
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (Volume 1: Long Papers), pages 8385–8400

June 16-21, 2024 ©2024 Association for Computational Linguistics

David helps Goliath: Inference-Time Collaboration Between
Small Specialized and Large General Diffusion LMs

Xiaochuang Han♠♦ Sachin Kumar♣

Yulia Tsvetkov♠ Marjan Ghazvininejad♦

♠University of Washington ♦Meta AI ♣Carnegie Mellon University

{xhan77, yuliats}@cs.washington.edu♠ sachink@cs.cmu.edu♣ ghazvini@meta.com♦

Abstract

Diffusion-based language models are emerg-

ing as a promising alternative to autoregressive

LMs: they approach the competence of autore-

gressive LMs while offering nuanced controlla-

bility at inference time. While autoregressive

LMs have benefited immensely from scaling

and instruction-based learning, existing stud-

ies of diffusion LMs have been conducted on

a smaller scale. Starting with a recently pro-

posed diffusion model SSD-LM, in this work

we first explore methods to scale it from 0.4B

to 13B parameters, proposing techniques to im-

prove its training and inference efficiency, and

to finetune the model to follow instructions.

Armed with a more powerful, general purpose

diffusion LM, we introduce the primary con-

tribution of this work – SSD-2 – an approach

to easily ensemble at inference time a large

general-purpose diffusion LM with smaller, but

specialized and contextualized diffusion LMs.

We show that SSD-2 facilitates novel ensem-

bles with 100x smaller models that can be cus-

tomized and deployed by individual users. We

find that compared to autoregressive models,

the collaboration between diffusion LMs is

more effective, leading to higher-quality model

responses due to their ability to dynamically

incorporate bi-directional contexts.1

1 Introduction

Following the footsteps of diffusion-based gener-

ative models for continuously valued data such as

images, audio, and video (Ho et al., 2020; Kong

et al., 2021; Ho et al., 2022), recent works have at-

tempted to replicate these successes on discrete text

data (Austin et al., 2021; Li et al., 2022c; Han et al.,

2022; Strudel et al., 2022; Dieleman et al., 2022).

Several studies have shown that diffusion-based

language models (LMs) perform competitively to

their autoregressive counterparts, and even surpass

1
https://github.com/xhan77/ssd-2.

Figure 1: Inference-time collaboration between a large

general model and a small user model that incorpo-

rates user-specified knowledge. The collaboration be-

tween autoregressive models performs decoding token-

by-token, while the collaboration between diffusion

models refines a block of generated tokens iteratively

with bi-directional contexts (§3).

them at post-hoc controllable text generation (Li

et al., 2022c; Han et al., 2022).

Meanwhile, autoregressive language models

(Brown et al., 2020; Touvron et al., 2023) have

emerged as general-purpose solutions capable of

holding conversations with humans and solving

tasks by following instructions (Ouyang et al.,

2022; Wang et al., 2022; Longpre et al., 2023; Taori

et al., 2023; Chiang et al., 2023; Xu et al., 2023).

Their abilities are primarily due to two factors: scal-

ing the model parameters as well as pretraining

datasets, and instruction finetuning with carefully

curated datasets (Ouyang et al., 2022).

However, as the models become increasingly im-

mense and proprietary, it is difficult for individual

users to customize the system with their own data

(e.g., specialized knowledge) due to cost or privacy

reasons (§3). A primary contribution of this work is

to illustrate a novel setup of inference-time collabo-

8385

ration between LMs and show a unique advantage

of diffusion LMs compared to autoregressive mod-

els in this scenario. With diffusion models’ itera-

tive generation design over a span of bi-directional

contexts, multiple diffusion LMs with different ca-

pabilities can be easily ensembled at the sequence

level at test time, leveraging advantages of each

LM in the ensemble.

As a preliminary to our experiments, we first

present an exploratory study to scale and incorpo-

rate instruction-following and conversational ca-

pabilities in diffusion-based LMs. We introduce

SSD-2, an improved version of recently introduced

simplex-based diffusion LM SSD-LM (Han et al.,

2022) proposing several modifications to its train-

ing and inference procedures. We incorporate these

improvements in scaling SSD-2 to 13B parameters,

up from 0.4B in SSD-LM. We show that similarly

to autoregressive LMs, by finetuning with curated

instruction datasets, SSD-2 is well-suited to follow

chat-style instructions.

We then present our main case study highlight-

ing the setup of inference-time collaboration: we

augment a general-purpose large SSD-2 model

with 13B parameters with a 100x smaller, user-

accessible model. This setup allows incorporat-

ing user-provided knowledge into the generation

process without directly inputting it into the large

model (which can be undesirable due to cost or

privacy reasons, more details in §3). We show that

SSD-2’s instruction finetuned model is substan-

tially more effective at this collaboration than the

autoregressive baselines, leveraging bi-directional

contexts in the ensemble.

2 Background

Semi-autoregressive simplex-based diffusion LM

(SSD-LM) is trained to generate text in blocks of to-

kens by performing diffusion in the simplex space

of the model vocabulary (Han et al., 2022). For

text continuation tasks, it has shown competitive

performance against autoregressive models (e.g.,

GPT-2; Radford et al., 2019) when trained with a

similar number of model parameters and pretrain-

ing data. Furthermore, it naturally enables post-hoc

control in generated text using off-the-shelf classi-

fiers, outperforming prior approaches to controlling

autoregressive models. Below we briefly overview

the training and decoding algorithm of SSD-LM.

Training The core idea behind the training of

diffusion models (Ho et al., 2020) is to add a se-

ries of progressive noise to the input data repre-

sentations and learn a model to reverse this pro-

cess, reconstructing the original data at different

noise levels. Assume we have a sequence of tokens

{w0, . . . , wc−1, wc, . . . , wc+B−1}, where we con-

dition on a context of length c, {w0, . . . , wc−1} (or

w<c), and learn to generate the subsequent block of

text {wc, . . . , wc+B−1} (or wc:c+B using a Python-

style notation) containing B tokens. In SSD-LM, a

progressive Gaussian noise is added to the block of

text wc:c+B .

w̃
c:c+B
0 = logits-initialization(wc:c+B)

w̃
c:c+B
t =

√
ᾱtw̃

c:c+B
0 +

√
1− ᾱtϵ

where logits-initialization(·) maps each discrete

token to a base, almost-one-hot logits repre-

sentation in the model’s vocabulary space V ,

{−K,+K}|V |. A noise schedule ᾱt controls the

level of noise ϵ ∼ N (0,K2I) added to the base

representation, where timestep t ∼ U(1, T) and

larger t means a noisier representation.

SSD-LM’s training loss on wc:c+B is condi-

tioned both on the noisy representation w̃
c:c+B
t

and the prior context w<c to the block.

Et[− log pθ(w
c:c+B | w̃c:c+B

t ,w<c)]

= Et





j<c+B
∑

j=c

− log pθ(w
j | w̃c:c+B

t ,w<c)





The model has access to a locally bi-directional

context through the noisy representation. In con-

trast, the canonical autoregressive training loss for

wc:c+B would be
∑j<c+B

j=c − log pθ(w
j | w<j),

conditioned on the uni-directional left context only.

Decoding At inference time, given a context

w<c, SSD-LM generates a block wc:c+B through

an iterative denoising algorithm, backtracking the

noise timesteps from t = T to 1. Each iteration

t consists of three main steps: (1) predict logits

representation w
c:c+B
logits,t for the decoding text block

using the learned model, (2) project the logits to an

almost-one-hot representation ŵ
c:c+B
t in the base

space {−K,+K}|V | (with optional modifications),

(3) add a Gaussian noise corresponding to timestep

t − 1 to the projected representation and proceed

to the next iteration.

w
c:c+B
logits,t = logitsθ(w

c:c+B | w̃c:c+B
t ,w<c)

ŵ
c:c+B
t = logits-projection(wc:c+B

logits,t)

w̃
c:c+B
t−1 =

√
ᾱt−1ŵ

c:c+B
t +

√

1− ᾱt−1z

8386

where θ is the trained diffusion model and w̃
c:c+B
T

is initialized with a Gaussian noise.

3 SSD-2

In the age of LLMs, individual users of NLP mod-

els may often face a dilemma when they wish to

customize the system with their own data. On one

hand, it is difficult for user-owned devices to fit

very large models and smaller models are usually

not powerful enough. On the other hand, upload-

ing their data to a commercial host of large mod-

els for finetuning or long in-context learning is

expensive and also may not be desirable due to pri-

vacy risks. We aim to address this dilemma in this

work by proposing a collaborative inference-time

algorithm between two diffusion models: a large

general-purpose model (such as ones only acces-

sible through an API) and a small model which a

user can customize (§3.2).

We first present SSD-2 building on top of SSD-

LM with several modifications to improve its train-

ing and decoding efficiency (§3.1). We train SSD-

2 with a larger pretraining corpus and more pa-

rameters (ranging from 0.1B to 13B) than SSD-

LM and fine-tune it to follow instructions (§4).

Next, we present how different versions of SSD-2

(general-purpose large models and user-enhanced

small models) can be effectively interpolated at in-

ference time, outperforming their autoregressive

counterparts (§5).

3.1 Algorithmic improvements over SSD-LM

Figure 2 describes the training and decoding al-

gorithms of SSD-2. We highlight the changes in

SSD-2 over SSD-LM below.

Self-conditioning The core idea behind self-

conditioning (Chen et al., 2022) is that at iteration t,
the model takes as input not just the noised sample

w̃
c:c+B
t , but also a clean output from the previous

timestep t+ 1, wc:c+B
logits,t+1. This allows the model

to reuse useful information in the previous predic-

tion and focus on refining it in the current timestep,

allowing convergence in fewer iterations. That is,

for T > t ≥ 1:

w
c:c+B
logits,t = logitsθ(w

c:c+B | w̃c:c+B
t ,w

c:c+B
logits,t+1,w

<c)

More specifically, the noisy representation w̃
c:c+B
t

and the previous timestep prediction w
c:c+B
logits,t+1 are

combined before the transformer blocks of θ, along

with the positional embeddings and timestep em-

beddings as follows:2

h̃ = Wdiff[sm(w̃t)] +Wpred[sm(wlogits,t+1)]

+ Embpos(c : c+B) + Embdiff-time(t/T)

h
<c = Embctx(w

<c) + Embpos(< c)

+ Embctx-time(t/T)

w
c:c+B
logits,t = Transformer[concat(h<c, h̃)]c:c+B

To train the model to learn to reuse the predicted

logits, we add an additional forward pass during

the training phase, activated with a probability p =
0.5. We predict wc:c+B

logits,t disabling gradient back-

propagation, and use it in the new cross entropy

loss − log pθ(w
j | w̃c:c+B

t ,wc:c+B
logits,t,w

<c).

Removing context length sampling for efficiency

The original training algorithm of SSD-LM first

samples a context length c ∼ U(1, |w| − B) for

each example, encodes the context bi-directionally

and computes the diffusion loss for a block of B
tokens following that context. The bi-directional

encoding of the context w<c cannot be shared

across different context sizes c for the same ex-

ample. Moreover, when the sequence length |w|
is large, a high variance in the sampled c across

devices in distributed training reduces the effective

batch size, slowing down the training considerably.

Therefore, in the pretraining and finetuning of SSD-

2, we eliminate sampling different c’s while equiv-

alently modeling the same training loss as shown

in Figure 2 for all
|w|
B

blocks in one data, by using

a special attention mask. The transformer modules

of SSD-2 encode the context w<c uni-directionally

while preserving the bi-directional attention for the

diffusion generation block wc:c+B . This leads to a

2x speedup in our pilot pretraining. More details

can be found in §A.

Sharded models across time-ranges and early

stopping in decoding We observe that at test

time SSD-2 often shows distinct behaviors at dif-

ferent timestep ranges. We empirically divide the

number of iterations into five ranges of equal sizes.

In the beginning of decoding (t ∈ (0.8T, T]), when

the noise level is very high, there is no discernable

pattern in which the model’s intermediate predic-

tions (argmaxwc:c+B
logits,t) in different iterations differ

2As a shorthand, we dropped the superscript for token po-
sitions c to c+B, and use sm for softmax, Emb for the em-
bedding layer, and Wdiff and Wpred for the embedding matrix
for the noisy representation and self-conditioning prediction.

8387

Algorithm 1 Training (at a given c)

1: w̃
c:c+B
0 = logits-initialization(wc:c+B)

2: t ∼ Uniform({1, . . . , T})
3: ϵ ∼ N (0,K2

I)

4: w̃
c:c+B
t =

√
ᾱtw̃

c:c+B
0 +

√
1− ᾱtϵ

5: r ∼ Bernoulli(0.5)
6: if r = 0 then
7: Take a gradient descent step on

∇θ[
∑j<c+B

j=c
− log pθ(w

j | w̃c:c+B
t ,w<c)]

8: else
9: With gradient calculation disabled, calculate

w
c:c+B
logits,t = logitsθ(w

c:c+B | w̃c:c+B
t ,w<c)

10: Take a gradient descent step on
∇θ [

∑j<c+B
j=c

− log pθ(w
j | w̃c:c+B

t ,w
c:c+B
logits,t

,w<c)]

11: end if

Algorithm 2 Decoding (at a given c)

1: w̃
c:c+B
T ∼ N (0,K2

I)
2: for t = T, . . . , 1 do
3: if t = T then
4: w

c:c+B
logits,t = logitsθ(w

c:c+B | w̃c:c+B
t ,w<c)

5: else
6: w

c:c+B
logits,t

= logitsθ(w
c:c+B | w̃c:c+B

t ,w
c:c+B
logits,t+1

,w<c)

7: end if
8: Ensemble with other models if applicable,

all-reduceΘ,λ(w
c:c+B
logits,t)

9: ŵ
c:c+B = logits-projection(wc:c+B

logits,t)

10: z ∼ N (0,K2
I)

11: w̃
c:c+B
t−1 =

√
ᾱt−1ŵ

c:c+B +
√
1− ᾱt−1z

12: end for
13: return argmax w̃c:c+B

0

Figure 2: Training and decoding algorithms for SSD-2. The training algorithm describes the training objective at an

arbitrary context length c. The decoding algorithm can be applied multiple rounds by appending the generation

from one round to the context for the next. The decoding may stop after a fixed number of rounds or until a special

end-of-sequence token is encountered.

from each other. Larger changes often happen at

t ∈ (0.6T, 0.8T] after which the majority of the

content is in place, and for t ∈ (0.4T, 0.6T] only

minor changes happen sparsely to make a grammat-

ical correction or settle down on an uncertain word

choice. Finally, for t ∈ (0, 0.4T], the sequence

does not update at all in most cases. We hence hy-

pothesize that the first three timestep ranges require

different capabilities from the model. In SSD-2,

we propose to optionally train three separate mod-

els θ(0.4,0.6), θ(0.6,0.8), and θ(0.8,1.0) for the three

ranges.3 We still train a single model at pretraining

to save resources and only perform this step during

a final finetuning as described in §4.4 We start the

decoding at t = T and stop at t = 0.4T , saving

40% of the inference computation.5

3.2 Inference-time collaboration

As shown in SSD-LM (Han et al., 2022) and

prior work in other domains (Dhariwal and Nichol,

2021), diffusion models are naturally suited to al-

low for controlling the properties of the model

outputs by interpolating the model outputs with

gradients from a control function such as a clas-

sifier. Follow-up studies have extended this idea

3A similar setup has also been explored in image diffusion
as expert denoisers (Feng et al., 2022; Balaji et al., 2022).

4This setup could further be improved by considering mod-
els of different sizes for the three ranges where θ(0.4,0.6) and
θ(0.8,1.0) could contain fewer parameters as they arguably per-
form simpler tasks to reduce the effective inference time. We
leave it as future work.

5We report a comparison between the decoding speed of
SSD-2 and the original SSD-LM in §D

to classifier-free guidance where diffusion models

with and without controlling attributes can be in-

terpolated contrastively using a weighted sum of

their outputs (Ho and Salimans, 2021). We explore

a new setup of the latter idea for enabling collab-

oration between two versions of SSD-2 where we

interpolate the output logits of the models. Intrin-

sic to the diffusion paradigm, this interpolation is

sequence-level and through many iterations it lever-

ages benefits of the bi-directional context.

Setup We first define a core model θcore which is

computationally expensive to train or deploy (e.g.,

a large model which can only be loaded on mutiple

GPUs). We assume the model is good at general-

domain instruction following. We then define a

user model θuser which is computationally friendly

for a typical user to run on their personal device or

a cloud device to their control. It allows incorporat-

ing data of their specific interest which they may

not prefer to input to the large model. For both the

core and user models, we also assume they do not

have access to each others’ model parameters.

We also assume a prompting instruction winst

which both the models have access to, and expert

data Duser that only the user model and not the

core model has access to (see Figure 1). During

inference,

• θcore only takes in the prompt winst,

fθcore
(winst).

• θuser can be finetuned with Duser, or use Duser

in in-context learning. In this work, we ex-

periment with the latter setup, where the user

8388

model takes in both the user expert data and

the instruction as input, fθuser
(Duser,winst).

• Additionally, we assume the model size

|θcore| ≫ |θuser| (the size difference is 100x in

our experiments).

We will discuss the specific instantiation of the

setup in §5. In the section below, we first intro-

duce a prominent collaboration algorithm when

θcore and θuser are autoregressive, and then propose

a novel algorithm when the models are diffusion-

based SSD-2.

Method The collaboration between θcore and

θuser is essentially an ensemble of the model out-

puts. One prominent way of approaching it is

through a weighted average of the models’ logits at

inference time.6 For autoregressive LMs, this aver-

aging can be performed at the token level where the

logits are first combined and then transformed into

probability distribution like a product-of-experts

ensemble (e.g., Liu et al. (2021)).

wc ∼ pcollab(w
c | Duser,winst,w

<c)

= softmax[(1− λuser) logitsθcore
(wc | winst,w

<c)

+ λuser logitsθuser
(wc | Duser,winst,w

<c)]

We also consider an extension of this setup where

we add a contrastive term to θuser without the input

Duser, to promote the pointwise mutual information

between the expert data and the generation condi-

tioned on the instruction (Malkin et al., 2021).7

w
c ∼ softmax[(1− λuser) logitsθcore

(wc | winst,w
<c)

+ λuser(1 + α) logitsθuser
(wc | Duser,winst,w

<c)

− λuserα logitsθuser
(wc | winst,w

<c)]

For SSD-2, the process of generating tokens is

intrinsically different from autoregressive models.

However, since it preserves the notion of logits

in its iterative decoding procedure (wc:c+B
logits,t), we

propose a similar logits-averaging method for a

diffusion θcore and θuser, performing an ensemble

for a block of tokens at each diffusion timestep.

6Training-time ensemble can be achieved through methods
like parameter-averaging (Li et al., 2022a). However, it is
not the focus of this work since our models have drastically
different shapes and we do not assume the models have access
to the parameters of other models.

7We set the contrastive hyperparameter α = 1.0 through-
out the evalution, though the results with α = 0.0 follow a
similar trend.

w
c:c+B
core-logits,t = logitsθcore

(wc:c+B | winst,w
<c

, w̃
c:c+B
t)

w
c:c+B
user-logits,t = logitsθuser

(wc:c+B | Duser,winst,w
<c

, w̃
c:c+B
t)

w
c:c+B
¬user-logits,t = logitsθuser

(wc:c+B | winst,w
<c

, w̃
c:c+B
t)

w
c:c+B
logits,t = (1− λuser)w

c:c+B
core-logits,t

+ λuser(1 + α)wc:c+B
user-logits,t − λuserαw

c:c+B
¬user-logits,t

The above procedure is instantiated through the

operation all-reduceΘ,λ(w
c:c+B
logits,t) in Figure 2. Fig-

ure 1 describes both the autoregressive and dif-

fusion collaboration in our setup illustratively. It

is noteworthy that for diffusion models, this man-

ner of collaboration is only straightforward in a

simplex-based model such as SSD-2. Diffusion

variants proposed in the literature operating on to-

ken embeddings (§6) are not trivially suitable for it

due to a mismatch in the models’ embedding space.

4 Experimental Setup

Pretraining Existing work on diffusion LMs is

limited to modest model sizes below the order of

1B parameters (Li et al., 2022c; Han et al., 2022;

Dieleman et al., 2022). For example, SSD-LM

has the same size as RoBERTA-large (Liu et al.,

2019) with 0.4B parameters. It is unclear whether

diffusions LMs have the ability to scale like au-

toregressive LMs.8 To answer this question, we

pretrain three versions of SSD-2 with 0.1B, 2.7B,

and 13B parameters, on a subset of a large corpus

C4 (Raffel et al., 2020). Instead of pretraining from

scratch, we initialize these models using publicly

available OPT models (Zhang et al., 2022).9 We

consider a maximum sequence length of 500 (up

from 200 in SSD-LM), with a diffusion block size

B = 25. On the 13B SSD-2 model for our main

evaluation, we first do 50K warmup steps with-

out self-conditioning and then start a 100K-step

pretraining with the full algorithm. It uses approxi-

mately 38B tokens from the C4 data in total. Other

pretraining hyperparameters can be found in §B.

We show the pretraining losses of SSD-2 over time

in §C. Based on the trend of pretraining losses and

the scale of our pretraining data compared to recent

work,10 we conjecture that our SSD-2 models are

8In fact, Strudel et al. (2022) show for embedding-based
diffusion models, scaling up the embedding dimensions may
hurt the performance in certain cases.

9Han et al. (2022) find initializing from pretrained non-
diffusion models help the convergence of diffusion losses in
SSD-LM.

10For example, the LLaMA 13B model (Touvron et al.,
2023) uses 1T tokens from multiple corpora including C4,
whereas we use 38B tokens from C4 only.

8389

still considerably undertrained. Due to our com-

puting budget, we leave to future work a potential

continued pretraining over current SSD-2 models

on larger and better curated data.

Instruction finetuning While Han et al. (2022)

show the effectiveness of pretrained SSD-LM in

general-domain text continuation, in this work, we

primarily investigate the use of SSD-2 in down-

stream fine-tuning tasks, particularly on chat-style

instruction following.11 We finetune the models

with the DOLLY dataset12 containing 15K human-

collected instructions and responses (Databricks,

2023). DOLLY covers categories like open/closed-

QA, brainstorming, and creative writing, though

it may still be less powerful than the distillation-

based data in terms of size and quality.13 We

finetune on 95% of the DOLLY data and use the

rest for held-out evaluation. We finetune with a

batch size of 384 and for 500 or 1000 steps for the

0.1B/2.7B/13B models. As a baseline, we finetune

the autoregressive model OPT (0.1B/2.7B/13B) on

DOLLY with the same setup.

5 Experiments

5.1 Inference-time collaboration

As introduced in §3.2, a main focus of this work is

to explore the advantages of a diffusion-based LM

SSD-2 in a collaboration setup: interpolating the

outputs of a large, general model θcore and a small

model θuser enhanced by user expert data Duser.

We use the 13B-parameter SSD-2 finetuned with

11We make an additional change while finetuning SSD-2
to address end of sequence (EOS) issues in variable length
sequences in the downstream datasets. Since a sequence could
terminate in the middle of a diffusion block, while training, we
pad the sequence with the EOS token to the nearest boundary
of a diffusion block of size B. We do not mask this padding
while computing the loss. We use the standard padding token
after the last diffusion block boundary. At inference, if the
generated text block argmax w̃c:c+B

0 in the final iteration
contains an EOS token, we prune the trailing tokens after the
first EOS token in the block.

12
https://huggingface.co/datasets/databricks/

databricks-dolly-15k. We deliberately choose to finetune
with DOLLY because as opposed to other similar datasets (e.g.
the ones used to train models like Alpaca (Taori et al., 2023)
and Vicuna (Chiang et al., 2023)), DOLLY has an open-source
license and does not depend on distillations from OpenAI
models.

13We did not explore other earlier instruction tuning data
like Wang et al. (2022) and Longpre et al. (2023) since they
align less with the chat scenario of our interest. Furthermore,
such data can contain a considerable amount of questions that
have a very short answer (e.g., multiple choice). We leave for
future work to explore the applicability of diffusion on these
datasets.

DOLLY as θcore and the 0.1B finetuned SSD-2 as

θuser. We use OPT 13B and 0.1B finetuned with

DOLLY under the same collaboration setup as the

autoregressive baseline. DOLLY’s held-out test

prompts are used as winst. A subset of DOLLY

test examples is annotated with loosely related

Wikipedia passages to support the output answers;

we use these passages as a proxy for Duser. To

avoid prompts with trivial answers, we addition-

ally constrain the test instructions to those with an

original annotated response of at least 50 tokens.

Inference-time collaboration is effective if the

core model θcore generates better responses af-

ter collaborating with the 100x smaller but user-

enhanced θuser. We investigate a range of weights

λuser, starting from 0 where the output of the col-

laboration solely depends on the large θcore, and

gradually increasing λuser to incorporate more θuser.

Automatic evaluation We first conduct an auto-

matic evaluation, using state-of-the-art, production-

level LMs to evaluate the quality of our models’

generations, which have been shown to correlate

highly with human judgments and are easier to

scale (Liu et al., 2023). We use GPT-3.5-turbo to

rate our models’ responses to the test instructions

on a scale of 10, towards the aspects of relevance,

factuality, informativeness, coherence, and under-

standability. The specific prompting template we

used is detailed in §G.

Table 1 summarizes the automatic evaluation

results. We observe that when λuser = 0 (θcore

only, no Duser incorporated), the OPT model fine-

tuned with DOLLY consistently outperforms our

finetuned SSD-2.14 However, for OPT, collaborat-

ing with the small user model does not improve

the core model’s performance any further across

all considered weights. Within the experimented

weighting factors, λuser of 0.1 to 0.3 is relatively

optimal, though still leading to lower scores than

without collaboration.

In contrast, the small user model θuser improves

the core model’s performance in all tested at-

tributes in SSD-2. With appropriate weight factors

(λuser = 0.2, 0.3), the collaborated SSD-2 system

surpasses the best OPT performance in four of the

five metrics and matches the fifth. We highlight in

Table 1 the best absolute performance and the best

14We conjecture the reason is that SSD-2 is undertrained as
discussed in §4 and can have a larger domain gap w.r.t. the
DOLLY data. In §5.2, we compare the intrinsic instruction
following ability of SSD-2 and OPT using one-shot in-context
learning instead of finetuning.

8390

λuser = 0 λuser = 0.1 λuser = 0.2 λuser = 0.3 λuser = 0.4 λuser = 0.5 λuser = 1.0

Relevance

OPT{core,user} 9.76 9.59 9.61 9.65 9.65 9.39 8.23

SSD-2{core,user} 9.72 9.65 9.91 9.85 9.64 9.52 7.16

∆collab OPT -0.17 -0.15 -0.11 -0.11 -0.37 -1.53

∆collab SSD-2 -0.07 +0.19 +0.13 -0.08 -0.20 -2.56

Factuality

OPT{core,user} 9.64 9.57 9.51 9.55 9.57 9.27 8.15

SSD-2{core,user} 9.34 9.49 9.63 9.64 9.56 9.48 7.26

∆collab OPT -0.06 -0.12 -0.08 -0.05 -0.29 -1.44

∆collab SSD-2 +0.14 +0.30 +0.31 +0.26 +0.15 -2.03

Informativeness

OPT{core,user} 9.30 9.20 9.12 9.27 9.06 8.95 7.41

SSD-2{core,user} 8.97 9.02 9.33 9.36 9.06 8.97 6.38

∆collab OPT -0.10 -0.18 -0.03 -0.24 -0.35 -1.89

∆collab SSD-2 +0.05 +0.36 +0.39 +0.09 0.00 -2.59

Coherence

OPT{core,user} 9.61 9.47 9.37 9.44 9.41 9.13 7.70

SSD-2{core,user} 9.41 9.35 9.65 9.59 9.25 9.17 5.84

∆collab OPT -0.14 -0.24 -0.17 -0.20 -0.48 -1.91

∆collab SSD-2 -0.06 +0.24 +0.18 -0.16 -0.24 -3.57

Understandability

OPT{core,user} 9.66 9.54 9.53 9.54 9.51 9.30 8.10

SSD-2{core,user} 9.53 9.56 9.72 9.67 9.42 9.34 6.21

∆collab OPT -0.12 -0.13 -0.12 -0.15 -0.36 -1.56

∆collab SSD-2 +0.03 +0.19 +0.14 -0.11 -0.19 -3.32

Table 1: Evaluation of the inference-time collaboration between the large core model θcore and the small user model

θuser. A negative impact led by θuser to θcore is marked in red, and a positive impact in blue. SSD-2 is substantially

more collaborative than the autoregressive OPT baseline.

performance gain due to the collaboration. We ad-

ditionally show that when λuser = 1, the small user

model θuser alone performs worse in SSD-2 than

in OPT. This further indicates that the observed

performance gain comes from an effective collabo-

ration rather than a significantly better θuser.

Human evaluation To corroborate our findings,

we further perform a human evaluation comparing

the outputs from SSD-2 and OPT under a collabo-

rative setup. For each test prompt, we show SSD-2

and OPT responses with λuser of 0.2 to the human

annotators as a randomized pair. We asked the

annotators to choose the preferred response while

allowing for annotating equally good responses

or equally bad responses. A total of 9 annotators

(graduate and undergraduate researchers in NLP,

not authoring this work) made 259 human prefer-

ence annotations over 94 test prompts, with each

response pair receiving 1-4 annotations. We show

in Table 2 that the collaboration between SSD-2

θcore and θuser is overall more preferred by humans

to the OPT models under the same setup. SSD-2

wins in 43 cases (45.7%) while loses only in 25

cases (26.6%). We additionally measure an aver-

age Cohen’s kappa coefficient between all pairs of

annotators who annotated the same subset of in-

stances. We observe κ=0.31 indicating a fair agree-

ment, especially that the task is highly subjective

by nature.

Overall, through automatic and human evalua-

tions, we show that SSD-2 offers unique benefits in

an interesting case of inference-time collaboration,

effectively fusing a general-purpose large model

and a small model enhanced by some expert data.

5.2 Ablation study: SSD-2 as a standalone

diffusion chat model

In this section, we divert from our main inference-

time collaboration setup and investigate the capabil-

8391

SSD-2collab

win

Draw OPTcollab

win

43 (45.7%) 26 (27.7%) 25 (26.6%)

Table 2: Human preference of the outputs from the

inference-time collaboration experiments, comparing

the diffusion-based SSD-2 and the autoregressive OPT.

ities of SSD-2 as a standalone language model. We

are interested in the instruction following ability in-

trinsic to the vanilla SSD-2 without inference-time

collaboration or any finetuning (like with DOLLY).

We compare original SSD-2 and OPT 13B in re-

sponding to the prompts from the Vicuna test set

(Chiang et al., 2023), which include problems of

open-ended question answering, creative writing,

etc.15 We formulate the setup as a one-shot in-

context learning problem. Before each Vicuna test

prompt, we add one fixed, handcrafted in-context

example from Zhou et al. (2023a) to help the mod-

els capture the format of the answers without chang-

ing the model parameters.

The main metric we report is the win rate from

an automatic evaluation based on GPT-4 (OpenAI,

2023). We follow the original evaluation template

as introduced in Chiang et al. (2023), prompting

GPT-4 to rate SSD-2 and OPT responses along with

explanations. As additional metrics, we also com-

pute the conditional perplexity of the responses

using external language models GPT-Neo-1.3B

(Black et al., 2021) and GPT-2-large (Radford et al.,

2019). While there are no gold answers to the Vi-

cuna test prompts, we use GPT-3.5’s responses

as reference answers and subsequently compute a

BERTScore w.r.t. them for the responses from SSD-

2 and OPT. As shown in Table 3, we overall ob-

serve a higher win rate, lower perplexity, and higher

BERTScore for our diffusion language model SSD-

2 compared to the autoregressive OPT. We addi-

tionally evaluate SSD-2 finetuned with DOLLY and

report results in §E. We show some qualitative ex-

amples of SSD-2’s generations in §F.

6 Related work

Diffusion-based language models have been receiv-

ing increasing attention as a potential alternative to

autoregressive language models. We identify three

15Out of the 80 Vicuna test prompts, we empirically find
both models constantly fail on prompts from the math and
coding categories. We therefore filter them out and keep the
rest 70 test cases for our experiments.

Win rate PPL

(GPT-Neo/GPT2)

BERTScore

(Precision/F1)

SSD-213B 52.3% 7.58 / 9.62 85.9 / 85.2

OPT13B 47.7% 8.44 / 10.08 85.3 / 84.9

Table 3: Original SSD-2 responding to Vicuna test in-

structions in an one-shot in-context learning setup. The

win rate is computed between SSD-2 and OPT mod-

els using the original GPT-4 evaluation introduced in

Chiang et al. (2023). BERTScore is computed for the

model responses w.r.t. the generations from GPT-3.5.

main categories of diffusion language models based

on how they represent discrete data like text. Dis-

crete diffusion language models represent language

naturally as categorical data, while the diffusion

or noising steps are often formulated as transition

matrices (Hoogeboom et al., 2021; Austin et al.,

2021; He et al., 2022; Reid et al., 2022; Zheng

et al., 2023; Zhou et al., 2023b). Embedding-based

diffusion language models often learn a mapping

between the discrete language tokens and an em-

bedding latent space, and the diffusion process is

on the embedding space via a series of Gaussian

noise (Li et al., 2022c; Gong et al., 2022; Diele-

man et al., 2022; Gao et al., 2022; Lovelace et al.,

2022; Yuan et al., 2022; Lin et al., 2022; Ye et al.,

2023; Chen et al., 2023; Tang et al., 2023; Balagan-

sky and Gavrilov, 2023). In this work, we focus

on simplex-based diffusion language models that

project discrete tokens to a simplex space and per-

form the diffusion process with a simple Gaussian

noise (Han et al., 2022; Mahabadi et al., 2023).

Our proposed inference-time collaboration setup

is most straightforward to apply to simplex-based

diffusion language models, since models with dif-

ferent sizes share the same simplex (vocabulary)

space. Embedding-based models over different la-

tent representation spaces are not suitable for a

direct representation interpolation. Furthermore,

to the best of our knowledge, SSD-2 is the first

of this line of literature to pretrain and finetune a

diffusion language model as a chat model, encour-

aging future work to compare and improve over

our work.

With autoregressive language models, various

efforts have been made towards building chat-style

instruction following models based on open source

language models (Touvron et al., 2023; Biderman

et al., 2023) to replicate strong production-level

closed source counterparts (Ouyang et al., 2022;

8392

OpenAI, 2023). Many of such work are concur-

rent to ours and collect high-quality finetuning

datasets by distilling prompts and responses from

OpenAI models (Taori et al., 2023; Chiang et al.,

2023; Xu et al., 2023). In this work, we delib-

erately seek fully open source data not depend-

ing on OpenAI models and adopt the DOLLY data

(Databricks, 2023). We expect our models can be

further improved with future releases of more cu-

rated chat-style instruction tuning datasets (Zhou

et al., 2023a).

One novel setup we explored in this work is

the inference-time collaboration between a large,

general-purpose diffusion chat model and small,

user-specific models. Inference-time collaboration

has been generally explored in autoregressive mod-

els via ensembles of logits, either in an interpola-

tion or contrastive manner (Liu et al., 2021; Malkin

et al., 2021; Li et al., 2022a; Peng et al., 2022;

Li et al., 2022b). In diffusion models, classifier-

free guidance in image generation (Ho and Sali-

mans, 2021) contrastively reconstruct representa-

tions with and without a controlling attribute using

a single model, whereas our work collaboratively

decode with models with different sizes and inputs.

We show an unique advantage of simplex-based

diffusion language models in such inference-time

collaboration compared to autoregressive language

models.

7 Conclusion

We present an exploratory step towards pretraining

a large simplex-based diffusion language model

SSD-2 and finetuning it with an open-source chat-

style instruction dataset. In a motivated setup

where large general models and small user models

are to collaborate with each other at inference time,

we find SSD-2 substantially more collaborative

than its autoregressive counterparts. These findings

show the promise of diffusion language models as

an instruction-following chat model and a worthy

alternative to autoregressive language models.

Limitations

In this work, we explore a novel setup of fusing

large general diffusion language models and small

customizable models enhanced with user expert

data. One limitation of the proposed fusion algo-

rithm is that it requires a search through a range of

candidate balancing factors λuser. Furthermore, a

selected balancing factor remains the same across

different diffusion timesteps, which is not neces-

sarily optimal. Future work can explore and learn

an optimal, dynamic schedule of the balancing fac-

tors. Another limitation of diffusion language mod-

els in general is a slow decoding speed compared

to autoregressive models. Though our proposed

SSD-2 model already includes improvements over

the original SSD-LM leading to faster decoding

speed (more details in §D), future work may fur-

ther adapt methods from image diffusion models

targeting specifically for efficient decoding (Song

et al., 2021; Nichol and Dhariwal, 2021; Rombach

et al., 2022; Meng et al., 2022).

Acknowledgements

The authors would like to thank Alisa Liu, Jiacheng

Liu, Weijia Shi, Zihao Ye, members of TsvetShop,

and the anonymous reviewers for their insightful

discussions and feedback. We additionally thank

Shangbin Feng, Tianxing He, Abe Hou, Yuhan Liu,

Heng Wang, Jack Zhang, and Michael Zhang for

their helpful evaluation. X.H. gratefully acknowl-

edges funding from the UW-Meta AI Mentorship

program. This research is supported in part by

the Office of the Director of National Intelligence

(ODNI), Intelligence Advanced Research Projects

Activity (IARPA), via the HIATUS Program con-

tract #2022-22072200004. This material is also

funded in part by the DARPA Grant under Con-

tract No. HR001120C0124. We also gratefully

acknowledge support from NSF CAREER Grant

No. IIS2142739, NSF Grants No. IIS2125201,

IIS2203097, and the Alfred P. Sloan Foundation

Fellowship. The views and conclusions contained

herein are those of the authors and should not be in-

terpreted as necessarily representing the official

policies, either expressed or implied, of ODNI,

IARPA, or the U.S. Government. The U.S. Gov-

ernment is authorized to reproduce and distribute

reprints for governmental purposes notwithstand-

ing any copyright annotation therein.

References

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel
Tarlow, and Rianne van den Berg. 2021. Structured
denoising diffusion models in discrete state-spaces.
In Proc. NeurIPS.

Nikita Balagansky and Daniil Gavrilov. 2023. De-
mocratized diffusion language model. ArXiv,
abs/2305.10818.

8393

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vah-
dat, Jiaming Song, Qinsheng Zhang, Karsten Kreis,
Miika Aittala, Timo Aila, Samuli Laine, Bryan Catan-
zaro, Tero Karras, and Ming-Yu Liu. 2022. ediff-i:
Text-to-image diffusion models with an ensemble of
expert denoisers. ArXiv, abs/2211.01324.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling.

Sid Black, Gao Leo, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Jiaao Chen, Aston Zhang, Mu Li, Alexander J. Smola,
and Diyi Yang. 2023. A cheaper and better diffu-
sion language model with soft-masked noise. ArXiv,
abs/2304.04746.

Ting Chen, Ruixiang Zhang, and Geo rey E. Hinton.
2022. Analog bits: Generating discrete data us-
ing diffusion models with self-conditioning. ArXiv,
abs/2208.04202.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Databricks. 2023. Databricks dolly 15k. https:

//huggingface.co/datasets/databricks/
databricks-dolly-15k.

Prafulla Dhariwal and Alex Nichol. 2021. Diffu-
sion models beat gans on image synthesis. ArXiv,
abs/2105.05233.

Sander Dieleman, Laurent Sartran, Arman Roshan-
nai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, A. Doucet, Robin Strudel, Chris Dyer,
Conor Durkan, Curtis Hawthorne, Rémi Leblond,
Will Grathwohl, and Jonas Adler. 2022. Con-
tinuous diffusion for categorical data. ArXiv,
abs/2211.15089.

Zhidan Feng, Zhenyu Zhang, Xintong Yu, Yewei
Fang, Lanxin Li, Xuyi Chen, Yuxiang Lu, Jiaxi-
ang Liu, Weichong Yin, Shi Feng, Yu Sun, Hao
Tian, Hua Wu, and Haifeng Wang. 2022. Ernie-vilg
2.0: Improving text-to-image diffusion model with
knowledge-enhanced mixture-of-denoising-experts.
ArXiv, abs/2210.15257.

Zhujin Gao, Junliang Guo, Xuejiao Tan, Yongxin Zhu,
Fang Zhang, Jiang Bian, and Linli Xu. 2022. Dif-
former: Empowering diffusion model on embedding
space for text generation. ArXiv, abs/2212.09412.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and Lingpeng Kong. 2022. Diffuseq: Sequence to se-
quence text generation with diffusion models. ArXiv,
abs/2210.08933.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov.
2022. Ssd-lm: Semi-autoregressive simplex-based
diffusion language model for text generation and
modular control. ArXiv, abs/2210.17432.

Zhengfu He, Tianxiang Sun, Kuan Wang, Xuanjing
Huang, and Xipeng Qiu. 2022. Diffusionbert: Im-
proving generative masked language models with
diffusion models. ArXiv, abs/2211.15029.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. In Proc.
NeurIPS.

Jonathan Ho and Tim Salimans. 2021. Classifier-free
diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applica-
tions.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J. Fleet. 2022.
Video diffusion models. ArXiv, abs/2204.03458.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini,
Patrick Forré, and Max Welling. 2021. Argmax flows
and multinomial diffusion: Learning categorical dis-
tributions. In Proc. NeurIPS.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. 2021. Diffwave: A versatile diffu-
sion model for audio synthesis. In Proc. ICLR.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike
Lewis, Tim Althoff, Noah A. Smith, and Luke Zettle-
moyer. 2022a. Branch-train-merge: Embarrassingly
parallel training of expert language models. ArXiv,
abs/2208.03306.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy
Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. 2022b. Contrastive de-
coding: Open-ended text generation as optimization.
ArXiv, abs/2210.15097.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy
Liang, and Tatsunori Hashimoto. 2022c. Diffusion-
lm improves controllable text generation. ArXiv,
abs/2205.14217.

8394

Zheng-Wen Lin, Yeyun Gong, Yelong Shen, Tong Wu,
Zhihao Fan, Chen Lin, Weizhu Chen, and Nan Duan.
2022. Genie: Large scale pre-training for text gener-
ation with diffusion model. ArXiv, abs/2212.11685.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. 2021. Dexperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proc. ACL.

Yang Liu, Dan Iter, Yichong Xu, Shuo Wang, Ruochen
Xu, and Chenguang Zhu. 2023. G-eval: Nlg evalua-
tion using gpt-4 with better human alignment. ArXiv,
abs/2303.16634.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

S. Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won
Chung, Yi Tay, Denny Zhou, Quoc V. Le, Barret
Zoph, Jason Wei, and Adam Roberts. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. ArXiv, abs/2301.13688.

Justin Lovelace, Varsha Kishore, Chao gang Wan,
Eliot Shekhtman, and Kilian Q. Weinberger. 2022.
Latent diffusion for language generation. ArXiv,
abs/2212.09462.

Rabeeh Karimi Mahabadi, Jaesung Tae, Hamish Ivi-
son, James Henderson, Iz Beltagy, Matthew E.
Peters, and Arman Cohan. 2023. Tess: Text-
to-text self-conditioned simplex diffusion. ArXiv,
abs/2305.08379.

Nikolay Malkin, Zhen Wang, and Nebojsa Jojic. 2021.
Coherence boosting: When your pretrained language
model is not paying enough attention. In Annual
Meeting of the Association for Computational Lin-
guistics.

Chenlin Meng, Ruiqi Gao, Diederik P. Kingma, Ste-
fano Ermon, Jonathan Ho, and Tim Salimans. 2022.
On distillation of guided diffusion models. ArXiv,
abs/2210.03142.

Alexander Quinn Nichol and Prafulla Dhariwal. 2021.
Improved denoising diffusion probabilistic models.
In Proc. ICML.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul Francis Christiano, Jan Leike, and
Ryan J. Lowe. 2022. Training language models to
follow instructions with human feedback. ArXiv,
abs/2203.02155.

Xiangyu Peng, Chen Xing, Prafulla Kumar Choubey,
Chien-Sheng Wu, and Caiming Xiong. 2022. Model
ensemble instead of prompt fusion: a sample-specific
knowledge transfer method for few-shot prompt tun-
ing. ArXiv, abs/2210.12587.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. JMLR.

Machel Reid, Vincent J. Hellendoorn, and Graham Neu-
big. 2022. Diffuser: Discrete diffusion via edit-based
reconstruction. ArXiv, abs/2210.16886.

Robin Rombach, A. Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. 2022 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 10674–
10685.

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021.
Denoising diffusion implicit models. In Proc. ICLR.

Robin Strudel, Corentin Tallec, Florent Altch’e, Yilun
Du, Yaroslav Ganin, Arthur Mensch, Will Grathwohl,
Nikolay Savinov, Sander Dieleman, L. Sifre, and
Rémi Leblond. 2022. Self-conditioned embedding
diffusion for text generation. ArXiv, abs/2211.04236.

Zecheng Tang, Pinzheng Wang, Keyan Zhou, Juntao
Li, Ziqiang Cao, and M. Zhang. 2023. Can diffu-
sion model achieve better performance in text gener-
ation? bridging the gap between training and infer-
ence! ArXiv, abs/2305.04465.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://

github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aur’elien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Is-
han Purohit, Ishani Mondal, Jacob Anderson, Kirby
Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar
Pal, M. Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Shailaja Keyur

8395

Sampat, Savan Doshi, Siddharth Deepak Mishra, Su-
jan Reddy, Sumanta Patro, Tanay Dixit, Xudong
Shen, Chitta Baral, Yejin Choi, Noah A. Smith,
Hanna Hajishirzi, and Daniel Khashabi. 2022. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. In Conference on
Empirical Methods in Natural Language Processing.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley.
2023. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. ArXiv,
abs/2304.01196.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and
Mingxuan Wang. 2023. Dinoiser: Diffused con-
ditional sequence learning by manipulating noises.
ArXiv, abs/2302.10025.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang,
and Songfang Huang. 2022. Seqdiffuseq: Text dif-
fusion with encoder-decoder transformers. ArXiv,
abs/2212.10325.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. ArXiv,
abs/2205.01068.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong.
2023. A reparameterized discrete diffusion model
for text generation. ArXiv, abs/2302.05737.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023a. Lima:
Less is more for alignment. ArXiv, abs/2305.11206.

Kun Zhou, Yifan Li, Wayne Xin Zhao, and Ji rong Wen.
2023b. Diffusion-nat: Self-prompting discrete diffu-
sion for non-autoregressive text generation. ArXiv,
abs/2305.04044.

A Eliminating the sampling of context

size c in training

In the original training algorithm of SSD-LM (Han

et al., 2022), they first sample a context length c ∼
U(1, |w|−B), and then compute the diffusion loss

for reconstructing a block of length B following

that context. When the sequence length |w| is large,

this can lead to a drastic variance in the values of

c. Implemented naively in a distribution training

setup, this setup wastes computations, and reduces

the effective batch size considerably slowing down

training. We eliminate the sampling of the context

length c in SSD-2 by processing multiple c’s in

parallel. To facilitate this, we encode the context

w<c uni-directionally while preserving the locally

bi-directional attention for the diffusion generation

block wc:c+B .

More specifically, assume we have a prompt

w<c0 and want to form the same training ob-

jective as in Figure 2 on all of the following n
text blocks wc0:c0+nB . We prepare a context se-

quence w<c0+(n−1)B and obtain h
<c0+(n−1)B as

described previously in §3.1. We prepare a diffu-

sion sequence w̃
c0:c0+nB and obtain h̃

c0:c0+nB
as

described previously. Then a forward pass of θ
works as below.

o
<c0+(2n−1)B = Transformer[

concat(h<c0+(n−1)B, h̃
c0:c0+nB

); δ(c0, n,B)]

w
c0:c0+nB
logits,t = o

c0+(n−1)B:c0+(2n−1)B

where δ(c0, n,B) is a special attention mask for

the transformer model, allowing a reuse of the en-

coded contexts while preserving the original train-

ing loss:

δi,j =



















1j≤i if i < c0 + (n− 1)B.

1j≤c0+kB or c0+(n−1+k)B<j<c0+(n+k)B

if c0 + (n− 1 + k)B < i < c0 + (n+ k)B,

for 0 ≤ k < n.

Row i of δ indicates the attention-accessible po-

sitions for the i-th input token of the transformer.

For example, assume the original context is [a]
and the target generation is in two blocks [b, c] and

[d, e]. The input sequence to the SSD-2 transformer

model is [a, b, c, b̃, c̃, d̃, ẽ], and the attention mask

is:

δ(1, 2, 2) =





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 1 1 0 0
1 1 1 0 0 1 1
1 1 1 0 0 1 1





















Comparing to regular language models, SSD-2 has

a uni-directional encoder and locally bi-directional

decoder. In a pilot pretraining session, we ob-

serve this change leads to a twice as fast training

speed compared to the original SSD-LM on a same

amount of training tokens.

B Pretraining hyperparameters

For the SSD-2 model of each size (13B/2.7B/0.1B),

we conduct two phases of training, a warmup phase

8396

without self-conditioning and a formal phase with

self-conditioning using the complete algorithm

shown in Figure 2. Throughout all pretraining

setups, we use a max sequence length of 500, a

learning rate of 1e-4, and a weight decay of 0.01.

For the 13B SSD-2, we train with a warmup batch

size of 768 for 50,000 steps (19B tokens) and a

formal batch size of 384 for 100,000 steps (19B to-

kens). For the 2.7B SSD-2, we train with a warmup

batch size of 256 for 100,000 steps (13B tokens)

and a formal batch size of 1024 for 100,000 steps

(51B tokens). For the 0.1B SSD-2, we train with

a warmup batch size of 2,048 for 200,000 steps

(205B tokens) and a formal batch size of 2,048

for 100,000 steps (102B tokens). We use Nvidia

V100 GPUs in distributed training, and the differ-

ent batch size and number of warmup steps across

different models are due to the models’ memory

footprint and the relative cluster traffic during our

pilot pretraining. Future work with a dedicated

group of computing resources can explore pretrain-

ing for longer to mitigate the undertraining issue

mentioned in §4.

C Pretraining losses

Figure 3 shows the pretraining losses of SSD-2

over time. We report the losses after the warmup

stage and average them across batches with a self-

conditioning p = 0.5 as described in Figure 2. We

see a sign of undertraining from the loss curves.

Due to our computing budget, we leave to future

work a potential continued pretraining over current

SSD-2 models on larger and better curated data.

Figure 3: Pretraining losses across training steps (with

self-conditioning, after the warmup stage). We con-

jecture that the models can benefit from more training

given more resources.

D Decoding speed

Though the decoding of SSD-2 is still significantly

slower than an autoregressive language model, it

achieves a great speedup compared to the original

SSD-LM. We use a same setup as the reported SSD-

LM decoding in Han et al. (2022). Conditioning

on 50 prompting tokens, we record the speed of

generating the next 25 tokens with timestep T =
1000 on a Nvidia V100 GPU.

The 0.4B SSD-LM takes 25 seconds. By con-

trast, though our 2.7B SSD-2 and 13B SSD-2 are

7x and 33x larger than SSD-LM, they only take 22

seconds and 48 seconds respectively, indicating a

significant speedup.16

E Standalone SSD-2 finetuned with

DOLLY

Following §5.2, we evaluate the outputs from the

finetuned models, SSD-2-DOLLY and OPT-DOLLY,

on both DOLLY’s held-out test set and Vicuna’s test

set. As shown in Table 4, we find that against very

strong baselines pretrained on much larger datasets,

our model still wins on a moderate percentage of

test examples. Compared to LLaMA (which is

trained on 1T tokens for much longer but not fine-

tuned for chat), SSD-2 performs marginally better.

It is overall mildly less preferred than the OPT-

DOLLY model on both DOLLY’s and Vicuna’s test

sets, and significantly less than the Alpaca model.

We emphasize that compared to OPT and LLaMA-

based models, SSD-2 is currently pretrained with a

relatively small, single-corpus dataset,17 and fine-

tuned on an open-source dataset much smaller com-

pared to its non-open-source licensed counterparts

that Alpaca relies on. We believe if trained on simi-

lar datasets, SSD-2 can fill the current performance

gap considerably.

F Qualitative examples

In Table 5, we show some qualitative examples

of our finetuned diffusion language model, SSD-

2-DOLLY’s outputs. The outputs are generated by

16It is worth noting that we add a timestep embedding when
encoding the context in SSD-2 (§3.1). During inference across
timesteps, to reuse the encoded states of the context, we quan-
tize the input timestep t to the context timestep embedding
layer, tquantized = t−(t mod Q). We use Q = 50 throughout
the work and do not find the quantization to negatively impact
the generation quality empirically.

17Despite that we initialize SSD-2 with the OPT weights at
the beginning of pretraining, the diffusion objective is funda-
mentally different from a causal language modeling objective,
and the encoded knowledge of OPT may not transfer well.

8397

Comparing against Win Draw Lose

On Dolly’s test set

OPT-Dolly-13B 41.4% 0% 58.6%

On Vicuna’s test set

LLaMa-13B 51.4% 0% 48.6%

OPT-Dolly-13B 37.1% 0% 62.9%

Alpaca-13B 20.0% 1.4% 78.6%

Table 4: Quantitative evaluation of the finetuned SSD-

2’s outputs against those of autogressive baselines based

on ratings of GPT-4. We report the percentage our SSD-

2 wins / draws / loses to the baseline models.

the 13B model to the queries from the Vicuna test

set (Chiang et al., 2023), on open-ended question

answering, creative writing, etc. We empirically

find that the generations have an overall reasonable

format and content.

G Evaluation templates

We show in Table 6 the templates we used to evalu-

ate model responses via GPT-4 or GPT-3.5-turbo.

For the inference-time collaboration results, apart

from the five evaluated attributes described in §5,

in the template we additionally queried for a rating

of conciseness and human preference. However,

we consider conciseness a less relevant attribute

compared to the other attributes and GPT-3.5-turbo

less qualified to give ratings of human preference.

We filtered them out in our main results but they

hold a similar trend as the results of the other five

attributes.

8398

Prompt: How can I improve my time management skills?

Time management is in short, an important skill to develop. A person needs to learn how to manage

their time more effectively. Here are a few techniques that can help you do that:

1. Prioritizing: One of the first things that you should try in order to improve your time

management skills is to identify which tasks have high priority and need to be given immediate

attention, and those that have low priority but can be postponed until a later date.

2. Multi-tasking: Although it might feel productive to handle more than one task at the same time

, it's actually less efficient at managing our time. It's better to focus on one thing at a time,

and fully dedicate 100% of our efforts to it.

3. Delegating: It's perfectly fine to say no to some tasks or even ask for help when needed. It's

sometimes considered a sign of weakness, but delegation will allow us to free up our time so

that we can work on the things that really matter.

4. Being organized: Making a list will not only help us keep track of tasks that need to get done

each day, but it will also help us avoid feeling overwhelmed by all the ideas and thoughts

running through our heads at any given moment.

By following these tips, you'll be able to significantly improve your time management skills!

Prompt: Write a symphony concert review, discussing the orchestra’s performance and overall

audience experience.

It was a magical night at Symphony Hall on Saturday, as the Boston Symphony Orchestra, under the

baton of Andin Mehta, performed Tchaikovsky's Symphonies No. 5 and No. 6. Tchaikovsky has always

been one of my favorite composers, and these two symphonies are among his most beautiful. They

are full of sweeping melodies, lyrical string writing, and lush orchestral textures that

transport you to a different world each time you listen.

And Mehta did an incredible job in leading the BSO through these masterpieces. He brought out

every nuance in the music - from the quiet tenderness of the first movement to the pulsing energy

of the Allegroagio to the breathtaking crescendo of the Finale.

The entire experience was absolutely magical: I couldn't have asked for a better way to spend a

Saturday night! And I would highly recommend this performance for anyone who is a fan of

Tchaikovsky or classical music in general.

Table 5: Qualitative examples of SSD-2-DOLLY’s responses to instructions. We show the first and last prompt from

the Vicuna test set. The outputs of our diffusion chat model have an overall reasonable format and content, though

being inaccurate in details like the conductor’s name and the tempo terminology.

8399

Evaluation template used to compare SSD-2’s re-

sponses with baseline models’ responses (§5.2),

following Chiang et al. (2023).

[Question]

{test instruction}

[The Start of Assistant 1's Answer]

{baseline model's response}

[The End of Assistant 1's Answer]

[The Start of Assistant 2's Answer]

{SSD-2's response}

[The End of Assistant 2's Answer]

[System]

We would like to request your feedback on the

performance of two AI assistants in response to

the user question displayed above.

Please rate the helpfulness, relevance, accuracy,

level of details of their responses. Each

assistant receives an overall score on a scale

of 1 to 10, where a higher score indicates

better overall performance.

Please first output a single line containing

only two values indicating the scores for

Assistant 1 and 2, respectively. The two scores

are separated by a space. In the subsequent line,

please provide a comprehensive explanation of

your evaluation, avoiding any potential bias and

ensuring that the order in which the responses

were presented does not affect your judgment.

Evaluation template used to rate responses from

either the baseline models or SSD-2 w.r.t. different

attributes (§5).

Rate the response below to an instruction, from

the aspects of relevance, factuality,

informativeness, conciseness, coherence,

understandability, and overall human preference,

each on a scale of 10 (format: x/10).

========

Instruction: {test instruction}

Response: {model response}

========

Please give the ratings now.

Table 6: Evaluation templates used in §5.2 and §5.

The first template was used with GPT-4 (tempera-

ture=0.2), whereas the second was used with GPT-3.5-

turbo (greedy) since we need significantly more queries

across different λuser’s. In the comparative evaluation

using the first template, flipping the order of the base-

line model’s response and SSD-2’s response leads to a

similar result.

8400

