


substantial improvement in both ROUGE-L (21%)

and factuality evaluation metrics (14.3%). More no-

tably, CAD is especially beneficial for knowledge

conflicting tasks, where the context contains infor-

mation contradictory to the model’s prior knowl-

edge. CAD brings a 2.9x improvement to LLaMA-

30B on a knowledge conflicts QA dataset (Longpre

et al., 2021). Furthermore, we observe that this

gain brought by CAD increases as the model size

grows in knowledge conflicts tasks. These results

demonstrate the potential of CAD in mitigating hal-

lucinations in text generation and overriding prior

knowledge with reliable and trusted information.

2 Method

2.1 Background

Given a LM θ, an input query x, and a context c

that contains some external knowledge unfamiliar

or in conflict to the model’s prior knowledge, we

ask our model θ to generate a response y given the

the query and context. The response can be directly

sampled (autoregressively) from the probability dis-

tribution conditioned on query x and context c:

yt ∼ pθ(yt ∣ c,x,y<t)
∝ exp logitθ(yt ∣ c,x,y<t)

However, in cases where the context c contains

knowledge that is out-of-distribution with respect

to θ, we hypothesize that the model can struggle

to effectively attend to c and overly rely on the

prior knowledge encoded in θ. For instance, as

illustrated in Figure 1, when the context c states

“Argentina won the FIFA World Cups in 1978, 1986

and 2022 ...”, it contradicts the LM’s outdated prior

knowledge that Argentina has won the World Cup

twice. The language model may still incorrectly

predict “Two” even when presented with the con-

text c and the query x.

2.2 Context-aware Decoding

To mitigate such issues, we factor out the prior

knowledge from the model’s original output dis-

tribution contrastively. Here, we model the prior

knowledge as pθ(yt ∣ x,y
<t) and adjust the

model’s original output probability distribution us-

ing the pointwise mutual information (PMI) be-

tween the context c and the generation yt, condi-

tioned on x,y
<t. Formally, we have:

yt ∼ p̃θ(yt ∣ c,x,y<t)
∝ pθ(yt ∣ c,x,y<t) (pθ(yt ∣ c,x,y<t)

pθ(yt ∣ x,y<t) )α

where the output probability is a product-of-experts

of the original output probability and PMI weighted

by α. Essentially, outputs that become much more

likely when the context is included are preferred

(Figure 1).

This expression is not a valid probability distribu-

tion and needs to be normalized across all possible

values of yt. By rearranging the terms, we obtain

the final form:

yt ∼ softmax[(1 + α) logitθ(yt ∣ c,x,y<t)
− α logitθ(yt ∣ x,y<t)]

Larger α means more weight on our adjustment

(α = 0 reduces to regular decoding).
1

We refer

to this simple method as context-aware decoding.

From the adjusted output distribution p̃, we can

apply various sampling strategies, such as nucleus

sampling (Holtzman et al., 2020).

Essentially, context-aware decoding is just a con-

trastive ensemble between the logits of pθ(yt ∣
c,x,y

<t) and pθ(yt ∣ x,y
<t). A similar con-

trastive objective is universal in image genera-

tion, where classifier-free diffusion models (Ho

and Salimans, 2022) predict diffusion noise with

(1+α)ϵθ(x, c)−αϵθ(x), with c being a control to

the image. In text generation, Malkin et al. (2022)

propose coherence boosting with the same intu-

ition, with a focus on contrasting the full input and

a short premise-free input, promoting coherence

w.r.t. the long context. Instead of using a single

model θ in this work, different models can also

be used in the distribution adjustments to demote

unwanted model behaviors or distill expert model’s

capability (Liu et al., 2021; Li et al., 2023). We

further discuss related works in §6 and §A.2.

3 Experimental Setup

We perform evaluation on tasks that require LMs to

read and reason over contexts and produce outputs

that are faithful to the contexts. Following prior

work (Zhang et al., 2024; Zhou et al., 2023), we

evaluate the models using prompting.

3.1 Datasets and Metrics

Summarization We conduct summarization ex-

periments on CNN-DM (See et al., 2017) and

XSUM (Narayan et al., 2018). We use ROUGE-

L (Lin, 2004) to evaluate summarization quality.

1
If we identify an external knowledge c conditionally in-

dependent to the generation, pθ(yt ∣ c,x,y
<t) = pθ(yt ∣

x,y
<t), even a non-zero α would not have an impact to the

original output distribution.
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To measure the factual consistency of summaries,

we adopt state-of-the-art factuality evaluation met-

rics: BERT-Precision (Pagnoni et al., 2021) and

FactKB (Feng et al., 2023), which has been demon-

strated to achieve high correlations with human

judgment on the summarization datasets, outper-

forming other metrics such as FACTCC (Kryscin-

ski et al., 2020) and SUMMAC (Laban et al., 2022).

Knowledge Conflicts We evaluate performance

on two knowledge conflict datasets: MemoTrap

(Liu and Liu, 2023) and NQ-Swap (Longpre et al.,

2021). MemoTrap is created to investigate whether

language models fall into memorization traps. It

comprises instructions that prompt the language

model to complete a well-known proverb with an

ending word that deviates from the commonly used

ending (e.g., Write a quote that ends in the word

“early”: Better late than ). NQ-Swap is based on

a QA dataset, natural questions (NQ) (Kwiatkowski

et al., 2019), where the objective is to answer ques-

tions based on a gold document. To generate NQ-

Swap, Longpre et al. (2021) identify questions in

NQ with named entity answers, find the supportive

document for each question and replace the gold

answer entity in the document with a random entity.

A faithful LM should generate the replaced entity

as the answer when given the question and mod-

ified document. We also include the original NQ

dataset with the question and original document for

evaluation. We use Exact Match (EM) as the evalu-

ation metric for NQ-Swap, NQ and MemoTrap.

In Table 1, we show illustrative examples of the

contexts we aim to upweight for the model and the

queries across different datasets. We hope LMs pay

more attention to the source document in XSUM

and NQ-Swap. On the other hand, we hope LMs

focus more on the instruction in MemoTrap.

3.2 Models and Baselines

We apply CAD to pretrained language models

including OPT (Zhang et al., 2022), GPT-Neo

(Black et al., 2021), LLaMA (Touvron et al., 2023)

and instruction-finetuned LMs such as FLAN-T5

(Chung et al., 2022).

CAD introduces a hyperparameter α to control

the adjustment level. We set α = 0.5 for all mod-

els evaluated on the summarization datasets and

α = 1 for all models evaluated on the knowledge

conflict datasets. We observed that α = 0.5 gen-

erally yielded good results across all settings and

all datasets, but a slightly higher α is more effec-

XSUM

c Article: Prison Link Cymru had 1,099 referrals in
2015-16 and said some ex-offenders were living
rough for up to a year before finding suitable accom-
modation ...

x Summarize the article in one sentence. Summary:

NQ-SWAP

c Tesla CEO Elon Musk is now in charge of Twitter ,
CNBC has learned ...

x Who is Twitter CEO now?

MemoTrap

c Write a quote that ends in the word "early":
x Better late than

Table 1: An illustation of the inputs to CAD applied to

each dataset. CAD upweights the context c (in red) by

sampling each token from softmax[(1+α) logitθ(yt ∣
c,x,y

<t) − α logitθ(yt ∣ x,y<t)].
tive in the knowledge conflict setting, where the

prior knowledge needs to be factored out more. We

investigate the effect of α in Section 5.

For the baselines, we use the regular decod-

ing methods following prior work (Longpre et al.,

2021; Kwiatkowski et al., 2019): greedy decod-

ing for knowledge conflict tasks and top-p sam-

pling with p=0.9 for summarization tasks (Holtz-

man et al., 2020). For CAD, we use the same

sampling strategies on top of the adjusted output

probability distribution.

4 Results

Summarization Table 2 reports the results on

CNN-DM and XSUM. We observe that CAD

outperforms the standard decoding algorithm by

a large margin in all eight models across both

datasets. Specifically, when applied to LLaMA-

30B in CNN-DM, CAD leads to 21% increase in

ROUGE-L, 14.3% increase in factKB and 7.8%

increase in BERT-P. This result demonstrates that

CAD could effectively improve the quality and fac-

tuality of the generated summaries from a diverse

set of language models.

Knowledge Conflicts Our results for the knowl-

edge conflict datasets, NQ-SWAP and MemoTrap,

as well as the original NQ are detailed in Table 3.

CAD is significantly better than the regular decod-

ing in all settings, with the exception of a minor de-

crease observed for FLAN-T5 on the non-conflict

NQ dataset.
2

Despite this, CAD achieves better per-

2
The slight decline in performance can be attributed to the

NQ dataset being included in the instruction-finetuning sets
used by FLAN-T5.
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CNN-DM XSUM

Model Decoding ROUGE-L factKB BERT-P ROUGE-L factKB BERT-P

OPT
13B

Regular 22.0 77.8 86.5 16.4 47.2 85.2
CAD 27.4 84.1 90.8 18.2 64.9 87.5

30B
Regular 22.2 81.7 87.0 17.4 38.2 86.1

CAD 28.4 87.0 90.2 19.5 45.6 89.3

GPT-Neo
3B

Regular 24.3 80.5 87.5 17.6 54.0 86.6
CAD 27.7 87.5 90.6 18.1 65.1 89.1

20B
Regular 18.7 68.3 85.2 14.9 42.2 85.7

CAD 24.5 77.5 89.4 19.0 63.3 90.6

LLaMA
13B

Regular 27.1 80.2 89.5 19.0 53.5 87.8
CAD 32.6 90.8 93.0 21.1 73.4 91.7

30B
Regular 25.8 76.8 88.5 18.7 47.7 87.1

CAD 31.8 87.8 92.2 22.0 66.4 90.3

FLAN
3B

Regular 25.5 90.2 91.6 18.8 31.9 88.2
CAD 26.1 93.9 92.1 19.5 35.9 88.8

11B
Regular 25.4 90.4 91.4 19.4 29.8 88.3

CAD 27.1 93.1 92.2 20.0 35.0 88.8

Table 2: CAD consistently outperform the regular decoding method in terms of both summary quality metric

(ROUGE-L) and summary factuality (factKB and BERT-P). The best scores for each setting are boldfaced.

FLAN 3B and 11B refer to FLAN-T5 XL and FLAN-T5 XXL respectively.

Model Decoding Memo. NQ NQ-SWAP

OPT
13B

Reg. 32.5 29.2 18.8
CAD 44.5 32.2 36.9

30B
Reg. 28.4 29.4 14.7
CAD 41.0 35.5 29.0

GPT.
3B

Reg. 22.5 31.9 19.1
CAD 47.3 39.9 41.2

20B
Reg. 37.1 22.8 16.1
CAD 57.3 32.1 36.8

LLaMA
13B

Reg. 23.8 22.3 11.7
CAD 57.1 33.6 36.7

30B
Reg. 25.8 23.8 9.6
CAD 50.6 34.0 37.7

FLAN
3B

Reg. 69.2 81.8 71.4
CAD 72.2 80.3 73.3

11B
Reg. 82.0 85.5 73.0
CAD 88.7 82.5 77.1

Table 3: CAD outperforms the regular decoding method

(Reg.) in all settings except for FLAN-T5 on NQ.

formance on the knowledge conflict datasets, e.g.,

CAD improve GPT-Neo 20B by 54.4% on Memo-

trap and by 128% on NQ-SWAP. This substantial

improvement suggests that context-aware decoding

is particularly beneficial for LMs to adhere to the

given context, in scenarios where the model’s prior

knowledge contradicts with the context knowledge.

5 Analysis

CAD brings consistent improvement to LMs

with different sizes. In Tables 2 and 3, we show

that CAD could be used to enhance a diverse set of

LM families, including OPT, GPT-Neo, LLaMA,

and FLAN-T5. We further investigate whether

CAD is effective in improving language models

of different sizes. Specifically, we focus on OPT

models across a range of sizes: 125M, 350M, 1.3B,

2.7B, 6.7B, 13B, 30B. We observe that the perfor-

mance gain brought by CAD stays consistent with

different model sizes in CNN-DM. In Memotrap

and NQ-SWAP, this gain increases as the model

size grows, indicating that larger LMs can have a

greater tendency to rely on their prior knowledge

instead of reading the contexts, thereby benefiting

more from CAD. In Figure 2, we observe that the

performance gain brought by CAD stays consistent

with different OPT model sizes in CNN-DM. In

Memotrap and NQ-SWAP, this gain increases as

the model size grows, indicating that larger LMs

can have a greater tendency to rely on their prior

knowledge instead of reading the contexts, thereby

benefiting more from CAD.

Effect of adjustment level α We then investigate

the effect of different adjustment level α (a small

α makes the distribution closer to the original next

token distribution). We conduct experiments with

various values of α and present the results in Fig-

ure 3. Across all three datasets, we find α = 0.5

consistently provide robust improvements over reg-

ular decoding.

6 Related Work

Summarization factuality Summarization mod-

els have shown a tendency to generate hallucinated

texts (Maynez et al., 2020; Pagnoni et al., 2021).

This has led to growing efforts to improve the fac-

tual consistency, including applying attentions to
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Limitations

Our proposed CAD method requires the output log-

its from language models in order to contrastively

calculate the probability distribution with and with-

out contexts. However, API-based language mod-

els like ChatGPT and GPT-4 may not provide out-

put logits. Consequently, it is not feasible for CAD

to be directly applied to such fully black-box mod-

els. Furthermore, CAD introduces a hyperparam-

eter α, which serves to regulate the level of con-

trastive adjustment. While we have observed that

α = 0.5 yields consistent enhancements compared

to regular decoding, different models applied to

various tasks may have distinct optimal values for

α. If there exists a very small demonstration set of

in-domain examples, we would consider the selec-

tion of α similar to other decoding parameters like

the top-p or temperature values.
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A Appendix

A.1 Qualitative Analyais

XSUM

Article He passed away peacefully in hospital on Tues-
day after a short illness. Born in Tourmakeady,
County Mayo, he worked as a teacher before
securing a part in the premiere of the Brian
Friel play Translations in 1980. Lally became
a household name in Ireland for his role as
Miley Byrne in the RTE soap opera Glenroe
and later starred in the BBC series Ballykissan-
gel. He also appeared in the Hollywood movie
Alexander and provided the voice for the Oscar-
nominated, animated Irish film, The Secret of
Kells. As a fluent Irish speaker and advocate
of the language, Lally had roles in several Irish
language films ...

Regular Westminister actor Pat Lally died in hospital

on Tuesday night aged 82

CAD Actor Lally, best known for Glenroe and Bal-
lykissangel, has died in hospital on Tuesday

MemoTrap

Input Write a quote that ends in the word “early”.
Better late than

Regular never
CAD early

Table 4: Qualitative examples of contrast-aware decod-

ing. The nonfactual or inconsistent texts are highlighted

in yellow.

We provide qualitative examples for XSUM and

Memotrap in Table 4. In XSUM, the regular de-

coding generates texts that is not mentioned in the

article, whereas CAD produces output exclusively

based on the information in the input article. For

MemoTrap, the standard decoding disregards the

instruction and generates the memorized ending,

while CAD adheres to the instruction within the

given context and produces the desired output.

A.2 Additional Related Work

Contrastive decoding methods Contrastive de-

coding methods have been extensively explored for

text generation. Coherence boosting (Malkin et al.,

2022) and CPMI (van der Poel et al., 2022) demote

a short context from a full context, focusing on

the longer-range context for coherence and over-

all better generation quality. MMI-based decoding

(Li et al., 2016) uses a contrastive formulation to

improve output diversity in dialog generation. In

this work, we adopt a same intuition and focus on

analyzing the knowledge conflict scenarios where

the faithfulness to the context is particularly impor-

tant but difficult for the regular decoding methods.

We also extensively experiment the setup with a di-

verse set of language models and scales. DExperts

(Liu et al., 2021) demotes the output distribution of

an anti-expert (e.g., exposed to toxic language) to

help lead the generations free from the unwanted

attributes. Contrastive decoding (Li et al., 2023)

demotes an amateur model (e.g., models with a

very small number of parameters) to help distill the

expert knowledge learned in the larger, more com-

petitive models. In general, contrastive decoding

has shown to be a general way to control model

outputs, which we reinforce by considering the new

case of factual consistency with the textual context.

Pointwise mutual information in text classifica-

tion The concept of Pointwise Mutual Informa-

tion (PMI) is extensively examined in text classifi-

cation and reranking, serving to adjust the weight-

ing of various classification choices based on the

increased likelihood of an answer given a question

within a specific task domain. Past research has

applied it to zero-shot multiple-choice tasks (Holtz-

man et al., 2021), as well as the reranking of candi-

dates for commonsense and symbolic knowledge

extraction (Guo et al., 2023; Davison et al., 2019).
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