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Abstract

Language models (LMs) often struggle to pay
enough attention to the input context, and gen-
erate texts that are unfaithful or contain hallu-
cinations. To mitigate this issue, we present
context-aware decoding (CAD), which follows
a contrastive output distribution that amplifies
the difference between the output probabili-
ties when a model is used with and without
context. Our experiments show that CAD,
without additional training, significantly im-
proves the faithfulness of different LM fami-
lies, including OPT, GPT, LLaMA and FLAN-
T5 for summarization tasks (e.g., 14.3% gain
for LLaMA in factuality metrics). Further-
more, CAD is particularly effective in over-
riding a model’s prior knowledge when it con-
tradicts the provided context, leading to sub-
stantial improvements in tasks where resolving
the knowledge conflict is essential. Our code
is publicly released at https://github.com/
xhan77/context-aware-decoding.

1 Introduction

Language models (LMs) are effective in generating
fluent continuations of a prompt or document pre-
fix. During generation, they rely on two sources of
knowledge: (1) prior knowledge, which is learned
during pretraining and stored implicitly within the
model parameters; (2) context knowledge, which is
passed as inputs in the prefix context (Chan et al.,
2022). However, it remains an open question how
a pretrained LM, particularly a vanilla LM without
task-specific finetuning, balances these two knowl-
edge sources during generation.

Previous research shows that LMs can fail to pay
enough attention to new information introduced
in the context knowledge. This can lead to hallu-
cination in summarization (Maynez et al., 2020;
Pagnoni et al., 2021), where the generated sum-
maries include facts not present in the input doc-

*Equal contribution. Order randomly determined.

xhan773}@uw.edu

1
1
]
1
1
1
1
1
1
]
1

1

.......

4 .
[l context c

: Argentina won World
' Cups in 1978,1986

1
]
. 1 Two :
1
! and 2022. ! 1 Three !
! ! (1 + a)logit(y | ¢, x
il query x 1, | Ore ' ( logit(y | ¢, x)

' ‘ —alogit(y | x)
| How many World Cups n}w-}
! have Argenti a1 G o emm--a Two
gentina won? ., J
.......... . LM l logit(y|x) ' e
"
1
]
1

---------- s 1 Two One
: . : Three E

l logit(y| c, x) “1

» How many World Cupsl
' have Argentina won? !

(-

I One
A}

Figure 1: An illustration of context-aware decoding.

ument. Insufficient attention to context is espe-
cially problematic when the context knowledge
contradicts with the prior knowledge (Longpre
et al., 2021; Zhou et al., 2023). For instance, when
LLaMA (Touvron et al., 2023) is presented with a
latest document “Argentina won the FIFA World
Cups in 1978, 1986 and 2022 ...” in its context
(Figure 1), it still predicts “Two” in response to the
question “How many World Cups have Argentina
won?”, due in part to the outdated training data.

In this work, we present a simple context-aware
decoding (CAD) method to encourage the LM to
attend to its context during generation. As shown
in Figure 1, CAD samples from a new output dis-
tribution, which amplifies the difference between
output probabilities with and without the context
document. This provides a new form of contrastive
decoding (Li et al., 2023), which effectively down-
weights the prior knowledge when more relevant
contextual information is provided. CAD can be
used with off-the-shelf pretrained language models
without any additional training.

Experimental results from summarization tasks
show that context-aware decoding significantly
enhances the generation faithfulness of vanilla
LMs including OPT (Zhang et al., 2022), GPT-
Neo (Black et al., 2021), LLaMA (Touvron et al.,
2023) and instruction-finetuned LMs such as
FLAN (Chung et al., 2022). For instance, when ap-
plied to LLaMA-30B in CNN-DM, CAD leads to
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substantial improvement in both ROUGE-L (21%)
and factuality evaluation metrics (14.3%). More no-
tably, CAD is especially beneficial for knowledge
conflicting tasks, where the context contains infor-
mation contradictory to the model’s prior knowl-
edge. CAD brings a 2.9x improvement to LLaMA-
30B on a knowledge conflicts QA dataset (Longpre
et al., 2021). Furthermore, we observe that this
gain brought by CAD increases as the model size
grows in knowledge conflicts tasks. These results
demonstrate the potential of CAD in mitigating hal-
lucinations in text generation and overriding prior
knowledge with reliable and trusted information.

2 Method
2.1 Background

Given a LM 6, an input query «, and a context ¢
that contains some external knowledge unfamiliar
or in conflict to the model’s prior knowledge, we
ask our model 6 to generate a response y given the
the query and context. The response can be directly
sampled (autoregressively) from the probability dis-
tribution conditioned on query x and context c:

ye ~ vo(ye | ¢, 2, y<t)

o< exp logity(y: | ¢, @, y<t)

However, in cases where the context ¢ contains
knowledge that is out-of-distribution with respect
to 6, we hypothesize that the model can struggle
to effectively attend to ¢ and overly rely on the
prior knowledge encoded in #. For instance, as
illustrated in Figure 1, when the context c states
“Argentina won the FIFA World Cups in 1978, 1986
and 2022 ...”, it contradicts the LM’s outdated prior
knowledge that Argentina has won the World Cup
twice. The language model may still incorrectly
predict “Two” even when presented with the con-
text ¢ and the query x.

2.2 Context-aware Decoding

To mitigate such issues, we factor out the prior
knowledge from the model’s original output dis-
tribution contrastively. Here, we model the prior
knowledge as po(y; | «,y<;) and adjust the
model’s original output probability distribution us-
ing the pointwise mutual information (PMI) be-
tween the context ¢ and the generation v, condi-
tioned on x, y.;. Formally, we have:

ye ~ Doyt | ¢, 2, Y1)

p@(yt | C, $7y<t) )a

o< py(y | c,w,yq)(
oy | ,y<t)

where the output probability is a product-of-experts
of the original output probability and PMI weighted
by «. Essentially, outputs that become much more
likely when the context is included are preferred
(Figure 1).

This expression is not a valid probability distribu-
tion and needs to be normalized across all possible
values of y;. By rearranging the terms, we obtain
the final form:

Y ~ softmax[ (1 + o) logitg(ye | ¢, 2, y<t)

— alogity(y: | @, y<t)]

Larger o means more weight on our adjustment
(a = 0 reduces to regular decoding).1 We refer
to this simple method as context-aware decoding.
From the adjusted output distribution p, we can
apply various sampling strategies, such as nucleus
sampling (Holtzman et al., 2020).

Essentially, context-aware decoding is just a con-
trastive ensemble between the logits of pg(y; |
c,x,Y<) and po(y; | ®,y<). A similar con-
trastive objective is universal in image genera-
tion, where classifier-free diffusion models (Ho
and Salimans, 2022) predict diffusion noise with
(1+a)eg(x, c)—aeg(x), with ¢ being a control to
the image. In text generation, Malkin et al. (2022)
propose coherence boosting with the same intu-
ition, with a focus on contrasting the full input and
a short premise-free input, promoting coherence
w.r.t. the long context. Instead of using a single
model 6 in this work, different models can also
be used in the distribution adjustments to demote
unwanted model behaviors or distill expert model’s
capability (Liu et al., 2021; Li et al., 2023). We
further discuss related works in §6 and §A.2.

3 Experimental Setup

We perform evaluation on tasks that require LMs to
read and reason over contexts and produce outputs
that are faithful to the contexts. Following prior
work (Zhang et al., 2024; Zhou et al., 2023), we
evaluate the models using prompting.

3.1 Datasets and Metrics

Summarization We conduct summarization ex-
periments on CNN-DM (See et al., 2017) and
XSUM (Narayan et al., 2018). We use ROUGE-
L (Lin, 2004) to evaluate summarization quality.

"If we identify an external knowledge ¢ conditionally in-
dependent to the generation, py(y; | ¢, &, y<r) = po(y: |
T, Y. ), €ven a non-zero o would not have an impact to the
original output distribution.
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To measure the factual consistency of summaries,
we adopt state-of-the-art factuality evaluation met-
rics: BERT-Precision (Pagnoni et al., 2021) and
FactKB (Feng et al., 2023), which has been demon-
strated to achieve high correlations with human
judgment on the summarization datasets, outper-
forming other metrics such as FACTCC (Kryscin-
ski et al., 2020) and SUMMAC (Laban et al., 2022).

Knowledge Conflicts We evaluate performance
on two knowledge conflict datasets: MemoTrap
(Liu and Liu, 2023) and NQ-Swap (Longpre et al.,
2021). MemoTrap is created to investigate whether
language models fall into memorization traps. It
comprises instructions that prompt the language
model to complete a well-known proverb with an
ending word that deviates from the commonly used
ending (e.g., Write a quote that ends in the word
“early”: Better late than __). NQ-Swap is based on
a QA dataset, natural questions (NQ) (Kwiatkowski
et al., 2019), where the objective is to answer ques-
tions based on a gold document. To generate NQ-
Swap, Longpre et al. (2021) identify questions in
NQ with named entity answers, find the supportive
document for each question and replace the gold
answer entity in the document with a random entity.
A faithful LM should generate the replaced entity
as the answer when given the question and mod-
ified document. We also include the original NQ
dataset with the question and original document for
evaluation. We use Exact Match (EM) as the evalu-
ation metric for NQ-Swap, NQ and MemoTrap.

In Table 1, we show illustrative examples of the
contexts we aim to upweight for the model and the
queries across different datasets. We hope LMs pay
more attention to the source document in XSUM
and NQ-Swap. On the other hand, we hope LMs
focus more on the instruction in MemoTrap.

3.2 Models and Baselines

We apply CAD to pretrained language models
including OPT (Zhang et al., 2022), GPT-Neo
(Black et al., 2021), LLaMA (Touvron et al., 2023)
and instruction-finetuned LMs such as FLAN-TS
(Chung et al., 2022).

CAD introduces a hyperparameter « to control
the adjustment level. We set a = 0.5 for all mod-
els evaluated on the summarization datasets and
a = 1 for all models evaluated on the knowledge
conflict datasets. We observed that o = 0.5 gen-
erally yielded good results across all settings and
all datasets, but a slightly higher « is more effec-

XSUM

¢ Article: Prison Link Cymru had 1,099 referrals in
2015-16 and said some ex-offenders were living
rough for up to a year before finding suitable accom-
modation ...

x  Summarize the article in one sentence. Summary:

NQ-SWAP

c Tesla CEO Elon Musk is now in charge of Twitter ,
CNBC has learned ...
x  Who is Twitter CEO now?

MemoTrap

c  Write a quote that ends in the word "early":
x  Better late than

Table 1: An illustation of the inputs to CAD applied to
each dataset. CAD upweights the context c (in red) by
sampling each token from softmax[ (1 + «) logity (y; |

¢, ®, y<) — alogity(y: | T, y<)].

tive in the knowledge conflict setting, where the
prior knowledge needs to be factored out more. We
investigate the effect of « in Section 5.

For the baselines, we use the regular decod-
ing methods following prior work (Longpre et al.,
2021; Kwiatkowski et al., 2019): greedy decod-
ing for knowledge conflict tasks and top-p sam-
pling with p=0.9 for summarization tasks (Holtz-
man et al., 2020). For CAD, we use the same
sampling strategies on top of the adjusted output
probability distribution.

4 Results

Summarization Table 2 reports the results on
CNN-DM and XSUM. We observe that CAD
outperforms the standard decoding algorithm by
a large margin in all eight models across both
datasets. Specifically, when applied to LLaMA-
30B in CNN-DM, CAD leads to 21% increase in
ROUGE-L, 14.3% increase in factKB and 7.8%
increase in BERT-P. This result demonstrates that
CAD could effectively improve the quality and fac-
tuality of the generated summaries from a diverse
set of language models.

Knowledge Conflicts Our results for the knowl-
edge conflict datasets, NQ-SWAP and MemoTrap,
as well as the original NQ are detailed in Table 3.
CAD is significantly better than the regular decod-
ing in all settings, with the exception of a minor de-
crease observed for FLAN-TS on the non-conflict
NQ dataset.” Despite this, CAD achieves better per-

*The slight decline in performance can be attributed to the
NQ dataset being included in the instruction-finetuning sets
used by FLAN-TS.
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| CNN-DM

XSUM

Model Decoding | ROUGE-L  factKkB BERT-P | ROUGE-L factKB BERT-P

13B Regular 22.0 77.8 86.5 16.4 47.2 85.2

OPT CAD 27.4 84.1 90.8 18.2 64.9 87.5
30B Regular 222 81.7 87.0 17.4 38.2 86.1

CAD 284 87.0 90.2 19.5 45.6 89.3

3B Regular 24.3 80.5 87.5 17.6 54.0 86.6

GPT-Neo CAD 27.7 87.5 90.6 18.1 65.1 89.1
20B Regular 18.7 68.3 85.2 14.9 422 85.7

CAD 24.5 71.5 89.4 19.0 63.3 90.6

13B Regular 27.1 80.2 89.5 19.0 53.5 87.8

LLaMA CAD 32.6 90.8 93.0 21.1 73.4 91.7
30B Regular 25.8 76.8 88.5 18.7 47.7 87.1

CAD 31.8 87.8 92.2 22.0 66.4 90.3

3B Regular 25.5 90.2 91.6 18.8 31.9 88.2

FLAN CAD 26.1 93.9 92.1 19.5 359 88.8
11B Regular 25.4 90.4 91.4 19.4 29.8 88.3

CAD 27.1 93.1 92.2 20.0 35.0 88.8

Table 2: CAD consistently outperform the regular decoding method in terms of both summary quality metric
(ROUGE-L) and summary factuality (factKB and BERT-P). The best scores for each setting are boldfaced.
FLAN 3B and 11B refer to FLAN-TS5 XL and FLAN-T5 XXL respectively.

Model Decoding | Memo. NQ NQ-SWAP
13B Reg. 32.5 29.2 18.8
OPT CAD 44.5 32.2 36.9
30B Reg. 28.4 29.4 14.7
CAD 41.0 35.5 29.0
3B Reg. 22.5 31.9 19.1
GPT CAD 47.3 39.9 41.2
’ 20B Reg. 37.1 22.8 16.1
CAD 573 32.1 36.8
13B Reg. 23.8 22.3 11.7
CAD 571 33.6 36.7
LLaMA 30B Reg. 25.8 23.8 9.6
CAD 50.6 34.0 37.7
3B Reg. 69.2 81.8 71.4
FLAN CAD 72.2 80.3 73.3
11B Reg. 82.0 85.5 73.0
CAD 88.7 82.5 77.1

Table 3: CAD outperforms the regular decoding method
(Reg.) in all settings except for FLAN-T5 on NQ.

formance on the knowledge conflict datasets, e.g.,
CAD improve GPT-Neo 20B by 54.4% on Memo-
trap and by 128% on NQ-SWAP. This substantial
improvement suggests that context-aware decoding
is particularly beneficial for LMs to adhere to the
given context, in scenarios where the model’s prior
knowledge contradicts with the context knowledge.

5 Analysis

CAD brings consistent improvement to LMs
with different sizes. In Tables 2 and 3, we show
that CAD could be used to enhance a diverse set of
LM families, including OPT, GPT-Neo, LLaMA,
and FLAN-T5. We further investigate whether

CAD is effective in improving language models
of different sizes. Specifically, we focus on OPT
models across a range of sizes: 125M, 350M, 1.3B,
2.7B, 6.7B, 13B, 30B. We observe that the perfor-
mance gain brought by CAD stays consistent with
different model sizes in CNN-DM. In Memotrap
and NQ-SWAP, this gain increases as the model
size grows, indicating that larger LMs can have a
greater tendency to rely on their prior knowledge
instead of reading the contexts, thereby benefiting
more from CAD. In Figure 2, we observe that the
performance gain brought by CAD stays consistent
with different OPT model sizes in CNN-DM. In
Memotrap and NQ-SWAP, this gain increases as
the model size grows, indicating that larger LMs
can have a greater tendency to rely on their prior
knowledge instead of reading the contexts, thereby
benefiting more from CAD.

Effect of adjustment level «  We then investigate
the effect of different adjustment level o (a small
« makes the distribution closer to the original next
token distribution). We conduct experiments with
various values of o and present the results in Fig-
ure 3. Across all three datasets, we find o = 0.5
consistently provide robust improvements over reg-
ular decoding.

6 Related Work

Summarization factuality Summarization mod-
els have shown a tendency to generate hallucinated
texts (Maynez et al., 2020; Pagnoni et al., 2021).
This has led to growing efforts to improve the fac-
tual consistency, including applying attentions to
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Figure 3: Effect of the adjustment level o. The y-axis is the performance and the x-axis is a.

fact triples extracted from source documents (Cao
et al., 2018; Zhu et al., 2021), optimizing sum-
marization models towards a factual consistency
metrics (Nan et al., 2021; Cao and Wang, 2021),
learning a post-editing error corrector (Dong et al.,
2020) and removing noisy training samples (Kang
and Hashimoto, 2020; Goyal and Durrett, 2021).
These methods require additional fine-tuning and
are not directly suitable for zero-shot and few-shot
prompting scenarios. King et al. (2022) and Srid-
har and Visser (2022) propose to alleviate the issue
by constraining beam search algorithms.

Knowledge conflicts When presented with an up-
dated document with conflicting knowledge, we ex-
pect language models to generate responses based
on the provided contexts rather than relying solely
on outdated parametric knowledge. This setting
is especially valuable to retrieval-augmented lan-
guage models (Khandelwal et al., 2020; Shi et al.,
2024; Min et al., 2023; Yasunaga et al., 2023),
where documents retrieved from external databases
are used as additional input to provide LMs addi-
tional knowledge. However, simply adding docu-
ments does not always change the model predic-

tions, as current LMs often overlook the contexts
and rely heavily on their prior parametric knowl-
edge (Longpre et al., 2021; Chen et al., 2022). Ex-
isting approaches for improving model’s faithful-
ness to the context, such as the prompting-based
method (Zhou et al., 2023), are limited in that
they could only apply to large-scale instruction-
finetuned LMs like OpenAl’s text-davinci-003. In
contrast, our work investigates a decoding strategy
to tackle this problem, applicable to any LM.

7 Conclusion

Language models suffer from an insufficient at-
tention to the given context compared to its prior
knowledge, leading to an unfaithful generation
to the input context. We present CAD, a simple
inference-time method that downweights an out-
put probability associated with the model’s prior
knowledge to promote models’ attention to the con-
text. We experiment on two families of tasks that
require a strong attention to the context and show
that CAD provides more faithful outputs across
different language models of various sizes.
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Limitations

Our proposed CAD method requires the output log-
its from language models in order to contrastively
calculate the probability distribution with and with-
out contexts. However, API-based language mod-
els like ChatGPT and GPT-4 may not provide out-
put logits. Consequently, it is not feasible for CAD
to be directly applied to such fully black-box mod-
els. Furthermore, CAD introduces a hyperparam-
eter a, which serves to regulate the level of con-
trastive adjustment. While we have observed that
a = 0.5 yields consistent enhancements compared
to regular decoding, different models applied to
various tasks may have distinct optimal values for
a. If there exists a very small demonstration set of
in-domain examples, we would consider the selec-
tion of « similar to other decoding parameters like
the top-p or temperature values.
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A Appendix

A.1 Qualitative Analyais

XSUM

Article  He passed away peacefully in hospital on Tues-
day after a short illness. Born in Tourmakeady,
County Mayo, he worked as a teacher before
securing a part in the premiere of the Brian
Friel play Translations in 1980. Lally became
a household name in Ireland for his role as
Miley Byrne in the RTE soap opera Glenroe
and later starred in the BBC series Ballykissan-
gel. He also appeared in the Hollywood movie
Alexander and provided the voice for the Oscar-
nominated, animated Irish film, The Secret of
Kells. As a fluent Irish speaker and advocate
of the language, Lally had roles in several Irish

language films ...
Regular ~ Westminister actor Pat Lally died in hospital
on Tuesday night aged 82

Actor Lally, best known for Glenroe and Bal-
lykissangel, has died in hospital on Tuesday

CAD

MemoTrap

Input Write a quote that ends in the word “early”.
Better late than
never

early

Regular
CAD

Table 4: Qualitative examples of contrast-aware decod-
ing. The nonfactual or inconsistent texts are highlighted
in yellow.

We provide qualitative examples for XSUM and
Memotrap in Table 4. In XSUM, the regular de-
coding generates texts that is not mentioned in the
article, whereas CAD produces output exclusively
based on the information in the input article. For
MemoTrap, the standard decoding disregards the
instruction and generates the memorized ending,
while CAD adheres to the instruction within the
given context and produces the desired output.

A.2 Additional Related Work

Contrastive decoding methods Contrastive de-
coding methods have been extensively explored for
text generation. Coherence boosting (Malkin et al.,
2022) and CPMI (van der Poel et al., 2022) demote
a short context from a full context, focusing on
the longer-range context for coherence and over-
all better generation quality. MMI-based decoding
(Li et al., 2016) uses a contrastive formulation to
improve output diversity in dialog generation. In
this work, we adopt a same intuition and focus on
analyzing the knowledge conflict scenarios where
the faithfulness to the context is particularly impor-
tant but difficult for the regular decoding methods.

We also extensively experiment the setup with a di-
verse set of language models and scales. DExperts
(Liu et al., 2021) demotes the output distribution of
an anti-expert (e.g., exposed to toxic language) to
help lead the generations free from the unwanted
attributes. Contrastive decoding (Li et al., 2023)
demotes an amateur model (e.g., models with a
very small number of parameters) to help distill the
expert knowledge learned in the larger, more com-
petitive models. In general, contrastive decoding
has shown to be a general way to control model
outputs, which we reinforce by considering the new
case of factual consistency with the textual context.

Pointwise mutual information in text classifica-
tion The concept of Pointwise Mutual Informa-
tion (PMI) is extensively examined in text classifi-
cation and reranking, serving to adjust the weight-
ing of various classification choices based on the
increased likelihood of an answer given a question
within a specific task domain. Past research has
applied it to zero-shot multiple-choice tasks (Holtz-
man et al., 2021), as well as the reranking of candi-
dates for commonsense and symbolic knowledge
extraction (Guo et al., 2023; Davison et al., 2019).
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