
Published as a conference paper at ICLR 2024

QUANTIFYING LANGUAGE MODELS’ SENSITIVITY TO

SPURIOUS FEATURES IN PROMPT DESIGN or:

How I learned to start worrying about prompt formatting

Melanie Sclar1 Yejin Choi1,2 Yulia Tsvetkov1 Alane Suhr3

1Paul G. Allen School of Computer Science & Engineering, University of Washington
2Allen Institute for Artificial Intelligence 3University of California, Berkeley
msclar@cs.washington.edu

ABSTRACT

As large language models (LLMs) are adopted as a fundamental component of
language technologies, it is crucial to accurately characterize their performance.
Because choices in prompt design can strongly influence model behavior, this
design process is critical in effectively using any modern pre-trained generative
language model. In this work, we focus on LLM sensitivity to a quintessential
class of meaning-preserving design choices: prompt formatting. We find that
several widely used open-source LLMs are extremely sensitive to subtle changes
in prompt formatting in few-shot settings, with performance differences of up
to 76 accuracy points when evaluated using LLaMA-2-13B. Sensitivity remains
even when increasing model size, the number of few-shot examples, or perform-
ing instruction tuning. Our analysis suggests that work evaluating LLMs with
prompting-based methods would benefit from reporting a range of performance
across plausible prompt formats, instead of the currently-standard practice of re-
porting performance on a single format. We also show that format performance
only weakly correlates between models, which puts into question the methodolog-
ical validity of comparing models with an arbitrarily chosen, fixed prompt format.
To facilitate systematic analysis we propose FORMATSPREAD, an algorithm that
rapidly evaluates a sampled set of plausible prompt formats for a given task, and
reports the interval of expected performance without accessing model weights1.
Furthermore, we present a suite of analyses that characterize the nature of this
sensitivity, including exploring the influence of particular atomic perturbations
and the internal representation of particular formats.

1 INTRODUCTION

As the capabilities of LLMs have rapidly improved, their sensitivity to input prompt features has
been used to optimize performance via prompt engineering (White et al., 2023). However, there
has been little work in characterizing this sensitivity, especially to seemingly innocuous feature
choices that preserve prompt meaning and intent. In this work, we analyze the sensitivity of widely
used, open-source LLMs to a class of features that should not influence a prompt’s interpretation:
formatting choices. We find that pre-trained LLMs are sensitive to these choices in unpredictable
ways, with accuracy varying in up to 76 points for LLaMA-2-13B between equivalent formats, and
∼10 accuracy points on average across 50+ tasks and several models. We also show that this variance
is not eliminated by adding few-shot examples, increasing model size, or instruction tuning.

Designing prompt templates is a critical part of effectively using a pre-trained language model. This
design process includes making choices about wording, choosing few-shot examples for in-context
learning, and making decisions about seemingly trivial features like formatting. This process, and
often even the resulting templates, is rarely reported or discussed in research papers, under the as-
sumption that performance variance across these choices is insignificant compared to variance across
data points or models. However, some anecdotal evidence points to formatting choices actually hav-
ing a significant influence on model behavior (Aghajanyan, 2023). In some cases, researchers report
a limited number of manually generated formats to show that scaling trends hold despite perfor-

1FORMATSPREAD’s code can be found at https://github.com/msclar/formatspread.

1

Published as a conference paper at ICLR 2024

0 1

Task Accuracy

Performance Spread Among Plausible Formats

Passage: <text>  

Answer: <text>

Original formatting

Modified separator and spacing

Passage <text> Answer <text>

Modified spacing between fields

Passage: <text> Answer: <text>

Modified casing

PASSAGE: <text>  

ANSWER: <text>

PASSAGE <text>  

 ANSWER <text>

Modified separator

Passage:<text>  

Answer:<text>

0.036 0.804

Figure 1: Slight modifications in prompt format templating may lead to significantly different model
performance for a given task. Each <text> represents a different variable-length placeholder to
be replaced with actual data samples. Example shown corresponds to 1-shot LLaMA-2-7B perfor-
mances for task280 from SuperNaturalInstructions (Wang et al., 2022). This StereoSet-inspired task
(Nadeem et al., 2021) requires the model to, given a short passage, classify it into one of four types
of stereotype or anti-stereotype (gender, profession, race, and religion).

mance being significantly different (Schick et al., 2021). The assumption that formatting does not
influence overall model performance may become problematic when improvements over existing
approaches are attributed to the amount and source of training data, number of parameters, or model
architecture, without also accounting for changes in prompt format. Ignoring variance across for-
mats may also negatively affect user experience, e.g. if users inadvertently choose formats the LLM
does not perform well on.

Our proposed tool, FORMATSPREAD, enables a systematic analysis of these variances across a wide
set of semantically equivalent prompt formats within a user-specified computational budget. We find
that choices in formatting few-shot examples during in-context learning introduce spurious biases
that may lead to significantly different conclusions in model performance. The sensitivity to format-
ting choices that we discover across widely-used, open-source models suggests that future research
would benefit from reporting a performance spread over a sufficient sample of plausible formats,
instead of simply reporting the formatting used and its performance, as is currently standard. More-
over, we argue that this reporting is crucial when comparing the performance of different models, as
we show the influence of formatting choices only weakly correlates between models, thus making
and fixing a formatting choice could introduce a significant confounding factor.

Fully exploring the space of prompt formats is intractable, as computation costs scale linearly with
the number of formats considered. FORMATSPREAD efficiently explores the space of prompt for-
mats under a user-specified computational budget using Bayesian optimization. FORMATSPREAD

does not require access to the model weights, allowing its use on API-gated models: we find a spread
up to 56 accuracy points with a median spread of 6.4 accuracy points with GPT3.5 across 320 for-
mats and 53 tasks at a cost of under 10USD on average per task. Beyond facilitating evaluation, we
also propose a suite of analyses to further characterize model sensitivity to formatting. Among other
results, we show that the separability of continuous prompt embeddings correlates with the spread
observed in task performance.

2 OVERVIEW

We evaluate LLM performance over the space of prompt formats that may plausibly be chosen by
a non-adversarial user when designing a prompt for a target task, where the space of formats is
defined by a grammar (§3.1). Our grammar’s definition naturally induces a definition of semantic
equivalence among formats. We quantify model sensitivity in terms of performance range in a target
task across the space of equivalent prompt formats to the original choice (§4.2). We cast the prob-
lem of searching across this space as a bandit problem, and propose FORMATSPREAD (§3), which
consists of a grammar (§3.1) and a procedure to estimate the minimum and maximum performance
across a set of semantically equivalent formats given a pre-defined metric (§3.2). FORMATSPREAD

uses Bayesian optimization to identify the expected performance range with low additional compu-
tational cost (§4.5) all without requiring access to model weights, which enables use on API-gated

2

Published as a conference paper at ICLR 2024

LLMs. Furthermore, we perform in-depth analysis of this observed sensitivity, including by quan-
tifying the contribution of individual feature choices to the final performance (§4.3) and measuring
the identifiability of a format based solely on a model’s internal, continuous representation of any
prompt via correlation with model performance (§4.4).

3 MEASURING SENSITIVITY WITH FORMATSPREAD

3.1 GRAMMAR OF PLAUSIBLE PROMPT FORMATS

We construct a grammar that defines both the space of plausible prompt formats and semantic equiv-
alence between formats. The grammar is manually constructed, as opposed to automatically induced
from data, to guarantee a higher level of precision when defining the set of equivalent formats. Our
grammar is directly tested by verifying that it can generate the formatting associated with 100+
Super-NaturalInstructions tasks (Wang et al., 2022).

Our grammar consists of fields that are composed to create a prompt format. For example, the
format ‘Passage: <text> || Answer: <text>’, has basic fields ‘Passage: <text>’,
and ‘Answer: <text>’, denoted a1, and a2. Each basic field consists of a descriptor (e.g.
‘Passage’), a separator (e.g. ‘: ’), and a text placeholder to replace with each data point.
We define basic fields as B1(d, s, f) := f(d)s<text> using Backus-Naur notation, where d is a
descriptor string, s∈S1 a separator, and f ∈Fcasing a function that alters d while preserving meaning.
Thus, in our example, a1=B1(Passage, ’: ’, id) and a2=B1(Answer, ’: ’, id), with id the

identity function. We define joining several fields as B
(n)
2 (X1, . . ., Xn,c) := X1cX2c . . . cXn, with

c∈C being a space. Our example’s prompt format may be written as B
(2)
2 (a1, a2, ’ || ’).

The grammar also supports enumeration, which is defined as joining several basic fields, each rep-
resenting a different list item. For example, the enumeration ‘Option (A): <text>, Option

(B): <text>, Option (C): <text>’may be written as B
(3)
2 (a1, a2, a3, ’ || ’), where ai =

B1(ei, ’: ’, id). In our example, e1 represents ‘Option (A)’, and may in turn be written
as the concatenation ei := ds2fitem(i) with d = ‘Option’, s2 = ’ ’ (single space), and
fitem(1) = ‘(A)’. Each fitem transforms an item i using a number format (e.g. letters or Roman
numerals, denoted as Fitem2) and an item wrapper (e.g. (A) or [A], denoted as Fitem1).

In summary, we define valid prompt formats as those accepted by the following grammar:

B0() := <text>

B′
0(d, s) := f(d)s with s ∈ S1, f ∈ Fcasing

B1(d, s, f) := f(d)s<text> with s ∈ S1, f ∈ Fcasing

B
(n)
2 (X1, . . . , Xn, c) := X1c . . . cXn with c ∈ C, Xi ∈ {B0, B

′
0, B1, B2, B3} ∀i

B
(n)
3 (d, j1, . . . , jn, s1, s2, c, f1, f2) := B

(n)
2 (B1(e1, s1, f2)), . . . , B1(en, s1, f2), c)

where ei := f2(d) s2 f1(ji), ji ∈ N0 ∀i,

s1 ∈ S1, s2 ∈ S2, f1 ∈ Fitem, f2 ∈ Fcasing

Our grammar defines valid formats as finite compositions of B0, B
′

0, B1, B2, B3. The sets S1,S2, C,
Fcasing, Fitem (two sets of separators, spaces, casing functions, and itemizing functions respectively)
are pre-defined by the user. Throughout this work, we instantiate all sets with values typically ob-
served in human-written prompt formats. We intentionally only modify the casing of descriptors (via
Fcasing) to guarantee semantic equivalence; one may also define a set of functions that paraphrases
the descriptor, e.g., via synonym replacement. Appendix A.2 contains the full list of values we use
for the constant sets, as well as a visualization of a prompt template generated from the grammar.

Prompt Format Equivalence. Two prompt formats p1, p2 are equivalent if they represent the same
rule application Bi, the descriptors (if any) are the same, and the sub-elements (if any) are equivalent.
Appendix A.1 contains the formal definition of equivalence. The grammar’s strict definition allows
us to assume that sets of equivalent formats share equivalent meanings. When measuring sensitivity
(§3.2), we explore only the space of formats equivalent to a task’s original format.

Contextual Restrictions. We define restrictions to the combinations of spaces and separators to
further ensure naturalness. For example, if B2(X1,. . . ,Xn,c) where c does not contain a newline,
then each Xi’s separators and any subcomponents’ separators should not contain a newline. This

3

Published as a conference paper at ICLR 2024

avoids unnatural formats like Input:\n <text> Output:\n <text>. We also allow for adding
conditions that force constants (separators, spaces, etc.) in different applications of Bi to be equal.
When measuring sensitivity to format perturbations, if two separators or spaces are equal in an
original format, they are forced to jointly change to be considered equivalent. Appendix A.3 contains
all contextual restrictions.

Final Prompt Construction. Given a valid format p accepted by the grammar, the fi-
nal prompt is constructed by concatenating with space c an instruction string inst, n few-
shot data points D1, . . . , Dn exemplifying the task, and a data point Dn+1 to be solved.
All few-shot examples Di are formatted using p. Thus, the final prompt template is:
inst c p(D1) c p(D2) c . . . c p(Dn) c p(Dn+1). Since Dn+1’s output will be generated by the
model, an empty string is added in place of the answer in the last field in the template. Prompt con-
struction will modify inst to match specific choices encoded in p: concretely, if p enumerates valid
multiple-choice options as characters x1 . . . xn, we ensure inst refers to these choices as x1 . . . xn.

3.2 MEASURING SENSITIVITY

We measure how plausible choices in prompt formatting influence quantifiable metrics of generated
outputs. Given a set of plausible formats {p1, . . . , pn}, a dataset D, and a scalar metric m, let
the performance interval be [mini m(pi,D),maxi m(pi,D)]. We define the performance spread
or simply spread as maxi m(pi,D) − mini m(pi,D). Higher spread indicates more sensitivity
to variance within the space of plausible, semantically-equivalent formats. While our method is
agnostic to the scalar metric m used, and one could consider a number of metrics including text
length, formality, or toxicity, throughout this work we focus our analysis on estimated task accuracy
acc. Due to ease in automatic evaluation, here we evaluate on classification tasks.

Our goal is to compute spread for a given model and task. A comprehensive approach would be to
fully evaluate each plausible format pi on the entire evaluation dataset D. This increases the cost
of reporting a model’s performance linearly with n, which becomes computationally infeasible for
large values of n. Following prior gradient-free prompt engineering work (Zhou et al., 2023; Pryzant
et al., 2023), we model our problem as a multi-arm bandit. Given a random sample of n formats
(arms) p1, . . . , pn for a task, an arm pi’s hidden value is the actual performance m(pi,D) when

evaluated on the full dataset D, and the reward for pulling the arm is an estimate m(pi, D̃) where

D̃ ⊂ D, |D̃| = B (mini-batch size) and no element of D̃ has yet been evaluated with pi.

We assume a budget of E total data point evaluations. We first search for the highest performing for-
mat with budget E/2, and then for the lowest performing format with budget E/2. Evaluations done
for the first exploration are readily available for the second exploration, which yields a more infor-
mative prior for many formats. We consider two well-known regret minimization bandit algorithms:
Thompson sampling (used in FORMATSPREAD) and Upper Confidence Bound (UCB).

Thompson Sampling. This simple, high-performing Bayesian inference heuristic randomly draws
each arm according to its probability of being optimal (Chapelle & Li, 2011). Each m(pi,D) is
modeled as a random variable, and since with our target metric each data point evaluation is a
Bernoulli trial, it is natural to model m(pi,D) as a Beta distribution. In each round, Thompson

sampling draws from each m(pi, D̃) and chooses the best arm î (Algorithm 1). It then updates î

according to the number of observed successes r, and the corresponding B − r failures, within D̃.

Algorithm 1 Thompson Sampling for Bernoulli Bandits

S
(1)
i
← 0, N

(1)
i
← 0 (success counters and total times armed was drawn counter)

for t← 1, . . . E/B do
for i← 1, . . . ,K do

Take θ
(t)
i

from Beta(αi + S
(t)
i

, βi + (N
(t)
i
− S

(t)
i

))

Draw arm î = argmaxi θ
(t)
i

(or argmin in minimization problems) and observe reward r

S
(t+1)

î
← S

(t)

î
+ r, N

(t+1)

î
← N

(t)

î
+B

Thompson sampling allows for setting informative priors (αi, βi) based on domain knowledge to
accelerate runtime. Appendix A.4 details the exact priors we use. To our knowledge, we are the first
to consider a Bayesian sampling method for prompt optimization.

4

Published as a conference paper at ICLR 2024

Upper Confidence Bound (UCB) Sampling. UCB (Lai et al., 1985) computes an upper confidence
bound to each arm’s performance, derived from Chernoff’s bound. The key difference with Thomp-

son sampling is in how θ
(t)
i is defined. In UCB’s frequentist approach, θ

(t)
i is assigned the estimated

accuracy plus the upper confidence bound: θ
(t)
i ←Si/Ni + c

√

log(t)/Ni. We use c = 2 following
Pryzant et al. (2023), who find UCB with c = 2 to be most effective for prompt optimization.

Naive Sampling. Each prompt format is evaluated on E/n points (with appropriate rounding).

4 CHARACTERIZING PROMPT FORMAT VARIANCE WITH FORMATSPREAD

4.1 EXPERIMENTAL SETUP

Data. We use a subset of 53 tasks from Super-NaturalInstructions (Wang et al., 2022) with diverse
human-written formats and instructions, comprising 19 multiple-choice tasks and 34 classification
tasks with {2, 3, 4} basic fields. Appendix B.1 details the exact task selection procedure. To con-
struct the final prompt template, we concatenate each task’s instruction and n formatted few-shot
examples using \n\n as spacing. While selection and ordering of few-shot examples is a compo-
nent of prompt design influencing features of model output (Lu et al., 2022), our work focuses on
prompt formatting. To remove this confounder, we fix the exact choice and ordering of examples for
each task and for a given number of shots n. Few-shot examples for each task are chosen randomly
within each dataset and are not used for evaluation. We evaluate task data samples on an arbitrary
order fixed across settings. Datasets are assumed to be of size 1,000 for fair evaluation across tasks.

Models. We evaluate LLaMA-2-{7B,13B,70B} (Touvron et al., 2023), Falcon-7B and Falcon-7B-
Instruct (Almazrouei et al., 2023), GPT-3.5-Turbo (Schulman et al., 2022), all autoregressive LMs.

Task Evaluation Metrics. We use two popular measures for computing accuracy: exact prefix
matching and probability ranking. In exact prefix matching, we check if the output’s prefix matches
the expected answer after normalization (casing, spacing, newlines). Ranking accuracy computes the
rate that the expected answer is the highest-ranked valid option (in multiple choice and classification
tasks) according to the model’s output distribution. Results are reported using ranking accuracy
unless specified otherwise. Appendix B.2 shows additional analysis of exact prefix matching, with
spreads even higher than those shown in Section 4.2, and including how formatting choice affects
task degeneration (i.e., not answering any valid option).

4.2 PROMPT FORMATS HAVE A LARGE PERFORMANCE SPREAD, NOT ELIMINATED BY

INCREASING FEW-SHOT EXAMPLES OR MODEL SIZE, NOR WITH INSTRUCTION TUNING

For each evaluation task we randomly sample 10 plausible prompt formats and use FORMATSPREAD

to compute performance spread for each modeling and n-shot choice (Figure 3). We find signifi-
cant performance spread across tasks, with a median spread of 7.5 accuracy points across choices
in the model and the number of few-shot examples. 20% of tasks consistently result in a spread of
at least 15 accuracy points for all LLaMA-2 settings, and at least 9 points for all Falcon settings.
We observe several tasks with performance spread over 70 accuracy points. Because this analysis
uses only 10 randomly sampled formats, it represents a lower bound of the true spreads for each
task. Furthermore, there exists significant performance spread regardless of increased model size
(Figure 2a and Figure 11 for Llama-2-70B), instruction tuning (Figure 2b), or number of few-shot
examples (Figure 2c; Figure 2a and 2b plot 1- and 5-shot jointly). Appendix B.2 demonstrates sim-
ilar results on a selection of non-classification tasks, and expands the spread discussion to plotting
the entire accuracy distribution, along with a dispersion metric.

Comparison trends between models are often reversed just by choosing different formats. As-
suming model M is better than M ′ by at least d accuracy using prompt p, we compute how often
M ′ achieves at least d higher accuracy than M under a different format p′. Figure 4 shows these
trends are often reversed: LLaMA-2-13B and -70B reverse trend by at least d = 0.02 with prob-
ability 0.141; LLaMA-2-7B and Falcon-7B reverse trend by at least d = 0.02 with probability
0.140. Strikingly, often both experiments (first using p, and then p′) were statistically significant
(p-value < 0.05) on 1000 samples2: 76% and 47% respectively for the two model comparisons

2We use one-sided McNemar tests, also known as paired χ2 tests, since we evaluate models on the same set
of samples. We test the significance of M being better than M ′ under p, and M being worse than M ′ under p′.

5

Published as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6
Llama-2-7b spread

0.0

0.2

0.4

0.6

0.8

Lla
m

a-
2-

13
b

sp
re

ad r=0.83
p=3.37 × 10 28

(a) Llama-2-7B vs. 13B

0.00 0.05 0.10 0.15 0.20 0.25
falcon-7b spread

0.0

0.1

0.2

0.3

fa
lco

n-
7b

-in
st

 sp
re

ad r=0.43
p=3.18 × 10 6

(b) Falcon-7B vs. 7B-Instruct

0.0 0.2 0.4 0.6 0.8
nshot=1 spread

0.0

0.2

0.4

0.6

ns
ho

t=
5

sp
re

ad

r=0.82
p=1.59 × 10 65

(c) 1- vs. 5-shot (same task, model)

Figure 2: Spread comparison between evaluating the same task under different models or n-shots.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Performance spread across prompt formats

Llama-2-7b
nshot=1

Llama-2-7b
nshot=5

Llama-2-13b
nshot=1

Llama-2-13b
nshot=5

Llama-2-70b
nshot=1

Llama-2-70b
nshot=5

falcon-7b
nshot=1

falcon-7b
nshot=5

falcon-7b-inst
nshot=1

falcon-7b-inst
nshot=5

Figure 3: Spread across models and n-shots.

0.01 0.1 1.0
Threshold of accuracy difference (d) (log)

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
th

at
ac
c(
p′
M
)

ac
c(
p′
M

′)<
d

gi
ve

n
ac
c(
p M

)
ac
c(
p M

′)>
d {M,M ′} = {Llama-2-7b, Llama-2-13b}

{M,M ′} = {Llama-2-7b, Llama-2-70b}
{M,M ′} = {Llama-2-13b, Llama-2-70b}
{M,M ′} = {Llama-2-7b, falcon-7b}
{M,M ′} = {falcon-7b, falcon-7b-inst}

Figure 4: Probability that model M performs
worse than M ′ by at least d when using format
p′, given that M performed better than M ′ by at
least d using format p. 53 tasks, 1- and 5-shot.

mentioned above. We find that formats yielding high performance for model M may not yield high
performance for M ′, implying that formats may not be inherently good or bad (Appendix B.2).

4.3 HOW DO INDIVIDUAL FEATURES CONTRIBUTE TO PERFORMANCE?

We analyze how choices in particular constants (i.e. S1,S2, C,Fcasing,Fitem) independently influence
task performance across different formats. Figure 5 shows the distribution of accuracy for 500 sam-
pled prompts conditioned on the choice of S1 (the separator between a descriptor and the text place-
holder) for one task in Super-NaturalInstructions. When comparing the individual influence of two
feature choices, we measure both weak and strong notions of dissimilarity between distributions of
accuracy across prompts conditioned on a chosen feature. We say two constant choices yield weakly
different accuracy distributions if the values between the first quartile (Q1) and third quartile (Q3)
do not intersect. This is equivalent to the boxes in a boxplot not overlapping. We say two constant
choices yield strongly different accuracy distributions if the ranges [2.5Q1−1.5Q3, 2.5Q3+1.5Q1]
do not overlap (adjusted to end in a data point). This is equivalent to two boxplots with their whiskers
not overlapping. In Figure 5, ’ \n\t’ and ’: ’ (fourth and sixth) are only weakly different.

We compute accuracy for 500 random formats with 250 samples each on 31 tasks for 1-shot Llama-
2-7B. Table 1 shows that choices in S2, Fitem1, Fcasing do not independently predict performance
differences (weakly or strongly): although these features can have a large performance variance
and thus should be explored with FORMATSPREAD, they cannot be used to independently predict
accuracy changes. Other constant sets have varying degrees of differences, with S1 (separators) and
Fitem2 (number format changes in enumerations) having the most individual impact. All tasks with
strong dissimilarities are shown in Appendix B.4.

Small prompt variations often yield large performance differences. Table 2 shows a selection of
tasks where changing a single constant on a format (e.g., casing in task322) results in large accuracy
differences. Figure 6 shows that regardless of the scoring criterion used, a significant ratio of these
atomic changes are associated with large accuracy changes. For example, 24% of atomic changes
have an associated accuracy change of at least 5 points when using exact prefix matching as scoring
criteria (11% when using probability ranking).

The space of prompt format accuracy is highly non-monotonic, which makes local search algorithms
over the space less effective. Let (p1, p2, p3) be a prompt format triple such that pi+1 is obtained
by making an atomic change to pi. We argue that if the prompt format space is smooth, we should
often see a triples’ accuracy to be strictly monotonic over i. We choose 24 tasks (13 multiple choice,

6

Published as a conference paper at ICLR 2024

' ' ' -
 '

' :
 '

' \
n\

t' '-
'

':
' ':' '::

 ' '::
'

'::
: '

'\n

 '
'\n

 '
'\n

\t' '\t
'

Separator Used

0.40

0.45

0.50

0.55
Ac

cu
ra

cy

Figure 5: Example of accuracy variance for dif-
ferent choices of constants in S1 for task1283.

Table 1: Tasks where at least two constants yield
different performance (weakly different if their
boxes in a boxplot do not overlap, strongly if
boxes including whiskers do not overlap).

Median Spread
(range [0, 1])

Weak
Diff.

Strong
Diff.

C 0.144 29% 1%
S1 0.132 43% 22%
S2 0.238 0% 0%
Fitem1 0.176 0% 0%
Fitem2 0.173 45% 10%
Fcasing 0.188 3% 0%

Table 2: Examples of atomic changes’ impact on accuracy using probability ranking (prefix match-
ing shown in Table 4). {} represents a text field; p2 yields higher accuracy than p1 for all tasks.

Task Id Prompt Format 1 (p1) Prompt Format 2 (p2) Acc p1 Acc p2 Diff.

task280 passage:{}\n answer:{} passage {}\n answer {} 0.043 0.826 0.783
task317 Passage::{} Answer::{} Passage:: {} Answer:: {} 0.076 0.638 0.562
task190 Sentence[I]- {}Sentence[II]- {}

-- Answer\t{}
Sentence[A]- {}Sentence[B]- {}
-- Answer\t{}

0.360 0.614 0.254

task904 input:: {} \n output:: {} input::{} \n output::{} 0.418 0.616 0.198
task320 target - {} \n{} \nanswer - {} target - {}; \n{}; \nanswer - {} 0.361 0.476 0.115
task322 COMMENT: {} ANSWER: {} comment: {} answer: {} 0.614 0.714 0.100
task279 Passage : {}. Answer : {} PASSAGE : {}. ANSWER : {} 0.372 0.441 0.069

11 non-multiple choice), sample 300 (p1, p2, p3) triples for each, and the compute accuracy (using
exact prefix matching) of each pi on 250 samples. 32.4 and 33.6% of triples were monotonic for
multiple-choice and non-multiple-choice tasks respectively. Given that random shuffling within a
triple will result in monotonicity 33.3% of the time, this suggests that local search mechanisms like
simulated annealing may not be effective as they require a locally smooth search space.

4.4 PROMPT FORMATS ARE IDENTIFIABLE TRANSFORMATIONS OF PROMPT EMBEDDINGS

Prompt format choices represent a deterministic transformation of the input, even if its impact on the
resulting performance is hard to predict. We represent prompt embeddings as the last hidden layer
obtained when processing the whole input prompt (immediately before generating the first token).
We demonstrate that format choice yields a highly identifiable transformation over this embedding,
which suggests that formats can be seen as transformations of the output probability distribution.

For each task, and for both {1, 5}-shot settings, we collect prompt embeddings from LLaMA-2-7B
corresponding to 10 randomly sampled valid formats for 1000 evaluation examples. We train an
XGBoost (Chen & Guestrin, 2016) classifier that maps from the top n principal components of a
prompt embedding to the prompt format.3 We find that although the original prompt embeddings
are of size 4,0964, using just the top 100 principal components can result in a classifier with ≥0.98
accuracy in format identification for all 31 tasks analyzed. Figure 7 shows the accuracy of format
classification given a fixed number of principal components.5 We find that classifier accuracy given
just the top two components correlates moderately with the spread of performance in the prompts
they represent (0.424, p = 8.04 · 10−6; 0.555 for the 5-shot setting; using exact prefix matching).

4.5 FAST EXPLORATION OF THE PROMPT FORMATTING SPACE: FORMATSPREAD

In Section 4.2, we demonstrate that even when sampling just 10 formats from the space of plausible
formats, we still observe significant performance spread on many tasks. However, this is only a lower

3We train with 800 vectors from each of the 10 formats (8000 vectors) and evaluate on the remaining 200.
4Equivalent to the dimension of hidden representations for LLaMA-2-7B.
5Figure 21 in the Appendix visualizes examples of the top two principal components for ten prompt formats.

7

Published as a conference paper at ICLR 2024

0.01 0.1 1.0
Absolute Accuracy Diff. (d) (log scale)

0.00

0.25

0.50

0.75

Pr
ob

ab
ilit

y
th

at
 a

n
at

om
ic

ch
an

ge
yi

el
ds

 a
 d

iff
.

d Scoring Criterion
Probability Ranking
Exact Prefix Matching

Figure 6: Probability that an atomic change
(e.g. changing a space, separator) has a given
impact in accuracy for two scoring criteria. 53
tasks, 30 sampled atomic changes each.

0.4 0.6 0.8 1.0
Format Classification Accuracy (a)

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Ra
tio

of
 A

na
ly

ze
d

Ta
sk

s # principal
components

2
5
10
20
50

Figure 7: Cumulative ratio of tasks that can be
classified with at most a accuracy using the top
principal components of the last decoding layer
of the prompt.

0.01 0.1
Absolute Spread Increase (d) (log)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y
of

 a
 sp

re
ad

in
cr

ea
se

 b
ei

ng

d

Spread Increase (d)
when increasing sampling
from k1 to k2 formats

k1=10 to k2=20
k1=20 to k2=40
k1=40 to k2=80
k1=80 to k2=160
k1=160 to k2=240
k1=240 to k2=320
k1=320 to k2=400

Figure 8: Probability of observing a spread in-
crease of at least d when increasing sample size
from k1 to k2 formats. 31 tasks, 100 trials each.

10000 20000 30000 40000 50000
Maximum number of evaluations allowed

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Di
st

an
ce

 to
 tr

ue
 sp

re
ad

Thompson Sampling
UCB Sampling
Naive Sampling

Figure 9: Difference between the true sample
spread and each algorithm-found spread with re-
spect to E (evaluation budget). 320 formats,
B = 20, average of 5 trials over 31 tasks shown.

bound of the spread a task may exhibit when increasing the number of formats: for example, about
17% of tasks are expected to increase their spread by at least 5 accuracy points when increasing from
10 to 20 sampled formats. Figure 8 quantifies the expected increase in spread when increasing the
number of formats by evaluating 500 formats on 250 samples each and computing expected gains.

Figure 9 compares the efficiency of Thompson sampling, UCB, and naive sampling for estimating
spread with respect to a budget E (Section 3.2). To ensure accurate reports, we compute and show
the true spread of the highest- and lowest-performing formats chosen by each method using all data.
With a budget of 51,200 evaluations, Thompson sampling results in a spread within 1 accuracy point
of the true spread, while naive sampling finds a spread within 4 points, and UCB within 11.

Finally, we use FORMATSPREAD to measure sensitivity of several models where inference is
expensive. With a budget of 40,000 evaluations and 320 prompt formats, we find that 1-shot
LLaMA-2-70B–ran using 4-bit quantization (Dettmers et al., 2022)–yields a median spread of 0.171
(mean=0.221, std=0.200, using probability ranking across 53 tasks; 25% of tasks had a spread of
0.292 or higher, with a maximum spread of 0.876), and GPT-3.5 yields a median spread of 0.064
(mean=0.110, std=0.115, across 53 tasks using exact prefix matching given that we do not have
access to the full logits; 25% of tasks had a spread of 0.148 or higher, with a maximum spread of
0.562), showing sensitivity to formatting is still present even on larger models. 5-shot LLaMA-2-
70B still shows high spreads, with 25% of tasks having a spread of 0.310 and a maximum of 0.841.
See spread visualization in Figure 25, and a list of best and worst formats found in Table 6.

5 RELATED WORK

The task of automatically finding the best-performing prompt for a given task without changing
model parameters has recently gained attention, given the constantly improving yet somewhat unpre-
dictable performance of LLMs. Prior work has often focused on discovering optimal prompts with
gradient-based methods, which are effective, but often lead to disfluent or unnatural prompts (Shin

8

Published as a conference paper at ICLR 2024

et al., 2020), which can be mitigated with a Langevin dynamics-based method (Shi et al., 2022).
Another approach is to learn, optimize, and insert continuous representations of prompts and tasks
as input to models (Qin & Eisner, 2021; Lester et al., 2021; Ding et al., 2022; Ilharco et al., 2023).
These methods also require access to the LLM’s parameters, thus cannot be applied to models behind
an API. In contrast, FORMATSPREAD does not assume access to any model internals. Prior gradient-
free work has focused on edit-based enumeration over human-written prompts (Prasad et al., 2023),
reinforcement learning (Deng et al., 2022), and by using LLMs themselves (Zhou et al., 2023; Gao
et al., 2021). These works aim to achieve competitive task performance, even if the meaning of the
prompt or instruction is modified. To our knowledge, we are the first to focus specifically on prompt
formatting variance, a quintessential example of semantic equivalence.

Jailbreaking refers to the behavior of intentionally manipulating prompts to elicit inappropriate or
sensitive responses, or otherwise reveal parts of the prompt that were intentionally not revealed.
While the objective differs from our work, jailbreaking works (Wei et al., 2023; Zou et al., 2023)
share the underlying technical question of finding the lowest-performing prompt. Our methods
differ, since Wei et al. (2023) evaluate human-generated attacks to guide adversarial prompt design,
and Zou et al. (2023) uses gradient-based search methods simultaneously across multiple models.

Some existing work has explored the influence of certain prompt design choices on model perfor-
mance, for example the prompt’s language (Gonen et al., 2022), the ordering of few-shot exam-
ples (Lu et al., 2022), and their patterns (Madaan et al., 2023). Other work has focused on providing
textual interpretations of continuous prompt representations (Khashabi et al., 2022). Beyond au-
toregressive LLMs, existing work has focused on performance variance in masked language mod-
els (Elazar et al., 2021; Jiang et al., 2020). Our work follows efforts in other domains that explore the
influence of spurious features on research evaluations, e.g., in deep reinforcement learning (Islam
et al., 2017; Henderson et al., 2018) and statistical machine translation (Clark et al., 2011).

6 DISCUSSION

We introduce FORMATSPREAD, an algorithm that estimates the performance spread across prompt
formatting choices.6 We use FORMATSPREAD to evaluate the spread of several widely-used open-
source LLMs for classification tasks in few-shot learning settings. We find that spread is large
regardless of model choice, even when increasing model size, number of few-shots, or when using
instruction tuning. FORMATSPREAD is designed to efficiently search the space of plausible prompt
formats under a user-specified computational budget. For example, with a computational budget of
exploring only 5% of the entire search space for task with 2,500 test examples and 320 plausible
formats, we are able to estimate spread within 2 accuracy points of the true spread.

We also characterize the space of prompt formats, finding that it is largely non-monotonic and that
few atomic features can be predictors of performance alone, although the separability of format
embeddings is highly correlated with observed performance spread. These findings informed the
design of our search procedure, where local search methods are not advantageous.

Our findings suggest that performance spread caused by arbitrary prompt formatting choices may
influence conclusions made about model performance, especially when comparing models on bench-
mark tasks. Thus, we recommend that work evaluating LLMs with prompting-based methods would
benefit from reporting a range of performance across plausible formats. However, we want to em-
phasize that single-format evaluation may still be sufficient for many use cases. For example, for
researchers or practitioners who build systems on top of LLMs, choosing a single prompt format
that works sufficiently well for use in this larger system is a valid methodological choice. However,
we encourage future research to compute FORMATSPREAD when comparing their systems to out-
of-the-box models, to ensure fair baseline representation. Furthermore, FORMATSPREAD can be
used to identify lower-bound performance of a model or system. For example, when using a model
for socially impactful tasks, such as stereotype classification in Figure 1, it is important to report
the range of accuracy a non-adversarial user might encounter. Likewise, it is crucial to consider
robustness to spurious features when claiming that models possess general abilities, such as theory
of mind; and beneficial to report when e.g. exploring model biases. We leave it to future research to
develop regularization procedures either during training or with an already-trained model to make
models robust to diverse formatting choices.

6We thoroughly describe the limitations of our method in Appendix C.

9

Published as a conference paper at ICLR 2024

7 ACKNOWLEDGEMENTS

We thank Jillian Fisher, Sachin Kumar, Angela Zhou, and the Berkeley NLP group for valuable
discussions. This work was conducted while A.S. was a Young Investigator at AI2. This material
is based upon work partly funded by the DARPA CMO under Contract No. HR001120C0124, by
DARPA MCS program through NIWC Pacific (N66001-19-2-4031), by NSF DMS-2134012, IIS-
2125201, IIS-2203097, by NSF CAREER Grant No. IIS2142739, and an Alfred P. Sloan Foundation
Fellowship. Any opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily state or reflect those of the United States Government
or any agency thereof.

REFERENCES

Armen Aghajanyan. Tweet: Susan & I found MMLU performance jump 6-10

points in the 40s by formatting multiple choice as (A) not A in

MMLU (for internal model). All evaluation of LLM’s are broken.

Evaluating a task requires marginalizing across all prompts

that describe the task, not point estimate of one. June 2023. URL
https://twitter.com/ArmenAgha/status/1669084129261162497.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Merouane Debbah, Etienne Goffinet, Daniel Heslow, Julien Launay, Quentin Malartic,
Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. Falcon-40B: an open large lan-
guage model with state-of-the-art performance. 2023.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. Advances in neural
information processing systems, 24, 2011.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, pp. 785–794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/
2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785.

Jonathan H Clark, Chris Dyer, Alon Lavie, and Noah A Smith. Better hypothesis testing for statisti-
cal machine translation: Controlling for optimizer instability. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies, pp.
176–181, 2011.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng
Song, Eric Xing, and Zhiting Hu. RLPrompt: Optimizing discrete text prompts with rein-
forcement learning. In Proceedings of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 3369–3391, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.222. URL
https://aclanthology.org/2022.emnlp-main.222.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.int8(): 8-bit matrix
multiplication for transformers at scale. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=dXiGWqBoxaD.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Haitao Zheng, and Maosong
Sun. Openprompt: An open-source framework for prompt-learning. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp.
105–113, 2022.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich
Schütze, and Yoav Goldberg. Measuring and improving consistency in pretrained language mod-
els. Transactions of the Association for Computational Linguistics, 9:1012–1031, 2021.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. pp. 3816–3830, August 2021. doi: 10.18653/v1/2021.acl-long.295. URL https:

//aclanthology.org/2021.acl-long.295.

10

Published as a conference paper at ICLR 2024

Hila Gonen, Srini Iyer, Terra Blevins, Noah A Smith, and Luke Zettlemoyer. Demystifying prompts
in language models via perplexity estimation. arXiv preprint arXiv:2212.04037, 2022.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Or Honovich, Uri Shaham, Samuel R. Bowman, and Omer Levy. Instruction induction: From few
examples to natural language task descriptions. pp. 1935–1952, July 2023. doi: 10.18653/v1/
2023.acl-long.108. URL https://aclanthology.org/2023.acl-long.108.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. In International
Conference on Learning Representations, 2023.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of
benchmarked deep reinforcement learning tasks for continuous control. arXiv preprint
arXiv:1708.04133, 2017.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know what language
models know? Transactions of the Association for Computational Linguistics, 8:423–438, 2020.

Daniel Khashabi, Xinxi Lyu, Sewon Min, Lianhui Qin, Kyle Richardson, Sean Welleck, Han-
naneh Hajishirzi, Tushar Khot, Ashish Sabharwal, Sameer Singh, and Yejin Choi. Prompt way-
wardness: The curious case of discretized interpretation of continuous prompts. In Proceed-
ings of the 2022 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pp. 3631–3643, Seattle, United States, July
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.266. URL
https://aclanthology.org/2022.naacl-main.266.

Tze Leung Lai, Herbert Robbins, et al. Asymptotically efficient adaptive allocation rules. Advances
in applied mathematics, 6(1):4–22, 1985.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 3045–3059, 2021.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically or-
dered prompts and where to find them: Overcoming few-shot prompt order sensitivity. pp. 8086–
8098, May 2022. doi: 10.18653/v1/2022.acl-long.556. URL https://aclanthology.

org/2022.acl-long.556.

Aman Madaan, Katherine Hermann, and Amir Yazdanbakhsh. What makes chain-of-thought
prompting effective? a counterfactual study. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 1448–1535, 2023.

Moin Nadeem, Anna Bethke, and Siva Reddy. Stereoset: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 5356–5371, 2021.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. GrIPS: Gradient-free, edit-based in-
struction search for prompting large language models. pp. 3845–3864, May 2023. doi: 10.18653/
v1/2023.eacl-main.277. URL https://aclanthology.org/2023.eacl-main.277.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with” gradient descent” and beam search. arXiv preprint arXiv:2305.03495, 2023.

Guanghui Qin and Jason Eisner. Learning how to ask: Querying lms with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-HLT), 2021.

11

Published as a conference paper at ICLR 2024

Timo Schick, Sahana Udupa, and Hinrich Schütze. Self-diagnosis and self-debiasing: A proposal for
reducing corpus-based bias in nlp. Transactions of the Association for Computational Linguistics,
9:1408–1424, 2021.

John Schulman, Barret Zoph, Christina Kim, Jacob Hilton, Jacob Menick, Jiayi Weng, Juan Fe-
lipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny, et al. Chatgpt: Optimizing language
models for dialogue. OpenAI blog, 2022.

Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtzman, Yulia Tsvetkov, and Luke Zettlemoyer.
Toward human readable prompt tuning: Kubrick’s the shining is a good movie, and a good prompt
too? arXiv preprint arXiv:2212.10539, 2022.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Auto-
Prompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts.
pp. 4222–4235, November 2020. doi: 10.18653/v1/2020.emnlp-main.346. URL https:

//aclanthology.org/2020.emnlp-main.346.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby
Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir Parmar, Mi-
rali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang
Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta Patro,
Tanay Dixit, and Xudong Shen. Super-NaturalInstructions: Generalization via declarative instruc-
tions on 1600+ NLP tasks. pp. 5085–5109, December 2022. doi: 10.18653/v1/2022.emnlp-main.
340. URL https://aclanthology.org/2022.emnlp-main.340.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training
fail? arXiv preprint arXiv:2307.02483, 2023.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf El-
nashar, Jesse Spencer-Smith, and Douglas C Schmidt. A prompt pattern catalog to enhance
prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382, 2023.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. In International Conference on Learning Representations, 2019.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/

forum?id=92gvk82DE-.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

12

Published as a conference paper at ICLR 2024

A GRAMMAR DEFINITION AND INSTANTIATION DETAILS

A.1 EQUIVALENCE RELATION DEFINITION

Precisely, p1 ∼ p2 if and only if at least one of the following hold: p1 = p2 = B0; or pi =

B′

0(di, si) with d1 = d2; or pi = B1(di, si, fi) with d1 = d2; or pi = B
(n)
2 (X1,i, . . . , Xn,i, ci)

with Xj,1 ∼ Xj,2 ∀1 ≤ j ≤ n; or pi = B
(n)
3 (di, j1,i, . . . , jn,i, s1, s2, c, f) where d1 = d2 and

jk,1 = jk,2 ∀1 ≤ k ≤ n. It is possible that generated formats equivalent in their string representation
are not equivalent according to this equivalence relation.

A.1.1 VISUALIZATION OF PROMPT FORMAT’S PARSING AND FULL FORMAT GENERATION

<text> \n OPTIONS: \n CHOICE (A) <text> ; CHOICE (B) <text> \n ANSWER: <text>

B
(3)

2

B1 ANSWER: <text>

casing ℱcasing separator "1

B1B′ 0 B3B0

space $

B′ 0 OPTIONS: CHOICE (A) <text> ; CHOICE (B) <text>B3

B1 B1

separator between

text and option "2

item formatting  

(includes enum. and wrapper)

ℱitem space $

Figure 10: Visualization of a complex prompt format showing its parsing and which constants or
functions affect each part of the format.

Figure 10 shows a visualization of how a complex format is parsed using our defined grammar. A
full prompt consists of an instruction, n few-shots and a data point to solve. For example, if the in-
struction was Given a sentence and two words that appear in it, answer

which one of the two (A or B) appeared first in the sentence., a full
prompt may look as follow. Note that we always use \n\n as space character between instruc-
tion and few-shots. The example below shows a 1-shot prompt. It is simply illustrative and does not
correspond to any of the tasks considered.

Given a sentence and two words that appear in it, answer which one of

the two (A or B) appeared first in the sentence.

The quick brown fox jumps

OPTIONS:

CHOICE (A): fox ; CHOICE (B): brown

ANSWER: B

Over the lazy dog

OPTIONS:

CHOICE (A): lazy ; CHOICE (B): dog

ANSWER:

FORMATSPREAD forces all instantiations of a multiple choice variable to change jointly to maintain
coherence, and this includes text in the instruction. Therefore, when changing the option items from
A and B to I and II, the prompt will be generated as follows.

13

Published as a conference paper at ICLR 2024

Given a sentence and two words that appear in it, answer which one of

the two (I or II) appeared first in the sentence.

The quick brown fox jumps

OPTIONS:

CHOICE (I): fox ; CHOICE (II): brown

ANSWER: II

Over the lazy dog

OPTIONS:

CHOICE (I): lazy ; CHOICE (II): dog

ANSWER:

A.2 ALLOWED VALUES FOR EACH SET S1,S2 , C , FCASING , FITEM

S1 = {′′,′ ′,′ \n′,′ \n′,′ −− ′,′ ′,′ ; \n′,′ || ′,′ < sep > ′,′ −− ′,′ , ′,′ \n ′,′ , ′,′ \n ′,′ . ′,′ , ′}

S2 = {′′,′ ′,′ ′, ‘\t′} (no space, single space, double space, tab)

C = {′′,′ ::: ′,′ :: ′,′ : ′,′ \n\t′,′ \n ′,′ : ′,′ − ′,′ ′,′ \n ′,′ \n\t′,′ :′,′ ::′,′− ′,′ \t′}

Fcasing = {f(x) = x, f(x) = x.title(), f(x) = x.upper(), f(x) = x.lower()}

Fitem = {x 7→ f(g(x)) | such that f ∈ Fitem1 ∧ g ∈ Fitem2}

Fitem1 = {x 7→ (x), x 7→ x., x 7→ x), x 7→ x), x 7→ [x], x 7→< x >}

Fitem2 = {x→ x+ 1, x→′
A
′ + x, x→′

a
′ + x,

x→ 0x215F+ x+ 1, x→ ROMAN[x].lower(), x→ ROMAN[x].upper()}

Enumerations are indexed from (i.e., “1, 2, 3” rather than “0, 1, 2”). ROMAN[x] represents the Ro-
man numerals written in regular ASCII characters. ‘0x215F’+x represent the series of Unicode
characters for Roman numerals. denotes a spacing character for clarity.

A.3 RESTRICTIONS TO PROMPT FORMATS SPACES AND SEPARATORS’ COMBINATIONS

We define several restrictions to ensure format naturalness. Users can additionally customize FOR-
MATSPREAD by defining their own rules and restrictions between values. Our rules are as follows:

• If B2(X1,. . . ,Xn,c) where c does not contain a newline, then each Xi’s separators and any
subcomponents’ separators should not contain a newline.

• Similar to the rule above, if B
(n)
3 (d, j1, . . . , jn, s1, s2, c, f1, f2) such that some separator

contains a newline (i.e. s1 contains a newline and/or s2 contains a newline) then the space
c must also contain a newline.

• For B1(d, s, f) := f(d)s< text >, s must not be the empty string (i.e., there has to be
some separation between descriptor and text).

• Having c be an empty string space in B
(n)
2 is only allowed if the first n − 1 components

are B1 fields with an empty <text>. Similarly, the newline restrictions mentioned above
only apply if the <text> is not empty. This rarely happens in prompt formats, but there
are formats such as Question: <text> Options: A. <text> B. <text>

where the Options: do not have a corresponding field.

A.4 THOMPSON SAMPLING PRIORS

For the first exploration (i.e., finding the best-performing prompt format), we set an informative

prior Beta(α, β) := Beta
(

max
(

β·x
1−x , 1.1

)

, 5
)

for all arms pi, where x is the original format’s

accuracy. Our goal is to set an informative prior where the expected value of the prior distribution is
the original format accuracy x, since a priori it is the only information we have about performance.

14

Published as a conference paper at ICLR 2024

This restricts the parameters as follows:

E[Beta(α, β)] =
α

α+ β
= x

α = α · x+ β · x

α =
β · x

1− x

Since β will modulate how confident is the prior, and we want to avoid the model being overconfi-
dent, we fix β = 5. Because we want to have an informative prior Beta(α, β) with a Gaussian-like
PDF, we force α > 1 and β > 1. In extreme cases, forcing α > 1 might alter the expected value.

The first exploration’s priors are thus exactly Beta(α, β) with α = max
(

β·x
1−x , 1.1

)

and β = 5 for

all arms pi.

For the second exploration (i.e., finding the worst-performing prompt format), the model has access

to the first explorations’ counters S
(E/B)
i and N

(E/B)
i . Therefore, we set the second exploration’s

priors to be Beta
(

α+ S
(E/B)
i , β +

(

N
(E/B)
i − S

(E/B)
i

))

.

B ADDITIONAL EXPERIMENTS’ INFORMATION AND PLOTS

B.1 TASK SELECTION

We use a number of heuristics to filter Super-NaturalInstructions tasks to our set of 53 evaluation
tasks. Datasets should have at least 1000 samples to be considered. We also remove tasks whose in-
structions are too long (over 3,000 characters) and datasets with inputs longer than 2,000 characters,
given that this makes performing inference at scale intractable. We also filter datasets whose valid
outputs include more than 20 different strings, given that we focus on classification tasks.

We also removed tasks where we found a priori performance on the task was 0% accuracy
using LLaMA-2-7B 1-shot. Some Super-NaturalInstructions tasks are derived from the same
original dataset, but ask different questions. We did not include more than 4 tasks from
the same original dataset.

Finally, we also searched for having socially impactful tasks. Those tasks were the only Super-
NaturalInstructions tasks where we included a format if one was not provided by the dataset.

The selected tasks were the following 53: task050, task065, task069, task070,

task114, task133, task155, task158, task161, task162, task163,

task190, task213, task214, task220, task279, task280, task286,

task296, task297, task316, task317, task319, task320, task322,

task323, task325, task326, task327, task328, task335, task337,

task385, task580, task607, task608, task609, task904, task905,

task1186, task1283, task1284, task1297, task1347, task1387,

task1419, task1420, task1421, task1423, task1502, task1612,

task1678, task1724.

0.0 0.2 0.4 0.6
Llama-2-7b spread

0.0

0.2

0.4

0.6

0.8

Lla
m

a-
2-

70
b

sp
re

ad

r=0.80
p=1.07 × 10 23

Figure 11: Comparison between Llama-2-7B and Llama-2-70B spreads. Llama-2-70B was com-
puted using 4bit quantization (Dettmers et al., 2022).

15

Published as a conference paper at ICLR 2024

B.2 ADDITIONAL RESULTS FOR SECTION 4.2

Table 3: Ratio of prompt format pairs (p1, p2) such that if p1 is worse than p2 using model M1, then
the same trend holds for M2.

Model 1
(M1)

Model 2
(M2)

Performance Relative
Ordering Preservation

Llama-2-7b Llama-2-13b 57.46%
Llama-2-7b Falcon-2-7b 55.91%
Falcon-7b Falcon-7b-Inst 61.11%

0.01 0.1 1.0
Threshold of accuracy difference (d) (log)

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
th

at
ac
c(
p′
M

′)
ac
c(
p M

′)<
d

gi
ve

n
ac
c(
p′
M
)

ac
c(
p M

)>
d {M,M ′} = {Llama-2-7b, Llama-2-13b}

{M,M ′} = {Llama-2-7b, Llama-2-70b}
{M,M ′} = {Llama-2-13b, Llama-2-70b}
{M,M ′} = {Llama-2-7b, falcon-7b}
{M,M ′} = {falcon-7b, falcon-7b-inst}

(a) Option ranking metric.

0.01 0.1 1.0
Threshold of accuracy difference (d) (log)

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
th

at
ac
c(
p′
M

′)
ac
c(
p M

′)<
d

gi
ve

n
ac
c(
p′
M
)

ac
c(
p M

)>
d {M,M ′} = {Llama-2-7b, Llama-2-13b}

{M,M ′} = {Llama-2-7b, falcon-7b}
{M,M ′} = {falcon-7b, falcon-7b-inst}

(b) Exact prefix matching metric.

Figure 12: Probability of a prompt p being worse than p′ by at least d points using model M ′, given
that prompt p was better than prompt p′ when using model M .

Formats are not inherently good or bad. Table 3 shows that if format p1 has lower performance
than format p2 under model M , there is < 0.62 probability that this trend would hold under another
model M ′ (random chance is 0.5). This weak relative order preservation suggests that prompt format
performance in a model may not be extrapolated to a different model, or in other words, that there
are no inherently good or bad formats. This finding is further supported by Figure 12, which shows
that findings of a format being better or worse than another are often inconsistent across models.

Experiments with exact prefix matching accuracy. Here we show results with using exact prefix
matching to compute accuracy. Often, failures in prefix matching are associated with degeneration,
i.e., cases where the model does not answer any of the valid options, motivating the use of ranking
accuracy. Degeneration makes models (specially smaller models) more unlikely to have high accu-
racy out of the box. As seen in Figure 6, prefix matching is linked to having higher changes when
performing atomic changes. Moreover, exact prefix matching can lead to lower performance as gen-
eration is less constrained (see Figure 16). Table 4 shows examples of atomic changes yielding large
accuracy changes with exact prefix matching metric.

Figure 13c shows spread remains regardless of model size increase, architecture change, or number
of few-shot examples also when using exact prefix matching as accuracy metric. In line with the
results shown for probability ranking in Section 4.2, Figure 15 shows that the probability of reversing
performance trends between two models just by changing prompt remains high when using exact
prefix matching as metric. Strikingly, spread is significantly higher than in the probability ranking
setting (see Figure 14), with median spread ranging from 12 to 28 accuracy points depending on
the model used. This further motivates the need for running FORMATSPREAD when benchmarking
models with this accuracy metric. This increased spread may be partly due to degeneration, as we
will detail next.

Degeneration. Sometimes when a model does not generate the correct answer with exact prefix
matching, it also does not generate a valid response, i.e. it degenerates. We will now quantify this
phenomenon using 53 SuperNaturalInstructions classification and multiple choice tasks.

Given a model, a task, and a format, let the centered mass be the ratio of examples where the model’s
output matched with any valid option (regardless of correctness). Table 5 shows that the correlation
between accuracy and centered mass is moderate or high depending on the model. This suggests
that very often when a model does not return a valid answer, it does not return any valid answer

16

Published as a conference paper at ICLR 2024

0.0 0.1 0.2 0.3 0.4 0.5
Llama-2-7b spread

0.0

0.2

0.4

0.6

Lla
m

a-
2-

13
b

sp
re

ad

r=0.79
p=3.68 × 10 23

(a) Llama-2-7B vs. 13B

0.0 0.1 0.2 0.3 0.4 0.5 0.6
falcon-7b spread

0.0

0.2

0.4

0.6

fa
lco

n-
7b

-in
st

 sp
re

ad r=0.32
p=1.12 × 10 3

(b) Falcon-7B vs. 7B-Instruct

0.0 0.2 0.4 0.6
nshot=1 spread

0.0

0.2

0.4

0.6

ns
ho

t=
5

sp
re

ad

r=0.36
p=7.83 × 10 8

(c) 1- vs. 5-shot (same task, model)

Figure 13: Spread comparison between evaluating the same task under different models or n-shots
using exact prefix matching as accuracy metric.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Performance spread across prompt formats

Llama-2-7b
nshot=1

Llama-2-7b
nshot=5

Llama-2-13b
nshot=1

Llama-2-13b
nshot=5

falcon-7b
nshot=1

falcon-7b
nshot=5

falcon-7b-inst
nshot=1

falcon-7b-inst
nshot=5

Figure 14: Spread across models and n-shots.
Exact prefix matching metric.

0.01 0.1 1.0
Threshold of accuracy difference (d) (log)

0.0

0.1

0.2

0.3

Pr
ob

ab
ilit

y
th

at
ac
c(
p′
M
)

ac
c(
p′
M

′)<
d

gi
ve

n
ac
c(
p M

)
ac
c(
p M

′)>
d {M,M ′} = {Llama-2-7b, Llama-2-13b}

{M,M ′} = {Llama-2-7b, falcon-7b}
{M,M ′} = {falcon-7b, falcon-7b-inst}

Figure 15: Probability that model M performs
worse than M ′ by at least d when using format
p′, given that M performed better than M ′ by at
least d using format p. 53 tasks, 1- and 5-shot.
Exact prefix matching metric.

0.0 0.2 0.4 0.6 0.8
Accuracy (Probability Ranking)

Llama-2-7b
nshot=1

Llama-2-7b
nshot=5

Llama-2-13b
nshot=1

Llama-2-13b
nshot=5

falcon-7b
nshot=1

falcon-7b
nshot=5

falcon-7b-inst
nshot=1

falcon-7b-inst
nshot=5

(a) Accuracy boxplot for the selected 53 Super
Natural-Instructions tasks, option ranking metric.

0.0 0.2 0.4 0.6 0.8
Accuracy (Exact Prefix Matching)

Llama-2-7b
nshot=1

Llama-2-7b
nshot=5

Llama-2-13b
nshot=1

Llama-2-13b
nshot=5

falcon-7b
nshot=1

falcon-7b
nshot=5

falcon-7b-inst
nshot=1

falcon-7b-inst
nshot=5

(b) Accuracy boxplot selected 53 Super Natural-
Instructions tasks, exact prefix matching metric.

Figure 16: Accuracy metric used can strongly impact final performance. 53 Super Natural-
Instructions tasks shown. Ranking accuracy yields higher accuracies overall.

at all. This is especially true for Falcon models, where we observe an almost perfect correlation
between accuracy and centered mass. In conclusion, prompt format chosen often do not solely
affect accuracy, but they also affect the frequency in which a model is actually able to perform a
task. This will especially affect tasks for which there are no alternative metrics. Further research
may focus specifically on targeting features that cause degeneration.

Experiments with Instruction Induction tasks. All experiments thus far focused solely on classi-
fication tasks. We will now focus on tasks that require generating (short) text, and cannot be framed
as classification tasks. We selected 10 tasks from Instruction Induction (Honovich et al., 2023) that
require generating a unique, valid string to be considered a correct response. Examples include
identifying the second letter of a word, adding numbers, or answering a synonym to a given word.
Instruction Induction tasks also show a wide range of difficulty, resulting in varied settings to be

17

Published as a conference paper at ICLR 2024

Table 4: Examples of atomic changes’ impact on accuracy using prefix matching (probability rank-
ing shown in Table 2). {} represents a text field; p2 yields higher accuracy than p1 for all tasks.

Task Id Prompt Format 1 (p1) Prompt Format 2 (p2) Acc p1 Acc p2 Diff.

task213 Title: {} Sentence<A>:

{} || Sentence: {}
|| Sentence<C>: {} ||

Sentence<D>: {} Choices: \n
<i>::: {} \n <ii>::: {}
Answer: {}’

Title::{} Sentence<A>::{}
|| Sentence::{} ||

Sentence<C>::{} ||

Sentence<D>::{} Choices::\n
<i>::: {} \n <ii>::: {}
Answer::{}’

0.113 0.475 0.362

task296 Sentence I) : {} \nSentence II

) : {} \nSentence III) : {}
\nSentence IV) : {} \nSentence
V) : {} \nSentence VI) : {}
\nSentence VII) : {} \nSentence
VIII) : {} \nSentence IX) : {}
\nSentence X) : {} , I. : {} ,

II. : {} , Answer: {}’

Sentence I) : {} \nSentence II

) : {} \nSentence III) : {}
\nSentence IV) : {} \nSentence
V) : {} \nSentence VI) : {}
\nSentence VII) : {} \nSentence
VIII) : {} \nSentence IX) : {}
\nSentence X) : {} , 1. : {}
, 2. : {} , Answer: {}’

0.201 0.522 0.321

task905 Tweet::: {}; \nLabel::: {};
\nAnswer::: {}’

Tweet::{}; \nLabel::{};
\nAnswer::{}’

0.252 0.559 0.307

task317 Passage:: {} \nAnswer:: {}’ Passage::{} \nAnswer::{}’ 0.245 0.546 0.301
task280 passage {}\n answer {}’ passage:{}\n answer:{}’ 0.332 0.612 0.28
task050 SENTENCE - {} \nQUESTION - {}

\nANSWER - {}’
SENTENCE\n\t{} \nQUESTION\n\t{}
\nANSWER\n\t{}’

0.244 0.504 0.26

task070 Beginning - {}\nMiddle [I]{}
, Middle [II]{}\nEnding -

{}\nAnswer - {}’

Beginning - {}\nMiddle I){}
, Middle II){}\nEnding -

{}\nAnswer - {}’

0.143 0.3 0.157

Table 5: Correlation between accuracy using exact prefix matching and the centered mass (the op-
posite of degeneration). 53 tasks, 10 formats each, evaluated on 1000 samples.

Model n-shot
correlation between accuracy

& and centered mass
p-value

Llama-2-7b 1 0.702 5.1E-77
Llama-2-7b 5 0.762 4.9E-98

Llama-2-13b 1 0.639 5.8E-61
Llama-2-13b 5 0.662 9.2E-67

falcon-7b 1 0.936 7.1E-233
falcon-7b 5 0.933 8.4E-228

falcon-7b-instruct 1 0.962 3.6E-289
falcon-7b-instruct 5 0.958 5.5E-277

analyzed (see Figure 18b). Given that the collection does not contain human-generated formats,
we applied a simple ‘Input: {}\n Output: {}’ format. Results for 1-shot and 5-shot settings
show spread is still high across models and n-shot choices (see Figure 17).

Tasks are: antonyms, diff, first word letter, larger animal,

letters list, num to verbal, second word letter, singular to plural,

sum, synonyms.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Llama-2-7b spread

0.0

0.2

0.4

0.6

0.8

Lla
m

a-
2-

13
b

sp
re

ad

r=0.93
p=3.34 × 10 9

(a) Llama-2-7B vs. 13B

0.0 0.2 0.4 0.6 0.8 1.0
falcon-7b spread

0.0

0.2

0.4

0.6

0.8

1.0

fa
lco

n-
7b

-in
st

 sp
re

ad r=0.41
p=7.40 × 10 2

(b) Falcon-7B vs. 7B-Instruct

0.0 0.2 0.4 0.6 0.8 1.0
nshot=1 spread

0.0

0.2

0.4

0.6

0.8

1.0

ns
ho

t=
5

sp
re

ad

r=0.42
p=6.62 × 10 3

(c) 1- vs. 5-shot (same task, model)

Figure 17: Spread comparison between evaluating the same task under different models or n-shots
for Instruction Induction tasks. Exact prefix matching used as accuracy metric.

18

Published as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Performance spread across prompt formats

Llama-2-7b
nshot=1

Llama-2-7b
nshot=5

Llama-2-13b
nshot=1

Llama-2-13b
nshot=5

falcon-7b
nshot=1

falcon-7b
nshot=5

falcon-7b-inst
nshot=1

falcon-7b-inst
nshot=5

(a) Spreads across models and n-shots.

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy (Exact Prefix Matching)

Llama-2-7b
nshot=1

Llama-2-7b
nshot=5

Llama-2-13b
nshot=1

Llama-2-13b
nshot=5

falcon-7b
nshot=1

falcon-7b
nshot=5

falcon-7b-inst
nshot=1

falcon-7b-inst
nshot=5

(b) Accuracy variance by model

Figure 18: Instruction Induction tasks’ spreads and accuracy across models. Exact prefix matching
is used as accuracy metric.

Experiments with continuous metrics in open-ended text generation tasks. Throughout the pa-
per we focus on tasks with a single valid output, whether in classification tasks or in short-text
generation tasks. This decision is intentional, since it guarantees that a variation in the metric truly
represents a variation in model performance. We have shown that spread remains high when con-
sidering option ranking or exact prefix matching as accuracy metric.

Since LLMs are often used in more open-ended generation contexts, we will now explore the per-
formance variance across prompt formats when considering sentence-length generation tasks (e.g.
generate the next sentence of a story, given the four initial sentences of a story, generate a question
whose answer is the sentence given). To analyze the automatic generations, we use two widely used
metrics: ROUGE-L (Lin, 2004), and BERTScore (Zhang et al., 2019). The first is an n-gram-based
metric, and the latter is a model-based metric, and both are [0, 1] metrics where higher is better. Fig-
ure 19 shows that variance remains high for LLaMA-2-7B regardless of the metric and the number
of n-shots considered, with LLaMA-2-7B 5-shot having 25% of tasks with a ROUGE-L spread of
0.098 or higher, and a BERTScore spread of 0.09 or higher.

We observe that the median spread is sometimes smaller than in the accuracy tasks. This may be
because although ROUGE, BERTScore, and accuracy are all [0, 1] metrics, typical metric values
may be different, which may in turn affect the final spread (an absolute difference). We leave it to
future work to quantify the differences in style or content that each format may be inducing.

Finally, it is worth noting that text generation metrics are known to be noisier, and thus not all
metric decreases necessarily correspond to a true performance loss, as is the case for accuracy in
single-valid-output tasks. We used 17 SuperNatural Instructions tasks: task037, task038,

0.1 0.2 0.3
Performance spread across 10 prompt formats

Llama-2-7b
nshot=1 ROUGE-L

Llama-2-7b
nshot=5 ROUGE-L

Llama-2-7b
nshot=1 BERTScore

Llama-2-7b
nshot=5 BERTScore

Figure 19: Spread across n-shots for LLaMA-2-7B, considering ROUGE-L and BERTScore met-
rics. 17 sentence-level open-generation tasks are considered, all extracted from SuperNatural In-
structions. 10 prompt formats are considered for each task.

task040, task067, task071, task072, task105, task216, task223,

task240, task348, task389, task443, task845, task1326, task1401,

task1613. We selected the 17 open-ended text generation tasks among those with at least 1000
samples, with some formatting present in the original task (e.g. ‘Passage:’ <text>). We
only considered tasks whose instructions were under 1,000 characters and that contained inputs no
longer than 5,000 characters.

19

Published as a conference paper at ICLR 2024

We limit generations to 50 tokens. To parse model outputs more faithfully, and given that none
of our expected generations include a newline, we only consider a model’s generation up to the
first newline (excluding leading spaces and newlines in a given generation). This consideration is
important given that often models start to generate a new data sample from scratch, immediately
after generating the requested answer.

Characterizing a model’s accuracy distribution beyond spread. Spread gives a quantitative jump
in information with respect to informing a single point in the performance distribution since it mea-
sures the distribution range (maximum minus minimum). However, distributions that may share the
same range, may yield a widely different probability of obtaining each value in the distribution. Fig-
ure 20 plots the accuracy distribution of 30 tasks, sorted in decreasing order by standard deviation.
Tasks with high standard deviation reflect a higher likelihood of obtaining dissimilar values when
making a formatting selection; Figure 20 shows that the median standard distribution is σ ≈ 0.04,
which can be considered high in our context.

0.00

0.25

0.50
= 0.31

task280
= 0.14

task1297
= 0.10

task190
= 0.09

task327
= 0.08

task319

0.0 0.5 1.0
0.00

0.25

0.50
= 0.07

task328

0.0 0.5 1.0

= 0.07

task904

0.0 0.5 1.0

= 0.07

task1612

0.0 0.5 1.0

= 0.06

task296

0.0 0.5 1.0

= 0.05

task1284

Performance Spread

Fr
ac

tio
n

of
 fo

rm
at

s

0.0

0.5

1.0
= 0.05

task325
= 0.05

task323
= 0.05

task213
= 0.04

task158
= 0.04

task220

0.0 0.4 0.8
0.0

0.5

1.0
= 0.04

task1380

0.0 0.4 0.8

= 0.04

task1283

0.0 0.4 0.8

= 0.04

task580

0.0 0.4 0.8

= 0.04

task1431

0.0 0.4 0.8

= 0.04

task309

Performance Spread

Fr
ac

tio
n

of
 fo

rm
at

s

0.0

0.5

1.0
= 0.04

task903
= 0.03

task1186
= 0.03

task069
= 0.03

task905
= 0.03

task337

0.1 0.4 0.7
0.0

0.5

1.0
= 0.02

task729

0.1 0.4 0.7

= 0.02

task065

0.1 0.4 0.7

= 0.02

task1678

0.1 0.4 0.7

= 0.02

task1419

0.1 0.4 0.7

= 0.02

task1387

Performance Spread

Fr
ac

tio
n

of
 fo

rm
at

s

Figure 20: Accuracy distribution across 500 formats for 30 tasks evaluated on 250 samples each,
sorted by standard deviation in decreasing order. LLaMA-2-7B 1-shot, option ranking metric.

On factors influencing spread besides prompt formatting. We believe many factors beyond for-
matting may be influencing performance variance, but were unable to find a feature that reliably
predicts spread. We found that the average prompt length in a task has a negligible correlation
with its performance spread: r = 0.228 (p = 1.4 × 10−7) for exact prefix matching metric, and
r = −0.022 (p = 0.615) for option ranking metric, when jointly considering all models and n-
shots. Similarly, the standard deviation of the prompt length had negligible correlation with spread:
r = 0.125 (p = 0.004) for exact prefix matching, and r = −0.099 (p = 0.024) for option ranking
metric. When considering each model individually, only LLaMA-2-7B with exact prefix matching
showed a correlation |r| > 0.5, with the average prompt length having a correlation r = 0.559
p = 6.86× 10−10. All other settings had |r| < 0.36.

20

Published as a conference paper at ICLR 2024

B.3 PCA EXAMPLES

Section 4.4 systematically analyzes whether we can predict the prompt format that generated a
given pre-softmax activation layer (i.e., prompt embeddings) by using solely its top-n principal
components. Figure 21 shows the top two principal components for two different tasks where all
10 formats considered are easily identifiable solely with a prompt embedding’s top two principal
compoenents.

50 0 50
Principal Component 1

40

20

0

20

40

60

80

Pr
in

cip
al

 C
om

po
ne

nt
 2

50 25 0 25 50 75
Principal Component 1

40

20

0

20

40

60

80

100

Figure 21: Plot of the top two principal components of the last decoder layer of the prompt, as a
representation of the output probability distribution. Two different tasks shown, with each prompt
format shown in a different color.

B.4 NOTABLE FEATURES

As discussed in Section 4.3, sometimes the choice of a constant may lead to significantly different
accuracy ranges. Figures 22,23, and 24 show all strongly dissimilar choices of constants found on
any given task, across 53 Super Natural-Instructions tasks, and on both accuracy metrics consid-
ered throughout the work. As can be appreciated, choices of constants do not consistently predict
performance in isolation.

21

P
u

b
lish

ed
as

a
co

n
feren

ce
p

ap
er

at
IC

L
R

2
0

2
4

' '

' - '

' : '

' \n\t'

'- '

': '

':'

':: '

'::'

'::: '

'\n '

'\n '

'\n\t'

'\t'

Separator
1 Used

0.2

0.4
Accuracy

Task task1387 (Two Input Fields)

' '

' - '

' : '

' \n\t'

'- '

': '

':'

':: '

'::'

'::: '

'\n '

'\n '

'\n\t'

'\t'

Separator
1 Used

0.2

0.4

0.6

Accuracy

Task task325 (One Input Field)

' '

' - '

' : '

' \n\t'

'- '

': '

':'

':: '

'::'

'::: '

'\n '

'\n '

'\n\t'

'\t'
Separator

1 Used

0.2

0.4

0.6

Accuracy

Task task327 (One Input Field)

' '

' - '

' : '

' \n\t'

'- '

': '

':'

':: '

'::'

'::: '

'\n '

'\n '

'\n\t'

'\t'

Separator
1 Used

0.2

0.4

0.6

Accuracy

Task task328 (One Input Field)

' '

' - '

' : '

' \n\t'

'- '

': '

':'

':: '

'::'

'::: '

'\n '

'\n '

'\n\t'

'\t'

Separator
1 Used

0.2

0.4

Accuracy

Task task337 (One Input Field)

' '

' - '

' : '

' \n\t'

'- '

': '

':'

':: '

'::'

'::: '

'\n '

'\n '

'\n\t'

'\t'

Separator
1 Used

0.2

0.4
Accuracy

Task task904 (One Input Field, no Hum
an-W

ritten Form
at)

' '

' - '

' : '

' \n\t'

'- '

': '

':'

':: '

'::'

'::: '

'\n '

'\n '

'\n\t'

'\t'

Separator
1 Used

0.2

0.4

Accuracy

Task task905 (Two Input Fields)

' '

' - '

' : '

' \n\t'

'- '

': '

':'

':: '

'::'

'::: '

'\n '

'\n '

'\n\t'

'\t'
Separator

1 Used

0.1

0.2

0.3

Accuracy

Task task190 (M
ultiple Choice)

' '

' - '

' : '

' \n\t'

'- '

': '

':'

':: '

'::'

'::: '

'\n '

'\n '

'\n\t'

'\t'

Separator
1 Used

0.0

0.2

0.4

Accuracy

Task task1297 (M
ultiple Choice)

' '

' - '

' : '

' \n\t'

'- '

': '

':'

':: '

'::'

'::: '

'\n '

'\n '

'\n\t'

'\t'

Separator
1 Used

0.0

0.2

0.4

0.6

Accuracy

Task task213 (M
ultiple Choice)

"chr(ord('A') + x)"

"chr(ord('a') + x)"

'ROMAN[x]'

'ROMAN[x].upper()'

'chr(0x215F + x + 1)'

'x + 1'

item
2 Used

0.0

0.2

0.4

0.6

Accuracy

Task task220 (M
ultiple Choice)

F
ig

u
re

2
2

:
V

arian
ce

b
y

featu
re

v
alu

e
fo

r
L

lam
a-7

B
1

-sh
o

t.
E

v
alu

ated
3

1
task

s
w

ith
5

0
0

fo
rm

ats
each

,
an

d
o

n
ly

p
lo

ts
w

ith
a

sig
n

ifi
can

t
d

ifferen
ce

b
etw

een
v
alu

es
are

sh
o
w

n
.

E
x

act
p

refi
x

m
atch

in
g

accu
racy

m
etric.

2
2

Published as a conference paper at ICLR 2024

' ' ' -
 '

' :
 '

' \
n\

t' '-
'

':
' ':' '::

 ' '::
'

'::
: '

'\n

 '

'\n
 '

'\n
\t' '\t

'

Separator 1 Used

0.4

0.5

Ac
cu

ra
cy

Task task1283 (Two Input Fields)

' ' ' -
 '

' :
 '

' \
n\

t' '-
'

':
' ':' '::

 ' '::
'

'::
: '

'\n

 '

'\n
 '

'\n
\t' '\t

'

Separator 1 Used

0.275

0.300

0.325

0.350

Ac
cu

ra
cy

Task task1387 (Two Input Fields)

' ' ' -
 '

' :
 '

' \
n\

t' '-
'

':
' ':' '::

 ' '::
'

'::
: '

'\n

 '

'\n
 '

'\n
\t' '\t

'
Separator 1 Used

0.2

0.4

Ac
cu

ra
cy

Task task158 (Two Input Fields)

' ' ' -
 '

' :
 '

' \
n\

t' '-
'

':
' ':' '::

 ' '::
'

'::
: '

'\n

 '

'\n
 '

'\n
\t' '\t

'

Separator 1 Used

0.00

0.25

0.50

0.75

Ac
cu

ra
cy

Task task280 (One Input Field)

' ' ' -
 '

' :
 '

' \
n\

t' '-
'

':
' ':' '::

 ' '::
'

'::
: '

'\n

 '

'\n
 '

'\n
\t' '\t

'

Separator 1 Used

0.4

0.5

0.6

Ac
cu

ra
cy

Task task319 (Two Input Fields + Multiple Choice)

' ' ' -
 '

' :
 '

' \
n\

t' '-
'

':
' ':' '::

 ' '::
'

'::
: '

'\n

 '

'\n
 '

'\n
\t' '\t

'

Separator 1 Used

0.5

0.6

0.7
Ac

cu
ra

cy

Task task325 (One Input Field)

' ' ' -
 '

' :
 '

' \
n\

t' '-
'

':
' ':' '::

 ' '::
'

'::
: '

'\n

 '

'\n
 '

'\n
\t' '\t

'

Separator 1 Used

0.5

0.6

Ac
cu

ra
cy

Task task337 (One Input Field)

' ' ' -
 '

' :
 '

' \
n\

t' '-
'

':
' ':' '::

 ' '::
'

'::
: '

'\n

 '

'\n
 '

'\n
\t' '\t

'
Separator 1 Used

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Task task904 (One Input Field, no Human-Written Format)

' ' ' -
 '

' :
 '

' \
n\

t' '-
'

':
' ':' '::

 ' '::
'

'::
: '

'\n

 '

'\n
 '

'\n
\t' '\t

'

Separator 1 Used

0.5

0.6

Ac
cu

ra
cy

Task task069 (Multiple Choice)

' ' ' -
 '

' :
 '

' \
n\

t' '-
'

':
' ':' '::

 ' '::
'

'::
: '

'\n

 '

'\n
 '

'\n
\t' '\t

'

Separator 1 Used

0.3

0.4

0.5

Ac
cu

ra
cy

Task task1612 (Multiple Choice)

' ' ' -
 '

' :
 '

' \
n\

t' '-
'

':
' ':' '::

 ' '::
'

'::
: '

'\n

 '

'\n
 '

'\n
\t' '\t

'

Separator 1 Used

0.4

0.5

0.6

Ac
cu

ra
cy

Task task190 (Multiple Choice)

Figure 23: Variance by feature value for Llama-7B 1-shot. Evaluated 31 tasks with 500 formats each,
and only plots with strongly significant differences are shown. Option ranking accuracy evaluation
metric. Only S1 boxplots are shown here, see Figure 24 for all others.

23

Published as a conference paper at ICLR 2024

'
' ' '

' ,
 ' ' ,
 '

' -
- '

' <
se

p>
 '

' \
n

'

' \
n'

' |
| ' ',

'

'.
'

';
\n

'

'\n
 '

'\n
'

Space Used

0.5

0.6

0.7

Ac
cu

ra
cy

Task task328 (One Input Field)

"c
hr

(o
rd

('A
')

+
x)

"

"c
hr

(o
rd

('a
')

+
x)

"

'R
OM

AN
[x

]'

'R
OM

AN
[x

].u
pp

er
()'

'ch
r(0

x2
15

F
+

x
+

1)
'

'x
 +

 1
'

item2 Used

0.2

0.3

Ac
cu

ra
cy

Task task1431 (Multiple Choice)

"c
hr

(o
rd

('A
')

+
x)

"

"c
hr

(o
rd

('a
')

+
x)

"

'R
OM

AN
[x

]'

'R
OM

AN
[x

].u
pp

er
()'

'ch
r(0

x2
15

F
+

x
+

1)
'

'x
 +

 1
'

item2 Used

0.5

0.6

0.7

Ac
cu

ra
cy

Task task213 (Multiple Choice)

Figure 24: Variance by feature value for Llama-7B 1-shot. Evaluated 31 tasks with 500 formats each,
and only plots with strongly significant differences are shown. Option ranking accuracy evaluation
metric. See Figure 23 for more plots.

B.5 THOMPSON SAMPLING RESULTS

0.0 0.2 0.4 0.6 0.8
Performance spread across prompt formats

Llama-2-70b
nshot=1

Llama-2-70b
nshot=5

GPT3.5
nshot=1

GPT3.5
nshot=5

Figure 25: Spreads found using Thompson Sampling for 320 formats, budget of 40000 evaluations.
LLaMA-2-70b was evaluated with option ranking, and GPT3.5 with prefix matching given that we
cannot access all logits.

Task Model Best Format Worst Format Best
Acc

Worst
Acc

task050 Llama-70B sentence {} || question {} ||

answer {}
Sentence\t{}\n Question\t{}\n
Answer\t{}

0.62 0.58

task065* Llama-70B Sentence<1>:: {}
Sentence<3>:: {}
Sentence<4>:: {}
Sentence<5>:: {} \nOption A.:

{} Option B.: {} \nAnswer\n {}

Sentence I)\t{} \n Sentence

III)\t{} \n Sentence IV)\t{} \n
Sentence V)\t{} Option\t(I)::{},
Option\t(II)::{} Answer {}

0.88 0.50

task069 Llama-70B BEGINNING::: {} MIDDLE A): {}
, MIDDLE B): {} ENDING::: {}
ANSWER::: {}

BEGINNING\n {}\n MIDDLE <I>::

{} MIDDLE <II>:: {}\n
ENDING\n {}\n ANSWER\n {}

0.85 0.58

task070 Llama-70B Beginning::: {};
\nMiddle\t1)\t{};
\nMiddle\t2)\t{}; \nEnding:::
{}; \nAnswer::: {}

Beginning {} || Middle 1.: {}
|| Middle 2.: {} || Ending {}
|| Answer {}

0.80 0.27

task114 Llama-70B sentence: {} <sep>answer: {} Sentence: {}\nAnswer: {} 0.54 0.51

task1186 Llama-70B SYSTEM REFERENCE : {}. ORIGINAL

REFERENCE : {}. ANSWER : {}
System Reference: {}\nOriginal
Reference: {}\nAnswer: {}

0.56 0.51

24

Published as a conference paper at ICLR 2024

task1283 Llama-70B system reference: {} \noriginal
reference: {} \nanswer: {}

SYSTEM REFERENCE\t{}\n ORIGINAL

REFERENCE\t{}\n ANSWER\t{}
0.62 0.50

task1284 Llama-70B SYSTEM REFERENCE\t{} || ORIGINAL

REFERENCE\t{} || ANSWER\t{}
System Reference {} , Original

Reference {} , Answer {}
0.74 0.43

task1297 Llama-70B Fact\tI.\t{} , Fact\tII.\t{}
<sep>Question: {}; \n1) -

{}; \n2) - {}; \n3) - {};
\n4) - {}; \n5) - {}; \n6)

- {}; \n7) - {}; \n8) - {}
<sep>Answer: {}

fact a)- {}\nfact b)- {}
\nquestion: {} || i) : {}ii)
: {}iii) : {}iv) : {}v) :

{}vi) : {}vii) : {}viii) :

{} \nanswer: {}

0.88 0.40

task133 Llama-70B Sentence:{} \nReason:{}
\nQuestion:{} \nAnswer:{}

Sentence:: {}\n Reason:: {}\n
Question:: {}\n Answer:: {}

0.71 0.59

task1347 Llama-70B SENTENCE A): {} , SENTENCE B):

{} ANSWER::: {}
Sentence i){} Sentence ii){};
\nAnswer\n {}

0.42 0.31

task1387 Llama-70B Premise::{} \nHypothesis::{}
\nAnswer::{}

premise {}\n hypothesis {}\n
answer {}

0.52 0.41

task1419 Llama-70B problem- {} \noptions- \n
<1>:: {}, <2>:: {}, <3>::

{}, <4>:: {}, <5>:: {}
\nanswer- {}

Problem: {} || Options:

<A>{} <sep>{}
<sep><C>{} <sep><D>{}
<sep><E>{} || Answer: {}

0.24 0.23

task1420 Llama-70B Problem\t{}\nOptions\t i):{} --

ii):{} -- iii):{} -- iv):{} --

v):{}\nAnswer\t{}

PROBLEM- {}\nOPTIONS- \n[a]{}\n
[b]{}\n [c]{}\n [d]{}\n
[e]{}\nANSWER- {}

0.26 0.22

task1421 Llama-70B PROBLEM:{}, OPTIONS: \na){} --

b){} -- c){} -- d){} -- e

){}, ANSWER:{}

Problem::: {} Options::: \nI
)::{} \nII)::{} \nIII)::{}
\nIV)::{} \nV)::{} Answer:::

{}

0.28 0.21

task1423 Llama-70B problem: {} -- options: 1)::

{}. 2):: {}. 3):: {}. 4)::

{}. 5):: {} -- answer: {}

PROBLEM:: {}. OPTIONS:: I.-

{}\n II.- {}\n III.- {}\n IV.-

{}\n V.- {}. ANSWER:: {}

0.25 0.20

task1502 Llama-70B Input:{} Output:{} input {} output {} 0.59 0.45

task155 Llama-70B SENTENCE - {}, ANSWER - {} Sentence:: {} \nAnswer:: {} 0.36 0.29

task158 Llama-70B Sentence: {} || Answer: {} sentence::{} -- answer::{} 0.55 0.49

task161 Llama-70B Sentence\t{}\n Answer\t{} Sentence\n {} \nAnswer\n {} 0.45 0.43

task1612* Llama-70B sentenceI) - {}sentenceII) -

{} \n answer::{}
Sentence (a):{}. Sentence

(b):{}\nAnswer {}
0.64 0.35

task162 Llama-70B Sentence\n {}; \nAnswer\n {} SENTENCE \n\t{}; \nANSWER
\n\t{}

0.45 0.40

task163 Llama-70B SENTENCE:{}, ANSWER:{} SENTENCE\n {}\nANSWER\n {} 0.47 0.35

task1678 Llama-70B PROBLEM: {} , OPTIONS: \n[a] {}.
[b] {}. [c] {}. [d] {}. [e]

{} , ANSWER: {}

PROBLEM \n\t{} \n OPTIONS \n\t
[1] {}[2] {}[3] {}[4] {}[5] {}
\n ANSWER \n\t{}

0.21 0.21

task1724 Llama-70B input: {} -- output: {} INPUT::{} , OUTPUT::{} 0.48 0.48

task190 Llama-70B Sentence a) - {} -- Sentence b

) - {}\n Answer\n\t{}
Sentence 1.{}\nSentence 2.{}\n
Answer {}

0.66 0.35

task213* Llama-70B TITLE::: {} \n Sentence I):::

{} , Sentence II)::: {} ,

Sentence III)::: {} , Sentence

IV)::: {} \n CHOICES::: \ni){}
\n ii){} \n ANSWER::: {}

TITLE\t{}, sentence (i)\t{} --

sentence (ii)\t{} -- sentence

(iii)\t{} -- sentence (iv)\t{},
CHOICES\t \n (I):: {} (II)::

{}, ANSWER\t{}

0.99 0.50

task214 Llama-70B Title: {}\n Sentence I.: {}
Sentence II.: {} Sentence

III.: {} Sentence IV.: {}\n
Choices: \ni.::: {} \nii.:::
{}\n Answer: {}

title {} || sentence [1] {}
sentence [2] {} sentence [3]

{} sentence [4] {} || choices \n
I.{}; \nII.{} || answer {}

0.92 0.04

task220 Llama-70B SentenceI): {}. SentenceII):

{}. SentenceIII): {}.
SentenceIV): {}. SentenceV): {}
, Choices: \n<a>- {}\n -

{} , Answer: {}

Sentence <1>: {} -- Sentence

<2>: {} -- Sentence <3>:

{} -- Sentence <4>: {} --

Sentence <5>: {} , Choices:

\n I){} -- II){} , Answer:

{}

0.99 0.83

task279 Llama-70B Passage:: {} \n Answer:: {} Passage- {} Answer- {} 0.64 0.49

task280 Llama-70B Passage:: {} , Answer:: {} PASSAGE\t{}\n ANSWER\t{} 0.84 0.04

task286 Llama-70B INPUT- {} , OUTPUT- {} Input\t{} Output\t{} 0.69 0.51

task296* Llama-70B SentenceI):: {}, SentenceII

):: {}, SentenceIII)::

{}, SentenceIV):: {},
SentenceV):: {}, SentenceVI

):: {}, SentenceVII):: {},
SentenceVIII):: {}, SentenceIX

):: {}, SentenceX):: {},
A)\t{} , B)\t{}, Answer : {}

Sentence I.: {}; \nSentence
II.: {}; \nSentence III.: {};
\nSentence IV.: {}; \nSentence
V.: {}; \nSentence VI.: {};
\nSentence VII.: {}; \nSentence
VIII.: {}; \nSentence IX.: {};
\nSentence X.: {} \n <i>::{}
|| <ii>::{} \n Answer\n {}

0.98 0.53

25

Published as a conference paper at ICLR 2024

task297 Llama-70B Sentence [a]:: {}; \nSentence
[b]:: {}; \nSentence [c]:: {};
\nSentence [d]:: {}; \nSentence
[e]:: {}; \nSentence [f]:: {};
\nSentence [g]:: {}; \nSentence
[h]:: {}; \nSentence [i]:: {};
\nSentence [j]:: {}\n (a):: {}
(b):: {}\n Answer {}

Sentence1: {} Sentence2: {}
Sentence3: {} Sentence4: {}
Sentence5: {} Sentence6: {}
Sentence7: {} Sentence8: {}
Sentence9: {} Sentence10: {}
\n (A) {} (B) {} \n Answer: {}

0.51 0.03

task316 Llama-70B passage - {} \nanswer - {} PASSAGE::{}\nANSWER::{} 0.51 0.49

task317 Llama-70B Passage\n {}\n Answer\n {} PASSAGE\t{}\n ANSWER\t{} 0.83 0.07

task319 Llama-70B target\n\t{}; \n{};
\nanswer\n\t{}

Target: {} {} Answer: {} 0.77 0.58

task320 Llama-70B Target: {}; \n{}; \nAnswer:
{}

Target\n {} \n {} \n Answer\n
{}

0.77 0.58

task322 Llama-70B COMMENT:{}\n ANSWER:{} Comment {} -- Answer {} 0.77 0.48

task323 Llama-70B comment \n\t{}\nanswer \n\t{} Comment {}. Answer {} 0.84 0.58

task325 Llama-70B COMMENT\t{}; \nANSWER\t{} Comment: {}, Answer: {} 0.84 0.48

task326 Llama-70B Comment:: {} Answer:: {} Comment: {}, Answer: {} 0.58 0.51

task327 Llama-70B Comment {} <sep>Answer {} Comment : {} Answer : {} 0.88 0.69

task328 Llama-70B comment:{} -- answer:{} Comment: {} Answer: {} 0.81 0.52

task335 Llama-70B post:: {} , answer:: {} Post: {}\nAnswer: {} 0.52 0.50

task337 Llama-70B post {} \nanswer {} post {} answer {} 0.85 0.63

task385 Llama-70B CONTEXT {} -- QUESTION {} --

OPTIONS \n1.- {}, 2.- {}, 3.-

{} -- ANSWER {}

context \n\t{} \nquestion
\n\t{} \noptions \n\t 1)::{}.
2)::{}. 3)::{} \nanswer
\n\t{}

0.38 0.11

task580 Llama-70B Context- {}\n Question- {}\n
Options- \na) {} -- b) {} -- c)

{}\n Answer- {}

Context {}, Question {}, Options

\n I) - {} \nII) - {} \nIII)

- {}, Answer {}

0.78 0.40

task607 Llama-70B INPUT \n\t{} \n OUTPUT \n\t{} Input : {}. Output : {} 0.68 0.51

task608 Llama-70B input: {}. output: {} INPUT \n\t{}\nOUTPUT \n\t{} 0.71 0.48

task609 Llama-70B Input \n\t{} \n Output \n\t{} Input : {}, Output : {} 0.71 0.51

task904 Llama-70B input::: {} , output::: {} INPUT::{}\n OUTPUT::{} 0.71 0.55

task905 Llama-70B Tweet::{} || Label::{} ||

Answer::{}
TWEET: {} \n LABEL: {} \n
ANSWER: {}

0.68 0.50

task050 GPT3.5 Sentence\n\t{} \n
Question\n\t{} \n Answer\n\t{}

sentence: {} , question: {} ,

answer: {}
0.67 0.61

task065 GPT3.5 SENTENCEi.::: {}
\nSENTENCEiii.::: {}
\nSENTENCEiv.::: {}
\nSENTENCEv.::: {} \nOPTION
[1]\t{}OPTION [2]\t{}
\nANSWER\t{}

Sentence 1) : {} , Sentence 3

) : {} , Sentence 4) : {} ,

Sentence 5) : {} <sep>Option

(i): {} <sep>Option (ii): {}
<sep>Answer- {}

0.82 0.33

task069 GPT3.5 BEGINNING: {}\n MIDDLE\t(I):::
{} \n MIDDLE\t(II)::: {}\n
ENDING: {}\n ANSWER: {}

Beginning {} || Middle [a]- {}
\n Middle [b]- {} || Ending {}
|| Answer {}

0.83 0.65

task070* GPT3.5 Beginning : {}\nMiddle (I):

{} -- Middle (II): {}\nEnding :

{}\nAnswer : {}

Beginning\t{} <sep>Middle

i){} || Middle ii){}
<sep>Ending\t{}
<sep>Answer\t{}

0.70 0.49

task114 GPT3.5 sentence \n\t{}\nanswer \n\t{} SENTENCE: {}. ANSWER: {} 0.67 0.63

task1186 GPT3.5 system reference : {} ,

original reference : {} ,

answer : {}

System Reference: {}\nOriginal
Reference: {}\nAnswer: {}

0.53 0.51

task1283 GPT3.5 SYSTEM REFERENCE : {} , ORIGINAL

REFERENCE : {} , ANSWER : {}
System Reference\n {} \nOriginal
Reference\n {} \nAnswer\n {}

0.57 0.50

task1284 GPT3.5 System Reference \n\t{}\n
Original Reference \n\t{}\n
Answer \n\t{}

system reference::: {} --

original reference::: {} --

answer::: {}

0.63 0.57

task1297* GPT3.5 Fact<1>: {} -- Fact<2>: {};
\nQuestion::{}\nI):: {} II)::

{} III):: {} IV):: {} V)::

{} VI):: {} VII):: {} VIII)::

{}; \nAnswer::{}

fact\ta. : {} || fact\tb. :

{}\n question : {} \na. -

{}b. - {}c. - {}d. - {}e.
- {}f. - {}g. - {}h. - {}\n
answer : {}

0.84 0.72

task133 GPT3.5 Sentence::{} -- Reason::{} --

Question::{} -- Answer::{}
Sentence - {}; \nReason - {};
\nQuestion - {}; \nAnswer - {}

0.69 0.64

task1347* GPT3.5 SentenceI.:: {}\n SentenceII.::

{} Answer\t{}
Sentence (I){} Sentence (II){}
\nAnswer::{}

0.46 0.42

task1387 GPT3.5 Premise:{} , Hypothesis:{} ,

Answer:{}
PREMISE:: {}; \nHYPOTHESIS::
{}; \nANSWER:: {}

0.47 0.44

task1419 GPT3.5 Problem - {} || Options -

\n[A]\t{}. [B]\t{}. [C]\t{}.
[D]\t{}. [E]\t{} || Answer -

{}

PROBLEM- {}\nOPTIONS- 1) - {}
-- 2) - {} -- 3) - {} -- 4) -

{} -- 5) - {}\nANSWER- {}

0.24 0.20

26

Published as a conference paper at ICLR 2024

task1420* GPT3.5 problem- {} \n options- (I) -

{}(II) - {}(III) - {}(IV) -

{}(V) - {} \n answer- {}

Problem:: {} -- Options::

\n[i]: {}; \n[ii]: {};
\n[iii]: {}; \n[iv]: {};
\n[v]: {} -- Answer:: {}

0.24 0.09

task1421 GPT3.5 Problem \n\t{}\n Options \n\t
\nA)::{} -- B)::{} -- C)::{}
-- D)::{} -- E)::{}\n Answer

\n\t{}

PROBLEM::{}, OPTIONS:: \n[a]:
{} \n[b]: {} \n[c]: {} \n[d]:
{} \n[e]: {}, ANSWER::{}

0.30 0.01

task1423 GPT3.5 PROBLEM: {}; \nOPTIONS: \n a)

{} \n b) {} \n c) {} \n d)

{} \n e) {}; \nANSWER: {}

Problem:: {} -- Options::

\n[i]: {}; \n[ii]: {};
\n[iii]: {}; \n[iv]: {};
\n[v]: {} -- Answer:: {}

0.30 0.10

task1502 GPT3.5 input\n {}\noutput\n {} input::{} -- output::{} 0.54 0.48

task155 GPT3.5 SENTENCE::{} -- ANSWER::{} SENTENCE {} ANSWER {} 0.48 0.40

task158 GPT3.5 Sentence:{} Answer:{} SENTENCE\t{} , ANSWER\t{} 0.63 0.60

task161 GPT3.5 sentence\t{} answer\t{} Sentence- {}\nAnswer- {} 0.40 0.31

task1612 GPT3.5 sentence 1): {} || sentence 2

): {}, answer::{}
Sentence I) : {} \nSentence II

) : {} , Answer {}
0.66 0.54

task162 GPT3.5 Sentence- {} -- Answer- {} SENTENCE\t{}; \nANSWER\t{} 0.37 0.31

task163 GPT3.5 Sentence- {}; \nAnswer- {} sentence: {}\nanswer: {} 0.43 0.39

task1678* GPT3.5 Problem - {} Options - \n (I)

{} <sep>(II) {} <sep>(III)

{} <sep>(IV) {} <sep>(V) {}
Answer - {}

PROBLEM::{} \n OPTIONS:: \n[I]
{} , [II] {} , [III] {} , [IV]

{} , [V] {} \n ANSWER::{}

0.24 0.09

task1724 GPT3.5 INPUT::{} || OUTPUT::{} INPUT: {} OUTPUT: {} 0.63 0.57

task190 GPT3.5 Sentence (I) - {}; \nSentence
(II) - {}; \nAnswer {}

Sentence<1>:

{}\nSentence<2>: {}, Answer

: {}

0.29 0.16

task213 GPT3.5 Title: {} <sep>Sentence <1>:

{} || Sentence <2>: {} ||

Sentence <3>: {} || Sentence

<4>: {} <sep>Choices:

\n<i>- {} <sep><ii>- {}
<sep>Answer: {}

TITLE:{}, sentence\t[a]:{}
-- sentence\t[b]:{} --

sentence\t[c]:{} --

sentence\t[d]:{}, CHOICES:

\n[i]:{} [ii]:{}, ANSWER:{}

0.98 0.81

task214* GPT3.5 title: {} \nSentencei): {},
Sentenceii): {}, Sentenceiii):

{}, Sentenceiv): {} \nchoices:
\n<I>- {} , <II>- {}
\nanswer: {}

Title::{} , Sentence\ta)::{} ,

Sentence\tb)::{} , Sentence\tc
)::{} , Sentence\td)::{} ,

Choices:: [i]. {}[ii]. {}
, Answer::{}

0.97 0.41

task220 GPT3.5 Sentence [1]: {} \n Sentence

[2]: {} \n Sentence [3]:

{} \n Sentence [4]: {} \n
Sentence [5]: {} -- Choices:

\n <A>::{}\n ::{} --

Answer: {}

Sentence\ti.: {} ||

Sentence\tii.: {} ||

Sentence\tiii.: {} ||

Sentence\tiv.: {} ||

Sentence\tv.: {} Choices:

\n[i]:{} || [ii]:{} Answer: {}

0.98 0.79

task279 GPT3.5 passage {} , answer {} Passage:{}, Answer:{} 0.58 0.56

task280 GPT3.5 Passage - {} <sep>Answer - {} Passage {} -- Answer {} 0.85 0.80

task286 GPT3.5 Input- {}\n Output- {} INPUT:: {} OUTPUT:: {} 0.72 0.69

task296 GPT3.5 Sentence a) - {} \nSentence
b) - {} \nSentence c) - {}
\nSentence d) - {} \nSentence
e) - {} \nSentence f) - {}
\nSentence g) - {} \nSentence
h) - {} \nSentence i) - {}
\nSentence j) - {} \n<A>- {},
- {} \nAnswer::: {}

Sentence\t(I)- {} --

Sentence\t(II)- {} --

Sentence\t(III)- {} --

Sentence\t(IV)- {} --

Sentence\t(V)- {} --

Sentence\t(VI)- {} --

Sentence\t(VII)- {} --

Sentence\t(VIII)- {} --

Sentence\t(IX)- {} --

Sentence\t(X)- {}, I)::{}, II

)::{}, Answer:{}

0.95 0.68

task297 GPT3.5 Sentence (A): {}; \nSentence
(B): {}; \nSentence (C): {};
\nSentence (D): {}; \nSentence
(E): {}; \nSentence (F): {};
\nSentence (G): {}; \nSentence
(H): {}; \nSentence (I): {};
\nSentence (J): {}; \n<I>::{}
<sep><II>::{}; \nAnswer {}

SENTENCE\t(A) : {};
\nSENTENCE\t(B) : {};
\nSENTENCE\t(C) : {};
\nSENTENCE\t(D) : {};
\nSENTENCE\t(E) : {};
\nSENTENCE\t(F) : {};
\nSENTENCE\t(G) : {};
\nSENTENCE\t(H) : {};
\nSENTENCE\t(I) : {};
\nSENTENCE\t(J) : {} -- I) :

{} II) : {} -- ANSWER: {}

0.36 0.06

task316 GPT3.5 passage\n\t{} \nanswer\n\t{} Passage- {} Answer- {} 0.49 0.48

task317 GPT3.5 passage: {} answer: {} passage {} answer {} 0.75 0.70

task319 GPT3.5 TARGET:: {} \n{} \nANSWER::
{}

Target: {}\n{}\nAnswer: {} 0.66 0.62

task320 GPT3.5 Target::: {} \n{} \nAnswer:::
{}

target {} -- {} -- answer {} 0.73 0.68

task322 GPT3.5 Comment: {} -- Answer: {} comment::{} answer::{} 0.84 0.83

27

Published as a conference paper at ICLR 2024

task323 GPT3.5 COMMENT {} <sep>ANSWER {} comment - {}\nanswer - {} 0.73 0.63

task325 GPT3.5 comment {}; \nanswer {} Comment\n {}\n Answer\n {} 0.81 0.74

task326 GPT3.5 comment : {} , answer : {} Comment- {} Answer- {} 0.67 0.66

task327 GPT3.5 comment:{} \nanswer:{} Comment - {} || Answer - {} 0.86 0.82

task328 GPT3.5 Comment - {}. Answer - {} COMMENT {} <sep>ANSWER {} 0.77 0.72

task335 GPT3.5 Post\n\t{} \nAnswer\n\t{} post - {} -- answer - {} 0.37 0.20

task337 GPT3.5 Post::{}; \nAnswer::{} Post {}, Answer {} 0.57 0.51

task385 GPT3.5 Context:: {}; \nQuestion:: {};
\nOptions:: a)::: {}\n b):::

{}\n c)::: {}; \nAnswer:: {}

Context:{}. Question:{}.
Options:\n[i] {}[ii] {}[iii]
{}. Answer:{}

0.46 0.10

task580 GPT3.5 Context:: {} || Question:: {}
|| Options:: \n A)- {} B)- {}
C)- {} || Answer:: {}

CONTEXT:: {} -- QUESTION:: {}
-- OPTIONS:: \n[I] - {}. [II]

- {}. [III] - {} -- ANSWER::

{}

0.74 0.65

task607 GPT3.5 input {} || output {} INPUT:: {}\nOUTPUT:: {} 0.70 0.68

task608 GPT3.5 Input:: {} Output:: {} Input\n {} \nOutput\n {} 0.60 0.52

task609 GPT3.5 INPUT\n {} \nOUTPUT\n {} Input {}\nOutput {} 0.70 0.68

task904 GPT3.5 INPUT : {}\nOUTPUT : {} Input:: {}, Output:: {} 0.66 0.61

task905 GPT3.5 Tweet:{} , Label:{} , Answer:{} TWEET {} || LABEL {} || ANSWER

{}
0.72 0.63

Table 6: Best and worst formats found by using Thompson Sampling on 320 formats on Llama-70B
and GPT3.5 , E = 40000, B = 10. Tasks marked with an asterisk* indicate a format where the
Roman numerals used correspond to its Unicode characters (starting at 0x215F), visualized as I, II,
III, IV,

28

Published as a conference paper at ICLR 2024

C LIMITATIONS

As defined by our grammar, all equivalent formats are semantically equivalent to human read-
ers. However, some of them are more likely to be used by humans than others. Spaces
and separators are inspired from naturally-occurring formats, but some values are more un-
usual, such as the spacing <sep> or the separator ::. Contextual restrictions enable disal-
lowing undesired combinations of e.g. spaces and separators. However, formats may have
multiple valid parses, and some may be more prone than others to unnatural character combi-
nations. For example, let a data sample be ‘Passage: Lorem ipsum dolor sit amet.

Answer: Yes’. Depending on if we consider the full stop . to be part of the passage or

the format, we may parse it as B
(2)
2 (B1(Passage, ’: ’, id), B1(Answer, ’: ’, id), ’ ’) or

B
(2)
2 (B1(Passage, ’: ’, id), B1(Answer, ’: ’, id), ’. ’). In this work, we choose the for-

mer parsing throughout tasks to ensure full sentences. This sometimes7 leads equivalent for-
mats to have a less usual, yet trivially semantically equivalent resulting character combinations,

e.g. B
(2)
2 (B1(Passage, ’: ’, id), B1(Answer, ’: ’, id), ’; ’). This last format would have

the following string form on the example above: ‘Passage: Lorem ipsum dolor sit

amet.; Answer: Yes’. We observe high performance spread both in these cases and beyond
them. Contextual relations may also restrict these cases if desired by the end user.

Additionally, we focus our evaluation on tasks that have reasonably short input instructions and
input field length (see task selection details in B.1). Future work may investigate on how input
length affects final performance.

7Less than 20% of cases, based on a manual inspection of 10 formats across 20 tasks.

29

	Introduction
	Overview
	Measuring Sensitivity with black FormatSpread
	Grammar of Plausible Prompt Formats
	Measuring Sensitivity

	Characterizing Prompt Format Variance with black FormatSpread
	Experimental setup
	Prompt formats have a large performance spread, not eliminated by increasing few-shot examples or model size, nor with instruction tuning
	How do individual features contribute to performance?
	Prompt formats are identifiable transformations of prompt embeddings
	Fast exploration of the prompt formatting space: black FormatSpread

	Related Work
	Discussion
	Acknowledgements
	Grammar Definition and Instantiation Details
	Equivalence Relation Definition
	Visualization of Prompt Format's Parsing and Full Format Generation

	Allowed values for each set S1, S2, C, Fcasing, Fitem
	Restrictions to Prompt Formats Spaces and Separators' Combinations
	Thompson Sampling Priors

	Additional Experiments' Information and Plots
	Task selection
	Additional Results for Section 4.2
	PCA Examples
	Notable Features
	Thompson Sampling Results

	Limitations

