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Abstract

Network embedding plays a significant role in a variety of applications. To capture
the topology of the network, most of the existing network embedding algorithms
follow a sampling training procedure, which maximizes the similarity (e.g., embed-
ding vectors’ dot product) between positively sampled node pairs and minimizes
the similarity between negatively sampled node pairs in the embedding space.
Typically, close node pairs function as positive samples while distant node pairs
are usually considered as negative samples. However, under different or even
competing sampling strategies, some methods champion sampling distant node
pairs as positive samples to encapsulate longer distance information in link pre-
diction, whereas others advocate adding close nodes into the negative sample set
to boost the performance of node recommendation. In this paper, we seek to
understand the intrinsic relationships between these competing strategies. To this
end, we identify two properties (discrimination and monotonicity) that given any
node pair proximity distribution, node embeddings should embrace. Moreover,
we quantify the empirical error of the trained similarity score w.r.t. the sampling
strategy, which leads to an important finding that the discrimination property and
the monotonicity property for all node pairs can not be satisfied simultaneously
in real-world applications. Guided by such analysis, a simple yet novel model
(SENSEI) is proposed, which seamlessly fulfills the discrimination property and the
partial monotonicity within the top-K ranking list. Extensive experiments show
that SENSEI outperforms the state-of-the-arts in plain network embedding.

1 Introduction

In the era of big data, network embedding [36, 14, 21, 7, 42] maps nodes in the network to low-
dimensional vectors in the embedding space, which plays an important role in many tasks such as
node recommendation [54, 61, 38, 8, 20, 19, 1, 2], networked time series imputation [44, 18, 48, 9],
knowledge graph completion [49, 46, 47, 45, 28], and network alignment [52, 53, 60, 62, 16, 27, 59].
To distill the topology information of the network, most existing network embedding methods
follow a sampling training procedure. Given any central node to be considered, existing network
embedding methods build a positively sampled node pair set and a negatively sampled node pair
set. Then, they optimize the embeddings of nodes by maximizing/minimizing the similarity between
the positively/negatively sampled node pairs in the embedding space. Explicitly or implicitly, these
methods are based on an assumption that nodes close to the central node should be included in
the positively sampled node pair set, whereas distant nodes are likely to be considered as negative
samples. For example, DeepWalk [36] and metapath2vec [7] explicitly construct random walk
containing positively sampled nodes and select negative nodes according to the degree distribution of
the network. The message-passing mechanism in GraphSAGE [15] and graph auto-encoder (GAE)
[22] is built on graph Laplacian regularization [21, 57], which makes connected node pairs to be
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similar. In this case, the close/distant nodes become implicit positive/negative samples for the central
node, which can be regarded as a general form of such sampling training procedure.

Numerous network embedding algorithms have been proposed, which focus on improving either
the positive sampling strategy or the negative sampling strategy based on various intuitions. Con-
sequentially, disparate or even competing sampling strategies emerge in various methods. To name
a few, rather than solely favor nodes within two hops as positive samples in LINE [41], node2vec
[14] allows a longer random walk length. For graph convolution network (GCN) [21], APPNP
[23] utilizes personalized pagerank [33] to sample more distant nodes w.r.t the central node for
feature aggregation. The aforementioned two algorithms accommodate farther nodes in the positively
sampled node pair set. Meanwhile, SPNE [12], KBGAN [4] and RecNS [56] encourage choosing
closer nodes as difficult negative samples to promote the performance of node recommendation.

Thus, some fundamental questions arise: what is the theoretic root cause behind such antithetical
sampling strategies? what are possible and what are impossible for sampling of network embedding?
how can we develop a practical embedding algorithm that simultaneously embraces these competing
strategies?

In this paper, we hammer at bringing the intrinsic relationships behind these competing sampling
strategies in light. Concretely, we start from two fundamental tasks of graph learning: the link
prediction task and the node recommendation task. To tackle the above two tasks synchronously,
we identify two desirable properties, including the discrimination property and the monotonicity
property, that network embedding vectors should satisfy given a node pair proximity distribution. The
discrimination property means that the node pair with high proximity should be distinguished from
the node pair owning low proximity in the embedding space (link prediction). For the monotonicity
property, the ranking list of nodes recommended to the query node needs to be consistent with
the proximity list in the descending order. Theoretically, we analyze the general form of network
embedding algorithms’ loss functions. We show that the negative sampling distribution should be
negatively correlated with the node pair proximity distribution. Furthermore, we show that in the
ideal case where the algorithm can sample an infinite number1 of positive nodes for the central
node, both the discrimination property and the monotonicity property can be fulfilled (i.e., possibility
result). However, due to the limited sample size of the real-world data, there exists an inevitable
error between the ideal optimal similarity scores and the empirical optimal similarity scores in the
embedding space. Regardless of the specific sampling strategy, the discrimination property and the
monotonicity property for all node pairs in the network can not be fulfilled at the same time (i.e.,
impossibility result).

Fortunately, in real-world applications, ranking all nodes in the network for the query node is often
unnecessary. In many cases, only the top-K recommendation list and its internal order matters,
which suggests that we can first achieve the discrimination property to detect candidate nodes to
be recommended. After that, we can attain the monotonicity property within the top-K ranking list
(partial monotonicity). Guided by this intuition and the theoretical results, we propose a simple
yet novel model (SENSEI). In detail, SENSEI adopts a commonly used proximity measurement
(personalized pagerank [33]) and decomposes the embedding process into two steps. The first step is
to satisfy the discrimination property. In addition to sampling nodes with large proximity as positive
samples, SENSEI also includes nodes with intermediate proximity in the positively sampled node
pair set, which reduces the empirical error of the similarity scores for these nodes. Then, in the
second step, SENSEI pays attention to the monotonicity property within the positively sampled node
pairs from the first step. Nodes are ranked w.r.t. their proximities and importantly, some positively
sampled nodes are turned into negative samples, which resembles the strategy of selecting difficult
negative samples in some existing methods [4, 55]. In this way, SENSEI creatively integrates these
two competing sampling strategies in one integral framework. The experiments demonstrate that
SENSEI greatly outperforms various baselines.

To summarize, our contributions are three folds:

• Theoretical Analysis. We reveal the underlying relationships between the competing
sampling strategies of existing network embedding methods. Specially, we prove that any

1Instead of having an infinite number of nodes in the network, we could sample positive pairs infinite times
to approximate the true distributions.
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sampling strategy bears an inevitable error gap between the empirical and ideal optimal
embedding similarity scores.

• Simple yet Novel Model. Based on the theoretical results, we propose a two-step model
SENSEI which creatively integrates competing sampling strategies in one network embedding
framework. It satisfies the discrimination property in the first step and obtains the partial
monotonicity property within the positively sampled node pair set in the second step.

• Experimental Results. Extensive experiments show that SENSEI outperforms the state-of-
the-arts in plain network embedding.

Problem setting. We primarily focus on plain network embedding, in which given the adjacency
matrix of a plain network A, we aim to output the embedding matrix F.

2 Analysis

In this section, we uncover the intrinsic relationships of existing competing sampling strategies. First,
we describe the sampling-based network embedding process mathematically. Then, we propose two
desired properties for the learned embeddings: the discrimination property and the monotonicity
property, which correspond to two common learning tasks: link prediction and node recommendation.
Theoretically, we analyze the general form of network embedding algorithms’ loss functions. We
show that the negative sampling distribution should be negatively correlated with the given node pair
proximity distribution. Guided by this critical insight, we give both possibility and impossibility
results for network embedding. First (possibility result), we show that, in the ideal case where
an infinite number of positive samples can be obtained, both the discrimination property and the
monotonicity property can be satisfied with the optimal solution of the loss function. Second
(impossibility result), for the empirical loss function with a limited number of positive samples, we
prove that there always exists an error gap between the empirical optimal solution and the ideal
optimal solution. Regardless of the specific sampling strategy, the discrimination property and the
monotonicity property can not be simultaneously satisfied for all node pairs in the network in the
empirical situation.

Current sampling-based network embedding algorithms can be divided into two phases. The first
phase is to construct a node pair proximity distribution p(u|v), which serves as the positive sampling
distribution in the training process. For example, personalized pagerank [33] in APPNP [23] is
an explicit node pair proximity distribution, while random walk in DeepWalk [36] and node2vec
[14] implicitly constructs such node pair proximity distribution. The second phase is to design a
negative sampling distribution pn(u|v) and to utilize the network embedding loss function to train
the embedding model. Similar to previous works [55, 56], we start from analyzing the second phase
of the sampling-based network embedding process as follows:
Definition 1. Sampling-based Network Embedding Process in the Second Phase. Given a node
proximity distribution p, where p(u|v) refers to the proximity of node u w.r.t. the central node v and∑

u p(u|v) = 1, the algorithm designs a negative sampling distribution pn and adopts a loss function
J to obtain similarity scores s(u, v) ∈ [0, 1] of all node pairs (u, v), which are calculated by the
node embedding matrix F.

The similarity score s(u, v) defined here is general, which can be implemented with various similarity
measurements (e.g., the sigmoid function σ(F(u, :)⊤F(v, :)) or the cosine function cos(F(u, :),F(v, :
))) in various algorithms.

Then, to solve both link prediction and node recommendation tasks, we propose that the general simi-
larity score s(u, v) calculated by node embeddings should possess two properties: the discrimination
property and the monotonicity property, which are defined as the following:
Definition 2. Discrimination and Monotonicity.

Discrimination Property: Given the central node v, node pair (u, v) with large p(u|v) should
be clearly distinguished with node pair (w, v) with small p(w|v) in the embedding space, i.e.,
lim s(u,v)

s(w,v) = +∞ when p(w|v)
p(u|v) → 0.

Monotonicity Property: Given the central node v and two arbitrary nodes u, w in the network, if
p(u|v) > p(w|v), then s(u, v) > s(w, v).
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Figure 1: Discrimination and monotonicity properties. We use star nodes to denote nodes with
large p(u|v), round nodes to denote nodes with intermediate p(u|v) and rectangle nodes to denote
nodes with small p(u|v). We assume that p(u1|v) > p(u2|v) > · · · > p(u10|v).

The discrimination property bears subtle difference from the monotonicity property. Let us look
at an illustrative example in the first line in Figure 1. For the central node v, we assume that
p(u1|v) = 0.45, p(u2|v) = 0.4 and p(w|v) = 0.001. Case 1: If s(u1, v) = 0.7, s(u2, v) = 0.8 and
s(w, v) = 0.01, the final node embeddings satisfy the discrimination property ( s(w,v)

s(u1,v)
= 0.0143 and

s(w,v)
s(u2,v)

= 0.0125, both approaching zero) but do not satisfy the monotonicity property (p(u1|v) >
p(u2|v) but s(u1, v) < s(u2, v)). Case 2: If s(u1, v) = 0.51, s(u2, v) = 0.50 and s(w, v) = 0.49,
the final node embeddings fulfill the monotonicity property (s(u1, v) > s(u2, v) > s(w, v)) but do
not satisfy the discrimination property ( s(u1,v)

s(w,v) = 1.04 and s(u2,v)
s(w,v) = 1.02). From the above example,

we can see that the discrimination property focuses on making node pairs with large proximity closer
and pushing away node pairs with small proximity in the embedding space, which is desirable for
tasks like binary classification for link prediction (i.e., predicting the existence of a link between two
nodes). On the other hand, the monotonicity property pays more attention to the rank of the similarity
scores of node pairs, which is critical for tasks like ranking for node recommendation.

2.1 Possibility Results in the Ideal Case

We conduct theoretic analysis about the loss function of network embedding. Previous works
[24, 37, 55] have demonstrated that most existing network embedding algorithms can be regarded
as implicit matrix factorization and there exists a general form of loss function for the given central
node v. If the sigmoid function is adopted as the similarity function. The loss function is:

J = −Eu∼p(u|v) log σ(F(u, :)
⊤F(v, :))−kEw∼pn(w|v) log(1− σ(F(w, :)⊤F(v, :))) (1)

where σ(·) is the sigmoid function, F(u, :),F(v, :) and F(w, :) are the embeddings of u, v and w
respectively, and k is the number of negative samples for each positive sample. If the sigmoid function
is replaced by other similarity measurements, we can obtain a more general form of this loss function:

J = −Eu∼p(u|v) log(s(u, v))− kEw∼pn(w|v) log(1− s(w, v)) (2)

where s(·, ·) is a general form of similarity measurement.

In the ideal case where an infinite number of positive samples from p(u|v) are available, we have the
following theorem about the optimal solution of s:

Theorem 1. Optimal Solution of s. The optimal solution of the similarity function s satisfies that for
each node pair (u, v),

s(u, v) =
p(u|v)

p(u|v) + kpn(u|v)
(3)
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Proof.
J = −Eu∼p(u|v) log s(u, v)− kEw∼pn(w|v) log(1− s(w, v)) (4)

Since s(u, v) is the parameter to be optimized, we can calculate ∇s(u,v)J as following:

∇s(u,v)J = −p(u|v) 1

s(u, v)
− kpn(u|v)

1

s(u, v)− 1
(5)

Let the derivative to be 0, we can obtain s(u, v) = p(u|v)
p(u|v)+kpn(u|v) , which is the optimal solution for

J .

With the optimal solution of s(u, v), we give the following proposition about the design of pn:
Proposition 1. The Design of Negative Sampling. In the sampling-based network embedding
process, the negative sampling distribution pn should be negatively correlated with the given node
pair proximity distribution p to fulfill the monotonicity property.

Proof. Here we prove the above proposition in the ideal case by contradiction: In the ideal case,
assume that the best embeddings and corresponding similarity scores to satisfy the discrimina-
tion property and the monotonicity property are obtained with pn, and pn is not negatively cor-
related with p. It is equivalent to the situation that for one central node v, there must exist
two nodes u, w with p(u|v) > p(w|v) and pn(u|v) > pn(w|v). From Theorem 1 we know
that s(u, v) = p(u|v)

p(u|v)+kpn(u|v) and s(w, v) = p(w|v)
p(w|v)+kpn(w|v) . Now, we interchange pn(u|v)

with pn(w|v) and we can get new similarity scores s′(u, v) and s′(w, v) for (u, v) and (w, v).
s′(u, v) = p(u|v)

p(u|v)+kpn(w|v) > p(u|v)
p(u|v)+kpn(u|v) = s(u, v). In addition, s′(w, v) = p(w|v)

p(w|v)+kpn(u|v)

< p(w|v)
p(w|v)+kpn(w|v) = s(w, v). So, we get two new similarity scores that can satisfy the monotonicity

property better, which is contradictory with the assumption that we have already achieved the best
embeddings and corresponding similarity scores.

Intuitively, this proposition makes sense because if one node is more likely to be sampled as a positive
sample for the central node, it is less likely that this node also acts as a negative sample.

From Theorem 1, we can see that if pn is negatively correlated with p, when p(u|v) is large and
pn(u|v) is small, s(u, v) → 1; and when p(u|v) is small and pn(u|v) is large, s(u, v) → 0, which
satisfies the discrimination property. For all nodes in the network with p(u1|v) > p(u2|v) > · · · >
p(un|v), if we set pn(u1|v) < pn(u2|v) < · · · < pn(un|v), the monotonicity property can be
fulfilled with s(u1, v) > s(u2, v) > · · · > s(un, v).

2.2 Impossibility Results in the Empirical Case

However, in real-world applications, we can not sample an infinite number of nodes from p(u|v).
Empirically, existing algorithms set a fixed number T of positive samples for the central node and the
general loss function in Eq. (2) turns into:

Je = − 1

T

T∑
i=1

log(s(ui, v))−
1

T

kT∑
i=1

log(1− s(wi, v)) (6)

where ui is a positive sample from p(u|v) and wi is a negative sample from pn(w|v). We use
S = [s(u1, v), s(u2, v), . . . , s(un, v)] to denote the final similarity scores to be optimized w.r.t. the
central node v. For the general loss function in the ideal case, the optimal solution of S is S∗, where
S∗ = [ p(u1|v)

p(u1|v)+kpn(u1|v) , . . . ,
p(un|v)

p(un|v)+kpn(un|v) ]. For the loss function Je in the empirical case with
T positive samples from p, we represent the optimal solution as Se. For the mean squared error
between S∗ and Se, we have the following theorem:
Theorem 2. Mean Squared Error. For the mean squared error between the empirical optimal
solutions Se and the ideal solution S∗, we have

E[||(Se−S∗)u||2] =
1

T (2+ kpn(u|v)
p(u|v) + p(u|v)

kpn(u|v) )
2
(

1

p(u|v)
+

1

kpn(u|v)
− 1− 1

k
), (7)

where E is the expectation and (Se − S∗)u = se(u, v)− s∗(u, v) is the error between the optimal
similarity scores obtained in the empirical and ideal cases respectively.
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The proof for Theorem 2 is attached in Appendix A.1. If the sigmoid function is adopted as the
similarity function, the expectation of the similarity error in Theorem 2 degenerates to its special
case:

E[||Fe(u, :)
⊤Fe(v, :)− F∗(u, :)⊤F∗(v, :)||2] = 1

T
(

1

p(u|v)
+

1

kpn(u|v)
− 1− 1

k
), (8)

where Fe(u, :) and F∗(u, :) are the optimal embedding vectors of node u in Je and J . Eq. (8) was first
discovered in MCNS [55]. Based on Eq. (8), MCNS advocates that, in order to bound the dot product
error for nodes with large p(u|v), pn should be positively correlated with p. Unfortunately, this is not
always the best choice due to the following reason. In MCNS, the authors set pn(u|v) ∝ p(u|v)a,
where 0 < a < 1. With this negative sampling distribution, the right part of Eq. (8) changes into
1
T (

1
p(u|v) (1 +

p(u|v)1−a

c )− 1− 1
k ), where c is a constant. If p(u|v) is large, this term can indeed be

bounded. However, for distant nodes with small p(u|v) (i.e., p(u|v) → 0), its positively correlated
negative sampling probability pn(u|v) is also very small and pn(u|v) → 0, which leads to an
extremely large error considering that the term 1

p(u|v) +
1

kpn(u|v) → ∞, which may fail to fulfill the
discrimination property.

Discussion. Let us analyze the implications of Theorem 2. If pn(u|v) is negatively correlated
with p(u|v), it means that kpn(u|v)

p(u|v) → 0 for nodes with the largest p(u|v)s and kpn(u|v)
p(u|v) → ∞ for

nodes with the smallest p(u|v)s. Let us consider the case that p(u|v) is large and kpn(u|v)
p(u|v) → 0.

E[||(Se − S∗)u||2] < 1

T (
p(u|v)

kpn(u|v)
)2
( 1
p(u|v) +

1
kpn(u|v) − 1− 1

k ) <
1
T (

kpn(u|v)
p(u|v) )2( 1

p(u|v) +
1

kpn(u|v) ).

It can be rewritten as 1
T ((

kpn(u|v)
p(u|v) )2 1

p(u|v) + kpn(u|v)
p(u|v)

1
p(u|v) ). Since p(u|v) is among the largest

proximity scores, 1
p(u|v) is approximately bounded by a finite number 1

n , where n is the number of

nodes in the network. As a result, kpn(u|v)
p(u|v)

1
p(u|v) → 0 and (kpn(u|v)

p(u|v) )2 1
p(u|v) → 0. Therefore, for

nodes with large p(u|v), the empirical embedding similarity score se(u, v) ≈ s∗(u, v). With a similar
analysis on nodes with small p(u|v), we reach the same conclusion that se(u, v) ≈ s∗(u, v). Based
on the above analysis, we can see that the empirical optimal solution can achieve the discrimination
property with a negatively correlated pn: for node pairs with large/small p(u|v), their similarity scores
approach the ideal optimal solution. However, there might exist some nodes with p(u|v) ≈ kpn(u|v),
which are referred to as nodes with intermediate p(u|v). For these nodes, the error in Theorem 2 is
larger than nodes with small/large p(u|v) because (2 + kpn(u|v)

p(u|v) + p(u|v)
kpn(u|v) )

2 achieves its minimum
when p(u|v) = kpn(u|v). This can also be explained intuitively as follows. Nodes with large p(u|v)
and large pn(u|v) (small p(u|v)) are always sampled as positive samples and negative samples, while
nodes with intermediate p(u|v) and pn(u|v) might be ignored and are less likely to be sampled as
positive samples or negative samples. As such, the embedding similarity scores for these nodes
bear more uncertainty and large error between the empirical optimal solution and the ideal optimal
solution (Theorem 2).

With these findings, we can now unveil the underlying reason for the competing sampling strategies
in existing methods. The first category of methods (e.g., [36, 14, 23]) champion sampling nodes
with longer distance from the given central node as positive samples. The essence of this positive
sampling strategy is to include more nodes with intermediate p(u|v) in the positively sampled node
pair set. In this way, these methods realize the goal to minimize the error in Theorem 2 for these
nodes with intermediate p(u|v). However, this design has cost. When choosing more nodes with
intermediate p(u|v) as positive samples, it implicitly decreases the p(u|v) for nodes with large p(u|v)
(since

∑
u p(u|v) = 1). As shown on the second line in Figure 1, it hurts the monotonicity between

these nodes (round nodes) and nodes with large p(u|v) (star nodes). On the contrary, for the second
category of methods (e.g., [4, 56, 55]), they prefer to select nodes with intermediate p(u|v) as difficult
negative samples in the recommendation task, they successfully fulfill the monotonicity property
between nodes with large p(u|v) (star nodes) and nodes with intermediate p(u|v) (round nodes).
Unfortunately, as our discussion about Eq. (8) has demonstrated, this positively correlated negative
sampling distribution could make the empirical error of the embedding similarity scores of nodes
with small p(u|v) quite large. It does harm the discrimination property, which is shown on the last
line in Figure 1 (e.g., s(u8, v)).
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To conclude, due to the limited number T of positive samples, the empirical loss tends to sample
nodes with large p(u|v) or pn(u|v) and there always exist some nodes that can not be sampled
as positive/negative samples and thus are ignored. Therefore, the discrimination property and the
monotonicity property for all node pairs in the network can not be satisfied simultaneously in the
empirical situation.

3 Model

In many real-world applications, given the query node, we primarily care about the top-K recom-
mendation list. This suggests that we only need to satisfy the discrimination property and the partial
monotonicity property within nodes that are likely to appear in the top-K recommendation list.
Guided by this and the theoretical results in Section 2, we propose a simple yet novel model named
SENSEI.

Key Idea. The key idea of SENSEI is to seamlessly integrate two competing sampling strategies
into one model together. Concretely, it means that we can decompose the proposed SENSEI into two
steps. The first step is to satisfy the discrimination property and the second step is to achieve the
monotonicity property within nodes that are likely to appear in the top-K recommendation list. As
shown in Figure 2, in the first step, SENSEI samples nodes with intermediate p(u|v), which is the
strategy by the first category of methods mentioned in Section 2. SENSEI constructs a combined
positive sample set, including nodes with large p(u|v) and nodes with intermediate p(u|v). During
the training process, SENSEI treats these nodes equivalently as positive samples and maximizes their
similarity scores with the given central node. At the same time, it minimizes the similarity scores
for nodes with small p(u|v) (large pn(u|v)) to fulfill the discrimination property. In the second step,
SENSEI focuses on the difficult negative samples, which is the strategy by the second category of
methods in Section 2. SENSEI pays attention to the monotonicity property within the combined
positive sample set in the first step. In detail, the previously sampled positive nodes have two roles:
they act as the positive samples compared to nodes with smaller p(u|v) in the first step and meanwhile
function as the difficult negative samples compared to nodes with larger p(u|v) in the second step.
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Figure 2: The training process of SENSEI. Similar to
Figure 1, we still utilize star nodes to denote nodes with
large p(u|v), round nodes to denote nodes with interme-
diate p(u|v) and rectangle nodes to denote nodes with
small p(u|v). In Step 1, SENSEI includes round nodes
(nodes with intermediate p(u|v)) as positive samples.
In Step 2, the round nodes are used as hard negative
samples for the star nodes.

Details. For p(u|v), we run personalized
pagerank [33], which is used throughout
SENSEI. In addition, we normalize node
embeddings to have unit L2 norm and
adopt the dot product (F(u, :)⊤F(v, :)) as
the similarity function s(u, v).

Step 1: Fulfill the Discrimination Prop-
erty. In this step, to satisfy the dis-
crimination property, we construct a com-
bined positive sample set P(v) for v
in A, which includes nodes with large
and intermediate p(u|v). Specifically,
we rank the proximity p(u|v) for all
nodes in A to obtain a descending list
[p(u1|v), p(u2|v), . . . , p(un|v)]. Then, we
set a threshold τ . Nodes with p(u|v) > τ
form the combined positive sample set
P(v) for the central node v and the re-
maining nodes are added into the set N (v),
where negative samples will be randomly
selected. So, the loss for node v is:

J(v) = − 1

|P(v)|
(

∑
u∈P(v)

(kF(u, :)⊤F(v, :)−
m=k∑
m=1

F(wm, :)⊤F(v, :))) (9)

where k is the negative sample number for each positive sample, u is the positively sampled node for
v and wm ∈ N (v) is the negatively sampled node. By adding the loss for all vs in A, we obtain the
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overall loss in Step 1 as:
JP =

∑
v∈A

J(v) (10)

Step 2: Fulfill the Partial Monotonicity Property. In this step, we focus on the partial monotonicity
property within the combined positive sample set in Step 1. For any two nodes ul and um in the
positive sample set P(v), if p(ul|v) > p(um|v), we want to retain the monotonicity between them
with F(ul, :)

⊤F(v, :) > F(um, :)⊤F(v, :). Node um changes from a positive sample for v in Step 1
to a negative sample for v compared with ul, which is consistent with the idea of sampling difficult
negative samples. The margin-based ranking loss is:

L(v) =
∑

1p(ul|v)>p(um|v)(max{F(um, :)⊤F(v, :)− F(ul, :)
⊤F(v, :) + γ, 0}) (11)

where ul, um ∈ P(v), 1p(ul|v)>p(um|v) is the indicator function and γ is a positive margin. When
p(ul|v) > p(um|v), 1p(ul|v)>p(um|v) = 1, otherwise, 1p(ul|v)>p(um|v) = 0. Similar to Eq. (10) in
Step 1, we have the loss Lp in Step 2 as:

LP =
∑
v∈A

L(v). (12)

In fact, Step 2 can be regarded as a fine-tuning process to fulfill the partial monotonicity property.
Therefore, this step usually has a small learning rate and a small positive margin γ. The pseudocode
of this algorithm can be found in Appendix A.2.

Complexity Analysis. We give a complexity analysis of SENSEI here. For SENSEI, the time com-
plexity can be analyzed as the following: (1) Calculating personalized pagerank has the complexity
O(itermax · ∥E∥), where ∥E∥ is the number of edges in the graph and itermax is the maximum itera-
tions or hops for personalized pagerank; (2) the time complexity for sorting the proximity distribution
p(u|v) and sampling positive/negative nodes for node v is O(n · log(n)); (3) Calculating J(v) takes
O(∥P(v)∥ · k · d), where ∥P(v)∥ is the positive sample set, k is the number of negative samples and
d is the dimension of node embedding. Obtaining JP takes O(n) time; (4) Computing L(v) in Eq.
(11) takes O(∥P(v)∥2 · d) and calculating Lp costs O(n). Most of these computations can be further
parallelized.

4 Experiment

In this section, we evaluate the effectiveness of the proposed algorithm (SENSEI) for solving link
prediction and node recommendation simultaneously in plain networks.

4.1 Experimental Setup

Datasets. We use 4 public real-world datasets to evaluate the proposed SENSEI model: C.ele [51],
Cora [39], Citeseer [39], NS [31].

Baselines. We compare the proposed SENSEI with the following 5 plain network embedding methods:
node2vec [14], VGAE [22], GAT [43], ARGVA [35] and RBGE [17].

Metrics. For link prediction and node recommendation in plain networks, we randomly split edges
in every dataset into 70/10/20% for training, validation, and test.2 The same amount of additionally
sampled non-existent edges are taken as negative edges for training, validation and test in the link
prediction task.

Settings. For the link prediction task in plain networks, we use Area Under the ROC and Precision-
Recall Curves (i.e., AUC-ROC and AUC-PR) as the metrics to evaluate the performance of different
methods. For the node recommendation task in plain networks, we take Hit@K as the metric. Only
when the model ranks the correct node as top-K in the recommendation list, it is counted as a hit for
this query node in the test set. Therefore, the average hit number for all query nodes is Hit@K. We
set K = 10 for SENSEI.

2The node recommendation task in plain networks is to recommend potential nodes that are most likely to
have edges connected to the query node.
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Additional Contents. In Appendix, we provide more contents related to experiments, including (1)
dataset statistics (Appendix A.3); (2) implementation details (Appendix A.3); (3) the comparison
with additional GCN-based methods: GraphSAGE [15], Cluster-gcn [5], APPNP [13], GPRGNN [6]
and H2GCN [63] (Appendix A.4).

4.2 Effectiveness of SENSEI

Table 1: The AUC-ROC (±std) and AUC-PR (±std) of link prediction in plain networks (%).
Models Cora Citeseer NS C.ele

AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR
node2vec[14] 75.96±1.18 82.73±0.69 69.63±0.97 77.38±0.89 86.48±0.76 91.36±0.75 79.36±1.14 74.27±1.33
VGAE [22] 78.28±0.53 81.07±0.59 72.58±0.74 78.00±0.40 86.45±0.95 89.99±0.58 77.78±1.39 73.50±2.38
GAT [43] 76.48±0.77 78.90±1.03 71.79±1.40 76.04±1.18 85.89±0.84 88.47±1.92 74.16±4.33 71.21±1.69

ARGVA [35] 75.99±0.97 78.11±1.14 71.96±1.10 74.74±0.59 88.55±1.12 90.32±1.36 77.04±1.71 71.29±2.42
RBGE [17] 79.33±0.95 83.11±0.86 73.89±1.11 77.48±1.30 83.98±4.21 88.77±2.77 74.65±4.54 72.07±3.70

SENSEI 81.27±0.65 83.59±1.11 76.28±0.90 82.02±0.79 91.42±1.25 93.10±0.77 77.13±0.81 77.28±1.53

The results of link prediction on all 4 plain networks are presented in Table 1. Our proposed SENSEI
generally outperforms all baselines on all 4 datasets. In particular, SENSEI achieves about 2%
improvement in AUC-PR compared to the best competitor (e.g., VGAE on Citeseer and node2vec on
C.ele). For the node recommendation task, as shown in Table 2, node2vec obtains the best Hit@10
on Cora and NS among all baselines, which indicates that including more positive samples (T ) by
setting a larger walk length (80) can indeed reduce the error in Theorem 2. Notice that the proposed
SENSEI still outperforms node2vec on all 4 datasets, which demonstrates the ability of SENSEI to
fulfill the partial monotonicity property.

Table 2: Hit@10 (±std) of node recommendation in plain networks (%).

Models Cora Citeseer NS C.ele
node2vec[14] 19.78±0.84 18.50±1.30 59.88±2.68 9.43±2.41
VGAE [22] 8.19±1.62 8.93±0.91 37.26±2.36 9.34±1.32
GAT [43] 5.77±0.64 5.99±2.25 23.96±5.39 9.71±3.00

ARGVA [35] 5.65±1.22 4.71±0.56 36.78±5.20 9.71±2.39
RBGE [17] 17.19±1.24 18.99±1.17 52.48±5.18 9.48±4.86

SENSEI(w/o Step 2) 19.82±1.18 18.17±1.31 61.01±4.22 11.07±2.18
SENSEI 20.51±1.13 19.03±1.50 61.31±3.46 11.52±2.13

4.3 Ablation Study and Sensitivity Study

In this subsection, we conduct the ablation study to validate the importance of Step 2 of SENSEI.
As illustrated in Table 2, for the node recommendation task (Hit@10), Step 2 consistently improves
the performance of SENSEI. The results verify that Step 2 is indeed beneficial by fine-tuning node
embeddings to satisfy the partial monotonicity property. In addition, we carry out a sensitivity study
on different Ks for Hit@K, which is presented in Figure 3. We observe that when K increases from
1 to 30, Hit@K gradually increases and Hit@30 is much higher than Hit@1, which is expected.

5 Related works

Network Embeddings. Network embedding maps nodes in the network to low dimensional vec-
tors. It can be traced back to matrix low rank approximation [26] and spectral clustering [40].
DeepWalk [36] and node2vec [14] rely on random walk to encode the topological information of
homogeneous networks. For multi-layered networks or heterogeneous networks, metapath2vec
[7] and Hin2vec [10] design metapaths to capture the connectivity between different layers or
different types of nodes. Since graph convolutional network (GCN) [21] emerges, many GCN-
based network embedding methods have been proposed. For example, variational graph auto-
encoder (VGAE) [22] adopts the same message-passing mechanism as GCN to embed the homo-
geneous network. More recently, GCN has been integrated with random walk based heterogeneous
network embedding methods, which leads to heterogeneous graph convolutional networks like
MAGNN [11] and HAN [50]. MANE [25] successfully employs network embedding on multi-
layered networks and DMGC [29] accomplishes both network embedding and clustering by utilizing
cross-layer links as regularization. In addition, many embedding algorithms for knowledge graph
have been proposed such as translational distance model [3] and semantic matching model [32].

9



0 5 10 15 20 25 30
K

0

20

40

60

80

100

H
it

@
K

 (
%

)

Cora

Citeseer

NS

C.ele

Figure 3: Hit@K for SENSEI.

Sampling in Network Embedding. Sampling is an
important technique, which appears in recommenda-
tion [34] and text embedding [30] to speed up the
training process. For network embedding algorithms,
both the positive sampling strategy and the negative
sampling strategy have been applied and improved.
For matrix factorization [26], spectral clustering [40]
and LINE [41], direct or two-hop neighboring nodes
act as positive samples and negative nodes are sam-
pled uniformly or according to the degree distribution.
In DeepWalk [36], node2vec [14] and metapath2vec
[7], the positive sampling strategy is modified based
on truncated random walk starting from the central
node. The positive and negative sampling are im-
plemented implicitly with a message-passing mech-
anism in GCN-based methods, where nodes to be
aggregated can be viewed as positive samples and the
remaining nodes are implicit negative samples. For the GCN related works, efforts are mainly made
to improve the positive sampling strategy. For example, APPNP [13] manipulates positive samples
with personalized pagerank [33] to catch long distance information and PGNN [58] randomly fixes
an anchor node set for aggregation in each training epoch. Recently, more attention has been paid
to improve the negative sampling strategy. Many works suggest to sample closer nodes as difficult
negative samples. For instance, MCNS [55] proposes that the negative sampling distribution should
be positively correlated with the positive sampling distribution. KBGAN [4] samples most similar
entities to replace the groundtruth positive entity in knowledge graph embedding and RecNS [56]
tends to sample negative nodes from the intermediate distance region.

6 Conclusion and Limitations

In this paper, we study the sampling strategies of network embedding. To uncover the underlying
relationships of existing competing sampling strategies, we conduct theoretical analysis on the
sampling-based network embedding process. In the analysis, we identify two desirable properties for
the similarity scores of node embedding, including the discrimination property and the monotonicity
property. Furthermore, we prove that there always exists an error gap between the empirical and
ideal optimal embedding similarity scores. Guided by such analysis, we propose a simple yet novel
model (SENSEI), which creatively integrates the two competing sampling strategies to fulfill the
the discrimination property and the partial monotonicity property. The effectiveness of SENSEI is
verified by extensive experiments.

This paper studies sampling strategies of network embedding, which has no negative ethical impacts
on society. The limitations of our paper lie in that the theoretical analysis is conducted on proximity
scores and the proposed SENSEI model is designed for plain (non-attributed) networks rather than
attributed networks. The key to generalize the proposed properties/SENSEI model to attributed
networks is a new definition of the node pair similarity, which we leave for future exploration.

7 Acknowledgement

This work is supported by NSF (1947135, 2134079, 2316233, 1939725, and 2324770),
DARPA (HR001121C0165), NIFA (2020-67021-32799), DHS (17STQAC00001-07-00), ARO
(W911NF2110088). The content of the information in this document does not necessarily re-
flect the position or the policy of the Government, and no official endorsement should be inferred.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

References

[1] Yikun Ban, Yuchen Yan, Arindam Banerjee, and Jingrui He. Ee-net: Exploitation-exploration
neural networks in contextual bandits. arXiv preprint arXiv:2110.03177, 2021.

10



[2] Yikun Ban, Yuchen Yan, Arindam Banerjee, and Jingrui He. Neural exploitation and exploration
of contextual bandits. arXiv preprint arXiv:2305.03784, 2023.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26, 2013.

[4] Liwei Cai and William Yang Wang. Kbgan: Adversarial learning for knowledge graph embed-
dings. arXiv preprint arXiv:1711.04071, 2017.

[5] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data mining,
pages 257–266, 2019.

[6] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. arXiv preprint arXiv:2006.07988, 2020.

[7] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable representation
learning for heterogeneous networks. In KDD ’17, pages 135–144. ACM, 2017.

[8] Boxin Du, Si Zhang, Yuchen Yan, and Hanghang Tong. New frontiers of multi-network mining:
Recent developments and future trend. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pages 4038–4039, 2021.

[9] Dongqi Fu, Liri Fang, Ross Maciejewski, Vetle I Torvik, and Jingrui He. Meta-learned metrics
over multi-evolution temporal graphs. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 367–377, 2022.

[10] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. Hin2vec: Explore meta-paths in heterogeneous in-
formation networks for representation learning. In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, pages 1797–1806, 2017.

[11] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated graph
neural network for heterogeneous graph embedding. In Proceedings of The Web Conference
2020, pages 2331–2341, 2020.

[12] Hongchang Gao and Heng Huang. Self-paced network embedding. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
1406–1415, 2018.

[13] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

[14] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855–864, 2016.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[16] Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation
for graph classification. In International Conference on Machine Learning, pages 8230–8248.
PMLR, 2022.

[17] Zexi Huang, Arlei Silva, and Ambuj Singh. A broader picture of random-walk based graph
embedding. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery &
data mining, pages 685–695, 2021.

[18] Baoyu Jing, Hanghang Tong, and Yada Zhu. Network of tensor time series. In Proceedings of
the Web Conference 2021, pages 2425–2437, 2021.

[19] Baoyu Jing, Yuchen Yan, Kaize Ding, Chanyoung Park, Yada Zhu, Huan Liu, and Hang-
hang Tong. Sterling: Synergistic representation learning on bipartite graphs. arXiv preprint
arXiv:2302.05428, 2023.

[20] Baoyu Jing, Yuchen Yan, Yada Zhu, and Hanghang Tong. Coin: Co-cluster infomax for bipartite
graphs. arXiv preprint arXiv:2206.00006, 2022.

[21] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

11



[22] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[23] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

[24] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization.
Advances in neural information processing systems, 27, 2014.

[25] Jundong Li, Chen Chen, Hanghang Tong, and Huan Liu. Multi-layered network embedding.
In Proceedings of the 2018 SIAM International Conference on Data Mining, pages 684–692.
SIAM, 2018.

[26] Chih-Jen Lin. Projected gradient methods for nonnegative matrix factorization. Neural compu-
tation, 19(10):2756–2779, 2007.

[27] Hongyi Ling, Zhimeng Jiang, Meng Liu, Shuiwang Ji, and Na Zou. Graph mixup with soft
alignments. arXiv preprint arXiv:2306.06788, 2023.

[28] Lihui Liu, Boxin Du, Jiejun Xu, Yinglong Xia, and Hanghang Tong. Joint knowledge graph
completion and question answering. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 1098–1108, 2022.

[29] Dongsheng Luo, Jingchao Ni, Suhang Wang, Yuchen Bian, Xiong Yu, and Xiang Zhang.
Deep multi-graph clustering via attentive cross-graph association. In Proceedings of the 13th
international conference on web search and data mining, pages 393–401, 2020.

[30] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. Advances in neural information
processing systems, 26, 2013.

[31] Mark EJ Newman. Finding community structure in networks using the eigenvectors of matrices.
Physical review E, 74(3):036104, 2006.

[32] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective
learning on multi-relational data. In Icml, 2011.

[33] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[34] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz, and Qiang
Yang. One-class collaborative filtering. In 2008 Eighth IEEE International Conference on Data
Mining, pages 502–511. IEEE, 2008.

[35] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407, 2018.

[36] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710, 2014.

[37] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding
as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the
eleventh ACM international conference on web search and data mining, pages 459–467, 2018.

[38] Shane Roach, Connie Ni, Alexei Kopylov, Tsai-Ching Lu, Jiejun Xu, Si Zhang, Boxin Du,
Dawei Zhou, Jun Wu, Lihui Liu, et al. Canon: Complex analytics of network of networks for
modeling adversarial activities. In 2020 IEEE International Conference on Big Data (Big Data),
pages 1634–1643. IEEE, 2020.

[39] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[40] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions
on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[41] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In Proceedings of the 24th international conference on
world wide web, pages 1067–1077, 2015.

[42] Yuxin Tang, Zhimin Ding, Dimitrije Jankov, Binhang Yuan, Daniel Bourgeois, and Chris
Jermaine. Auto-differentiation of relational computations for very large scale machine learning.
arXiv preprint arXiv:2306.00088, 2023.

12
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A Appendix

The appendix is structured as follows:

• Subsection A.1 gives the proof of Theorem 2;

• Subsection A.2 gives the detailed algorithm of SENSEI;

• Subsection A.3 introduces the statistics of datasets and the implementation details of SENSEI;

• Subsection A.4 compares the performance of SENSEI with 5 additional GCN baselines
(Cluster-gcn, GraphSAGE, APPNP, GPRGNN and H2GCN) on Cora and Citeseer.

A.1 Proofs

Theorem 2. Mean Squared Error of S between the Ideal Loss and the Empirical Loss. For the
mean squared error between S∗ and Se, we have

E[||(Se − S∗)u||2] =
1

T (2 + kpn(u|v)
p(u|v) + p(u|v)

kpn(u|v) )
2
(

1

p(u|v)
+

1

kpn(u|v)
− 1− 1

k
) (13)

where E is the expectation and S∗ = [ p(u1|v)
p(u1|v)+kpn(u1|v) , . . . ,

p(un|v)
p(un|v)+kpn(un|v) ].

Proof. In this proof, since S = [s(u1, v), s(u2, v), . . . , s(un, v)] is the parameter to be optimized,
we can write the empirical loss Je as a function of S as Je(S). We prove this theorem with the
help of Taylor expansion of ∇SJe(Se) around S∗. Because Se is the solution to minimize Je,
∇SJe(Se) = 0. So, it can be expressed as:

∇SJe(Se) = ∇SJe(S
∗) +∇2

SJe(S
∗)(Se − S∗) +O(||Se − S∗||2) = 0 (14)

Thus, up to terms of order O(||Se − S∗||2), we obtain

Se − S∗ = −(∇2
SJe(S

∗))−1∇SJe(S
∗) (15)

Then, we discuss the term −(∇2
SJe(S

∗))−1 and the term ∇SJe(S
∗) respectively.

For the term −(∇2
SJe(S

∗))−1, let e(ui) be the one-hot vector, where only the ui-th entry is 1.

Je(S) = − 1

T

T∑
i=1

log(s(ui, v))−
1

T

kT∑
i=1

log(1− s(wi, v))

∇SJe(S) = − 1

T

T∑
i=1

1

s(ui, v)
e(ui) −

1

T

kT∑
i=1

1

s(wi, v)− 1
e(wi)

∇2
SJe(S) =

1

T

T∑
i=1

1

s(ui, v)2
e(ui)e

⊤
(ui) +

1

T

kT∑
i=1

1

(s(wi, v)− 1)2
e(wi)e

⊤
(wi)

−∇2
SJe(S) = − 1

T

T∑
i=1

1

s(ui, v)2
e(ui)e

⊤
(ui) −

1

T

kT∑
i=1

1

(s(wi, v)− 1)2
e(wi)e

⊤
(wi)

(16)

Since s∗(ui, v) =
p(ui|v)

p(ui|v)+kpn(ui|v) and s∗(wi, v) =
p(wi|v)

p(wi|v)+kpn(wi|v) ,

−∇2
SJe(S

∗) =− 1

T

T∑
i=1

(p(ui|v) + kpn(ui|v))2

p(ui|v)2
e(ui)e

⊤
(ui)

− 1

T

kT∑
i=1

(p(wi|v) + kpn(wi|v))2

(kpn(wi|v))2
e(wi)e

⊤
(wi)

(17)
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Therefore,

lim
T→+∞

−∇2
SJe(S

∗) = −
∑
ui

p(ui|v)
(p(ui|v) + kpn(ui|v))2

p(ui|v)2
e(ui)e

⊤
(ui)

−
∑
wi

kpn(wi|v)
(p(wi|v) + kpn(wi|v))2

(kpn(wi|v))2
e(wi)e

⊤
(wi)

=−
∑
ui

(p(ui|v) + kpn(ui|v))3

kpn(ui|v)p(ui|v)
e(ui)e

⊤
(ui)

(18)

where the last line is because that we combine same terms when ui = wi.

Then, we consider the second term ∇SJe(S
∗). We analyze the expectation and variance of ∇SJe(S

∗)
to get the final E[||(Se − S∗)u||2].
For the expectation, as ∇SJe(S) is as follows:

∇SJe(S) = − 1

T

T∑
i=1

1

s(ui, v)
e(ui) −

1

T

kT∑
i=1

1

s(wi, v)− 1
e(wi) (19)

the expectation is:

E[∇SJe(S
∗)] =−

∑
ui

p(ui|v)
p(ui|v) + kpn(ui|v)

p(ui|v)
e(ui)

+
∑
wi

kpn(wi|v)
p(wi|v) + kpn(wi|v)

kpn(wi|v)
e(wi)

= 0

(20)

For the variance of ∇SJe(S
∗), since E[∇SJe(S

∗)] = 0

Cov(∇SJe(S
∗)) = E[∇SJe(S

∗)∇SJe(S
∗)⊤]

=
T

T 2
Eu∼p(u|v)(

1

s∗(u, v)2
)e(u)e

⊤
(u)

+
kT

T 2
Ew∼pn(w|v)(

1

(1− s∗(w, v))2
)e(w)e

⊤
(w)

+
∑
ui,uj

T (T − 1)

T 2
p(ui|v)p(uj |v)

1

s∗(ui, v)

1

s∗(uj , v)
e(ui)e

⊤
(uj)

−
∑
ui,wj

kT 2

T 2
p(ui|v)pn(wj |v)

1

s∗(ui, v)

1

1− s∗(wj , v)
e(ui)e

⊤
(wj)

−
∑
uj ,wi

kT 2

T 2
p(uj |v)pn(wi|v)

1

s∗(uj , v)

1

1− s∗(wi, v)
e(wi)e

⊤
(uj)

+
∑

wi,wj

kT (kT − 1)

T 2
pn(wi|v)pn(wj |v)

1

1− s∗(wi, v)

1

1− s∗(wj , v)
e(wi)e

⊤
(wj)

(21)
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Because s∗(ui, v) = p(ui|v)
p(ui|v)+kpn(ui|v) , s∗(uj , v) =

p(uj |v)
p(uj |v)+kpn(uj |v) , s∗(wi, v) =

p(wi|v)
p(wi|v)+kpn(wi|v) and s∗(wj , v) =

p(wj |v)
p(wj |v)+kpn(wj |v) , Eq. (21) becomes:

Cov(∇SJe(S
∗)) =

1

T

∑
u

(p(u|v) + kpn(u|v))3

kpn(u|v)p(u|v)
e(u)e

⊤
(u)

+
∑
ui,uj

(1− 1

T
)(p(ui|v) + kpn(ui|v))(p(uj |v) + kpn(uj |v))e(ui)e

⊤
(uj)

−
∑
ui,wj

(p(ui|v) + kpn(ui|v))(p(wj |v) + kpn(wj |v))e(ui)e
⊤
(wj)

−
∑
uj ,wi

(p(uj |v) + kpn(uj |v))(p(wi|v) + kpn(wi|v))e(wi)e
⊤
(uj)

+
∑

wi,wj

(1− 1

kT
)(p(wi|v) + kpn(wi|v))(p(wj |v) + kpn(wj |v))e(wi)e

⊤
(wj)

=
1

T

∑
u

(p(u|v) + kpn(u|v))3

kpn(u|v)p(u|v)
e(u)e

⊤
(u)

− (1 +
1

k
)
1

T

∑
ui,uj

(p(ui|v) + kpn(ui|v))(p(uj |v) + kpn(uj |v))e(ui)e
⊤
(uj)

(22)

Based on Eq. (15), Eq. (18), Eq. (22) and E[||(Se − S∗)u||2] = Cov(Se − S∗)(u, u), we have

E[||(Se − S∗)u||2] =
1

T

kpn(u|v)p(u|v)
(p(u|v) + kpn(u|v))3

(
(p(u|v) + kpn(u|v))3

kpn(u|v)p(u|v)

−(1 +
1

k
)(p(u|v) + kpn(u|v))2

)
kpn(u|v)p(u|v)

(p(u|v) + kpn(u|v))3

(23)

which can be simplified as:

E[||(Se − S∗)u||2]

=
1

T

(kpn(u|v)p(u|v))2

(p(u|v) + kpn(u|v))4
(
kpn(u|v) + p(u|v)
kpn(u|v)p(u|v)

− 1− 1

k
)

=
1

T (2 + kpn(u|v)
p(u|v) + p(u|v)

kpn(u|v) )
2
(

1

p(u|v) +
1

kpn(u|v)
− 1− 1

k
)

(24)

A.2 The Algorithm of SENSEI

In this section, we give the detailed algorithm of SENSEI in Algorithm 1.

A.3 Dataset Statistics and Implementation Details.

In this section, we introduce the statstics of datasets and the implementation details of SENSEI. The
statistics of datasets are present in Table 3.

Table 3: Dataset Statistics.

Dataset Layers Nodes Edges
C.ele 1 297 2,148
Cora 1 2,708 5,429

Citeseer 1 3,327 4,732
NS 1 1,589 2,742

Implementation Details. For all the methods, we run 5 times to calculate the standard deviation and
for all baselines, we use their default parameters. For SENSEI on 4 datasets: {C.ele, Cora, Citeseer,
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Algorithm 1 The algorithm of SENSEI

Input: (1) the input plain network A; (2) training epochs in Step 1 (E1) and in Step 2 (E2), hyper-parameters
τ , k and γ.

Output: Node embeddings F.
Initialize F;
for each v in A do

Run PPR to construct P(v) and N (v) with the threshold τ ;
end for
# Step 1: Fulfill Discrimination Property
e = 0;
while e < E1 do

for each v in A do
Randomly sample k negative nodes from N (v);
Compute J(v) using Eq. (9);

end for
Add all J(v)s to obtain JP in Eq. (10);
Back-propagate the loss and update F;
e = e+ 1;

end while
# Step 2: Fulfill Partial Monotonicity Property
e = 0;
while e < E2 do

for each v in A do
Compute L(v) using Eq. (11);

end for
Add all L(v)s to obtain LP in Eq. (12);
Back-propagate the loss and update F;
e = e+ 1;

end while
return F.

NS}, we set the threshold τ as {0.008, 0.01, 0.005, 0.05}, the number of epochs in Step 1 as {40,
100, 20, 20}, the number of epochs in Step 2 as {40, 100, 50, 20}, the learning rate in Step 1 as {0.02,
0.1, 0.1, 0.2}, the learning rate in Step 2 as {0.01, 0.01, 0.005, 0.1}, the positive margin γ as {0.05,
0.0001, 0.0001, 0.1} and the negative sample number k as 40 on all 4 datasets. All experiments are
run on a Tesla-V100 GPU. 3

A.4 Additional Baselines of Plain Network Embedding

We have added another 5 GNNs as additional baselines: GraphSAGE [15], Cluster-gcn [5], APPNP
[13], GPRGNN [6] and H2GCN [63]. the results are demonstrated in Table 4. We can see that for
both link prediction and node recommendation, SENSEI generally beats these GNN methods.

Table 4: The AUC-ROC and AUC-PR of link prediction and Hit@10 of node recommendation on
Cora and Citeseer(%).

Models Cora Citeseer
AUC-ROC AUC-PR Hit@10 AUC-ROC AUC-PR Hit@10

GraphSAGE [15] 64.13 65.36 3.92 66.10 68.94 4.74
Cluster-gcn [5] 65.93 72.39 4.65 67.33 70.45 5.42

APPNP [13] 68.77 72.39 11.72 66.45 71.57 11.96
GPRGNN [6] 64.43 70.15 13.31 62.93 68.69 10.64
H2GCN [63] 61.90 61.89 1.96 60.95 61.94 3.53

SENSEI 81.27 83.59 20.51 76.28 82.02 19.03

3The simplified code of SENSEI is on: https://github.com/yucheny5/SENSEI.
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