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Abstract

In reinforcement learning, robust policies for high-stakes decision-making prob-
lems with limited data are usually computed by optimizing the percentile criterion.
The percentile criterion is approximately solved by constructing an ambiguity set
that contains the true model with high probability and optimizing the policy for the
worst model in the set. Since the percentile criterion is non-convex, constructing
ambiguity sets is often challenging. Existing work uses Bayesian credible regions
as ambiguity sets, but they are often unnecessarily large and result in learning overly
conservative policies. To overcome these shortcomings, we propose a novel Value-
at-Risk based dynamic programming algorithm to optimize the percentile criterion
without explicitly constructing any ambiguity sets. Our theoretical and empirical
results show that our algorithm implicitly constructs much smaller ambiguity sets
and learns less conservative robust policies.

1 Introduction

Batch Reinforcement Learning (Batch RL) [26] is popularly used for solving sequential decision-
making problems using limited data. These algorithms are crucial in high-stakes domains where
exploration is either infeasible or expensive, and policies must be learned from limited data. In
model-based Batch RL algorithms, transition probabilities are learned from the data as well. Due to
insufficient data, these transition probabilities are often imprecise. Errors in transition probabilities
can accumulate, resulting in low-performing policies that fail when deployed.

To account for the uncertainty in transition probabilities, prior work uses Bayesian models [10, 13,
27, 40, 45, 47] to model uncertainty and optimize the policy to maximize the returns corresponding
to the worst α-percentile transition probability model. These policies guarantee that the true expected
returns will be at least as large as the optimal returns with high confidence. This technique is
commonly referred to as the percentile-criterion optimization. Unfortunately, the percentile criterion
is NP-hard to optimize. Thus, current work uses Robust Markov Decision Processes (RMDPs)
to optimize a lower bound on the percentile criterion. An RMDP takes as input an ambiguity set
(uncertainty set) that contains the true transition probability model with high confidence and finds a
policy that maximizes the returns of the worst model in the ambiguity set.

Since the percentile criterion is non-convex, constructing ambiguity sets itself is a challenging
problem. Existing work uses Bayesian credible regions (BCR) [40] as ambiguity sets. However, these
ambiguity sets are often unnecessarily large [15, 40] and result in learning conservative robust policies.
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Some recent works approximate ambiguity sets using various heuristics [3, 40], but we show that
they remain too conservative. Thus, the question of the optimal ambiguity set, i.e., ambiguity sets that
result in optimizing the tightest possible lower bound on the percentile criterion and less-conservative
policies remains unanswered.

Our Contributions In this paper, we answer two important questions: a) Are Bayesian credible
regions the optimal ambiguity sets for optimizing the percentile criterion? b) Can we obtain a
less conservative solution to the percentile criterion than RMDPs with BCR ambiguity sets while
retaining its percentile guarantees? Our theoretical findings show that Bayesian credible regions can
grow significantly with the number of states and therefore, tend to be unnecessarily large, resulting
in highly conservative policies. As our main contribution, we provide a dynamic programming
framework (Section 3), which we name the VaR framework, for optimizing a lower bound on the
percentile criterion without explicitly constructing ambiguity sets. Specifically, we propose a new
robust Bellman operator, the Value at Risk (VaR) Bellman operator, for optimizing the percentile
criterion. We show that it is a valid contraction mapping that optimizes a tighter lower bound on the
percentile criterion, compared to RMDPs with BCR ambiguity sets (Section 3). We theoretically
analyze and bound the performance loss of our framework (Section 3.1). We provide a Generalized
VaR Value iteration algorithm and analyze its error bounds. We also show that there exist directions
in which the Bayesian credible regions can grow unnecessarily large with the number of states in the
MDP and possibly result in a conservative solution. On the other hand, the ambiguity sets implicitly
optimized by the VaR Bellman operator tend to be smaller, i.e., they have a smaller asymptotic radius
and are independent of the number of states (Section 4). Finally, we empirically demonstrate the
efficacy of our framework in three domains (Section 5).

1.1 Related Work

Several work[13, 34, 40] propose different methods for solving the percentile criterion, as well
as other robust measures for handling uncertainty in the transition probabilities estimates. Russel
and Petrik [40] and Behzadian et al. [3] propose various heuristics for minimizing the size of the
ambiguity sets constructed for the percentile-criterion. Russel and Petrik [40] propose a method that
interleaves robust value iteration with ambiguity set size optimization. Behzadian et al. [3] propose an
iterative algorithm that optimizes the weights of ℓ1 and ℓ∞ ambiguity sets while optimizing the robust
policy. However, these methods still construct Bayesian credible sets which can be unnecessarily
large and result in conservative policies, as we show in Section 5.

Other works consider partial correlations between uncertain transition probabilities to mitigate the
conservativeness of learned policies [4, 15, 19, 29, 30]. These approaches mitigate the conservative-
ness of S- and SA-rectangular ambiguity sets by capturing correlations between the uncertainty and
by limiting the number of times the uncertain parameters deviate from the mean parameters. Despite
these heuristics, most of these works [2, 20, 40, 53] either rely on weak statistical concentration
bounds to construct frequentist ambiguity sets, or use Bayesian credible regions as ambiguity sets.
These sets still tend to be unnecessarily large [15, 40], resulting in conservative policies.

Finally, a large number of works [12, 16, 36, 44, 49, 50, 52] have proposed RL algorithms that
use measures like Conditional Value at Risk, Entropic risk measure amongst other risk measures.
However, we note that these works use risk measures to obtain robustness guarantees against aleatoric
uncertainty (system uncertainty) and not epistemic uncertainty (model uncertainty), which is the focus
of our work. Since these works optimize a completely different objective, we do not compare our
framework against theirs. Robust RL work [2, 14, 20, 28, 32, 55] proposes other robust measures for
handling uncertainty in transition probabilities; however, these approaches do not provide probabilistic
guarantees on the expected returns, and compute overly conservative policies.

2 Preliminaries

In the standard reinforcement learning setting, a sequential decision task is modeled as a Markov
Decision Process (MDP) [37, 48]. An MDP is a tuple ⟨S,A, P,R,p0, γ⟩ that consists of (a) a set
of states S = {1, 2, . . . , S}, (b) a set of actions A = {1, 2, . . . , A}, (c) a deterministic reward
function R : S ×A× S → R, (d) a transition probability function P : S ×A → ∆S , (e) an initial
state distribution p0 ∈ ∆S , where ∆S represents the S-dimensional probability simplex, and (f) a
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discount factor γ ∈ [0, 1]. We use ps,a to denote the vector of transition probabilities P (s, a, ·)
corresponding to the state s and action a. Likewise, we use rs,a to denote the vector of rewards

R(s, a, ·) corresponding to state s and action a. A Markovian policy π : S → ∆A maps each state
s to a distribution over actions A. In a general RL setting, the goal is to compute a policy π that
maximizes the expected discounted return ρ(π, P ) over an infinite horizon,

max
π∈Π

ρ(π, P ) = max
π∈Π

E

[
∞∑

t=0

γtr(st, at, st+1) | s0 ∼ p0, at ∼ π(st), st+1 ∼ P (st, at, ·)
]
.

The value of a policy π at any state s is the discounted sum of rewards received by an RL agent, if it
starts from state s, i.e., vπ(s) = E [

∑∞
t=0 γ

tr(st, at, st+1)|s0 = s, at ∼ π, st+1 ∼ P (st, at, ·)].
We assume a batch reinforcement learning setting [26] where the reward function is known, but
the true transition probabilities P ∗ are unknown. Following prior work on robust Bayesian RL
[8, 13, 40, 54], we use parametric Bayesian models to represent uncertainty over the true transition

probabilities P ∗. We will use P̃ = {p̃s,a}s∈S,a∈A to denote the random transition probabilities.

We assume we have a batch of data D = {si, ai, s′i}Ni=1, which in conjunction with some prior

distribution defines the posterior distribution of transition probabilities P̃ .

The Fisher information measures the amount of information about the unknown true parameters

θ∗ ∈ Rd carried by an observable random variable X̃ ∈ Rm. If f(x;θ∗) is the probability density of

X̃ conditioned on θ∗, then the Fisher information is given by I(θ∗)=E

[
(∇ log f(X̃;θ∗))(∇ log f(X̃;θ∗))

T

]
.

Then, in the Bayesian setting, the Bernstein von Mises theorem [51] states that under mild regularity

conditions the posterior distribution of the parameters θ̃ converges in the limit to the distribution of the

MLE of θ∗ which is asymptotically Gaussian, in particular, limN→∞

√
N(θ̃−θ∗)⇝ N (0, I(θ∗)−1)

where ⇝ indicates convergence in distribution. In many cases, the above holds even though the
conditions of the Bernstein-von Mises theorem are not met [17, 18]. Of particular interest in this
setting is the Dirichlet distribution where the asymptotic MLE is a multivariate Gaussian under certain
conditions on the prior distribution [18], although in this case, it is degenerate (i.e., the covariance
matrix is not full-rank).

For asymptotic results, we assume that the data D is sampled such that each state s and action
a is observed infinitely many times as N → ∞. Furthermore, we assume henceforth that the
prior is asymptotically negligible, and the MLE is asymptotically Gaussian with covariance matrix
I(P ∗)−1

/N . Therefore, the posterior distribution of P̃ is also asymptotically Gaussian with covariance
matrix I(P ∗)−1

/N . Under these conditions, we will estimate the Fisher information corresponding to

θ∗ = P ∗ using the asymptotic covariance of the posterior distribution of P̃ .

To avoid unnecessary computational technicalities, we will assume that P̃ is a discrete random

variable taking on values P̃ (ω), ω ∈ Ω for some Ω = {1, . . . ,M} with a distribution f . That is, the

random variable P̃ represents a discrete approximation of the true, possibly continuous posterior, as
is common in methods like Sample Average Approximation (SAA) [43].

Percentile Criterion The α-percentile criterion is popularly used to derive robust policies under
model uncertainty [13]. It aims to compute a policy π that maximizes the returns corresponding to
the worst α-percentile model:

argmax
π∈Π

{
y ∈ R

∣∣∣ Pr
P̃∼f

[
ρ(π, P̃ ) ≥ y

]
≥ 1− α

}
. (1)

The value y lower-bounds the true expected discounted returns with confidence 1 − α where α ∈
(0, 1/2). Optimizing the percentile criterion is equivalent to optimizing the Value at Risk (VaRα)

of expected discounted returns when there exists uncertainty in transition probabilities P̃ and the
expected returns function ρ is lower-semicontinuous. The optimization in (1) is equivalent to

max
π∈Π

VaRα [ρ(π, P̃ )] , (2)

where VaRα of a bounded random variable X̃ with a CDF function F : R → [0, 1] is defined as [38]

VaRα[X̃] = sup{t ∈ R : Pr[X̃ ≥ t] ≥ 1− α} . (3)
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A lower value of α in (1) indicates a higher confidence in the returns achieved in expectation. For

example, VaR0.05[ρ(π, P̃ )] = x indicates that the true returns will be at least equal to the robust
returns x for 95% of the transition probability models. When clear from context, we use VaR to
denote the Value at Risk at confidence level α. Unfortunately, the optimization problem in (1) is
NP-hard to optimize and is usually approximately solved using Robust MDPs.

Robust MDPs Robust MDPs (RMDPs) generalize MDPs to account for uncertainty, or ambiguity,
in the transition probabilities. An ambiguity set for an RMDP is constructed such that it contains the
true model with high confidence. The optimal policy of a Robust MDP π∗ maximizes the returns
of the worst model in the ambiguity set: π∗ = argmaxπ∈Π minP∈P ρ(π,P ). General RMDPs are
NP-hard to solve [53], but they are tractable for broad classes of ambiguity sets. The simplest such
type is the SA-rectangular ambiguity set [33, 53], defined as

P =
{
P ∈ (∆S)S×A | ps,a ∈ Ps,a, ∀s ∈ S, ∀a ∈ A

}
,

for a given Ps,a ⊆ ∆S , s ∈ S, a ∈ A. SA-rectangular ambiguity sets [3, 40] assume
that the transition probabilities corresponding to each state-action pair are independent. Sim-
ilarly to MDPs, the optimal robust value function v∗ ∈ RS for an SA-rectangular RMDP is
the unique fixed point of the robust Bellman optimality operator T : RS → RS defined as
(T v)s = maxa∈A minps,a∈Ps,a p

T

s,a (rs,a + γ · v).
To optimize the percentile criterion, an SA-rectangular ambiguity set P is constructed such that it
contains the true model with high probability, and thus, the following equation holds.

Pr

[
ρ(π, P̃ ) ≥ min

P∈P
ρ(π,P )

]
≥ 1− α .

Although RMDPs have been used to solve the percentile criterion [3], the quality of the robust policies
it computes depends mainly on the size of the ambiguity sets. The larger the ambiguity sets, the more
conservative the robust policy [30]. SA-rectangular ambiguity sets are most commonly studied; thus
we focus our attention on SA-rectangular Robust MDPs. We investigate whether Bayesian credible
regions are optimal ambiguity sets for optimizing the percentile criterion. We refer to SA-rectangular
RMDPs and SA-rectangular ambiguity sets as Robust MDPs and ambiguity sets respectively.

Our work focuses on Bayesian (rather than frequentist) ambiguity sets. Bayesian ambiguity sets are
usually constructed from Bayesian credible regions (BCR) [3, 40]. Given a state s and an action a,
let ψs,a represent the size of the BCR ambiguity sets; PBCRα

s,a and p̄s,a represent the mean transition

probabilities. The set PBCRα
s,a is constructed as

PBCRα
s,a = Ps,a(b, ψ, q) =

{
ps,a ∈ ∆S

∣∣∥ps,a − p̄s,a∥q,b ≤ ψs,a

}
, (4)

where q ∈ {1,∞} represents the norm of the weighted ball in (4) and b ∈ RS
+ is a weight vector.

Here, b is jointly optimized with ψ ∈ R to minimize the span of the ambiguity sets such that the true
model is contained in the ambiguity set with high confidence, i.e., Pr (p̃s,a ∈ Ps,a(b, ψ, q)) ≥ 1−α.
We refer to BCR ambiguity sets with non-uniform weights as weighted BCR ambiguity sets. We refer
to the Robust Bellman optimality operator with BCR ambiguity sets (TBCRα

) as the BCRα Bellman
optimality operator, and to RMDPs with BCR ambiguity sets as BCR RMDPs. For any δ ∈ (0, 1/2),
setting the confidence level α in TBCRα to δ/SA for all state-action pairs yields 1− δ confidence on the
returns of the optimal robust policy [3]. However, we show that even span-optimized BCR RMDPs
can be sub-optimal for optimizing the percentile criterion.

We use the shorthand ws,a for any s ∈ S , a ∈ A to denote the vector of values associated with value

v ∈ RS and the one-step return from state s and action a, i.e., ws,a = rs,a + γv. We use p̄s,a ∈ Rs

and Σs,a ∈ RS×S for any s ∈ S , a ∈ A to represent the empirical mean and covariance of transition
probabilities p̃s,a estimated from D. We use tilde to indicate that it is a random variable. We use ϕ(·)
and Φ(·) to represent the probability distribution function (PDF) and cumulative distribution function
(CDF) respectively of the normal distribution with mean 0 and variance 1. The Z-Minkowski norm

∥x∥Z for a vector x given some positive-definite matrix Z is defined as ∥x∥Z =
√
xTZ−1x.

We illustrate the conservativeness of BCRα ambiguity sets with the following example.

Example 2.1. Consider an MDP with four states {s0, s1, s2, s3} and a single action {a0}. The
state s0 is the initial state and the states s1, s2, s3 are terminal states with zero rewards. For the
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We now show that the VaR Bellman optimality operator TVaRα optimizes a lower bound on the
percentile criterion. Given a policy π, a state s ∈ S , and transition probabilities P , let

(T π
P v)s =

∑

a∈A

π(s, a)pT

s,a(rs,a + γv) ,

represent the Bellman evaluation operator for transition probabilities P . Furthermore, let

(T π
VaRα

v)s =
∑

a∈A

π(s, a)VaRα

[
p̃T

s,a(rs,a + γv)
]
,

represent the VaR Bellman evaluation operator for random transition probabilities P̃ . We use v̂π

to denote the fixed point of T π
VaRα

. Furthermore, we use ṽπ to represent the random fixed point of

T π
P̃

, which is computed using a random realization of the transition probabilities P̃ sampled from the

posterior distribution conditioned on observed transitions D.

Proposition 3.2 (Lower Bound Percentile Criterion). For any δ ∈ (0, 1/2), if we set the confidence
level α in the operator T π

VaRα
to δ/S, then for every policy π ∈ Π : PrP̃ [v̂π ⪯ ṽπ|D] ≥ 1− δ.

Proposition 3.2 shows that for any policy π and state s, the VaRα value at state s, v̂π(s) lower
bounds the true value ṽπ(s) with high confidence. Comparing Proposition 3.2 with the definition
of the percentile-criterion in (1), we see that the percentile-criterion requires confidence guarantees
only on the returns computed from the initial states, whereas the equation in Proposition 3.2 provides
confidence guarantees on the value of every state. Therefore, for any policy π, the value pT

0 v̂
π is

a lower bound on the percentile-criterion objective VaRδ[ρ(π, P̃ )]. Since TVaRα
finds a policy π

that maximizes the value pT

0 v̂
π , it follows [37] that TVaRα optimizes a lower bound on the percentile

criterion in (1).

Proposition 3.3. Suppose that p̃s,a for any state s and action a, is a multivariate sub-

Gaussian with mean p̄s,a and covariance factor Σs,a, i.e., E

[
exp

(
λ(p̃s,a − p̄s,a

)T
w
)]

≤
exp

(
λ2w

T
Σs,aw/2

)
, ∀λ ∈ R, ∀w ∈ RS . Then, for any state s ∈ S , TVaRα

satisfies

(TVaRαv)s ≥ max
a∈A

(
p̄T

s,aws,a −
√
2 ln(1/α)

√
ws,aΣs,aws,a

)
.

As a special case, when p̃s,a is normally distributed p̃s,a ∼ N (p̄s,a,Σs,a), then TVaRα for any state
s ∈ S can be expressed as

(TVaRαv)s = max
a∈A

(
p̄T

s,aws,a − Φ−1(1− α)
√
ws,aΣs,aws,a

)
.

Proposition 3.3 shows that by assuming that the transition probabilities are sub-Gaussian, we can
easily compute a lower bound of the VaR Bellman update (TVaRαv) for a given value function using

only the mean and the covariance matrix of P̃ . In the special case where P̃ is normally distributed,
we can compute the VaR Bellman optimality operator TVaRα

(v) exactly.

3.1 Performance Guarantees

We now derive finite-sample and asymptotic bounds on the loss of the VaR framework.

Theorem 3.4 (Performance). Let v̂ be the fixed point of the VaR Bellman optimality operator TVaRα

and π∗ be the optimal policy in (1). Let ρ∗ = VaRδ [ρ(π
∗, P̃ )] denote the optimal percentile returns

and ρ̂ = pT

0 v̂ denote the lower bound on the percentile returns computed using the Bellman operator
TVaRα

with α = δ/S. Then for each δ ∈ (0, 1/2):

ρ∗ − ρ̂ ≤ 1

1− γ
max
s∈S

max
a∈A

(
VaR1− 1−δ

S

[
p̃T

s,aws,a

]
−VaRα

[
p̃T

s,aws,a

])
. (6)

Theorem 3.4 bounds the finite sample performance loss of the VaR framework. The loss varies
proportionally to the maximum difference between the δ/S and 1− (1−δ/S) percentile of the one-step
Bellman update for the optimal robust value function v̂. Furthermore, the VaR framework performs
better when the uncertainty in the transition probabilities is small.
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Theorem 3.5 (Asymptotic Performance). Suppose that the normality assumptions on the posterior

distribution P̃ in Section 2 are satisfied. For any δ ∈ (0, 1/2), set α = δ/S in TVaRα
. For any state

s and action a, let I(p∗
s,a) be the Fisher information matrix corresponding to the true transition

probabilities p∗
s,a. Furthermore, let σ2

max = maxs∈S,a∈A ŵT

s,aI(p
∗
s,a)

−1ŵs,a be the maximum over

state-action pairs of the asymptotic variance of the returns estimate p̃T

s,aŵs,a. Then the asymptotic
performance of the VaR framework ρ̂ w.r.t. the optimal percentile returns ρ∗ satisfies

lim
N→∞

√
N(ρ∗ − ρ̂) ≤ 1

1− γ

(
2Φ−1(1− δ/S)σmax

)
≤ 1

1− γ

√
8 ln(S/δ)σmax .

Theorem 3.5 shows that the asymptotic loss in performance of the VaR framework convergence to 0,
i.e., limN→∞(ρ∗ − ρ̂) = 0.

3.2 Dynamic Programming Algorithm

We provide a detailed description of the VaR value iteration algorithm (Algorithm 3.1) below. We
also bound the number of samples required to estimate a single VaR Bellman update (T π

VaRα
v)s for

any given policy π and state s with high confidence 1− ζ.

Algorithm 3.1: Generalized VaR Value Iteration Algorithm

Input: Confidence α ∈ (0, 1/2), Value approximation error ε ≥ 0, Transition models

P̃ (ω1), P̃ (ω2), . . . , P̃ (ωM ) sampled from posterior distribution f
Output: Robust policy πk, Lower bound uk

1 Initialize robust value-function u0 = 0, k = 0
2 repeat
3 for s← 1 to S do
4 for a← 1 to A do
5 ws,a ← rs,a + γuk // 1-step return from (s, a)

6 qa ← V̂aRα[p̃
T

s,aws,a] // empirical VaRα

7 end

8 end
9 k ← k + 1

10 uk(s)← maxa∈A(qa), πk(s)← argmaxa∈A(qa) // VaRα Bellman optimality update

11 until ∥uk − uk−1∥∞ ≤ ε(1−γ)/γ
12 return πk,uk

In each iteration of Algorithm 3.1, we compute the one-step VaR Bellman update TVaRα(v) using

the current value function v. When P̃ is not normally distributed, we use the Quick Select algorithm
[23] to efficiently compute the empirical estimate of the α-percentile of 1-step returns for any state s,

action a, and value function v, i.e., V̂aRα[p̃
T

s,a(rs,a + γv)]. On the other hand, when P̃ is normally

distributed, we compute the VaR Bellman optimality update TVaRα
(v) using the empirical estimate

of mean (p̄s,a)s∈S,a∈A and covariance (Σs,a)s∈S,a∈A of the transition probabilities derived from
the data D (Proposition 3.3). We repeat these steps until convergence.

Proposition 3.6 (Empirical Error Bound). For any state s, action a and value function v, let

V̂aRα[p̃
T

s,aws,a] represent the empirical estimate of α-percentile of returns VaRα[p̃
T

s,aws,a] and

Φf represent the cumulative density function (CDF) of the random estimate of returns p̃T

s,aws,a.

Suppose that Φf is differentiable at the point VaRα[p̃
T

s,aws,a] and let η = Φ′
f

(
VaRα[p̃

T

s,aws,a]
)

represents the density of estimate of returns at point VaRα[p̃
T

s,aws,a]. Let M∗ be the number of
posterior samples required to obtain empirical error ε ∈ R, with confidence 1− ζ , where 0 < ζ < 1,

i.e., Pr
[
|V̂aRα[p̃

T

s,aws,a]−VaRα[p̃
T

s,aws,a]| > ε
]
≤ ζ. Then, limε→0M

∗ε2 = ln(2/ζ)/2η2.

We now show that Algorithm 3.1 produces a policy πk and value function uk that approximates the
optimal value function v̂.

Proposition 3.7 (Value Iteration Error). Define the empirical VaR Bellman optimality operator

T
V̂aRα

for any value v ∈ RS and state s ∈ S as (T
V̂aRα

v)s = maxa∈A V̂aRα

[
p̃T

s,aws,a

]
. Let
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v̂ ∈ RS and û ∈ RS represent the fixed points of TVaRα and T
V̂aRα

respectively. Suppose that

Algorithm 3.1 returns policy πk and value function uk and ∥û− u0∥∞ ≤ rmax/1−γ. Then,

∥û− uk∥∞ ≤ ε, and ∥û− uπk
∥∞ ≤ 2εγ

1− γ
.

Furthermore, the gap between the empirical and true value function is bounded by

∥v̂ − û∥∞ ≤ 1

1− γ
min

(
∥T

V̂aRα
û− TVaRα

û∥∞, ∥TV̂aRα
v̂ − TVaRα

v̂∥∞
)
.

Proposition 3.8 (Time Complexity). Let rmax = maxs,s′∈S,a∈A |R(s, a, s′)|. Then, Algorithm 3.1

terminates in k = ⌈log1/γ(
rmax
ε(1−γ) )⌉ iterations with time complexity O

(
S2AM log1/γ(

rmax
ε(1−γ) )

)
.

Furthermore, for any failure probability ζ ∈ (0, 1), suppose that the CDF (Φf ) of the random

estimate of 1-step returns p̃T

s,aŵs,a is differentiable at the point VaRα[p̃
T

s,aŵs,a], and set η =

Φ′(VaRα[p̃
T

s,aŵs,a]) and M = O
(

log(S/ζ)
η2ε2(1−γ)2

)
. Then with probability at least 1 − ζ, it holds that

∥v̂ − uk∥∞ ≤ O(ε), and Algorithm 3.1 runs in O
(

S2A log1/γ(
rmax
ε(1−γ) ) log(S

ζ )
η2ε2(1−γ)2

)
time.

4 Comparison with Bayesian Credible Regions

We are now ready to answer the question: Are Bayesian credible regions the optimal ambiguity sets
for optimizing the percentile criterion? For this, we compare the VaR framework with BCR Robust
MDPs. First, we derive the robust form of the VaR framework and show that in contrast to the
BCR Bellman operator, the VaR Bellman optimality operator implicitly constructs value function
dependent ambiguity sets, and thus, these sets tend to be smaller (Proposition 4.1). Then, we compare
the asymptotic radii of the BCR ambiguity sets and the VaR ambiguity sets implicitly constructed by
TVaRα . For any given confidence level α, the radius of the VaR ambiguity sets are asymptotically
smaller than that of BCR ambiguity sets (Theorem 4.3). Precisely, the ratio of the radii of VaR
ambiguity sets to BCR ambiguity sets is at least

√
χ2
S−1,1−α/Φ−1(1−α), where χ2

S−1,1−α is the CDF

inverse of 1−α percentile of Chi-squared distribution with degree of freedom S− 1 and Φ−1(1−α)
is the 1−α percentile of N (0, 1). This implies that there exist directions in which the BCR ambiguity

sets are at least Ω(
√
S) larger than VaR ambiguity sets. Thus, we prove that VaR framework is better

suited for optimizing the percentile criterion than RMDPs with BCR ambiguity sets.

For any value function v, define the VaR ambiguity set PVaR,v as

PVaR,v = ×
s∈S,a∈A

PVaR,v
s,a where PVaR,v

s,a =
{
ps,a ∈ ∆S | pT

s,av ≥ VaRα

[
p̃T

s,av
]}
. (7)

Proposition 4.1 (Equivalence). The VaR Bellman optimality operator TVaRα can be expressed as

∀s ∈ S : (TVaRα
v)s = max

a∈A
min

p∈PVaR,v
s,a

pT(rs,a + γv) .

Furthermore, the optimal VaR policy π̂ ∈ ΠD solves maxπ∈ΠD minP∈PVaR,v̂ ρ(π,P ) , where

v̂ ∈ RS is the fixed point of the VaR Bellman operator TVaRα
, i.e., v̂ = (TVaRα

v̂).

Proposition 4.1 shows that the VaR Bellman optimality operator optimizes a unique robust
MDP whose ambiguity sets are SA-rectangular and value function dependent. Notice that
for any state s, action a and value function v, the VaR ambiguity set is a half-space{
ps,a ∈ ∆S : pT

s,av ≥ VaRα

[
p̃T

s,av
]}

dependent on the value function v. In contrast, BCR ambi-
guity sets are independent of any policy or value function and are constructed such that they provide
high-confidence guarantees on returns of all policies simultaneously. As a result, BCR ambiguity sets
tend to be unnecessarily large.

We now compute the ratio of the asymptotic radii of BCR ambiguity sets and VaR ambiguity sets.

Theorem 4.2 (Asymptotic Radii of VaR Ambiguity Sets). For any state s and action a, let

I({(p∗
s,a)i}S−1

i=1 ) be the Fisher information of the first S−1 transition probabilities, i.e., {(p∗
s,a)i}S−1

i=1 .
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Define I′(p∗

s,a)=


I({(p∗

s,a)i}S−1
i=1 ) 0

0
T 0


. Suppose that the normality assumptions on the posterior

distribution P̃ in Section 2 are satisfied. Then,

lim
N→∞

√
N(PVaRα

s,a − p∗
s,a) =

{
ps,a ∈ ∆S

∣∣∣∥ps,a − p∗
s,a∥I′(p∗

s,a)
−1 ≤ Φ−1(1− α)

}
− p∗

s,a . (8)

Theorem 4.2 shows that the asymptotic form of the VaR ambiguity set is an ellipsoid. Note that,
in contrast to the finite-sample VaR ambiguity set PVaR,v

s,a in problem (7), the asymptotic VaR

ambiguity set PVaR
s,a is independent of the value function v. This is because VaRα

[
p̃T

s,av
]

is convex

in the value function v [39]. Therefore, the asymptotic ambiguity set PVaR
s,a is simply the intersection

of closed half-spaces in PVaR,v
s,a , computed over all value functions v ∈ RS [9]. It is also worth noting

that the radius of the asymptotic VaR ambiguity set PVaR
s,a is constant. In contrast, the asymptotic

radius of the BCR ambiguity sets grows with the number of states in at least one direction, as we
show in the following proposition.

Theorem 4.3 (Asymptotic Radius of Bayesian Credible Regions). For any state s and action a,

let PBCRα
s,a represent any Bayesian credible region. Let ξ <

√
χ2
S−1,1−α/Φ−1(1−α). Suppose that the

normality assumptions on the posterior distribution of P̃ in Section 2 are satisfied. Then,

∀s ∈ S, a ∈ A : lim
N→∞

√
N(PBCRα

s,a − p∗
s,a) ̸⊆ lim

N→∞

√
Nξ(PVaRα

s,a − p∗
s,a) . (9)

We note that Theorem 4.3 is an adaptation of Theorem 10 in [21] in RL which proves that there exist

directions in which the Bayesian credible regions is at least ξ =
√

χ2
S−1,1−α/Φ−1(1−α) larger than

VaR ambiguity sets. Since the value of ξ only grows with the number of states, we conclude that
BCR ambiguity sets are sub-optimal for optimizing the percentile criterion. Figure 1a shows the
growth in the ratio of radius of BCR to VaR ambiguity sets with an increasing number of states.

5 Experiments

We now empirically analyze the robustness of the VaR framework in three different domains.

Riverswim: The Riverswim MDP [46] consists of five states and two actions. The state represents the
coordinates of the swimmer in the river and action represents the direction of the swim. The task of
the agent is to learn a policy that would take the swimmer to the other end of the river.

Population Growth Model: The Population Growth MDP [25] models the population growth of pests
and consists of 50 states and 5 actions. The states represent the pest population and actions represent
the pest control measures. In our experiments, we use two different instantiations of the Population
Growth Model: Population-Small and Population, which vary in the number of posterior samples.

Inventory Management: The Inventory Management MDP [56] models the classical inventory
management problem and consists of 30 states and 30 actions. States represent the inventory level
and actions represent the inventory to be purchased. The sale price s, holding cost c and purchase
costs P are 3.99, 0.03, and 2.219. The demand is normally distributed with mean=s/4 and standard
deviation s/6.

Implementation details: For each domain in our experiments, we sample a dataset D consisting of
n tuples of the form {s, a, r, s′}, corresponding to the state s, the action taken a, the reward r and
the next state s′. We construct a posterior distribution over the models using D, assuming Dirichlet
priors over the model parameters. Using MCMC sampling, we construct two datasets D1 and D2

containing M and K transition probability models, respectively.

We construct L train datasets by randomly sampling 80% of the models from D1 each time. We use
D2 as our test dataset. For any confidence level δ, we train one RL agent per train dataset and method.

For evaluation, we consider two instances of the VaR framework: one (denoted by VaRN) that
assumes that P̃ is a multivariate normal, and another (denoted by VaR) that does not assume any
structure over P̃ . We use seven baseline methods for evaluating the robustness of our framework.
They are: Naive Hoeffding [35], Optimized Hoeffding (Opt Hoeffding) [3], Soft-Robust [5], and
BCR Robust MDPs with weighted ℓ1 ambiguity sets (WBCR ℓ1) [3], weighted ℓ∞ ambiguity sets
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(WBCR ℓ∞) [3], unweighted ℓ1 ambiguity sets (BCR ℓ1) [40] and unweighted ℓ∞ ambiguity sets
(BCR ℓ1) ambiguity [40] sets. See Appendix C in the appendix for more details.

We report the 95% confidence interval of the robust performance (δ-percentile of expected returns) of
the VaR framework on the test dataset with that of other baselines for different values of δ.

Methods Riverswim Inventory Population-Small Population

VaR 68.54 ± 5.08 457.95 ± 0.74 -3102.48 ± 429.7 -4576.87 ± 147.3
VaRN 67.27 ± 0.0 452.78 ± 0.02 -4005.53 ± 8.76 -4570.17 ± 38.84
BCR l1 67.27 ± 0.0 369.67 ± 0.0 -5614.95 ± 80.28 -6013.21 ± 1177.94
BCR l∞ 67.27 ± 0.0 199.41 ± 39.02 -7908.92 ± 41.6 -9033.7 ± 84.28
WBCR l1 67.9 ± 3.82 454.1 ± 4.16 -5290.38 ± 1084.26 -5408.01 ± 225.2
WBCR l∞ 67.27 ± 0.0 199.4 ± 39.02 -7712.43 ± 55.96 -8377.64 ± 126.24
Soft-Robust 61.79 ± 1.46 460.6 ± 0.0 -3647.18 ± 94.62 -6932.86 ± 154.16
Naive Hoeffding 51.52 ± 6.06 -0.0 ± 0.0 -8647.7 ± 59.5 -9127.14 ± 140.98
Opt Hoeffding 50.76 ± 4.56 -0.0 ± 0.0 -8640.48 ± 2.34 -9163.64 ± 13.62

Table 1: shows the 95% confidence interval of the robust (percentile) returns achieved by VaR, VaRN,
BCR ℓ1, BCR ℓ∞, WBCR ℓ1, WBCR, Soft Robust, Worst RMDP, Naive Hoeffding and Opt Hoeffding
agents at δ = 0.05 in Riverswim, Inventory, Population-Small, and Population domain.

Experimental Results Table 1 summarizes the performance of the VaR framework and the base-
lines for confidence level δ = 0.05 (Table 2 and Table 3 in the appendix summarizes the results
for δ = 0.15 and δ = 0.3 respectively.). We observe that for confidence level δ = 0.05, the VaR
framework outperforms the baseline methods in terms of mean robust performance in most domains.
On the other hand, for δ = 0.15, the VaR framework outperforms baselines in the Population and
Population-Small domains and has comparable performance to the Soft-Robust method in the Inven-
tory domain. However, at δ = 0.3 we observe that the VaR framework has lower robust performance
relative to the the Soft-Robust method in Riverswim and Population domains. We conjecture that this
is because the Soft-Robust method optimizes the policy to maximize the mean of expected returns and
is therefore able to perform better in cases where a lower level of robustness is required. However, we
note that in contrast to our method, the Soft-Robust method does not provide probabilistic guarantees
against worst-case scenarios.

Furthermore, as expected, we find that in many cases, the robust performance of BCR Robust MDPs
with span-optimized (weighted) ambiguity sets (WBCR ℓ1, WBCR ℓ∞) is relatively higher than
the robust performance of Robust MDPs with unweighted BCR ambiguity sets (BCR ℓ1, BCR ℓ∞).
However, we find that even Robust MDPs with span-optimized BCR ambiguity sets are generally
unable to outperform the robust performance of our VaRα framework.

Figure 2 compares the robust performance of the VaR framework and the baselines on both train
and test models. The trends in the robust performance of the VaR framework and the baselines are
similar on both train and test models.

6 Conclusion and Future Work

The main limitation of the VaR framework is that it does not consider the correlations in the
uncertainty of transition probabilities across states and actions [19, 29, 30]. However, due to the
non-convex nature of the percentile-criterion [3, 40], constructing a tractable VaRα Bellman operator
that considers these correlations is not feasible. One plausible solution is to use a Conditional Value
at Risk Bellman operator [11, 27] which is convex and lower bounds the Value at Risk measure. We
leave the analysis of this approach for future work. Empirical analysis of the VaRα framework in
domains with continuous state-action spaces is also an interesting avenue for future work.

In conclusion, we propose a novel dynamic programming algorithm that optimizes a tight lower-
bound approximation on the percentile criterion without explicitly constructing ambiguity sets. We
theoretically show that our algorithm implicitly constructs tight ambiguity sets whose asymptotic
radius is smaller than that of any Bayesian credible region, and therefore, computes less conservative
policies with the same confidence guarantees on returns. We also derive finite-sample and asymp-
totic bounds on the performance loss due to our approximation. Finally, our experimental results
demonstrate the efficacy of our method in several domains.
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A Additional theoretical results

Definition A.1 (Translation Subvariance). The operator T : RS → RS satisfies the translation
subvariance property if for all vector v ∈ RS and scalar c, there exists γ ∈ [0, 1) that satisfies

T(v + c1) = (Tv) + γc1 .

.

Definition A.2 (Monotonicity). The operator T : RS → RS satisfies the monotonicity property if for
all v ∈ RS and u ∈ RS such that v ⪯ u, T satisfies

Tv ⪯ Tu .

Lemma A.3 (Contraction Mapping [6]). The operator T : RS → RS is a contraction mapping if it
satisfies monotonicity and translation subvariance properties, i.e., there exists γ ∈ [0, 1) such that for
all u ∈ RS , v ∈ RS , T satisfies

∥Tu− Tv∥∞ ≤ γ∥u− v∥∞ .

The proof of Lemma A.3 follows directly from Proposition 2.1.3 in [6]. We re-derive the proof for
the sake of completeness.

Proof. Denote
c = max

s∈S
|us − vs| .

Therefore for all s ∈ S ,

us − c ≤ vs ≤ us + c .

Applying T to these inequalities and using the translation subvariance (Definition A.1) and mono-
tonicity (Definition A.2) properties, we obtain that for all s ∈ S ,

(Tu)s − γc ≤ (Tv)s ≤ (Tu)s + γc .

It follows that for all s ∈ S ,
|(Tv)s − (Tu)s| ≤ γc ,

and therefore ∥Tu− Tv∥∞ ≤ γc , proving the stated result.

Lemma A.4. For any policy π, let v̂π and vπ be the fixed point of the VaR policy evaluation operator
T π
VaRα

and Bellman policy evaluation operator T π
P . If the VaR Bellman policy evaluation operator

T π
VaRα

dominates the Bellman policy evaluation operator T π
P at v̂π , i.e., T π

VaRα
v̂π ⪯ T π

P v̂π , then, the
fixed point of the VaR Bellman evaluation operator T π

VaRα
dominates the fixed point of the Bellman

evaluation operator T π
P , i.e., v̂π ⪯ vπ .

We note that in contrast to the Bellman policy evaluation operator T π
P , the VaR Bellman policy

evaluation operator T π
VaRα

is a function of the random variable P̃ and is not dependent on the
transition probabilities P assumed in this setting.

Using the assumption TVaRα
v̂π ⪯ T π

P v̂π, and from v̂π = T π
VaRα

v̂π and vπ = T π
P vπ, we get by

algebraic manipulations:

Proof.

v̂π − vπ = T π
VaRα

v̂π − T π
P vπ ⪯ T π

P v̂π − T π
P vπ ⪯ γPπ(v̂

π − vπ) .

Here Pπ is the transition probability function corresponding to policy π. Subtracting γPπ(v̂
π − vπ)

from the above inequality gives,

(I − γPπ)(v̂
π − vπ) ⪯ 0 .

where I is the identity matrix. (I − γPπ)
−1 is monotone as can be seen from its Neumann series.

v̂π − vπ ⪯ (I − γPπ)
−1

0 = 0 .

which proves the result.
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B Proofs

B.1 Proof of Proposition 3.1

Proposition 3.1 (Validity). The following properties of TVaRα
hold for all value functions u,v ∈ RS .

1. The operator TVaRα is contraction mapping on RS : ∥TVaRαu−TVaRαv∥∞ ≤ γ∥u−v∥∞ .
2. The operator TVaRα is monotone: u ⪰ v ⇒ TVaRαu ⪰ TVaRαv.
3. The equality TVaRα

v̂ = v̂ has a unique solution.

Proof. From Lemma A.3, we know that an operator is a contraction mapping if it satisfies monotonic-
ity and subvariance property.

In this proof, we will show that the VaR Bellman operator T π
VaRα

satisfies monotonicity and subvari-
ance property, and therefore, is a contraction mapping.

We will use shorthand rs,a to denote the reward vector corresponding to state s and action a, i.e.,
rs,a = R(s, a, ·).
First, we show that TVaRα satisfies translation subvariance property. Consider any c ∈ R and state s.
Then,

(TVaRα
(v + c1))s =max

a∈A
VaRα[p̃

T

s,a(rs,a + γ(v + c1))]

(a)
= max

a∈A
VaRα[p̃

T

s,a(rs,a + γv + γc1)]

(b)
= max

a∈A
VaRα[p̃

T

s,a(rs,a + γv) + γc]

(c)
= max

a∈A
VaRα[p̃

T

s,a(rs,a + γv)] + γc

(d)
= (TVaRαv)s + γc .

(a) follows from simple algebraic manipulations, (b) follows from γcp̄T

s,a1 = γc, (c) follows from

the translational invariance property of VaRα measure [41], and (d) follows the definition of the
VaR Bellman operator T π

VaRα
.

Next, we show that TVaRα
satisfies the monotonicity property.

Let u and v be any two value functions such that v ⪯ u. Consider any state s ∈ S . Then,

(TVaRα
v)s − (TVaRα

u)s
(a)
= max

a∈A
VaRα[p̃

T

s,a(rs,a + γv)]−max
a∈A

VaRα[p̃
T

s,a(rs,a + γu)]

(b)

≤ max
a∈A

(
VaRα[p̃

T

s,a(rs,a + γv)]−VaRα[p̃
T

s,a(rs,a + γu)]
)

(c)

≤ 0

(TVaRα
v)s ≤ (TVaRα

u)s .

(a) follows from the definition of the VaRα Bellman operator TVaRα , (b) follows from the fact that

∀a′ ∈ A, −maxa∈A VaRα[p̃
T

s,a(rs,a + γv)] ≤ −VaRα[p
T

s,a′(rs,a′ + γv)], (c) follows from the
monotonicity property [41] of the VaR operator and u ⪰ v.

Thus, we prove that TVaRα is a γ-contraction mapping and a monotone operator. Since TVaRα is a
contraction operator on a Banach space and from the Banach fixed point theorem [1], it follows that
the operator TVaRα has a unique solution v̂, i.e., TVaRα v̂ = v̂.

Given a policy π, a state s ∈ S , and transition probabilities P , let

(T π
P v)s =

∑

a∈A

π(s, a)pT

s,aws,a and (T π
VaRα

v)s =
∑

a∈A

π(s, a)VaRα

[
p̃T

s,aws,a

]
,

represent the Bellman evaluation operator corresponding to transition probabilities P and the VaRα

Bellman evaluation operator, respectively.
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B.2 Proof of Proposition 3.2

Proposition 3.2 (Lower Bound Percentile Criterion). For any δ ∈ (0, 1/2), if we set the confidence
level α in the operator T π

VaRα
to δ/S, then for every policy π ∈ Π : PrP̃ [v̂π ⪯ ṽπ|D] ≥ 1− δ.

Proof. Let α = δ/S. Recall that for any policy π, state s ∈ S , transition probabilities P , the Bellman
evaluation operator T π

P and the VaR Bellman evaluation operator T π
VaRα

are defined as

(T π
P v)s =

∑

a∈A

π(s, a)pT

s,aws,a and (T π
VaRα

v)s =
∑

a∈A

π(s, a)VaRα

[
p̃T

s,aws,a

]
,

respectively.

Let v̂π be the fixed point of T π
VaRα

conditioned on observed transitions D, and let ṽπ be a random

variable that represents the fixed point of T π
P̃

for a given realization of the transition probabilities P̃ .

Then, applying Lemma A.4 to T π
VaRα

and T π
P̃

, we have, v̂π ⪯ vπ implies

T π
VaRα

v̂π ⪯ T π
P̃
v̂π .

That is for each state s,

VaRα[p̃
T

s,π(s)v̂
π] ≤ p̃T

s,π(s)v̂
π . (10)

Using the equation (10), we can bound the probability that the VaR value function lower bounds the
true value.

Pr
P̃

[v̂π ⪯ ṽπ|D] = Pr
P̃

[
∀s ∈ S : VaRα

[
p̃T

s,π(s)v̂
π
]
≤ p̃T

s,π(s)v̂
π
∣∣∣D
]
. (11)

From the definition of VaR, we know that for any state s and action a,

Pr
P̃

[
VaRα

[
p̃T

s,av̂
π
]
≤ p̃T

s,av̂
π
∣∣D
]
≥ 1− α , (12)

Therefore, using union bound and (11) in (12), we can write

Pr
P̃

[v̂π ≻ ṽπ|D] ≤
∑

s∈S

Pr
P̃

[
VaRα[p̃

T

s,π(s)v̂
π] > p̃T

s,π(s)v̂
π
∣∣∣D
]
.

Thus,

Pr [v̂π ≻ ṽπ|D] =
∑

s∈S

δ

S
= S

δ

S
= δ .
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B.3 Proof of Proposition 3.3

Proposition 3.3. Suppose that p̃s,a for any state s and action a, is a multivariate sub-

Gaussian with mean p̄s,a and covariance factor Σs,a, i.e., E

[
exp

(
λ(p̃s,a − p̄s,a

)T
w
)]

≤
exp

(
λ2w

T
Σs,aw/2

)
, ∀λ ∈ R, ∀w ∈ RS . Then, for any state s ∈ S , TVaRα

satisfies

(TVaRαv)s ≥ max
a∈A

(
p̄T

s,aws,a −
√
2 ln(1/α)

√
ws,aΣs,aws,a

)
.

As a special case, when p̃s,a is normally distributed p̃s,a ∼ N (p̄s,a,Σs,a), then TVaRα
for any state

s ∈ S can be expressed as

(TVaRα
v)s = max

a∈A

(
p̄T

s,aws,a − Φ−1(1− α)
√
ws,aΣs,aws,a

)
.

Proof.

(T π
VaRα

v)s = max
a∈A

VaRα[p̃
T

s,aws,a]

(a)
= max

a∈A
sup

{
t
∣∣Pr

(
p̃T

s,aws,a ≥ t
)
≥ 1− α

}

(b)
= max

a∈A
inf
{
t
∣∣Pr

(
(p̃s,a − p̄s,a)

Tws,a > (t− p̄T

s,aws,a)
)
< 1− α

}

(c)
= max

a∈A
inf
{
t
∣∣Pr

(
exp((p̃s,a − p̄s,a)

Tws,a) > exp(t− p̄T

s,aws,a)
)
< 1− α

}

(d)

≥ max
a∈A

inf

{
t

∣∣∣∣1− exp

(
−(t− p̄T

s,aws,a)
2

2wT
s,aΣs,aws,a

)
< 1− α

}

(e)
= max

a∈A
inf

{
t

∣∣∣∣(t− p̄T

s,aws,a)
2 < −2 ln(α)wT

s,aΣs,aws,a

}

(f)
= max

a∈A
inf

{
t

∣∣∣∣(t− p̄T

s,aws,a) ∈
(
−
√
2 ln(1/α)

√
wT

s,aΣs,aws,a,
√
2 ln(1/α)

√
wT

s,aΣs,aws,a

)}

(g)
= max

a∈A

(
p̄T

s,aws,a −
√
2 ln(1/α)

√
ws,aΣs,aws,a

)
.

Equality (a) follows from the definition of VaR, (b) follows from using the fact that VaRα[X̃] =

inf{t ∈ R : Pr[X̃ > t] < 1−α} and subtracting p̄T

s,aws,a on both sides, (c) follows from taking ex-

ponential on both sides, (d) follows from applying the upper-bound given by Chernoff bound

for a sub-Gaussian distribution [7] i.e., Pr
(
exp((p̃s,a − p̄s,a)

Tws,a) ≤ exp(t− p̄T

s,aws,a)
)

≤
exp

(
−(t−p̄T

s,aws,a)
2

2wT
s,aΣs,aws,a

)
, (e) follows from subtracting 1 on both sides and then, taking ln on both

sides, (f) follows from simple algebraic manipulations and (g) follows from taking the infimum of
the solution interval of t.

Solving for t in step (g), we get t = VaRα[p̃
T

s,aws,a] = p̄T

s,aws,a −
√
2 ln(1/α)

√
ws,aΣs,aws,a

which proves the stated result.

Next, we derive the VaR Bellman optimality update TVaRα
(v) when p̃s,a∀s ∈ S, a ∈ A is normally

distributed.

Consider the VaR Bellman optimality operator defined for any state s and value function v as

(TVaRα
v)s = max

a∈A
VaRα

[
p̃T

s,aws,a

]
. (13)

From the theory of multivariate Gaussian distributions [7], we know that, for any state s and
action a, if p̄s,a is Gaussian distributed N (p̄s,a,Σs,a), then, p̃T

s,aws,a is also Gaussian distributed

N (p̄T

s,aws,a,w
T

s,aΣs,aws,a). To find the VaRα[p̃
T

s,aws,a] for any state s and action a, it is sufficient
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to find t such that Pr(p̃T

s,aws,a > t) = 1− α.

Pr


 (p̃− p̄s,a)

Tws,a√
wT

s,aΣs,aws,a

>
t− p̄T

s,aws,a√
wT

s,aΣs,aws,a


 = 1− α

1− Φ


 t− p̄T

s,aws,a√
wT

s,aΣs,aws,a


 = 1− α


 t− p̄T

s,aws,a√
wT

s,aΣs,aws,a


 = Φ−1(α)

t = p̄T

s,aws,a +Φ−1(α)
√
wT

s,aΣs,aws,a

t = p̄T

s,aws,a − Φ−1(1− α)
√
wT

s,aΣs,aws,a ,

The first equation follows from substracting p̄T

s,aws,a and dividing by
√
wT

s,aΣs,aws,a on both sides.

The second equality follows from the definition of CDF of N (0, 1) and the third equality follows
from simple algebraic manipulations.

Substituting the value of t = VaRα[p̃
T

s,aws,a] = p̄T

s,aws,a − Φ−1(1− α)
√

wT
s,aΣs,aws,a in (13),

we obtain the stated results.

The normal form of the VaR Bellman optimality operator TVaRα
is useful to analyze the asymptotic

properties of the VaR Bellman operator.

B.4 Proof of Theorem 3.4

Theorem 3.4 (Performance). Let v̂ be the fixed point of the VaR Bellman optimality operator TVaRα

and π∗ be the optimal policy in (1). Let ρ∗ = VaRδ [ρ(π
∗, P̃ )] denote the optimal percentile returns

and ρ̂ = pT

0 v̂ denote the lower bound on the percentile returns computed using the Bellman operator
TVaRα

with α = δ/S. Then for each δ ∈ (0, 1/2):

ρ∗ − ρ̂ ≤ 1

1− γ
max
s∈S

max
a∈A

(
VaR1− 1−δ

S

[
p̃T

s,aws,a

]
−VaRα

[
p̃T

s,aws,a

])
. (6)

Proof. We denote the optimal policy that optimizes the δ-percentile criterion by π∗, i.e., π∗ ∈
argmaxπ∈Π VaRδ[ρ(π, P̃ )].

Recall that v̂ ∈ RS is the fixed point of the VaRα Bellman optimality operator TVaRα , i.e., v̂ =
TVaRα

v̂ and ρ̂ = pT0 v̂ is the returns of the corresponding policy. The operator T π
P represents the

Bellman evaluation operator for a given policy π ∈ Π and a transition probability model P . The
Bellman evaluation operator T π

P for any s ∈ S and value v ∈ RS is defined as

(T π
P v)s = pT

s,π(s)ws,π(s) ,

where ws,π(s) = rs,π(s) + γ · v.

It is known that the Bellman operator T π
P is a γ-contraction mapping, monotone, and has a unique

fixed point. We will use ṽπ∗

= T π∗

P̃
ṽπ∗

to represent the random unique fixed point of the Bellman

operator T π∗

P̃
defined for a random realization of transition probabilities P̃ . Furthermore, we will use

pT

0 ṽ
π∗

= ρ(π∗, P̃ ) to denote the random expected returns corresponding to policy π∗ and random

realization of the transition probabilities P̃ .

Suppose that c ∈ R+ upper-bounds the difference in performance of the VaRα policy π̂ and optimal
percentile-criterion policy π∗, i.e., ρ∗ − ρ̂ = c ⇐⇒ ρ∗ = ρ̂− c.
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From the definition of VaR and π∗, we know that

ρ∗ = VaRδ[ρ(π
∗, P̃ )] = sup{t : Pr[ρ(π∗, P̃ ) ≥ t] ≥ 1− δ} .

Since ρ̂+ c upper bounds ρ∗, we can write

Pr[ρ(π∗, P̃ ) ≤ ρ̂+ c] ≥ δ ⇐⇒ Pr[ρ(π∗, P̃ )− ρ̂ ≤ c] ≥ δ . (14)

The above equation suggests that the error in the performance of the VaRα policy is upper-bounded

by c if Pr[ρ(π∗, P̃ )− ρ̂ ≤ c] holds with at least δ probability.

To derive a lower bound on c, we proceed as follows.

We begin by showing that ρ(π∗, P̃ )− ρ̂ ≤ ∥ṽπ∗ − v̂∥∞.

ρ(π∗, P̃ )− ρ̂ = ρ(π∗, P̃ )− pT

0 v̂ from the definition of ρ̂ and ρ(π∗, P̃ )

≤ |pT

0 ṽ
π∗ − pT

0 v̂| |x| ≥ x

≤ ∥p0∥1∥ṽπ∗ − v̂∥∞ from Hölder’s Inequality

≤ ∥ṽπ∗ − v̂∥∞ ∥p0∥1 = 1 .

(15)

Next, we bound ∥ṽπ∗ − v̂∥∞ to obtain a lower-bound on c.

∥ṽπ∗ − v̂∥∞ (a)
= ∥ṽπ∗ − T π∗

P̃
v̂ + T π∗

P̃
v̂ − v̂∥∞

(b)
= ∥T π∗

P̃
ṽπ∗ − T π∗

P̃
v̂ + T π∗

P̃
v̂ − TVaRα

v̂∥∞
(c)

≤ ∥T π∗

P̃
ṽπ∗ − T π∗

P̃
v̂∥∞ + ∥T π∗

P̃
v̂ − TVaRα

v̂∥∞
(d)

≤ γ∥ṽπ∗ − v̂∥∞ + ∥T π∗

P̃
v̂ − TVaRα

v̂∥∞ .

(a) follows by simply adding and subtracting T π∗

P̃
v̂, (b) follows from the fact that ṽπ∗

and v̂ are the

fixed points of T π∗

P̃
and TVaRα

respectively, (c) follows from applying the triangle inequality to the

R.H.S., and (d) follows from the contraction property of a Bellman operator.

Rearranging and re-normalizing the above terms, we get

∥ṽπ∗ − v̂∥∞ ≤ 1

(1− γ)
∥T π∗

P̃
v̂ − TVaRα v̂∥∞ . (16)

Then, combining (15) and (16), we get

ρ(π∗, P̃ )− ρ̂ ≤ 1

1− γ
∥T π∗

P̃
v̂ − TVaRα v̂∥∞

(a)
=

1

1− γ
max
s∈S

(
(T π∗

P̃
v̂)s − (TVaRα

v̂)s

)

(b)
=

1

1− γ
max
s∈S

(
p̃T

s,π∗(s)ŵs,π∗(s) −VaRα

[
p̃T

s,π̂(s)ŵs,π̂(s)

])

(c)

≤ 1

1− γ
max
s∈S

(
p̃T

s,π∗(s)ŵs,π∗(s) −VaRα

[
p̃T

s,π∗(s)ŵs,π∗(s)

])
.

(17)

(a) follows from the definition of l∞ norm, (b) follows from the definitions of TVaRα
and T π∗

P̃

Bellman operators, and (c) follows from the fact that π̂(s) = argmaxa∈A VaRα

[
p̃T

s,aŵs,a

]
and

thus, VaRα

[
p̃T

s,π̂(s)ŵs,π̂(s)

]
≥ VaRα

[
p̃T

s,π∗(s)ŵs,π∗(s)

]
.

Therefore, for any ε > 0, we can write

Pr

[
ρ(π∗, P̃ )− ρ̂ ≤ 1

1− γ
max
s∈S

(
VaR1− 1−δ−ε

S

[
p̃T

s,π∗(s)ŵs,π∗(s)

]
−VaRα

[
p̃T

s,π∗(s)ŵs,π∗(s)

])]
≥ δ

Pr

[
ρ(π∗, P̃ )− ρ̂ ≤ 1

1− γ
max

s∈S,a∈A

(
VaR1− 1−δ−ε

S

[
p̃T

s,aŵs,a

]
−VaRα

[
p̃T

s,aŵs,a

])]
≥ δ .

(18)
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The first equation in the above follows from Pr
[
p̃s,aws,a > VaR1− 1−δ−ε

S

[
p̃T

s,aŵs,a

]]
<

1−δ
S for any state s and action a and applying union bound over all states

yields Pr
[
p̃s,aws,a > VaR1− 1−δ−ε

S

[
p̃T

s,aŵs,a

]
∀s ∈ S

]
< 1 − δ. Thus, we get

Pr
[
p̃s,aws,a ≤ VaR1− 1−δ−ε

S

[
p̃T

s,aŵs,a

]
, ∀s ∈ S

]
≥ δ. The second equation follows by

simply replacing π∗(s) with the worst-case action, i.e., action that maximizes the upper bound.

Comparing (14) and (18), we get

ρ∗ − ρ̂ ≤ 1

1− γ
max
s∈S

max
a∈A

(
inf
ε>0

VaR1− 1−δ−ε
S

[
p̃T

s,aws,a

]
−VaRα

[
p̃T

s,aws,a

])
.

Note that VaR of returns is upper semicontinuous and thus, this implies that the infimum in the above
equation is achieved at ε = 0.

Therefore, we can write

ρ∗ − ρ̂ ≤ 1

1− γ
max
s∈S

max
a∈A

(
VaR1− 1−δ

S

[
p̃T

s,aws,a

]
−VaRα

[
p̃T

s,aws,a

])
.

B.5 Proof of Theorem 3.5

Theorem 3.5 (Asymptotic Performance). Suppose that the normality assumptions on the posterior

distribution P̃ in Section 2 are satisfied. For any δ ∈ (0, 1/2), set α = δ/S in TVaRα
. For any state

s and action a, let I(p∗
s,a) be the Fisher information matrix corresponding to the true transition

probabilities p∗
s,a. Furthermore, let σ2

max = maxs∈S,a∈A ŵT

s,aI(p
∗
s,a)

−1ŵs,a be the maximum over

state-action pairs of the asymptotic variance of the returns estimate p̃T

s,aŵs,a. Then the asymptotic
performance of the VaR framework ρ̂ w.r.t. the optimal percentile returns ρ∗ satisfies

lim
N→∞

√
N(ρ∗ − ρ̂) ≤ 1

1− γ

(
2Φ−1(1− δ/S)σmax

)
≤ 1

1− γ

√
8 ln(S/δ)σmax .

Proof. As noted in Section 2, we assume that as N → ∞, the posterior distribution of transition
probabilities at any state s and action a (p̃s,a) converges in the limit to a multivariate Gaussian

distribution with mean p∗
s,a and covariance matrix I(p∗

s,a)
−1
/N . Hence, we can write

lim
N→∞

√
N(p̃T

s,aws,a − p∗
s,a

T
ws,a)⇝ N (0,wT

s,aI(p
∗
s,a)

−1ws,a) .

We know from Proposition 3.3, that VaRα of a univariate Gaussian random variable X ∼ N (µ, σ2)
can be written as VaRα[X] = µ + Φ−1(α)σ. Therefore, applying this result to the R.H.S. of
Equation (6), we get

lim
N→∞

√
N(ρ∗−ρ̂)

(a)

≤ 1

1− γ
max
s∈S

max
a∈A

(√
Np∗

s,a
T
ws,a +Φ−1

(
1− 1− δ

S

)√
wT

s,aI(p
∗
s,a)

−1ws,a

−
(√

Np∗
s,a

T
ws,a +Φ−1

(
δ

S

)√
wT

s,aI(p
∗
s,a)

−1ws,a

))

(b)
=

1

1− γ
max
s∈S

max
a∈A

(
Φ−1

(
1− 1− δ

S

)√
wT

s,aI(p
∗
s,a)

−1ws,a

− Φ−1

(
δ

S

)√
wT

s,aI(p
∗
s,a)

−1ws,a

)

(c)
=

1

1− γ
max
s∈S

max
a∈A

((
Φ−1

(
1− 1− δ

S

)
− Φ−1

(
δ

S

))√
wT

s,aI(p
∗
s,a)

−1ws,a

)

(d)

≤ 1

1− γ
max
s∈S

max
a∈A

(
2Φ−1

(
1− δ

S

)√
wT

s,aI(p
∗
s,a)

−1ws,a

)
.

(19)

20



(a) follows from the definition of VaRα under Gaussian assumptions, (b) and (c) follow from simple

algebraic manipulations, and (d) follows from the fact that ∀δ ∈ (0, 1/2), 0 ≥ Φ−1
(
1− 1−δ

S

)
≥

Φ−1( δ
S ), −Φ−1( δ

S ) = Φ−1(1− δ
S ), and assuming S > 1.

We prove the second inequality in Theorem 3.5, by leveraging the sub-Gaussian bounds for a standard

normal distribution N (0, σ2) to show that ∀α′ ∈ (0, 1/2), Φ−1(1− α′) ≤
√
2 ln(1/α′).

We know that for a standard normal distribution X ∼ N (0, σ2) where σ ∈ R, the following
sub-Gaussian bounds holds [7]:

Pr
(
−
√
2 ln(2/α′)σ ≤ X ≤

√
2 ln(2/α′)σ

)
≥ 1− α′ . (20)

By definition, for a standard normal distribution N (0, σ2), it holds

Pr
(
−Φ−1(1− α′

/2)σ ≤ X ≤ Φ−1(1− α′

/2)σ
)
= 1− α′ . (21)

Comparing equation (20) and (21), we get

Φ−1(1− α′

/2) ≤
√
2 ln(2/α′) =⇒ Φ−1(1− α′) ≤

√
2 ln(1/α′) . (22)

Using the result in (22) in equation (19), proves the second inequality of the theorem.

B.6 Proof of Proposition 3.6

Proposition 3.6 (Empirical Error Bound). For any state s, action a and value function v, let

V̂aRα[p̃
T

s,aws,a] represent the empirical estimate of α-percentile of returns VaRα[p̃
T

s,aws,a] and

Φf represent the cumulative density function (CDF) of the random estimate of returns p̃T

s,aws,a.

Suppose that Φf is differentiable at the point VaRα[p̃
T

s,aws,a] and let η = Φ′
f

(
VaRα[p̃

T

s,aws,a]
)

represents the density of estimate of returns at point VaRα[p̃
T

s,aws,a]. Let M∗ be the number of
posterior samples required to obtain empirical error ε ∈ R, with confidence 1− ζ , where 0 < ζ < 1,

i.e., Pr
[
|V̂aRα[p̃

T

s,aws,a]−VaRα[p̃
T

s,aws,a]| > ε
]
≤ ζ. Then, limε→0M

∗ε2 = ln(2/ζ)/2η2.

Proof. To prove this theorem, we first compute the derivative of the inverse of the CDF ∂Φ−1
f (α)/∂α

as follows. From the definition of the cdf Φf and VaR, we know that, for any α ∈ (0, 1/2),

Φ−1
f (α) = VaRα[p̃

T

s,aws,a].

From the inverse-function theorem, we get,

(Φ−1
f (α))′ =

1

Φ
′

f (VaRα[p̃T
s,aws,a])

=
1

Φ
′

f (Φ
−1
f (α))

=
1

η
.

Equipped with the above result, we can now proceed to prove the main result.

To prove the result, we need to find M∗ such that

Pr
[
VaRα[p̃

T

s,aws,a]− ε ≤ V̂aRα[p̃
T

s,aws,a] ≤ VaRα[p̃
T

s,aws,a] + ε
]
≥ 1− ζ

(a)
= Pr

[
Φ−1

f (α− εη) ≤ V̂aRα[p̃
T

s,aws,a] ≤ Φ−1
f (α+ εη)

]
≥ 1− ζ .

(23)

Equation (a) follows from applying a first order Taylor expansion to Φ−1
f around the point α. We

apply the following results to obtain a bound on M∗.

Let F̂ and F represent the empirical CDF and the true CDF of a random variable Z̃. Suppose that the

empirical estimate of the CDF F̂ is estimated using M∗ samples from the true distribution of Z̃ and
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0 < ζ < 1 represents the desired level of confidence guarantees, Then, from DWK inequality [31],
we know that

Pr
(
∥F̂ − F∥∞ ≥

√
ln(2/ζ)/2M∗

)
≤ ζ .

The above equation implies that

Pr
(
∃p ∈ (0, 1) : F−1(p) < F̂−1(p− zt) or F−1(p) > F̂−1(p+ ut)

)
≤ ζ , (24)

where zt = ut =
√

ln(2/ζ)/2M∗.

Thus, applying equation (24) to (23), i.e., zt =
√

ln(2/ζ)/2M∗ = εη gives M∗ = ln(2/ζ)/2ε2η2.

B.7 Proof of Proposition 3.7

Proposition 3.7 (Value Iteration Error). Define the empirical VaR Bellman optimality operator

T
V̂aRα

for any value v ∈ RS and state s ∈ S as (T
V̂aRα

v)s = maxa∈A V̂aRα

[
p̃T

s,aws,a

]
. Let

v̂ ∈ RS and û ∈ RS represent the fixed points of TVaRα
and T

V̂aRα
respectively. Suppose that

Algorithm 3.1 returns policy πk and value function uk and ∥û− u0∥∞ ≤ rmax/1−γ. Then,

∥û− uk∥∞ ≤ ε, and ∥û− uπk
∥∞ ≤ 2εγ

1− γ
.

Furthermore, the gap between the empirical and true value function is bounded by

∥v̂ − û∥∞ ≤ 1

1− γ
min

(
∥T

V̂aRα
û− TVaRαû∥∞, ∥TV̂aRα

v̂ − TVaRα v̂∥∞
)
.

Proof. We begin by noting that similar to the VaR Bellman operator TVaRα
, the empirical VaR

Bellman operator T
V̂aRα

is also a contraction mapping because of the monotonicity of the VaRα

operator and since the empirical VaRα in the algorithm is always computed from a fixed set of

transition probabilities sampled from the posterior of P̃ .

We can bound the error between the value function uk returned by Algorithm 3.1 and the fixed point
(û) of T

V̂aRα
as

∥uk−1 − û∥∞ = ∥uk−1 + uk − uk − û∥∞
(a)

≤ ∥uk−1 − uk∥∞ + ∥uk − û∥∞
1

γ
∥uk − û∥∞

(b)

≤ ε(γ − 1)

γ
+ ∥uk − û∥∞

(
1

γ
− 1

)
∥uk − û∥∞

(c)

≤ ε(1− γ)

γ

∥uk − û∥∞
(d)

≤ ε .

(a) follows from applying the triangle inequality to the l∞ norm, (b) follows from the fact that
∥uk−1 − uk∥∞ ≤ ε(1−γ)/γ and ∥uk−1 − û∥∞ ≤ 1

γ ∥uk − û∥∞ due to the contraction property of

T
V̂aRα

operator, and finally, (c) and (d) follow from simply arranging the terms on both sides.

Next, we bound the approximation error ∥uk − uπk
∥∞. From the above result, we can write

−ε1 ≤ û− uk ≤ ε1 . (25)
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We will use the shorthand π, T and T πk to represent the policy πk, empirical VaR Bellman optimality
T
V̂aRα

, and VaR Bellman policy evaluation operator T π
V̂aRα

respectively. Suppose that δ = û− uπ .

δ = û− uπ

(a)
= T û− T πuπ

(b)

≤ T (uk + ε1)− T πuπ

(c)
= T uk − T πuπ + γε1

(d)
= T πuk − T πuπ + γε1

(e)

≤ T π(û+ ε1)− T πuπ + γε1

(f)
= T πû− T πuπ + 2γε1

∥δ∥∞
(g)
= ∥T πû− T πuπ + 2γε1∥∞
(h)
= γ∥û− uπ∥∞ + 2γε1

(1− γ)∥δ∥∞ (i)
= 2γε1

∥δ∥∞
(j)

≤ 2γε

(1− γ)
.

(26)

(a) follows from the fact that û is the fixed point of T û and uπ is the fixed point of T π , (b) follows
from (25), (c) follows from the γ-contraction property of T operator, (d) follows from the definition
of policy π = πk, (e) follows from (25), (f) follows from simple algebraic manipulations, (g)
follows from taking l∞-norm on both sides, (h) follows from applying triangle inequality, and (i)
and (j) follow from simple algebraic manipulations.

Thus, ∥û− uπ∥∞ ≤ 2γε
(1−γ) .

Next we bound the error between the optimal value function v̂ and the fixed point of the empirical
VaR Bellman optimality operator û.

∥v̂ − û∥∞ (a)
= ∥TVaRα

v̂ + TVaRα
û− TVaRα

û− T
V̂aRα

û∥∞
(b)
= ∥TVaRα

v̂ − TVaRα
û+ TVaRα

û− T
V̂aRα

û∥∞
(c)

≤ ∥TVaRα v̂ − TVaRαû∥∞ + ∥TVaRαû− T
V̂aRα

û∥∞
(d)

≤ γ∥v̂ − û∥∞ + ∥TVaRα
û− T

V̂aRα
û∥∞ .

(a) follows by simply adding and subtracting TVaRαû, (b) follows from simply arranging the terms,
(c) follows from applying triangle inequality, and (d) follows from the contraction property of the
Bellman operator TVaRα .

Using simple algebraic manipulations and rearranging the terms in the above equation, we can write

∥v̂ − û∥∞ ≤
∥TVaRαû− T

V̂aRα
û∥∞

1− γ
. (27)

Similarly, we can bound ∥v̂ − û∥∞ in the following manner.

∥v̂ − û∥∞ (a)
= ∥TVaRα

v̂ + T
V̂aRα

v̂ − T
V̂aRα

v̂ − T
V̂aRα

û∥∞
(b)
= ∥TVaRα v̂ − T

V̂aRα
v̂ + T

V̂aRα
v̂ − T

V̂aRα
û∥∞

(c)

≤ ∥T
V̂aRα

v̂ − T
V̂aRα

û∥∞ + ∥TVaRα
v̂ − T

V̂aRα
v̂∥∞

(d)

≤ γ∥v̂ − û∥∞ + ∥TVaRα
v̂ − T

V̂aRα
v̂∥∞ .
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(a) follows by simply adding and subtracting T
V̂aRα

v̂, (b) follows from simply arranging the terms,

(c) follows from applying triangle inequality, and (d) follows from the contraction property of the
Bellman operator T

V̂aRα
.

Using simple algebraic manipulations and rearranging the terms in the above equation, we can write

∥v̂ − û∥∞ ≤
∥TVaRα

v̂ − T
V̂aRα

v̂∥∞
1− γ

. (28)

Thus ∥v̂ − û∥∞ ≤ 1
1−γ min

(
∥TVaRα

v̂ − T
V̂aRα

v̂∥∞, ∥TVaRα
û− T

V̂aRα
û∥∞

)
.

B.8 Proof of Proposition 3.8

Proposition 3.8 (Time Complexity). Let rmax = maxs,s′∈S,a∈A |R(s, a, s′)|. Then, Algorithm 3.1

terminates in k = ⌈log1/γ(
rmax
ε(1−γ) )⌉ iterations with time complexity O

(
S2AM log1/γ(

rmax
ε(1−γ) )

)
.

Furthermore, for any failure probability ζ ∈ (0, 1), suppose that the CDF (Φf ) of the random

estimate of 1-step returns p̃T

s,aŵs,a is differentiable at the point VaRα[p̃
T

s,aŵs,a], and set η =

Φ′(VaRα[p̃
T

s,aŵs,a]) and M = O
(

log(S/ζ)
η2ε2(1−γ)2

)
. Then with probability at least 1 − ζ, it holds that

∥v̂ − uk∥∞ ≤ O(ε), and Algorithm 3.1 runs in O
(

S2A log1/γ(
rmax
ε(1−γ) ) log(S

ζ )
η2ε2(1−γ)2

)
time.

Proof. To bound the number of iterations (k) required to achieve value approximation error ∥uk −
û∥∞ ≤ ε, we first bound the value approximation error ∥uk − û∥∞ as follows.

∥û− uk∥∞
(a)

≤ ∥T
V̂aRα

û− T
V̂aRα

uk−1∥∞
(b)

≤ γ∥û− uk−1∥∞
(c)

≤ γ2∥T
V̂aRα

û− T
V̂aRα

uk−2∥∞
(d)

≤ γk
rmax

1− γ
.

(a) follows from the definition of the VaR Bellman operator TVaRα , (b) follows from the contraction
property of the empirical VaR Bellman operator T

V̂aRα
, (c) follows from applying the same procedure

as in (a) to step (b), and (d) follows from unrolling (c) over k − 2 time steps and using the fact that
∥û− u0∥∞ ≤ rmax/1−γ for u0 = 0.

We find k such that ∥û− uk∥∞ ≤ ε,

γk

1− γ
(rmax) = ε

k =




ln
(

rmax

ε(1−γ)

)

ln(1/γ)




k =

⌈
log 1

γ

(
rmax

ε(1− γ)

)⌉
.

(29)

The time complexity follows from the fact that any quantile of an array of real values can be
computed in linear time using the Quick Select algorithm [23], computing 1-step return requires
O(S) operations, and a single iteration of the loop in lines 3-12 of Algorithm 3.1 computes quantile
of returns SA times.

Suppose that Φf is differentiable at the point VaRα[p̃
T

s,aws,a] and let η = Φ′
f (VaRα[p̃

T

s,aws,a])

represents the density of estimate of returns at point VaRα[p̃
T

s,aws,a].

24



Let for any state s and action a, ŵs,a = rs,a + γv̂. From Proposition 3.6, we know that to guarantee

Pr
[
|V̂aRα[p̃

T

s,aŵs,a]−VaRα[p̃
T

s,aŵs,a]| > ε
]
≤ ζ , M should satisfy limε→0Mε2 = ln(2/ζ)/2η2.

Furthermore, in Proposition 3.7, we showed that ∥v̂ − û∥∞ ≤ ∥TVaRα v̂−T
V̂aRα

v̂∥∞

1−γ .

Then,

Pr [∥v̂ − û∥∞ ≤ ε]
(a)

≥ Pr

[
∥TVaRα v̂ − T

V̂aRα
v̂∥∞

1− γ
≤ ε

]

(b)
= Pr

[
∥TVaRα

v̂ − T
V̂aRα

v̂∥∞ ≤ ε(1− γ)
]
.

(c)
= 1−

∑

s∈S

Pr

[
|max
a∈A

V̂aRα[p̃
T

s,aŵs,a]−max
a∈A

VaRα[p̃
T

s,aŵs,a]| > ε(1− γ)

]

(d)
= 1− ζ

S
S

= 1− ζ .
(30)

(a) follows from the fact that ∥v̂ − û∥∞ ≤ ∥TVaRα v̂−T
V̂aRα

v̂∥∞

1−γ , (b) follows from arranging terms,

(c) follows from applying the union bound, and (d) follows from applying Proposition 3.6 and setting
confidence to ζ/S.

The final time complexity results follow from the triangle inequality ∥v̂−uk∥∞ ≤ ∥v̂−û∥∞+∥uk−
û∥∞ and combining results in Equation (30), Proposition 3.6 and the first part of Proposition 3.8.

B.9 Proof of Proposition 4.1

Proposition 4.1 (Equivalence). The VaR Bellman optimality operator TVaRα
can be expressed as

∀s ∈ S : (TVaRαv)s = max
a∈A

min
p∈PVaR,v

s,a

pT(rs,a + γv) .

Furthermore, the optimal VaR policy π̂ ∈ ΠD solves maxπ∈ΠD minP∈PVaR,v̂ ρ(π,P ) , where

v̂ ∈ RS is the fixed point of the VaR Bellman operator TVaRα
, i.e., v̂ = (TVaRα

v̂).

Proof. The first part of the proposition simply follows from the definition of the VaR operator. For
any state s, action a and value function v, we can write

min
p∈PVaR,v

s,a

pTws,a = VaRα

[
p̃T

s,aws,a

]
. (31)

The minimum above exists as it minimizes a linear function on a compact set. The direction
“≥” in (31) follows immediately from the constraint in the construction of the set PVaR,v

s,a . The
direction “≤” follows by linear program duality of the minimization over p and from the fact that
VaRα

[
p̃T

s,aws,a

]
≥ mins′∈S ws,a,s′ .

Recall that the VaR Bellman optimality operator defined for each s ∈ S and v ∈ RS as

(TVaRαv)s = max
a∈A

VaRα

[
p̃T

s,aws,a

]
. (32)

Suppose that v̂ is the unique fixed point of TVaRα
and ŵs,a = rs,a + γ · v̂ is the corresponding

transition value for each s ∈ S and a ∈ A. That is

v̂ = TVaRα v̂ .

Then, we define the following robust Bellman operator T̂ : RS → RS for each s ∈ S and v ∈ RS as

(T̂ v)s = max
a∈A

min
p∈PVaR,v̂

s,a

pTws,a , where

PVaR,v̂
s,a =

{
p ∈ ∆S | pTŵs,a ≥ VaRα

[
p̃T

s,aŵs,a

]}
.

(33)
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We now show that v̂ is also the fixed point of the robust Bellman operator T̂ .

Using the equality in (31), we now get that

v̂ = TVaRα
v̂

= max
a∈A

VaRα

[
p̃T

s,aŵs,a

]

= max
a∈A

min
p∈PVaR,v̂

s,a

pTŵs,a

= T̂ v̂ .

Therefore, v̂ is the unique fixed point of the SA-rectangular robust Bellman operator [24] and π̂ is
greedy with respect to the optimal robust value function of v̂ and, therefore, is an optimal policy that
solves

max
π∈ΠD

min
P∈PVaR,v̂

ρ(π,P ) , (34)

where v̂ ∈ RS is the fixed point of the VaR Bellman operator TVaRα
, i.e., v̂ = (TVaRα

v̂).

B.10 Proof of Theorem 4.2

Theorem 4.2 (Asymptotic Radii of VaR Ambiguity Sets). For any state s and action a, let

I({(p∗
s,a)i}S−1

i=1 ) be the Fisher information of the first S−1 transition probabilities, i.e., {(p∗
s,a)i}S−1

i=1 .

Define I′(p∗

s,a)=


I({(p∗

s,a)i}S−1
i=1 ) 0

0
T 0


. Suppose that the normality assumptions on the posterior

distribution P̃ in Section 2 are satisfied. Then,

lim
N→∞

√
N(PVaRα

s,a − p∗
s,a) =

{
ps,a ∈ ∆S

∣∣∣∥ps,a − p∗
s,a∥I′(p∗

s,a)
−1 ≤ Φ−1(1− α)

}
− p∗

s,a . (8)

For any state s and action a, we define the 1-step Bellman update function fs,a : RS → R such that

fs,a(v) = VaRα

[
p̃T

s,a(rs,a + γv)
]
,

As noted in (2), we assume that as N → ∞, the posterior distribution of transition probabilities for
any state s and action a (p̃s,a) converges in the limit to a multivariate Gaussian distribution with

mean p∗
s,a and degenerate covariance matrix I(p∗

s,a)/N. Therefore, the 1-step returns p̃T

s,aws,a is

asymptotically a univariate Gaussian random variable, i.e., limN→∞

√
N(p̃T

s,aws,a − p∗
s,a

Tws,a) ∼
N
(
0,wT

s,aI
−1(p∗

s,a)ws,a

)
. Then, we can write

lim
N→∞

√
N
(
fs,a(v)− p∗

s,a
T
ws,a

)
= −Φ−1(1− α)∥ws,a∥I(p∗

s,a)
, (35)

where Φ−1 represents the CDF inverse of a standard normal distribution. Equation (35) follows from
the analytical form of VaR of a Gaussian random variable, i.e., for any Gaussian random variable

Ỹ ∼ N (µ, σ2) with mean µ, variance σ2, and confidence level α, VaRα[Ỹ ] = µ− Φ−1(1− α)σ.

Since fs,a is convex in v when p̃s,a is Multivariate Gaussian distributed, we can use the definition of

support function of a closed convex set [9] to retrieve the unique ambiguity set PVaR
s,a .

Note that, in this case the support function is fs,a and PVaRα
s,a is the unknown closed convex set

∀v ∈ R
S : min

ps,a∈PVaRα
s,a

pT

s,a(rs,a + γv) = fs,a(v)

∀v ∈ R
S : min

ps,a∈PVaRα
s,a

√
NpT

s,aws,a =
√
Nfs,a(v)

∀v ∈ R
S : min

ps,a∈PVaRα
s,a

√
N(pT

s,aws,a − p∗
s,a

T
ws,a) =

√
N(fs,a(v)− p∗

s,a
T
ws,a)

∀v ∈ R
S , zs,a ∈

(√
N(PVaRα

s,a − p∗
s,a)
)
: zT

s,aws,a ≥ −Φ−1(1− α)∥ws,a∥I(p∗

s,a)
,

where the last statement follows from the positive homogeneity and translation property of support
functions.
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Rearranging the terms in the above and setting zs,a = ps,a − p∗
s,a, we get

lim
N→∞

√
N(PVaRα

s,a − p
∗
s,a) =

{
ps,a − p

∗
s,a

∣∣∣∀v ∈ R
S , ps,a ∈ ∆S , pT

s,aws,a ≥ p
∗
s,a

T
ws,a − Φ−1(1− α)∥ws,a∥I(p∗

s,a)

}
.

(36)

Using basic algebraic manipulations as shown in Proposition B.1, we can write the asymptotic form
of ambiguity set PVaRα

s,a as an ellipsoid

lim
N→∞

√
N(PVaRα

s,a − p∗
s,a) =

{
ps,a ∈ ∆S

∣∣∣∥p∗
s,a − ps,a∥I′(p∗

s,a)
−1 ≤ Φ−1(1− α)

}
− p∗

s,a .

(37)

Proposition B.1. Consider the two ambiguity sets given in equations (36) and (37). These two
representations are equivalent.

Proof. For any state s and action a, as N → ∞, (ps,a − p∗
s,a) ∈

√
N(PVaRα

s,a − p∗
s,a) satisfies

pT

s,aws,a ≥ p∗
s,a

T
ws,a − Φ−1(1− α)∥ws,a∥I(p∗

s,a)

pT

s,aws,a − p∗
s,a

T
ws,a ≥ −Φ−1(1− α)∥ws,a∥I(p∗

s,a)

wT

s,a(ps,a − p∗
s,a)(ps,a − p∗

s,a)
Tws,a ≤ (Φ−1(1− α))2wT

s,aI(p
∗
s,a)

−1ws,a .

(38)

The first and second equations follow from the definition of PVaR
s,a and simple algebraic manipulations.

The third equation follows by multiplying by −1 on both sides and squaring both sides.

Recall that p̃s,a for any state s and action a is a categorical random variable. We assumed that
the prior is a Dirichlet distribution and therefore, by the property of conjugate prior, the posterior
distribution of p̃s,a is also a Dirichlet distribution. We assumed in Section 2 that as N → ∞, p̃s,a is

Gaussian-distributed with mean p∗
s,a and degenerate covariance matrix I(p∗

s,a)
−1
/N , i.e., covariance

matrix I(p∗

s,a)
−1
/N has S − 1 independent rows and S − 1 independent columns.

For any state s and action a and transition probabilities p̃s,a, let q̃s,a ∈ RS−1 represent the first

S − 1 elements of the random variable p̃s,a, i.e., q̃s,a = {(p̃s,a)i}S−1
i=1 . Then, q̃s,a is Gaussian-

distributed with the mean q∗
s,a = {(p∗

s,a)i}S−1
i=1 and invertible covariance matrix I(q∗

s,a)
−1
/N =

I({(p∗

s,a)i}
S−1
i=1 )−1

/N .

Thus, if we sample qs,a from N
(
q∗
s,a, I(q

∗

s,a)
−1
/N
)

and qs,a ⪰ 0 and
∑S−1

i=1 (qs,a)i ≤ 1, then we
can easily compute the corresponding transition model as

{(qs,a)i}S−1
i=1 = {(ps,a)i}S−1

i=1

(qs,a)S = 1−
S−1∑

i=1

(ps,a)i .
(39)

Equipped with the above notation, we can proceed to prove the result.

Using the definition of positive semi-definite matrices in Equation (38), we can write(
(Φ−1(1− α))2I(p∗

s,a)
−1 − (ps,a − p∗

s,a)(ps,a − p∗
s,a)

T
)
⪰ 0 . (40)

Sub-matrices of positive-semidefinite matrices are also positive-semidefinite. Thus, we can write,

(
(Φ−1(1− α))2I(q∗

s,a)
−1 − (qs,a − q∗

s,a)(qs,a − q∗
s,a)

T
) (a)

⪰ 0

(
I(q∗

s,a)
) (

(Φ−1(1− α))2I(q∗
s,a)

−1 − (qs,a − q∗
s,a)(qs,a − q∗

s,a)
T
) (
I(q∗

s,a)
)T (b)

⪰ 0

(
(Φ−1(1− α))2I(q∗

s,a)I(q
∗
s,a)

−1 − (qs,a − q∗
s,a)(qs,a − q∗

s,a)
T
)
I(q∗

s,a)
T

(c)

⪰ 0
(
(qs,a − q∗

s,a)
TI(q∗

s,a)(qs,a − q∗
s,a

) (
(Φ−1(1− α))2I

− (qs,a − q∗
s,a)(qs,a − q∗

s,a)
T
)
I(q∗

s,a)
T
(
(qs,a − q∗

s,a)
TI(q∗

s,a)((qs,a − q∗
s,a)
)T (d)

⪰ 0

(Φ−1(1− α))2(qs,a − q∗
s,a)

TI(q∗
s,a)(qs,a − q∗

s,a)− ((qs,a − q∗
s,a)

TI(q∗
s,a)(qs,a − q∗

s,a))
2 (e)

⪰ 0 .
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(a) holds because for any A ∈ Rn×n if xTAx ⪰ 0 ∀x ∈ Rn, then A ⪰ 0, (b) follows from

UTMU ⪰ 0 ∀U ,M ⪰ 0, (c) follows from simple algebraic manipulations, (d) follows from

(qs,a − q∗
s,a)

TI(q∗
s,a)(qs,a − q∗

s,a) ⪰ 0 because I(q∗
s,a)

−1 ⪰ 0, and (e) follows from simply
rearranging all the terms in the above equation.

Therefore, we get

(qs,a − q∗
s,a)

TI(p∗
s,a)(qs,a − q∗

s,a) ≤ (Φ−1(1− α))2 =⇒ ∥qs,a − q∗
s,a∥I(q∗

s,a)
−1 ≤ Φ−1(1− α) .

Thus, it follows from construction that ∥ps,a − p∗
s,a∥I′(p∗

s,a)
−1 ≤ Φ−1(1− α).

The proof for the other direction is simply the reverse of this proof and therefore we omit it.

B.11 Proof of Theorem 4.3

Theorem 4.3 (Asymptotic Radius of Bayesian Credible Regions). For any state s and action a,

let PBCRα
s,a represent any Bayesian credible region. Let ξ <

√
χ2
S−1,1−α/Φ−1(1−α). Suppose that the

normality assumptions on the posterior distribution of P̃ in Section 2 are satisfied. Then,

∀s ∈ S, a ∈ A : lim
N→∞

√
N(PBCRα

s,a − p∗
s,a) ̸⊆ lim

N→∞

√
Nξ(PVaRα

s,a − p∗
s,a) . (9)

Proof. For any state s and action a and transition probabilities p̃s,a, let q̃s,a ∈ RS−1 represent the

first S − 1 elements of the random variable p̃s,a, i.e., q̃s,a = {(p̃s,a)i}S−1
i=1 . Then, q̃s,a is Gaussian-

distributed with the mean q∗
s,a = {(p∗

s,a)i}S−1
i=1 and invertible covariance matrix I(q∗

s,a)
−1
/N =

I({(p∗

s,a)i}
S−1
i=1 )−1

/N .

Thus, if we sample qs,a from N
(
q∗
s,a, I(q

∗

s,a)
−1
/N
)

and qs,a ⪰ 0 and
∑S−1

i=1 (qs,a)i ≤ 1, then we
can easily compute the corresponding transition model as

{(qs,a)i}S−1
i=1 = {(ps,a)i}S−1

i=1

(qs,a)S = 1−
S−1∑

i=1

(ps,a)i .
(41)

Equipped with the above notation, we will now prove this theorem by contradiction.

For any state s and action a, suppose that limN→∞

√
N(PBCRα

s,a −p∗
s,a) ⊆ limN→∞

√
Nξ(PVaRα

s,a −
p∗
s,a).

Since PBCRα
s,a is a credible region, it satisfies that

1− α
(a)

≤ Pr
[
(p̃s,a − p∗

s,a) ∈ PBCRα
s,a − p∗

s,a

]

(b)
= Pr

[
lim

N→∞

√
N(p̃s,a − p∗

s,a) ∈ lim
N→∞

√
N(PBCRα

s,a − p∗
s,a)
]

(c)
= Pr

[
lim

N→∞

√
N(p̃s,a − p∗

s,a) ∈ lim
N→∞

√
Nξ(PVaRα

s,a − p∗
s,a)
]

(d)
= Pr

[
lim

N→∞

√
N(p̃s,a − p∗

s,a)
TI ′(p∗

s,a)
√
I ′(p∗

s,a)
−1N(p̃s,a − p∗

s,a) ≤ ξ2(Φ−1(1− α))2
]
.

(a) follows from the definition of Bayesian credible regions, (b) follows from multiplying by
√
N on

both sides and taking limitN → ∞, (c) follows from the assumption limN→∞

√
N(PBCRα

s,a −p∗
s,a) ⊆

limN→∞

√
Nξ(PVaRα

s,a − p∗
s,a), and (d) follows from applying results in (37) and squaring both

sides.
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Since ξ <

√
χ2
S−1,1−α

Φ−1(1−α) , there exists β > 0, such that ξ2(Φ−1(1−α))2 ≤ χ2
S−1,1−β−α − β. Fix such

β. Then we can write

1− α ≤ Pr
[
lim

N→∞

√
N(p̃s,a − p∗

s,a)
TI ′(p∗

s,a)
√
N(p̃s,a − p∗

s,a) ≤ ξ2(Φ−1(1− α))2
]

(a)

≤ Pr
[
lim

N→∞

√
N(p̃s,a − p∗

s,a)
TI ′(p∗

s,a)
√
N(p̃s,a − p∗

s,a) ≤ (χ2
S−1,1−β−α − β)

]

(b)

≤ Pr
[
lim

N→∞
∥
√
N(p̃s,a − p∗

s,a)∥2I′(p∗

s,a)
−1 ≤ (χ2

S−1,1−β−α − β)
]

(c)

≤ Pr
[
lim

N→∞
∥
√
N(p̃s,a − p∗

s,a)∥2I′(p∗

s,a)
−1 ≤ χ2

S−1,1−β−α

]

(d)

≤ 1− β − α < 1− α Contradiction! .

(a) follows from choosing β > 0 such that ξ2(Φ−1(1− α))2 ≤ χ2
S−1,1−β−α − β, (b) follows from

simple algebraic manipulations, c follows because of the monotonic property of CDF, and (d) follows

because limN→∞

√
N(p̃s,a − p∗

s,a) ∼ N (0, I(p∗
s,a)), from construction, limN→∞ ∥

√
N(p̃s,a −

p∗
s,a)∥2I′(p∗

s,a)
−1 = limN→∞ ∥

√
N(q̃s,a−q∗

s,a)∥2I(q∗

s,a)
−1 and, limN→∞ ∥

√
N(q̃s,a−q∗

s,a)∥2I(q∗

s,a)
−1

is a sum of squares of S−1 normal random variables, which in turn is a standard Chi-squared random
variable with degrees of freedom S − 1. Therefore, the probability in (d) can be at most 1− β − α.

Therefore, ξ ≥
√

χ2
S−1,1−α

Φ−1(1−α) .

C Experiments

Algorithm C.1: VaR Value Iteration Algorithm for Gaussian case

Input: Confidence α ∈ (0, 1/2), Posterior distribution f , Value approximation error ε ≥ 0
Output: Robust policy πk, Lower bound uk

1 Initialize robust value-function u0 ∈ R
S , k = 0

2 Sample M models P̃ (ω1), P̃ (ω2), . . . , P̃ (ωM ) from posterior f
3 repeat
4 for s← 1 to S do
5 for a← 1 to A do
6 ws,a ← rs,a + γuk // 1-step return from (s, a)

7 qa ← p̄T

s,aws,a − Φ−1(1−α)
√
wT

s,aΣs,aws,a // p̄s,a,Σs,a are mean and covariance of f at (s, a)
8 end

9 end
10 k ← k + 1
11 uk(s)← maxa∈A(qa), πk(s)← argmaxa∈A(qa) // VaRα Bellman optimality update

12 until ∥uk − uk−1∥∞ ≤ ε(1−γ)/γ
13 return πk,uk

D Scalability of the VaR Framework

We define the VaRα q-value function (Q-function) for any policy π ∈ ΠD as qπ : S × A → R

such that for any state s and action a, qπ(s, a) = VaRα[p
T

s,a(rs,a + γvπ)], where vπ = T π
VaRα

vπ is
the fixed point of the VaRα Bellman evaluation operator for policy π. We will use q̂ to denote the
q-value function corresponding to the optimal VaRα policy π̂, i.e., π̂(s) = argmaxa∈A q̂(s, a).

Let q̂θ and q̂θ̄ denote the parameterized Q-value and corresponding target Q-value networks with
parameters θ ∈ Θ and θ̄ ∈ Θ respectively. Here q̂θ and q̂θ̄ may represent any function approximators
with parameter space Θ.
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Methods Riverswim Inventory Population-Small Population

VaR 83.51 ± 11.76 474.98 ± 0.7 -1877.66 ± 104.64 -3338.26 ± 213.44
VaRN 92.32 ± 11.76 472.49 ± 2.24 -2271.13 ± 165.98 -3140.68 ± 122.72
BCR l1 82.04 ± 8.82 377.73 ± 0.0 -3731.29 ± 122.4 -4363.46 ± 240.62
BCR l∞ 80.57 ± 0.0 199.82 ± 39.5 -6668.47 ± 43.1 -8118.68 ± 327.74
WBCR l1 82.04 ± 8.82 470.39 ± 5.82 -3286.26 ± 1115.22 -4257.33 ± 194.4
WBCR l∞ 80.57 ± 0.0 199.82 ± 39.5 -6395.77 ± 88.1 -7547.52 ± 160.76
Soft-Robust 115.33 ± 1.16 477.81 ± 0.0 -2052.83 ± 78.2 -3869.46 ± 124.72
Naive Hoeffding 52.29 ± 9.18 -0.0 ± 0.0 -7778.21 ± 89.36 -8496.47 ± 205.54
Opt Hoeffding 51.15 ± 6.88 -0.0 ± 0.0 -7723.6 ± 4.82 -8583.83 ± 16.06

Table 2: shows the 95% confidence interval of the robust (percentile) returns achieved by VaR, VaRN,
BCR ℓ1, BCR ℓ∞, WBCR ℓ1, WBCR, Soft Robust, Naive Hoeffding and Opt Hoeffding agents at
δ = 0.15 in Riverswim, Inventory, Population-Small, and Population domain.

Methods Riverswim Inventory Population-Small Population

VaR 100.27 ± 17.24 483.08 ± 0.4 -1117.57 ± 240.02 -1850.26 ± 191.08
BCR l1 108.9 ± 21.12 391.39 ± 34.28 -2578.25 ± 104.04 -3058.77 ± 972.58
BCR l∞ 95.96 ± 0.0 254.43 ± 44.82 -5437.67 ± 46.26 -6428.03 ± 58.36
WBCR l1 108.9 ± 21.12 481.07 ± 4.58 -2251.96 ± 685.08 -2492.59 ± 228.48
WBCR l∞ 95.96 ± 0.0 239.76 ± 0.0 -5133.85 ± 85.44 -5944.77 ± 192.38
VaRN 123.78 ± 15.34 482.92 ± 1.18 -1514.44 ± 24.62 -1785.27 ± 125.52
Soft-Robust 165.15 ± 0.54 484.53 ± 0.0 -692.08 ± 55.04 -1565.09 ± 76.24
Naive Hoeffding 53.31 ± 13.26 -0.0 ± 0.0 -7326.64 ± 77.52 -7560.94 ± 295.96
Opt Hoeffding 51.66 ± 9.94 -0.0 ± 0.0 -7020.42 ± 4.74 -7457.76 ± 12.44

Table 3: shows the 95% confidence interval of the robust (percentile) returns achieved by VaR, VaRN,
BCR ℓ1, BCR ℓ∞, WBCR ℓ1, WBCR, Soft Robust, Naive Hoeffding and Opt Hoeffding agents at
δ = 0.30 in Riverswim, Inventory, Population-Small, and Population domain. Bolded text indicates
the instances in which the VaR framework outperforms the other baselines in terms of the mean
robust performance.

The optimal Q-value network (q̂θ∗ ) can be learned by simply minimizing the empirical VaRα Bellman
residual error JVaRα(θ), i.e.,

q̂θ∗ = argmin
θ∈Θ

JVaRα
(θ)

= argmin
θ∈Θ

E(s,a)∼D

[(
qθ(s, a)−max

a′∈A
V̂aRα[Es′∼p̃s,a

[rs,a + γq̄θ(s
′, a′)]

)2
]
,

(42)

where data D is a list state-action (s, a) tuples that is collected using the current policy on the mean
model P̄ . In this case, the target Q-value network parameters θ̄ is periodically updated by overwriting
the target q-value network parameter with the Q-value network parameters (θ).

We can also using any of the existing Actor-Critic methods [22, 42] to learn the optimal VaRα policy.
In this case, instead of optimizing the policy to minimize the Bellman residual error, the algorithm
will have to optimize the policy to minimize the VaRα Bellman residual error JVaRα

(θ).

E Implementation Details

Hyperparameters for Riverswim Domain

Number of train models per dataset
(M)

80

Number of test models (K) 700
Number of train datasets (L) 10

Hyperparameters for Inventory Domain

Number of train models per dataset
(M)

80

Number of test models (K) 200
Number of train datasets (L) 10
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