
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (Volume 1: Long Papers), pages 4067–4082

June 16-21, 2024 ©2024 Association for Computational Linguistics

SEMSTAMP: A Semantic Watermark with Paraphrastic Robustness
for Text Generation

Abe Bohan Hou♣* Jingyu Zhang♣* Tianxing He♡*

Yichen Wang♢ Yung-Sung Chuang♠ Hongwei Wang‡ Lingfeng Shen♣

Benjamin Van Durme♣ Daniel Khashabi♣ Yulia Tsvetkov♡

♣Johns Hopkins University ♡University of Washington ♢Xi’an Jiaotong University
♠Massachusetts Institute of Technology ‡Tencent AI Lab

{bhou4, jzhan237}@jhu.edu goosehe@cs.washington.edu

Abstract

Existing watermarked generation algorithms

employ token-level designs and therefore, are

vulnerable to paraphrase attacks. To address

this issue, we introduce watermarking on the

semantic representation of sentences. We

propose SEMSTAMP, a robust sentence-level

semantic watermarking algorithm that uses

locality-sensitive hashing (LSH) to partition

the semantic space of sentences. The algorithm

encodes and LSH-hashes a candidate sentence

generated by a language model, and conducts

rejection sampling until the sampled sentence

falls in watermarked partitions in the seman-

tic embedding space. To test the paraphras-

tic robustness of watermarking algorithms, we

propose a “bigram paraphrase” attack that pro-

duces paraphrases with small bigram overlap

with the original sentence. This attack is shown

to be effective against existing token-level wa-

termark algorithms, while posing only minor

degradations to SEMSTAMP. Experimental re-

sults show that our novel semantic watermark

algorithm is not only more robust than the pre-

vious state-of-the-art method on various para-

phrasers and domains, but also better at pre-

serving the quality of generation.1

1 Introduction

This work focuses on algorithms for detecting

machine-generated text via watermarked gener-

ation—adding signatures during text generation

which are algorithmically detectable, yet are imper-

ceptible to human eye (Atallah et al., 2001). This

problem is of extreme importance now that large

language models (LLMs) such as GPT-4 (OpenAI,

2023) generate realistic text, increasing risks of

LLM misuse, such as generation of misinformation,

impersonation, and copyright infringements (Wei-

*Equal Contribution. All three are corresponding authors.
1We release code in https://github.com/bohanhou14/

SemStamp

dinger et al., 2021; Ippolito et al., 2022; Pagnoni

et al., 2022; House, 2023).

The dominant body of recent works on water-

marked generation operate by injecting token-level

signatures during decoding time (Kuditipudi et al.,

2023; Yoo et al., 2023; Wang et al., 2023; Christ

et al., 2023; Fu et al., 2023, i.a.). As a representa-

tive example, Kirchenbauer et al. (2023a) propose

a watermarked generation algorithm that injects

watermark signals that are extracted based on the

previously generated tokens. Despite its efficiency,

follow-up work has shown that corrupting the gen-

erated text, especially paraphrasing, could weaken

its robustness (Krishna et al., 2023; Sadasivan et al.,

2023; Kirchenbauer et al., 2023b).

We propose SEMSTAMP, a semantic watermark

algorithm that is robust to sentence-level para-

phrase attacks (§2.2). Depicted in Figure 1, our

core intuition is that while paraphrasing alters the

surface-form tokens, the sentence-level semantics

are unchanged. Thus, instead of partitioning the

vocabulary, our watermark operates on the seman-

tic space of sentence embeddings, partitioned by

locality-sensitive hashing (LSH; Indyk and Mot-

wani, 1998; Charikar, 2002). We develop two key

components—a sentence encoder trained with con-

trastive learning (CL; Wieting et al., 2022) and a

margin-based constraint—to enhance paraphrastic

robustness.

To stress-test the robustness of watermarking al-

gorithms, we develop a novel attack method that

minimizes bigram overlap during paraphrasing,

and name it the bigram paraphrase attack (§2.3).

Experimental results (§3) demonstrate that our pro-

posed semantic watermark remains effective while

token-level watermarks suffer significantly from

the bigram attack.

We summarize our main contributions as follows.

First, we propose a sentence-level semantic water-

mark for LLMs and show that it is robust to para-

phrasing and more quality-preserving than a token-

4067

11
10

0100
Lucy smiled.

It was genuine.

Her eyes crinkled.

She was happy.

She felt delighted.

Semantic
Space

Language
Model

Robust
Sentence Encoder

n

1

n

2

LSH hyperplane
LSH normal vector

01 LSH signature
Valid region embedding
Blocked region embedding

Rejection Sampling

blocked

blocked

valid valid

 ① Watermarked Generation

Today the company announced quarterly results for

the period ending October 31, 2017. The company

also provided an update on its ongoing Phase 3

clinical trial of the Phase 2/3 B-cellderived T

cell engager program. These results are included

in a newly released Current Report on Form 8-K

for the period ending September 30, 2017. You can

read the full report at www.curis.com.

No Watermark

SEMSTAMP

Today the company announced results for the third

quarter of 2017. The company's board of directors

also declared a quarterly cash dividend of $0.23

per share. The dividend is payable to shareholders

of record on November 14, 2017. Shareholders are

invited to attend the company's annual meeting to

propose and discuss a proposal to adopt a new long-

term stockholder's plan. The meeting will be held

on December 7, 2017.

human written
z-test

machine written
z-test

② Paraphrase Attack

Watermark remains
valid after paraphrase

③ Watermark detecton

Adversary paraphrases the generated text

Figure 1: An overview of the proposed SEMSTAMP algorithm. Left: During generation, the watermark is injected

by mapping candidate sentences into embeddings through a robust sentence encoder, dividing the semantic space

through locality-sensitive hashing, and rejection sampling from the LM to generate sentences with valid region

embeddings. Right: Detection is determined by the number of valid sentences in a candidate generation.

level watermark algorithm. Second, we develop a

novel attack method for watermarking algorithms,

namely the bigram paraphrase attack, which can

effectively weaken token-level watermarking but

only poses minor degradations to our semantic wa-

termark. Third, we fine-tune a paraphrase-robust

sentence encoder with a contrastive learning objec-

tive and develop a rejection margin constraint to

enhance the paraphrastic robustness of our seman-

tic watermark algorithm.2

2 Approach

2.1 Preliminaries

Text Generation from Autoregressive LMs An

autoregressive LM, denoted by PLM, models the

conditional distribution of the next token over the

vocabulary V . Given a token history w1:t =
w1, . . . , wt where each token wi ∈ V , the next to-

ken is generated by sampling wt+1 ∼ PLM(·|w1:t).
We introduce a sentence-level notation: s(t+1) ∼
PLM(·|s(1) . . . s(t)) refers to the sampling of the

next sentence given sentence history s(1) . . . s(t).

Detecting Machine-Generated Text through Wa-

termarking The goal of watermarked generation

(Kuditipudi et al., 2023; Zhao et al., 2023, i.a.) is to

facilitate the detection of machine-generated text.

A watermarked generation algorithm adds a sta-

tistical signal during the decoding stage of LLMs.

The watermarked text is then provided to the user.

At the detection stage, a piece of text is classified

as machine-generated if the watermark is detected.

Because malicious users could postprocess LLM-

generated texts before detection, it is crucial that

the watermark remains detectable under various

text perturbations attacks, including text insertion,

substitution, deletion, and paraphrasing.

2Our code, model, and data will be released publicly.

Token-Level Watermarking and its Susceptibil-

ity to Paraphrase Attacks Kirchenbauer et al.

(2023a) propose a watermark that is injected at the

token level. At each time step of the generation, the

vocabulary V is pseudorandomly partitioned into a

“green list” and a “red list”. The random seed for

partition is computed by a hash of the previously

generated token. A globally fixed bias parameter

δ > 0 is added to the logit of each green list token

so that the LLM is induced to generate more green

list tokens. The watermark is detected by conduct-

ing one proportion z-test (detailed in §B) on the

number of green list tokens in the generated text.

Because of the token-level nature of the water-

mark algorithm, perturbing a token wt in a gener-

ated sequence w1:T through paraphrasing would

change the green list for token wt+1. As a result, a

green token wt+1 might be considered red, which

undermines the detectability of the watermark (Kr-

ishna et al., 2023). Moreover, because the water-

mark changes logits directly, it can degrade the

quality of generated text (Fu et al., 2023).

Locality-Sensitive Hashing We will use LSH

(Indyk and Motwani, 1998) to partition the se-

mantic embedding space. It hashes similar inputs

into similar signatures, thereby reducing the di-

mensionality and providing a similarity measure

for a high-dimensional input space R
h. Given an

LSH dimension d, we adopt the cosine-preserving

method from Charikar (2002) which produces a

d-bit binary signature through random hyperplane

projections, and each hyperplane is represented

by a random normal vector n(i) drawn from the

h-dimensional Gaussian distribution.3 The LSH

signature for an embedding vector v ∈ R
h is

then determined by the sign of the dot product be-

3Normal vector n(i) ∈ R
h represents the hyperplane that

is orthogonal to n(i) and passes through the origin.

4068

Algorithm 1 SEMSTAMP text generation algorithm

Input: language model PLM, prompt s(0), number of sentences to generate T .
Params: sentence embedding model Membd with embedding dimension h, maxout number Nmax, margin m > 0, valid region
ratio γ ∈ (0, 1), LSH dimension d, a large prime number p.

Output: generated sequence s(1) . . . s(T).

procedure SEMSTAMP

init LSH(·), randomly initialize d vectors n(1) . . . n(d) ∈ R
h, to create 2d semantic subspaces.

for t = 1, 2, . . . , T do

1. Compute the LSH signature of the previously generated sentence, SIG(s(t−1)), and use [SIG(s(t−1))]10 · p as

the seed to randomly divide the space of signatures {0, 1}d into a “valid region set” G(t) of size γ · 2d and a

“blocked region set” R(t) of size (1− γ) · 2d.

2. repeat Sample a new sentence from LM,

until the signature of the new sentence is in the “valid region set”, SIG(s(t)) ∈ G(t) and the margin requirement

MARGIN(s(t),m) is satisfied.

or has repeated Nmax times

3. Append the selected sentence s(t) to context.

end for
return s(1) . . . s(T)

end procedure

Algorithm 2 SEMSTAMP subroutines

function SIG(s)
v ←Membd(s) // obtain embeddings of sentence s
c← LSH(v) // obtain signature c of the embedding
return c

end function

function MARGIN(s,m)
v ←Membd(s) // obtain embeddings of sentence s

x← mini=1,...,d{| cos(v, n
(i))|} // compute the mini-

mum distance between v and all LSH normal vectors n(i).
return True If x ≥ m Else False

end function

tween the candidate vector and the normal vectors:

LSHi : R
h 7→ {0, 1} which gives the i-th digit sig-

nature, is defined by LSHi(v) = ✶
(

n(i) · v > 0
)

4,

and LSH(v) = [LSH1(v)|| . . . ||LSHd(v)] is the

concatenation of all d digits.

2.2 SEMSTAMP: A Semantic Watermark with

Paraphrastic Robustness

We begin with a high-level overview of the SEM-

STAMP (Alg. 1). Our approach is motivated by the

intuition that paraphrasing alters the surface-form

tokens but preserves sentence-level semantics. We

apply the watermark at the sentence-level semantic

space (instead of the token-level vocabulary) to pre-

serve the watermark under token changes. To do

so, we use a semantic sentence encoder Membd that

produces vectors in R
h. In practice, we fine-tune an

off-the-shelf encoder with a contrastive objective

(Wieting et al., 2022) for paraphrastic robustness.

During the initialization of SEMSTAMP water-

4
✶(·) is the indicator function.

marked generation, we partition the space of sen-

tence embeddings (produced by Membd) with the

LSH introduced in §2.1. Concretely, we initialize

the LSH : Rh 7→ {0, 1}d function by sampling nor-

mal vectors n(1) . . . n(d) to represent d hyperplanes,

and treat the space of LSH signatures {0, 1}d as a

natural partitioning of Rh into 2d regions.

At each generation step, given a sentence history

s(0) . . . s(t−1), we first produce the LSH signature

of the previously generated sentence SIG(s(t−1)),
where SIG(·) encodes and LSH-hashes the sen-

tence, as defined in Alg. 2. Next, we pseudoran-

domly divide the LSH partitions into a set of “valid”

regions G(t) and a set of “blocked” regions R(t),

where the masking is seeded by SIG(s(t−1)).5 To

produce the watermarked next sentence, we sample

with rejection a new sentence s(t) from the LM

until its embedding lies in the “valid” region in the

semantic space.6

To detect the SEMSTAMP watermark, we con-

duct a one-proportion z-test on the number of valid-

region sentences in the generated text. Since this

detection is similar to Kirchenbauer et al. (2023a),

we defer the details to §B.

Because a proper paraphrase should retain the

meaning of the original sentence, we hypothesize

that the LSH signature is likely to remain the same

after paraphrasing (Figure 4 provides empirical re-

5Kirchenbauer et al. (2023a) use “green/red” for vocabu-
lary split. Instead, we adopt “valid/blocked” as the terminol-
ogy for semantic region partition to be more accessible.

6We set a maxout number Nmax so that if there is still no
valid sentence after sampling Nmax times, we choose the last
sample as the next sentence.

4069

sults). Therefore, the valid region partition for

the next sentence would not change, ensuring the

watermark is still detectable after the paraphrase

attack. Below we explain each core component of

SEMSTAMP in detail.

Paraphrase-Robust Sentence Encoder A re-

quirement for SEMSTAMP is a semantic encoder

to map sentences into semantic embeddings. Our

encoder is built upon Sentence-BERT (SBERT;

Reimers and Gurevych, 2019), a fine-tuned siamese

network trained to produce sentence embeddings

whose cosine similarity mirror the semantic simi-

larity of the STS benchmark (Cer et al., 2017).

To enhance the encoder’s robustness to para-

phrase, we further fine-tune the SBERT model us-

ing contrastive learning (Wieting et al., 2022). For

each sentence si in a corpus, we first produce its

paraphrase ti using an off-the-shelf paraphrasing

model, Pegasus (Zhang et al., 2020).7 Next, we

sample a random sentence t′i from the corpus that

is not a paraphrase of si to serve as the negative

example. The objective promotes the original sen-

tence to be more similar to the paraphrase than the

negative example by a margin of δ > 0:

min
θ

∑

i

max
{

δ − fθ(si, ti) + fθ(si, t
′
i), 0

}

, (1)

where fθ is the cosine similarity between the em-

bedded sentences, fθ(s, t) = cos
(

Mθ(s),Mθ(t)
)

,

and Mθ is the encoder model with parameter θ.

Semantic Space Partitioning through LSH

During the initialization of watermarked gener-

ation, normal vectors n(1) . . . n(d) are randomly

drawn from the h-dimensional Gaussian distribu-

tion to represent d LSH hyperplanes in the seman-

tic space R
h. The hyperplanes are fixed during

generation and detection to serve as the basis for

partitioning. As introduced in §2.1, this induces a

d-bit binary signature LSH(v) for a vector v ∈ R
h.

Consequently, we use each of the 2d signatures

c ∈ {0, 1}d to represent a region in the semantic

space consisting of points with signature c.

During the generation of a new sentence s(t),

we apply a watermarking “mask” on the semantic

space by pseudorandomly partitioning the space

of signatures {0, 1}d into a valid region set G(t) of

size γ · 2d and a blocked region set R(t) of size

(1− γ) · 2d, where γ ∈ (0, 1) determines the ratio

of valid regions. The masking is seeded by the

LSH signature of the last sentence s(t−1) and thus

7Link to Pegasus paraphraser.

11
10

01
00

n1

n2

LSH normal vector
LSH hyperlane

Rejected margin

Figure 2: An illustration for margin-based rejection.

Sentence embeddings at LSH hyperplane boundaries

are rejected (highlighted in red).

varies for each time-step t. Specifically, we convert

the binary signature SIG(s(t−1)) to decimal and

use [SIG(s(t−1))]10 × p to seed the randomization.

Here p is a large prime number and [.]10 an operator

that casts binary numbers to decimal numbers. The

condition for rejection sampling is that the LSH

signature of the new sentence must fall into one of

the valid regions, i.e., LSH(Membd(s
(t)) ∈ G(t).

Margin-Based Constraint for Robustness For

the SEMSTAMP algorithm to be robust, the LSH

signature of the sentences should remain the same

under paraphrase attack. Empirically, we found

the robustness from contrastive learning (Eq. 1)

is not strong enough to preserve consistent LSH

signature under paraphrasing. Therefore, we add

an additional rejection sampling requirement that

the sampled sentence s(t) must have the absolute

value of cosine similarity with each normal vector

n(i) larger than a margin m > 0:

min
i=1,...,d

| cos(n(i), vt)| > m, (2)

where vt = Membd(s
(t)) is the embedding of the

candidate next sentence.8

Visually, this is akin to rejecting sentences whose

embeddings lie near the boundaries of an LSH hy-

perplane. We illustrate this in Figure 2. In our

experiments (§3), we show that this margin-based

rejection requirement can effectively increase the

LSH signature robustness under paraphrasing.

2.3 The Bigram Paraphrase Attack

We develop a strong “bigram” paraphrase attack

with the following intuition. Because existing

8We discuss additional details on the condition for consis-
tent LSH signature in §E.

4070

token-level watermark algorithms hash the last gen-

erated token to determine the watermarking signa-

ture (Kirchenbauer et al., 2023a), any choice of

token at position t would affect the watermark of

position t + 1. Therefore, we hypothesize that

token-level watermarks might be especially sensi-

tive to bigram (two adjacent tokens) perturbation.

Motivated by this intuition, we propose and ex-

plore the bigram paraphrase attack, a simple yet

effective variant of the basic sentence-level para-

phrase attack. Specifically, given a neural para-

phrase model, we first decode a large number of

top-raking sequences s′1 . . . s
′
k with beam search,

obtaining k paraphrase candidates. Next, we select

the candidate that has the smallest bigram overlap

with the original sentence. Moreover, to preserve

the paraphrasing quality, we constrain the para-

phrase attack with BERTScore (Zhang et al., 2019)

between paraphrases and original sentences:

s′ = argmin
x∈{s′1,...,s

′

k
}

B(x, s),

subject to S(s′1, s)− S(x, s) ≤ ∆ · S(s′1, s),

where s denotes the original sentence, B(x, s)
is a simple counting of overlapped bigrams be-

tween sequences x and s, S(x, s) denotes the

BERTScore between sequence x and s, and ∆ is

the BERTScore threshold ratio. See Figure 5 for

an example in action.

3 Experiments

3.1 Experimental Setup

Datasets We conduct experiments to validate the

detection robustness and quality of SEMSTAMP

on the RealNews subset of the C4 dataset (Raffel

et al., 2020), BookSum (Kryściński et al., 2021),

and Reddit-TIFU (Kim et al., 2019), a dataset with

informal text style. We further analyze the detec-

tion results and generation quality on 1000 random

samples.

Metrics We use binary classification metrics: (1)

area under the receiver operating characteristic

curve (AUC), and (2) the true positive rate when the

false positive rate is 1% or 5% (TP@1%, TP@5%),

i.e., the percentage of machine-generated text (the

“positive” class in the classification setting) that

is correctly detected when 1% and 5% of human

texts (the “negative” class) are misclassified as

machine-generated texts. A piece of text is classi-

fied as machine-generated when its z-score exceeds

a threshold chosen based on a given false positive

rate, which we explain in detail in §B. Differing

from KGW algorithm (Kirchenbauer et al., 2023a),

our algorithm treat sentences as the unit during

z-score computation.

To evaluate generation quality, we measure the

perplexity (PPL) with OPT-2.7B (Zhang et al.,

2022). Generation diversity is measured with tri-

gram text entropy (Zhang et al., 2018) (Ent-3), i.e.,

the entropy of the trigram frequency distribution

of the generated text. We also evaluate generations

with Sem-Ent (Han et al., 2022), an automatic met-

ric for semantic diversity. Following the setup in

Han et al. (2022), we use the last hidden states

of OPT-2.7B models on generations as their se-

mantic representation and perform k-means clus-

tering. Sem-Ent is the entropy of semantic cluster

assignments of test generations. We evaluate the

quality of paraphrases using BERTScore (Zhang

et al., 2019) between original generations and their

paraphrases.

Training, Generation, and Baselines For con-

trastive learning of SBERT, we paraphrase 8k para-

graphs of the RealNews dataset (Raffel et al., 2020)

using the Pegasus paraphraser (Zhang et al., 2020)

through beam search with 25 beams. We then fine-

tune an SBERT model9 with an embedding dimen-

sion h = 768 on this subset for 3 epochs with a

learning rate of 4×10−5, using contrastive learning

objective (Eq. 1). We set the contrastive learning

margin δ = 0.8 which is tuned from the dev set.

For watermarked generation, we use a fine-tuned

version of OPT-1.3B (Zhang et al., 2022) as our

base model to produce text with shorter length per

sentence and conduct sampling at a temperature of

0.7 following Kirchenbauer et al. (2023a) with a

repetition penalty of 1.05. Setting 32 as the prompt

length, we let 200 be our default generation length

but also experiment on various different lengths

(Fig. 3). To generate from SEMSTAMP, we sample

at a LSH dimension d = 3 with valid region ratio

γ = 0.25 and rejection margin m = 0.02. See §3.2

for the impact on hyperparameter choices.

We choose the popular watermarking algorithm

Kirchenbauer et al. (KGW; 2023a) as our main

baseline. In the paraphrase attack phase, we

paraphrase generations by SEMSTAMP and KGW

and compare their post-hoc detection rates after

attacks. We also experiment with a distortion-

free watermark by Kuditipudi et al. (KTH; 2023)

and UNIGRAM-WATERMARK (Zhao et al., 2023),

9sentence-transformers/all-mpnet-base-v1

4071

RealNews | BookSum | Reddit-TIFU

Paraphraser Algorithm AUC ↑ TP@1% ↑ TP@5% ↑

KGW 99.6 | 99.9 | 99.3 98.4 | 99.4 | 97.5 98.9 | 99.5 | 98.1
No Paraphrase

SSTAMP 99.2 | 99.7 | 99.7 93.9 | 98.8 | 97.7 97.1 | 99.1 | 98.2

KGW 95.9 | 97.3 | 94.1 82.1 | 89.7 | 87.2 91.0 | 95.3 | 87.2
Pegasus

SSTAMP 97.8 | 99.2 | 98.4 83.7 | 90.1 | 92.8 92.0 | 96.8 | 95.4

KGW 92.1 | 96.5 | 91.7 42.7 | 56.6 | 67.2 72.9 | 85.3 | 67.6
Pegasus-bigram

SSTAMP 96.5 | 98.9 | 98.0 76.7 | 86.8 | 89.0 86.0 | 94.6 | 92.9

KGW 88.5 | 94.6 | 79.5 31.5 | 42.0 | 22.8 55.4 | 75.8 | 43.3
Parrot

SSTAMP 93.3 | 97.5 | 90.2 56.2 | 70.3 | 56.2 75.5 | 88.5 | 70.5

KGW 83.0 | 93.1 | 82.8 15.0 | 39.9 | 27.6 37.4 | 71.2 | 49.7
Parrot-bigram

SSTAMP 93.1 | 97.5 | 93.9 54.4 | 71.4 | 71.8 74.0 | 89.4 | 82.3

KGW 82.8 | 87.6 | 84.1 17.4 | 17.2 | 27.3 46.7 | 52.1 | 50.9
GPT3.5

SSTAMP 83.3 | 91.8 | 87.7 33.9 | 55.0 | 47.5 52.9 | 70.8 | 58.2

KGW 75.1 | 77.1 | 79.8 5.9 | 4.4 | 19.3 26.3 | 27.1 | 41.3
GPT3.5-bigram

SSTAMP 82.2 | 90.5 | 87.4 31.3 | 47.4 | 43.8 48.7 | 63.6 | 55.9

Table 1: Detection results under different paraphraser settings. All numbers are in percentages. ↑ indicates higher

values are preferred. The numbers in parenthesis show the changes over our baseline. SEMSTAMP is more robust

than KGW on multiple paraphrasers, datasets, and both the regular and bigram paraphrase attacks.

PPL↓ Ent-3↑ Sem-Ent↑

No watermark 10.02 12.17 5.53
KGW 12.17 12.10 5.47

SEMSTAMP 10.20 12.16 5.51

Table 2: Quality evaluation results. ↑ and ↓ indicate the

direction of preference (higher and lower). SEMSTAMP

preserves the quality of generated text.

but preliminary results show that KTH performs

poorly compared to both KGW and SEMSTAMP

against our paraphrase attacks for the AUC metric.

UNIGRAM-WATERMARK also demonstrates strong

robustness against paraphrase, but it is vulnerable

to being reverse-engineered (also see §D).

Paraphrase Attack For paraphrase attack exper-

iments, watermarked generations are paraphrased

sentence-by-sentence with the Pegasus paraphraser

(Zhang et al., 2020), the Parrot paraphrase used in

Sadasivan et al. (2023), and GPT-3.5-Turbo (Ope-

nAI, 2022). We use beam search with 25 beams for

both Pegasus and Parrot. For GPT-3.5-Turbo, we

provide the sentences before the current sentence

as the context and prompt the model to paraphrase

via the OpenAI API.10 A detailed description of

prompts is included in §E.

To implement the bigram paraphrase attack, we

prompt the GPT-3.5-Turbo to return 10 paraphrases

of the same sentence. For the Pegasus and Parrot

paraphrasers, we select the candidate sentence with

10
https://platform.openai.com/playground/

100 200 300 400

88.0

90.0

92.0

94.0

96.0

98.0

100.0

100 200 300 400

93.0

94.0

95.0

96.0

97.0

98.0

99.0

100.0

KGW w. Pegasus
SStamp w. Pegasus

KGW w. Pegasus-Bigram
SStamp w. Pegasus-Bigram

Length By Tokens Length By Tokens

A
U

C
(%

)
A

U
C

(%
)

A
U

C
(%

)

RealNews BookSum

Figure 3: Detection results (AUC) under different gener-

ation lengths. SEMSTAMP is more robust than KGW

across length 100-400 tokens.

the least bigram overlap among the 25 beams from

beam-search, subject to a BERTScore constraint

of dropping no more than 10% of the score from

the first beam. For GPT-3.5-Turbo, the paraphrase

sample with the highest BERTScore is treated as

the first beam.

3.2 Results

Detection Table 1 shows detection results under

different paraphrasers and the bigram attack at gen-

eration length 200. SEMSTAMP is more robust to

paraphrase attacks than KGW across the Pega-

4072

sus, Parrot, and GPT-3.5-Turbo paraphrasers,

as measured by AUC, TP@1%, and TP@5%.

Although we only fine-tune the SBERT model on

data from the Pegasus paraphraser, SEMSTAMP

algorithm generalizes its robustness to different

paraphrasers (Parrot, GPT-3.5-Turbo) and works

on texts from different domains.

The bigram paraphrase attack effectively

weakens the token-level KGW algorithm while

SEMSTAMP is relatively unaffected. Pegasus bi-

gram attack can lower KGW’s AUC by 7.9% and

TP@5% by 27.1% on RealNews, whereas SEM-

STAMP only decreases by 3.5% and 13.2%. Fur-

thermore, the BERTScore for bigram paraphrase

does not change drastically compared to the regu-

lar paraphrases (Table 4 in §D), showing that the

bigram paraphrase attack still preserves paraphrase

quality due to the BERTScore constraints we add.

Kirchenbauer et al. (2023b) propose several alter-

native hashing schemes to the KGW algorithm. We

conduct paraphrase attack experiments on a recom-

mended scheme named SelfHash, and do not find

visible improvements to KGW, thus omitting the

results for brevity.

Quality Table 2 compares quality metrics of non-

watermarked generations with KGW and SEM-

STAMP generations. While KGW notably de-

grades perplexity due to the token-level noise

added to logits, the perplexity of SEMSTAMP

generation is on par with the base model with-

out watermarking. This confirms our hypothesis

that the sentence-level nature of SEMSTAMP is less

disruptive of token selections and preserves the

generation quality. Figure 5 and 6 provide qual-

itative examples of SEMSTAMP generations and

the bigram paraphrase attack. Compared to non-

watermarked generation, the sentences are equally

coherent and contextually sensible. SEMSTAMP

also preserves token and semantic diversity of

generation compared to non-watermarked gen-

eration and KGW generation, as measured by

the Ent-3 and Sem-Ent metrics, respectively.

Generation Length Figure 3 highlights that

SEMSTAMP is robust to both regular and bi-

gram paraphrase attacks across different generation

lengths as measured by the number of tokens. SEM-

STAMP has consistently higher AUC than KGW

(Kirchenbauer et al., 2023a).

Analysis Figure 4 shows that increasing margin

size m will increase the consistency of LSH sig-

natures (LSH consistency), the ratio of sentences

0.000 0.005 0.010 0.015 0.020 0.025

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Sentence-BERT
Fine-tuned Sentence-BERT

Rejection Margin Size

L
SH

 C
on

si
st

en
cy

Figure 4: Rejection margin and contrastive fine-tuning

effectively improve LSH Consistency.

that remain in the same valid region after being

paraphrased. A higher rejection margin will ensure

the sampled generations are further away from the

region boundary, thus less likely to shift to a dif-

ferent region after paraphrasing. However, a larger

margin will result in a slower generation speed, and

we find m = 0.02 works well empirically.

We also compare the LSH consistency before

and after fine-tuning SBERT with contrastive learn-

ing in Figure 4. Fine-tuning the encoder on

Pegasus-paraphrased data improves the LSH con-

sistency across different margins.

Applying the masking of semantic space parti-

tions and the rejection margin, SEMSTAMP makes

a trade-off between watermark detection accuracy

and generation speed. For our current hyperparam-

eter setting, 13.8 sentences are needed on average

to sample one valid sentence. As we explain in the

Limitations and Discussion section, this limitation

can be mitigated if we conduct batched sampling

of next sentences.

4 Related Work

Machine-generated text detection, aiming at distin-

guishing LLM-generated texts from human-written

ones, can be categorized into proactive and post-

hoc methods. Our focus, watermarked generation,

belongs to the first category.

Watermarked Generation Early approaches to

watermarking include text-meaning representation

tree for information hiding (Atallah et al., 2002),

and a watermarking scheme for machine transla-

tion using an output selector that considers hash-

ing operation (Venugopal et al., 2011). Water-

marked language generation, specifically pertinent

to LLMs, is a renewed trend of proactive machine-

4073

Prompt: Aylesbury’s new deputy area commander has been getting stuck in to his new role and says he’s determined
to make himself ‘approachable’.
Non-Watermarked Generation: Chief inspector Neil Kentish joined Thames Valley Police less than a week ago as
deputy chief Constable. He’s already got his work cut out as the force tries to tackle crime in the post Brexit age. Here
he shares his top tips for doing your job well. 1. Look the part – be respectful, look presentable, dress appropriately
and be on time. Keep an eye out for the telly chaps who may be trying to use you for your money – you should never
let this happen.

SEMSTAMP: Chief inspector Neil Kentish joined Thames Valley Police less than a month ago and has been thrust into
the hot seat of the Aylesbury District Commander team. He was chosen from a wide range of candidates put forward by
Deputy Chief Constable Peter Borsack, who said, “I am delighted to have appointed Neil as deputy chief officer of
police in Aylesbury District. He is a real character and I believe he will be a great addition to the team."
Pegasus Paraphrase: Neil Kentish was the chief inspector of Thames Valley Police. "I was thrust into the hot seat
of the district commander team a month ago." He was chosen from a wide range of candidates put forward by Peter
Borsack who said: "I am delighted to have appointed Neil as deputy chief officer of police in Aylesbury District. I think
he will be a great addition to the team."
Pegasus Bigram Paraphrase: Neil Kentish was the chief inspector of Thames Valley Police. He was put into the hot
seat of the district commander team a month ago. Neil was chosen from a wide range of candidates put forward by
Peter Borsack, who said he was delighted to have appointed Neil as deputy chief officer of police. "I think he will be a
good addition to the team. He will bring a good level of leadership and management skills to the community."

Figure 5: Generation Examples. Paraphrase examples are based on SEMSTAMP generations. Additional examples

are presented in Figure 6 in the Appendix. SEMSTAMP generations are equally coherent and contextually

sensible compared to non-watermarked generations.

generated text detection. The scheme works by

adding signatures imperceptible to humans during

decoding time to enable stable detection at a later

time. Kirchenbauer et al. (2023a) propose a wa-

termarking algorithm by adding token-level bias

(reviewed in §2). Kuditipudi et al. (2023) proposes

a distortion-free watermark that preserves the orig-

inal distribution of LM during watermarking. Yoo

et al. (2023) embeds multi-bit information into wa-

termark and enhances performance against corrup-

tion through a robust infilling model. They inject

the watermark via word replacement after initial

generation, which is incorporated into one-stage

watermarked generation by Wang et al. (2023).

Christ et al. (2023) propose a watermarking scheme

that is computationally undetectable without the se-

cret key in theory.

Importantly, these existing works employ a

token-level design and focus on span-level corrup-

tion such as editing and cropping, which renders

the watermarks susceptible to paraphrase attacks.

More related to our focus on paraphrase at-

tack, Krishna et al. (2023) propose a retrieval-

based method that requires saving all previously-

generated sequences, and Kirchenbauer et al.

(2023b) empirically shows that Kirchenbauer et al.

(2023a) is more robust under longer generation

length. Contemporary to our work, Zhao et al.

(2023) improves robustness via a cryptographic-

free watermark without hashing previous tokens,

which is more robust to editing and paraphrasing at-

tacks. To the best of our knowledge, our work is the

first sentence-level semantic watermark algorithm

targeted against paraphrase attacks.

Post-Hoc Detection of Machine-Generated Text

In post-hoc methods, applying binary classifica-

tion models is the most straightforward approach

(Zellers et al., 2019; Jawahar et al., 2020; Liu et al.,

2022; Mireshghallah et al., 2023; Pu et al., 2023).

These methods are applicable to black-box gen-

erators but need sufficiently large corpus for fine-

tuning. Another type of post-hoc detection is based

on statistical patterns within generation, includ-

ing token likelihood (Gehrmann et al., 2019), rank

(Solaiman et al., 2019), entropy (Ippolito et al.,

2020), and likelihood gap at perturbation (Mitchell

et al., 2023; Su et al., 2023). These methods have

better interpretability but are reliable only with

white-box access to generators. Sadasivan et al.

(2023) question the theoretical reliability of detec-

tion while Chakraborty et al. (2023) support detec-

tion is achievable.

We defer further related works on LSH, water-

marking for copyright, and contrastive learning to

§A due to space reasons.

5 Conclusion

We introduce SEMSTAMP, a novel sentence-level

semantic watermark for LLMs. The watermark

is injected by mapping candidate sentences into

embeddings with a paraphrase-robust encoder, par-

titioning the semantic space through LSH, and re-

jection sampling to generation sentences with valid

region embeddings. Empirical results show that

4074

SEMSTAMP is not only robust to paraphrase attacks

but also more quality-preserving than a token-level

baseline watermark algorithm. We also propose a

bigram paraphrase attack which effectively weak-

ens the token-level watermark while only causing

minor performance deterioration to SEMSTAMP.

We hope SEMSTAMP can serve as an effective

tool for regulating the proliferation of machine-

generated texts.

Limitations and Discussion

Robustness to Stronger Attacks Since SEM-

STAMP operates on the sentence level, it is not

robust against attacks on the inter-sentence level.

For example, a recently proposed paraphraser Dip-

per (Krishna et al., 2023) includes sentence reorder-

ing. Our algorithm is also less effective when the

machine text is embedded in a relatively large por-

tion of human text. We leave the exploration of

stronger attacks to future work.

Semantic Constraint from LSH While the LSH

partitioning divides the full semantic space into

sub-regions, enforcing the “valid region” require-

ment during generation may potentially reduce the

generation flexibility. Interestingly, we use a small

LSH dimension (d = 3) and we do not observe

a visible quality degradation. A potential expla-

nation is that with a smaller LSH dimension, the

valid partition also becomes larger, which does not

impose a strong semantic constraint and provides

enough diversity for generations, as we found in

our experiments (§3.2).

Speed Due to the nature of rejection sampling,

text generation with SEMSTAMP is slower than

non-watermarked generation by a factor of 20.9

with LSH dimension d = 3 and margin m = 0.02
(§3.2), and by a factor of 5.26 when d = 3 and

m = 0 (Table 3). However, since candidate sen-

tences for rejection sampling have the same LM

context, it is possible to conduct batch sampling

of candidate next sentences, which speeds up wa-

termarked generation while increasing the memory

overhead. We see the additional computation cost

for SEMSTAMP as a cost for robustness: adding the

watermark on the semantic space trades-off speed

for better detection accuracy under paraphrase at-

tacks. A potential mitigation to speed up is through

parallel decoding multiple sentences across mul-

tiple GPUs, which makes our algorithm a viable

option for cloud servers with ample computing.

For future work, it would be exciting to make this

procedure more efficient with techniques from con-

trolled generation (Weir et al., 2020a; Yang and

Klein, 2021; Keskar et al., 2019).

Reverse Engineering Since our sentence en-

coder and LSH hyperplanes are not public, it is

not straightforward for a curious attacker to reverse

engineer the configurations and we leave it for fu-

ture work to explore. The difficulty of reverse en-

gineering can also be increased by using a larger

LSH dimension, while the watermark could be less

robust to paraphrase attack.

Bigram Paraphrase Attack Control We control

the “intensity” degree of bigram paraphrase attack

by constraining the paraphrase candidate selection

with a BERTScore constraint. Removing the con-

straint will more forcefully lower AUROC at the

expense of paraphrase quality.

Finally, due to lack of space we defer discussions

on ethical impacts to §F.

Acknowledgement

This research is supported in part by the Office

of the Director of National Intelligence (ODNI),

Intelligence Advanced Research Projects Activ-

ity (IARPA), via the HIATUS Program con-

tract #2022-22072200004. This material is also

funded by the DARPA Grant under Contract

No. HR001120C0124. We also gratefully ac-

knowledge support from NSF CAREER Grant

No. IIS2142739, NSF Grants No. IIS2125201,

IIS2203097, and the Alfred P. Sloan Foundation

Fellowship. The views and conclusions contained

herein are those of the authors and should not be in-

terpreted as necessarily representing the official

policies, either expressed or implied, of ODNI,

IARPA, or the U.S. Government. The U.S. Gov-

ernment is authorized to reproduce and distribute

reprints for governmental purposes notwithstand-

ing any copyright annotation therein.

References

Mikhail J. Atallah, Victor Raskin, Michael Crogan,
Christian Hempelmann, Florian Kerschbaum, Dina
Mohamed, and Sanket Naik. 2001. Natural lan-
guage watermarking: Design, analysis, and a proof-
of-concept implementation. In Information Hiding,
pages 185–200, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Mikhail J. Atallah, Victor Raskin, Christian F. Hempel-
mann, Mercan Karahan, Radu Sion, Umut Topkara,
and Katrina E. Triezenberg. 2002. Natural language

4075

watermarking and tamperproofing. In International
Workshop on Information Hiding, pages 196–212.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Souradip Chakraborty, Amrit Singh Bedi, Sicheng Zhu,
Bang An, Dinesh Manocha, and Furong Huang. 2023.
On the possibilities of ai-generated text detection.
arXiv preprint arXiv:2304.04736.

Moses S Charikar. 2002. Similarity estimation tech-
niques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory
of computing, pages 380–388.

Seungtaek Choi, Myeongho Jeong, Hojae Han, and Se-
ung won Hwang. 2022. C2l: Causally contrastive
learning for robust text classification. In AAAI Con-
ference on Artificial Intelligence.

Miranda Christ, Sam Gunn, and Or Zamir. 2023. Un-
detectable watermarks for language models. ArXiv,
abs/2306.09194.

Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan
Ding, and Pengtao Xie. 2020. Cert: Contrastive
self-supervised learning for language understanding.
ArXiv, abs/2005.12766.

Yu Fu, Deyi Xiong, and Yue Dong. 2023. Watermarking
conditional text generation for ai detection: Unveiling
challenges and a semantic-aware watermark remedy.
ArXiv, abs/2307.13808.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-
der M Rush. 2019. Gltr: Statistical detection
and visualization of generated text. arXiv preprint
arXiv:1906.04043.

Chenxi Gu, Chengsong Huang, Xiaoqing Zheng, Kai-
Wei Chang, and Cho-Jui Hsieh. 2022. Watermark-
ing pre-trained language models with backdooring.
arXiv preprint arXiv:2210.07543.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren,
and Percy Liang. 2018. Generating sentences by
editing prototypes. Transactions of the Association
for Computational Linguistics, 6:437–450.

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimension-
ality reduction by learning an invariant mapping. In
2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’06),
volume 2, pages 1735–1742.

Seungju Han, Beomsu Kim, and Buru Chang. 2022.
Measuring and improving semantic diversity of dia-
logue generation. In Findings of the Association for
Computational Linguistics: EMNLP 2022.

The White House. 2023. FACT SHEET: Biden-
Harris Administration Secures Voluntary Commit-
ments from Leading Artificial Intelligence Compa-
nies to Manage the Risks Posed by AI.

Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: Towards removing the curse of di-
mensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC
’98, page 604–613, New York, NY, USA. Associa-
tion for Computing Machinery.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2020. Automatic detec-
tion of generated text is easiest when humans are
fooled. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1808–1822, Online. Association for Computational
Linguistics.

Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan
Zhang, Matthew Jagielski, Katherine Lee, Christo-
pher A Choquette-Choo, and Nicholas Carlini. 2022.
Preventing verbatim memorization in language mod-
els gives a false sense of privacy. arXiv preprint
arXiv:2210.17546.

Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks
Lakshmanan, V.S. 2020. Automatic detection of ma-
chine generated text: A critical survey. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 2296–2309, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Nitish Shirish Keskar, Bryan McCann, Lav Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
CTRL - A Conditional Transformer Language
Model for Controllable Generation. arXiv preprint
arXiv:1909.05858.

Byeongchang Kim, Hyunwoo Kim, and Gunhee Kim.
2019. Abstractive Summarization of Reddit Posts
with Multi-level Memory Networks. In NAACL-HLT.

Taeuk Kim, Kang Min Yoo, and Sang goo Lee. 2021.
Self-guided contrastive learning for bert sentence
representations. ArXiv, abs/2106.07345.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023a.
A watermark for large language models. arXiv
preprint arXiv:2301.10226.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli
Shu, Khalid Saifullah, Kezhi Kong, Kasun Fernando,
Aniruddha Saha, Micah Goldblum, and Tom Gold-
stein. 2023b. On the reliability of watermarks for
large language models.

4076

Tassilo Klein and Moin Nabi. 2020. Contrastive self-
supervised learning for commonsense reasoning.
ArXiv, abs/2005.00669.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska,
John Wieting, and Mohit Iyyer. 2023. Paraphras-
ing evades detectors of ai-generated text, but re-
trieval is an effective defense. arXiv preprint
arXiv:2303.13408.

Wojciech Kryściński, Nazneen Rajani, Divyansh Agar-
wal, Caiming Xiong, and Dragomir Radev. 2021.
Booksum: A collection of datasets for long-
form narrative summarization. arXiv preprint
arXiv:2105.08209.

Rohith Kuditipudi, John Thickstun, Tatsunori
Hashimoto, and Percy Liang. 2023. Robust
distortion-free watermarks for language models.
ArXiv, abs/2307.15593.

Shuang Li, Xuming Hu, Li Lin, and Lijie Wen. 2022.
Pair-level supervised contrastive learning for natural
language inference. ICASSP 2022 - 2022 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 8237–8241.

Xiaoming Liu, Zhaohan Zhang, Yichen Wang, Yu Lan,
and Chao Shen. 2022. Coco: Coherence-
enhanced machine-generated text detection under
data limitation with contrastive learning. ArXiv,
abs/2212.10341.

Yixin Liu, Hongsheng Hu, Xuyun Zhang, and Lichao
Sun. 2023. Watermarking text data on large lan-
guage models for dataset copyright protection. ArXiv,
abs/2305.13257.

Lajanugen Logeswaran and Honglak Lee. 2018. An
efficient framework for learning sentence representa-
tions. arXiv preprint arXiv:1803.02893.

Fatemehsadat Mireshghallah, Justus Mattern, Sicun
Gao, R. Shokri, and Taylor Berg-Kirkpatrick.
2023. Smaller language models are better black-
box machine-generated text detectors. ArXiv,
abs/2305.09859.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D. Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-
tion using probability curvature. In International
Conference on Machine Learning.

OpenAI. 2022. ChatGPT.

OpenAI. 2023. GPT-4 Technical Report.

Artidoro Pagnoni, Martin Graciarena, and Yulia
Tsvetkov. 2022. Threat scenarios and best practices
to detect neural fake news. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 1233–1249, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Xiao Pu, Jingyu Zhang, Xiaochuang Han, Yulia
Tsvetkov, and Tianxing He. 2023. On the zero-shot
generalization of machine-generated text detectors.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 4799–4808, Singapore.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research
(JMLR).

Deepak Ravichandran, Patrick Pantel, and Eduard Hovy.
2005. Randomized algorithms and NLP: Using lo-
cality sensitive hash functions for high speed noun
clustering. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL’05), pages 622–629, Ann Arbor, Michigan. As-
sociation for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala-
subramanian, Wenxiao Wang, and Soheil Feizi. 2023.
Can ai-generated text be reliably detected?

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford,
and Jasmine Wang. 2019. Release strategies and
the social impacts of language models. ArXiv,
abs/1908.09203.

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov.
2023. Detectllm: Leveraging log rank information
for zero-shot detection of machine-generated text.
arXiv preprint arXiv:2306.05540.

Benjamin Van Durme and Ashwin Lall. 2010. Online
generation of locality sensitive hash signatures. In
Proceedings of the ACL 2010 Conference Short Pa-
pers, pages 231–235, Uppsala, Sweden. Association
for Computational Linguistics.

Ashish Venugopal, Jakob Uszkoreit, David Talbot,
Franz Och, and Juri Ganitkevitch. 2011. Watermark-
ing the outputs of structured prediction with an appli-
cation in statistical machine translation. In Proceed-
ings of the 2011 Conference on Empirical Methods
in Natural Language Processing.

Lean Wang, Wenkai Yang, Deli Chen, Haozhe Zhou,
Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun.
2023. Towards codable text watermarking for large
language models. ArXiv, abs/2307.15992.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra

4077

Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
et al. 2021. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359.

Nathaniel Weir, João Sedoc, and Benjamin Van Durme.
2020a. COD3S: diverse generation with discrete
semantic signatures. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Nathaniel Weir, João Sedoc, and Benjamin Van Durme.
2020b. COD3S: Diverse generation with discrete
semantic signatures. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5199–5211, Online. As-
sociation for Computational Linguistics.

John Wieting, Kevin Gimpel, Graham Neubig, and Tay-
lor Berg-kirkpatrick. 2022. Paraphrastic representa-
tions at scale. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 379–388, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Kevin Yang and Dan Klein. 2021. FUDGE: Controlled
text generation with future discriminators. In Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL), pages
3511–3535.

Hongwei Yao, Jian Lou, Kui Ren, and Zhan Qin.
2023. Promptcare: Prompt copyright protection
by watermark injection and verification. ArXiv,
abs/2308.02816.

Kiyoon Yoo, Wonhyuk Ahn, Jiho Jang, and No Jun
Kwak. 2023. Robust multi-bit natural language wa-
termarking through invariant features. In Annual
Meeting of the Association for Computational Lin-
guistics.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 32,
pages 9054–9065. Curran Associates, Inc.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter
Liu. 2020. Pegasus: Pre-training with extracted gap-
sentences for abstractive summarization. In Interna-
tional Conference on Machine Learning (ICML).

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022. OPT: Open Pre-trained Transformer Language
Models. arXiv preprint arXiv:2205.01068.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations (ICLR).

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xi-
ujun Li, Chris Brockett, and William B. Dolan. 2018.
Generating informative and diverse conversational
responses via adversarial information maximization.
In NeurIPS.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and
Yu-Xiang Wang. 2023. Provable robust water-
marking for ai-generated text. arXiv preprint
arXiv:2306.17439.

4078

Supplemental Materials

A Additional Related Works

Locality-Sensitive Hashing in NLP The appli-

cation of locality-sensitive hashing (Indyk and Mot-

wani, 1998; Charikar, 2002) in NLP dates back to

Ravichandran et al. (2005), where LSH is used

for high-speed noun clustering. Van Durme and

Lall (2010) show that the LSH method of Charikar

(2002) can enable fast approximated online com-

putation of cosine similarity. Guu et al. (2018) use

LSH to efficiently compute lexically similar sen-

tences in a prototype-then-edit sentence generation

model. Closely related to our work, Weir et al.

(2020b) generate semantically diverse sentences by

conditioning a sequence-to-sequence model on the

LSH signature of sentence embeddings.

Watermarked Natural Language Data for Copy-

right Watermarked generation can be further ap-

plied for data copyright protection. Gu et al. (2022)

embed backdoor trigger words as black-box water-

marks into LLMs. Liu et al. (2023) propose a novel

watermark via backdoor-based membership infer-

ence, where backdoor watermarked texts poison

unauthorized training models. Yao et al. (2023) fo-

cus on protecting the copyright of prompts through

inserting the secret key into the prompt optimiza-

tion stage. These works mainly apply watermark

techniques for data copyright protections , whereas

our work focuses on exploring the robustness of

watermark against paraphrasing.

Contrastive Learning in NLP Contrastive learn-

ing (Hadsell et al., 2006) aims at improving the

distinguishability of representation by pulling over

positive pairs and pushing off negative pairs. In

the NLP domain, contrastive learning can be ap-

plied to sentence embedding (Logeswaran and Lee,

2018), and further used in downstream tasks like

natural language inference (Li et al., 2022), under-

standing (Fang et al., 2020), reasoning (Klein and

Nabi, 2020), classification (Choi et al., 2022) etc.

Logeswaran and Lee (2018) apply unsupervised

contrastive learning between current sentence can-

didates and context sentences to effectively learn

sentence representation. Gao et al. (2021) further

apply supervised contrastive learning in sentence

embedding by using annotated pairs from natural

language inference. Kim et al. (2021) propose a

self-guided contrastive learning between embed-

dings from a fixed model and a fine-tuned model.

B Watermark Detection

Kirchenbauer et al. (2023a) proposes using a one-

proportion z-test on the number of green list tokens

to detect watermarks, assuming the following null

hypothesis:

H0 : The text is not generated (or written)

knowing a watermarking green list rule.

The null hypothesis is rejected when the z-score

computed based on the number of green tokens in

a piece of text T exceeds a given threshold M :

zKGW =
NG − γNT

√

γ(1− γ)NT

, (3)

where NG denotes the number of green tokens, NT

refers to the total number of tokens contained in

the given piece of text T , and γ is a chosen ratio of

green tokens. During detection time, the number of

green tokens in each piece of text will be counted.

According to Eq. 3, a higher ratio of detected green

tokens means a higher z-score, determining with

more confidence that the text is machine-generated.

We adapt this one proportion z-test to SEM-

STAMP, modifying the null hypothesis and using

sentence as our basic unit:

H0 :

The text is not generated (or written) knowing

a rule of valid and blocked partitions in the

semantic space.

zSEMSTAMP =
SV − γST

√

γ(1− γ)ST

, (4)

where SV refers to the number of valid sentences,

γ is the ratio of valid sentences out of the total

number of sentences ST in a piece of text T .

During detection time, we first break a piece

of texts into individual sentences and detect

the number of valid sentences SV to calculate

zSEMSTAMP. We detect a machine-generated text

when zSEMSTAMP > Mr, where Mr is located ac-

cording to a given false positive rate r: We define

machine-generated as the positive class in classical

classification setting and non-machine-generated

as the negative class. We iterate through a range of

possible m ∈ [0, 6.0] until there is a Mr = m such

that r percentage of human (negative-class) texts is

misclassified as machine-generated. For example,

we let r = 0.05 for the TP@5% metric in Table 1.

4079

Prompt: NEW DELHI: Over fifteen years after the Concorde — the world’s first and only supersonic aircraft to be
used commercially — retired, US aerospace major Boeing has announced it is working on its successor.
Non-Watermarked Generation: The first commercial supersonic jet was developed in the late 1960s by British
Aerospace. However, the technology was never adopted by the industry. Boeing aims to change that. It has set up a
team of engineers who will work on developing the next Supersonic Jet.
Baseline Watermark: The company has called it the X-35. But it’s not yet clear when it might begin taking orders for
production. The project is named after Jason Xtra, who first proposed it in 1997 – after the US Air Force expressed
interest in it. However, Boeing hasn’t announced any orders for the X-35 yet.

SEMSTAMP: The company said it was committed to developing the space elevator and had launched a
concept for a space elevator in 2003. Boeing’s chief financial officer, Robert Lach Jr, said the company would spend
about $2 billion over the next five years on what is called the Space Elevator Initiative. Boeing estimated that an
elevator would cost between $8 billion and $10 billion to build, depending on the design.

Pegasus Paraphrase: The company launched a concept for a space elevator in 2003 and said it was com-
mitted to developing the space elevator. Boeing will spend $2 billion over the next five years on the Space Elevator
Initiative, according to Robert Lach Jr., the company’s chief financial officer. Depending on the design, an elevator
could cost between $8 billion and $10 billion.
Pegasus Bigram Paraphrase: In 2003 the company launched a concept for a space elevator. The company will spend
$2 billion over the next five years on the Space Elevator Initiative. Depending on the design, an elevator could cost as
much as $10 billion.

Figure 6: Additional Generation Examples. Non-Watermarked refers to the original model without adding

any watermark. Baseline Watermark refers to (Kirchenbauer et al., 2023a). Paraphrase examples are based on

SEMSTAMP generations.

LSH Dim (d) Average # of Sentences Sampled ↓ LSH Consistency ↑

3 5.26 .720
4 4.53 .666
8 4.26 .508

16 4.14 .335

Table 3: Effects of Increasing LSH Dimensions at mar-

gin m = 0.0. The sampling rate is the average num-

ber of sentences sampled to produce one valid (water-

marked) sentence.

C Effect of LSH dimension d

In Table 3, we discover that fewer LSH dimensions

will make a sentence more likely to stay in the same

region after being paraphrased. We define LSH

Consistency as the ratio of paraphrased sentences

that have the same LSH signature as the original

sentence over the total number of paraphrased sen-

tences. A higher consistency ratio indicates better

robustness.

Geometrically, when the LSH dimension is

lower, there are fewer partitioned semantic regions,

each having a larger space. A paraphrase will have

a similar representation with its source sentence in

the semantic space, which will be more likely to

remain in the same semantic region if each region

is larger.

On the other hand, lowering the number of LSH

dimensions will also slightly increase the average

number of sentences sampled to produce one valid

sentence (Average Number of Sentences Sampled).

We ultimately decide on a minor sacrifice in speed

for the gain of accuracy and choose d = 3. We

choose γ = 0.25 following Kirchenbauer et al.

(2023a), where the authors show that larger green-

list ratios will lower the z-score.

D Additional Experimental Results

We include additional experimental results on para-

phrase quality, i.e., the BERTScore between orig-

inal and paraphrased generations under different

settings, in Table 4.

We provide paraphrased detection results of the

KTH algorithm (Kuditipudi et al., 2023) in Table 6

and UNIGRAM-WATERMARK (Zhao et al., 2023)

in Table 5. We find that the KTH watermark per-

forms poorly against KGW and SEMSTAMP.

Although UNIGRAM-WATERMARK enjoys

strong robustness against paraphrasing attacks, it

has the crucial limitation of being readily hacked

by an adversary. Since Unigram-Watermark can

be understood as a variant of KGW (Kirchenbauer

et al., 2023a) but with only one fixed greenlist

initialized at the onset of generation. An adversary

can reverse-engineer this greenlist by brute-force

submissions to the detection API of |V | times,

where each submission is repetition of a token

drawn with out replacement from the vocabulary V

of the tokenizer. Therefore, upon each submission

to the detection API, the adversary will be able to

determine if the submitted token is in the greenlist.

After |V | times of submission, the entire greenlist

can be reverse-engineered. On the other hand,

4080

such hacks are not applicable to SEMSTAMP, since

SEMSTAMP does not fix the list of valid regions

and blocked regions during generation, and the

adversary needs to have access to the private

sentence embedder and LSH hyperplanes to hack

SEMSTAMP.

In summary, despite having strong robustness

against various paraphrase attacks, UNIGRAM-

WATERMARK has a notable vulnerability that may

limit its applicability in high-stake domains where

adversaries can conduct reverse-engineering.

Computing Infrastruture and Budget We run

sampling and paraphrase attack jobs on 8 A40

GPUs, taking up a total of around 100 GPU hours.

E Additional Details

Condition for consistent LSH signature For ro-

bustness, the SEMSTAMP algorithm would need

the LSH signature of the paraphrased sentence to

be unchanged from the signature of the original

sentence. This requires that for each LSH digit

i, the sign of the dot product between the embed-

ded sentence and the normal vector n(i) should not

change before and after paraphrasing:

✶
(

n(i) · vorig > 0
)

= ✶
(

n(i) · vpara > 0
)

,

∀i ∈ {1 . . . d},
(5)

where vorig = Membd(s
(t)) and vpara =

Membd(G(s(t))) are the embeddings for the orig-

inal and paraphrased sentences, respectively, and

G is the paraphraser.

Cosine Similarity In §2.2, we slightly abuse the

notation and use cos(x,y) to denote the cosine

similarity between two vectors x and y. That is,

cos(x,y) =
x · y

|x||y|
. (6)

Sentence Delimitation During generation time,

a full candidate next sentence is considered gen-

erated if the language model has generated a new

delimiter punctuation, i.e., a comma, period, ques-

tion mark, or exclamation mark.

Data Preprocessing We separate the data points,

which are paragraphs of news (RealNews) and

book summaries (BookSum), into sentences us-

ing nltk.sent_tokenize. Additionally, we add a

period mark to every sentence that does not end in

a comma, period, question mark, or exclamation

mark.

Prompt for GPT-3.5-Turbo Paraphrase To use

GPT-3.5-Turbo as a paraphraser, we provide the

following prompt:

Previous context: {context} \n
Current sentence to paraphrase: {sent}

We define sent to be the target sentence to be

paraphrased, and context as the list of sentences

before the target sentence.

For the bigram paraphrase attack, we provide the

following prompt:

Previous context: {context} \n
Paraphrase in {num-beams} different ways

and return a numbered list : {sent}

where num-beams specifies the number of can-

didate sentences. A higher num-beams will

strengthen the bigram paraphrase attack but also at

the cost of more computational resources.

F Ethical Impacts

As language models become increasingly capable

of generating realistic texts, the risk of misusing

language model generations, such as spreading mis-

information, practicing plagiarism, and violating

copyrights, has become imminent. Furthermore, on

a fundamental level, the inability to distinguish hu-

mans from machines poses threats to establishing

the basic level of mutual understanding and trust

that bonds society. Robust detection of machine-

generated text is crucial for preventing the misuse

of large language models by properly attributing

the source of online texts. Although current LLMs

are often exposed to users as API endpoints, ma-

licious users can still postprocess and paraphrase

the API-generated response to escape the injected

watermark. This motivates us to study watermark

robustness against paraphrasing in this work. We

hope that the proposed SEMSTAMP algorithm can

mitigate the risk of LLM misuse by providing a

reliable method to counter paraphrasing attacks on

watermarked generations.

4081

RealNews BookSum

Algorithm↓ Paraphraser→ Pegasus Parrot GPT3.5 Pegasus Parrot GPT3.5

KGW 71.0 / 66.6 57.1 / 58.4 54.8 / 53.3 71.8 / 69.3 62.0 / 61.8 60.3 / 56.7
SSTAMP 72.2 / 69.7 57.2 / 57.4 55.1 / 53.8 72.7 / 70.2 62.9 / 62.4 61.8 / 58.4

Table 4: BERTScore between original and paraphrased generations under different settings. All numbers are in

percentages. The first number in each entry is under vanilla paraphrase attack while the second number is under the

bigram paraphrase attack. Bigram paraphrase attack poses only minor degradation on semantic similarity

with original sentence compared to vanilla paraphrase attack.

RealNews BookSum

Algorithm↓ Paraphraser→ Pegasus Parrot Pegasus Parrot

KGW 95.9 / 92.1 88.5 / 83.0 97.3 / 96.5 94.6 / 93.1
SSTAMP 97.8 / 96.5 93.3 / 93.1 99.2 / 98.9 97.5 / 97.5

UNIGRAM-WATERMARK 99.1 / 98.4 98.9 / 98.7 99.4 / 99.7 99.5 / 99.6

Table 5: Paraphrased detection results of UNIGRAM-WATERMARK. We find that UNIGRAM-WATERMARK

demonstrates strong robustness against paraphrase attacks, but has the vulnerability to being reverse-engineered,

which we discuss in §D.

BookSum

Algorithm AUC ↑ TP@1% ↑ TP@5% ↑

KGW 95.9 82.1 91.0
KTH 51.7 5.0 5.8

SEMSTAMP 97.8 83.7 92.0

Table 6: Paraphrased detection results on the BookSum

dataset. The paraphraser used is Pegasus. We find that

the KTH watermark performs poorly against KGW and

SEMSTAMP.

4082

