢;-norm smaller than
1, since Py is a stochastic matrix, and M is a submatrix of P,. Therefore, g < 1. Because there are
C’C possible principal minors of size k of Py, we have ay(Py) < C’Tf, Vk=1,..,n

Of course, we may have ay(P;) ¢ Z. However, for any principal minor g = det(M) of Py, we
have, by definition the determinant,

det( Z HMU( )z

g€eSy =1

where (o) is the signature of the permutation o and &y, is the symmetric group, i.e., the group of all
permutations of {1, ..., k}. This shows, by definition m as the maximum bit-size of the input data,
that m/S! det(M) € Z, and therefore that m!%lay, (Pr) € Z and that m/Slay (Pr) <ml®ICly,. O

Proof of Proposition D.6. Using Laplace cofactor expansions (section 0.3.1, (Horn and Johnson,
2012)), we have that n(vy, s, 7) is equal to

Z (—1)S+S . rs/,ﬂ'(s/) . det ((I — ’)’Pﬂ)s\{s/}xs\{s}) 5 (D4)
s'eS

where (I — vPr)g\ (51 xs\ (s} 1S the matrix obtained from I — P by removing the s-th column
and the s’-th row.

Note that y — det ((I - VPTr)S\{s/}xs\{s}> is a polynomial of degree |S| — 1 in +y. Similarly as

for the proof of Proposition D.5, v — m/!Sln(v, s, 7) is a polynomial of degree |S| — 1 with integral
coefficients.

Let us consider I\, 5} the matrix of dimension (|S| — 1) x (|S| — 1), obtained by removing the s-th
column and the s’-th row from the identity matrix of dimension |S|, and let us call E, the matrix of
dimension (|S| — 1) x (|S| — 1), where all rows are 0", except the s-th row, equal to e,.

Then det ((I YPr) s\ (s} x S\ (s }) is equal to

det ((I — ’}/Pﬂ-)s\{s/}xs\{s} + ES/ — Es/)
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and therefore is equal to

det (I\{s/,s} + Eyv — (VPr) s\ (o} xs\(s} ~ Es') -
We notice that I\ (o ) + E is a matrix whose rows are exactly the rows of the identity matrix of
RISI=1 up to a certain permutation o € S|s|—1- Let P7 € RUSI=1Dx(ISI=1) the permutation matrix
defined as P;; = 1if o(j) = 4 and O otherwise. Then for any matrix M, we have det(P° M) =
det(P?) det(M) = e(o) det(M), with (o) the signature of the permutation o. Since we always

have e(0) € {—1, 1}, this shows that det ((I — ’YPW)S\{S/}Xs\{s}) is equal to

e(o’) det (I - ((’YPﬂ)s\{s’}xS\{S} + ES,)) ’

The map v — det (I — ((’yPﬂ)S\{S,}XS\{S} + ES/>> is equal to
IS|—1
> ar (P ryesipog — B
k=0
where similarly as for the proof of Proposition D.5, ay (M) is the k-th coefficient of the characteristic

polynomial of a matrix M, i.e., ar(M) is equal to the sum of all the principal minors of M of
dimension k x k. Let

M = (WPW)S\{sf}xs\{s} —Ey.
Note that (Pr) g\ 15} x5\ s} IS @ substochastic matrix, i.e., it has non-negative entries and the sum of
the entries of each row is smaller or equal to 1. Note that M differs from (7Pr)g\ (511 <\ 5} Only at
the coefficient of index (s, s’). Using Hadamard’s inequality, we find that that

ar(M) <2-Cls_y,m®lap (M) € N. (D.5)
We conclude by combining Equation (D.5) with Equation (D.4). O

Step 3. We now lower bound the distance between any two roots of p by a scalar n > 0. Since we
know that for y(m, 7', s) € [0, 1) and 1 are two roots of P, this will show that (7, 7/, s) < 1 — 7.
Our proof is based on the following theorem.

Theorem D.8 ((Rump, 1979)). Let p be a polynomial of degree N with integer coefficients, possibly
with multiple roots. Let L be the sum of the absolute values of its coefficients. Then the distance
between any two distinct roots of p is strictly larger

1

INN/2+2 (L + 1)

Recall that both (7, 7', s) € [0,1) and 1 are roots of the polynomial p. Therefore, we can combine
Theorem D.8 with Theorem D.4 to obtain (7, 7', s) < 1 — n(M), with

1
M =
M) INN/2+2 ([ 4 1)V

with

N =2|§| -1,

L=2-|S 7o . m2IS.4lsl
This concludes the proof of Theorem 4.4.

Remark D.9. Note that (Akian et al., 2019) use Theorem D.8 to obtain a lower bound on the average
rewards of any two different policies, in the setting of two-player stochastic games.

Remark D.10. Theorem 1 in (Rump, 1979) provides a separation bound in the case where the
polynomial p has complex coefficients. Unfortunately, the separation bound from Theorem 1 in
(Rump, 1979) is not directly usable here, because it depends on the discriminant D(p) of the
polynomial p, a quantity that is hard to lower-bound (in all generality). We decide to use the bound
from Theorem 3 in (Rump, 1979) because it does not depend on D(p) but directly on the ¢;-norm
of p and of the degree of p, which can be computed in closed-form and can be bounded as in
Proposition D.6 and Proposition D.5.
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E Proof of Theorem 4.7

Proof of Theorem 4.7. Following table 4 in (Ye, 2011), we know that interior-point methods for the
linear programming formulation of MDPs return an optimal policy in O (|S|*|A[]? (Q(r, P,7)))
arithmetic operations, with Q (7, P,~y) equal to the total bit-size of the MDP instance, i.e., the sum of
the bit-sizes of all instantaneous rewards, transition probabilities, and the discount factor. By choosing
v = 1—n (M) and noticing that log(n(M)) = O (|S|log(re) + |S[*log(m)) = O (|S|*log(m)),
we see that interior-point methods for the linear programming formulation of MDPs return an optimal
policy in O (|S|°|AJ* (Q(r, P))), where Q(r, P) is the total bit-size of MDP instance. O

F Proof of Section 4.2

Proof of the existence of Ypw,r. Let

Y = max max ', s, P, P
e 7,7/ €I1,s€S P, P’ EUext fY( )
where (7, 7', s, P, P’ ) is the largest zero of the function v — v™F — o7 P if it is not identically

7, s 7,8
equal to zero, or ')/(777 7', s, P, P’) = 0 otherwise. Recall that Ue is the (finite) set of extreme points
of Y. We will show that IT§ . = IIf |,V v > 4. Let w be a robust discount-optimal policy for some
v > 4. We will prove that 7 is a Blackwell-optimal policy. Since 7 is robust y-discount-optimal, we
have

“u>vgéu,V7r elLVsesS.

By definition v” U — = minpgy v7

7TP

s PV s € S. From (Iyengar, 2005), we know that the arg min

is attained at an extreme point of &//. Therefore, by definition of #,, the function
7r Z/I

in mlnpeu vy

Y= uy cannot be equal to 0 on (¥, 1), and therefore it does not change sign, since it is a
contlnuous functlon This shows that for all v > 7,, we have
vf;ff > ZYTSM,VW elLVsesS.

This shows the existence of the robust Blackwell discount factor 7y, and that yp, r < 7. O]

Proof of Theorem 4.11. We start by showing the following lemma.

Lemma F.1. Let M = (S, A, r, PO) be an MDP instance with maximum bit-size m € N. Assume
that U is sa-rectangular, where for each (s,a) € S x A, Us, is constructed as in (4.1), with the
scalars (asq) , , of maximum bit-size m.

Then the maximum bit-size complexity to describe the transition probabilities associated with the
extreme points of Us, is m' for p = oo and 2m/ for p = 1.

Proof of Lemma F.1. In the proof of this lemma, we use the fact that the worst-case kernel P* of
a policy 7 can be chosen as the arg min of the optimization problem minpey,, ., pTv;T’“ , Where

v U is the worst-case value function of 7. In particular, let v € RS.

The case p = co. In this case, there exists a sorting solution to mingeyy,, p' v for any (s,a) €
S x Aand any v € RS, by sorting v, see for instance proposition 3 in (Goh et al., 2018), equation (9)
in (Givan et al., 1997), or appendix C in (Behzadian et al., 2021). In particular, let (s,a) € S x A
and define o the permutation of S such that v,(1) < ... < vg(|s)), and define i as the smaller integer
in {1, ..., |S|} such that

i S|
Z (Psoaa(s + Oésa) Z ( sao (s’ aSU«) > 1
s'=1 s'=i+1
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Then a solution to minpey,, P v is py(sr) = PP () F Qsa if 8" < i, Po(ery = pY — Qg if

sac sac(s’)
s’ >4, and
Doy =1 — Z Do (s
s'eS\{i}

This closed-form shows that for any vector v € R, a solution of minpe,, p' v can be found as a
vector with rational entries with a denominator of at most m.

The case p = 1. In this case, one can show that the optimization problem minpey,, p' v can be
formulated as a linear program. Therefore, there exists an optimal basic feasible solution p which has
the following form by lemma 5.4 and lemma 5.5 in (Ho et al., 2021). There exist j1, jo € S such that
j1 # joand foreachi € T = S\ {j1,j2}:

pi=0 or p;=P"

sai
pj, > P and pj, < P2

saji sajs *
Then, in order for p € Uy, we need the following equalities to hold
s
(pj, — P;)ajl) + (Psoajg —Pjz) = Qsa — Z lpi — Pf?az" .
i€Z
Combining the equalities above yields that

0 0 0
2pj1 = Qgq — Z |p7/ - Psai| =+ Psaj1 - Psajg
i€T
+1-— Zpi .
i€T
Because the right-hand side of the equation above is a sum of rational numbers with a denominator of

at most m, p;, is also rational with a denominator at most 2m. Using an analogous argument for p;,,
we get that there exists an optimal solution that is rational with a denominator of at most 2m. O

Theorem 4.11 then follows by applying Theorem 4.4 with on the MDP instance (S, A, r, P’) with
P’ an extreme point of /. Lemma F.1 exactly describes the maximum bit-size of any transition
s TOr (s,a,5") € S x A x S in the case of sa-rectangular uncertainty set based on ¢;-distance or

{-distance as in (4.1). This concludes the proof of Theorem 4.11. ]
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