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Abstract

In the current user-server interaction paradigm
of prompted generation with large language
models (LLMs) on cloud, the server fully con-
trols the generation process, which leaves zero
options for users who want to keep the gener-
ated text private to themselves. For privacy-
aware text generation on cloud, we propose
LatticeGen, a cooperative protocol in which
the server still handles most of the computation
while the client controls the sampling operation.
The key idea is that the true generated sequence
is mixed with noise tokens by the client and hid-
den in a noised lattice. Only the client knows
which tokens are the true ones. Considering po-
tential attacks from a hypothetically malicious
server and how the client can defend against
it, we propose the repeated beam-search attack
and the mixing noise scheme. In our exper-
iments we apply LatticeGen to protect both
prompt and generation. It is shown that while
the noised lattice degrades generation quality,
LatticeGen successfully protects the true gen-
eration to a remarkable degree under strong at-
tacks (more than 50% of the semantic remains
hidden as measured by BERTScore).

1 Introduction

Many of the high-performing large language mod-
els (LLMs) need to be deployed on cloud servers,
whether they are open-sourced but have an inten-
sive need for computation (Zhao et al., 2023; Ka-
plan et al., 2020; Leviathan et al., 2023), or behind a
paywall like ChatGPT (OpenAl, 2023). This raises
new privacy challenges (Li et al., 2021; Yu et al.,
2021; Kerrigan et al., 2020), since users have to
send or receive their data to/from cloud providers.

In this work we focus on a popular interaction
paradigm between end users and a server hosting an
LLM on cloud named prompted generation: The
user sends server a prompt, which is usually an
instruction (Chung et al., 2022) or the beginning

*Equal Contribution. Both are corresponding authors.

of a document (Deng et al., 2022), and the server,
who fully controls the generation process, sends
user back the generated text from the LLM. Both
the prompt and the generation are raw texts which
are completely transparent and accessible to the
server, leaving zero options for users who want to
keep the generated text private to themselves.

As LLMs become widely deployed in profes-
sional and social applications, we argue that in
prompted generation, there are many scenarios in
which not only the prompts, but also the gener-
ated texts need some level of obfuscation, be-
cause they can directly affect the user’s real-life
private decisions. For example, a customer is
likely to go to the restaurant suggested by the LLM,
and a writer could take inspiration from outputs
provided by the LLM. With the goal of preventing
the server from gaining complete knowledge of the
generated text and prompt, we propose LatticeGen
(Figure 2), a client—server interaction protocol in
which the user and client conduct privacy-aware
generation token-by-token in a cooperative way.
The protocol can be executed by a local client so
that the interface is kept simple for the user. We
summarize our key contributions below:

* The high-level idea of LatticeGen (§3) is that
in each time-step, the client sends the server
not one, but IV tokens (thus the name lattice),
in which one is true and others act as noise.
The server does LLM inference and sends
client back the next-token distributions for
all N tokens, which are used by the client to
sample the true and noise tokens for the next
time-step.

* Considering potential attacks from a hypo-
thetically malicious server and how the client
can defend against it (§4), we propose the
repeated beam-search attack and the mixing
noise scheme as defense.

* We apply LatticeGen to the task of creative
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writing (Fan et al., 2018). Our experiments
(85) show that while the noised lattice de-
grades generation quality, LatticeGen success-
fully prevents a malicious server from recover-
ing the true generation to a remarkable degree
(more than 50% of the semantic remains un-
known as measured by BERTScore). !

2 Motivation and Preliminaries

2.1 Generated Text (also) Needs Obfuscation
In the current user—server interaction paradigm, the
user sends the server a prompt which is usually
the beginning of a dialogue, story or instruction,
then the server generates a complete response au-
toregressively (§2.3), and sends it back to the user.
Both the prompt and generation are directly avail-
able to the server in raw text format.

This paper contends that generated texts, as well
as user prompts, require a privacy protection mech-
anism. A key reason is that in various scenarios,
the generation from the LLM can affect the user’s
private decisions: e.g., a customer is likely to go
to the restaurant suggested by the LLM; a writer
could take inspiration from outputs provided by the
LLM; an engineer or manager could adopt the ap-
proach proposed by the LLM. Industry regulations
do not provide ample protection. Please see §E for
recent privacy-related incidents with ChatGPT or
Bard. The goal of our LatticeGen protocol is to
provide a controlled level of obfuscation for the
generated text, making it difficult for a hypothet-
ically malicious server to infer the user’s actions
after interacting with the LLM.

2.2 LatticeGen as a Third-Party Client
Before expanding on the proposed protocol (§3),
we first clarify that LatticeGen does not compli-
cate the user interface. Indeed, it is likely that
most users still want to keep a simple and intu-
itive interface for prompted generation. In light
of this, LatticeGen can be implemented as a third-
party client between the user and the server. As
Figure 1 depicts, the client takes the prompt from
the user, conducts the privacy-aware generation
protocol with the server, and finally returns the gen-
eration to the user. In this way, the user does not
need to deal with the complicacy in the protocols.
The next question is why would a common user
trust the client? One solution is that the client
can be open-sourced (e.g., as python scripts) and

'Our code and data will be released in here on github.

S

LatticeGen Protocol « LN oo
Client m o~
(open-source) N

Cloud Server LLM

Generation

Figure 1: LatticeGen can be implemented as a third-
party client handling the protocol for the user.

therefore vetted by researchers and users world-
wide. It can also facilitate comprehensive evalua-
tions conducted by different research groups. The
user only need to download the script and set the
hyper-parameters (e.g., random seed).

2.3 Preliminaries

We will start by reviewing the traditional autore-
gressive LM generation, and then move on to intro-
duce necessary components of LatticeGen.

Traditional Autoregressive LM Generation
We assume the server-side LLM is an autoregres-
sive LM, i.e., it generates tokens one at a time
and from left to right (Mikolov, 2012; Cho et al.,
2014; Huszar, 2015; Welleck et al., 2020; Dai et al.,
2019; Keskar et al., 2019). We denote the LLM
as Py; with parameter set ¢, the vocabulary as V,
the generated token at time-step ¢ as wy, and the
given prompt as p. For convenience we regard the
prompt as part of generation, therefore, w; := p;
for 1 <t < len(p). In traditional autoregressive
generation, on each time-step ¢t > len(p), the next
token wy is sampled from Py (-|wp_—1) by call-
ing a sampling algorithm such as top-k (Fan et al.,
2017) or nucleus sampling (Holtzman et al., 2020).
wo 1S the <bos> token.

The Lattice Structure A simple but key concept
in our proposed framework is the lattice. In a width-
N lattice (or an /N -lattice for short), each time-step
contains /N token options and we denote them as
{w},...,w]N}. Therefore, a N-lattice of length T
(denoted as WF}V ) represents N7 possible sequence
combinations. An example with N = 2 is shown
in the left part of Figure 2.

In our proposed LatticeGen protocols (§3.1), for
each time-step ¢, only the client knows which token
is the “true” one, denoted by w{™¢. And the other
N —1 tokens {w!***M | wS™D1 are referred
to as “noise” tokens. Therefore we will also refer to
it as the noised lattice. To prevent the server from
knowing which one is the true token, the client will
randomly shuffle the list before attaching it to the
lattice and sending to the server.

LM Finetuning and Inference with the LLG
(Linearized Lattice plus G-gram) Format As
a prerequisite for LatticeGen, we need the server-
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Figure 2: Client-Server interaction under LatticeGen for time-step ¢. The server controls the LLM Py, conducts the
inference computation and sends client the next-token prediction distribution for each received token. The client
conducts the sampling of the true and noise token(s), and sends server a randomly permutated list of tokens for the
next time-step. The server does not know which tokens are the true ones. The task is creative writing, and the
prompt part is omitted in this figure for brevity. An illustration of the server step for N = 3 and G = 2 is provided

in Figure 6, Appendix B.

side LLM (Vaswani et al., 2017) to be able to do
inference based on a given lattice and we achieve
that by finetuning the base LLM P, to make next-
token prediction with the LLG (Linearized Lattice
plus G-gram) format. Below we first introduce this
format, and describe the finetuning objective.

First, as the name suggests, we conduct a simple
linearization operation before feeding the lattice
to the LM, in which the token options on each
time-step are linearized and concatenated into a
sequence of length 7' x N (see Figure 2 for an
example):

linearize(Wy' ) = [<bos>]+concat;_; ([w;, ..., w;']). (1)

An illustration of a linearized lattice is given in
Figure 2.

Next, we append a <predict> token and GG
tokens specifying the token options for the last
G tokens (for time-step from T' — G to T' — 1),
and the LLM is trained to predict the next to-
ken with this specified G-gram “tail”. We use
notation S to denote a (G-gram, where S; €
{w%p_G+i,...,w1TV_G+i} for1 < ¢ < G. In Fig-
ure 2, we use uni-gram (G = 1) and the last token
could be “challenging” or “with”. The generation
quality will be better with larger G (since the token
history is less noised), at the price of more com-
putation: The server will need to enumerate N¢
potential combinations.

In §A, we describe a simple process to finetune a
LLM to predict the next token for the LLG format.
Here we provide a high-level description. For each
data sample w92, we construct and linearize a
noised lattice by using N — 1 other random data
samples as noise. The LLM is then finetuned to

predict the next true token for several randomly
picked tokens in the data sample with the LLG
format. We denote the LLG-finetuned LLM as
Pr, and the prediction distribution for w; with a
noised lattice WY, and a specific G-gram tail S
as Pp(-|W},[S]). In most parts of this paper, we
will assume unigram (G = 1) just for notation
simplicity.

3 LatticeGen

To prevent the server from gaining full knowledge
of the generation and prompt, LatticeGen makes
several core changes to the client—server interac-
tion. On a high level, the server who possesses the
LLG-finetuned LLM P, (the finetuning is detailed
in §A) still handles most of the computation, while
the client controls the token sampling operations
and expands the lattice to the next time-step. In
particular, the client will sample one true token and
N — 1 noise tokens, where N > 2 is a hyperpa-
rameter controlling the width of the lattice. In the
end, both the server and client obtain the same
noised lattice W7, but only the client knows
which token is the true one for each time step.

In the beginning, the server needs to share the
vocabulary V' with the client, but all other param-
eters or configurations of the LLM are not shared.
We describe the protocol below.

3.1 Protocol

For simplicity, we first ignore the prompt part and
assume the generation starts at the first token. In
the beginning ¢t = 0, both the server and client
begin with an empty local lattice, and the client
sends IV <bos> tokens to the server. We divide
the client—server interaction at each time-step £ > 1
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into a server step and a client step, illustrated by
Figure 2 (also see Algorithm 1).

Server Step From the last time-step, the server
receives from client N tokens {w} q,...,wi" ;}
and expands its local lattice to W}¥,. The server
does not know which received token is the true to-
ken because the list is shuffled by the client, and
computes the respective next-token prediction dis-
tribution for all N¢ potential G-gram tails with
the LLG format (each potential tail is denoted as
S). More concretely, the lattice W/ is linearized,
appended with each G-gram, and fed to Pr,, which
outputs { P (-[W}¥,[S)}Y5. 2

Since all G-grams share the same linearized lat-
tice, the inference can be made efficient by reusing
transformer hidden states and parallel computing.
We defer the details of finetuning and inference
(both conducted by the server) to §A. The server
represents the next-token prediction distributions
as N length-| V| vectors, and sends them back to
the client.

Client Step Different from the server, the client
knows which tokens are the true ones. Upon receiv-
ing the list of distribution vectors from the server,
the client extracts the distribution for the true G-

gram PL(~|WtJX1[w?;“fG)m(t_l)]), from which the

client samples w;™. The client also need to gener-
ate N — 1 “noise” tokens {w] 5D . oo™y

with a certain noise scheme.

How to generate noise tokens is a key part of
making the noised lattice robust to potential attacks
from the server side. For now, we assume a simple
synonym noise scheme in which we use synonyms
of the true token. Concretely, w!°*¢ is randomly
sampled from S tokens having the closest embed-
ding with w{™® measured by cosine similarity. In
our experiments we set S = 5. 3 In practice this
simple noise scheme will be vulnerable to attacks
from a malicious server. See §4 for discussions on
attacks and our proposed advanced noise schemes

for defense.

With a private random seed, the client randomly
permutates the token list and sends it to the server.
This concludes the client—server interaction in time-
step t.

“In the uni-gram case, the notation simplifies to
{PL(’|W£1 [leD}zN:L

*In practice, we exclude the first ten closest token in V/,
as their surface forms are usually very close to the true to-
ken, making the obfuscation useless (e.g., only different in
capitalization).

Algorithm 1 Pseudo-code for LatticeGen

Input (Server): Lattice-finetuned LLM P, lattice width IV, generation length
T, and inference tail length G.
Input (Client): Prompt p, a noise generation scheme, a private large prime

number for random seed.
Client sets wg, := <bos>forl < i < N.
Both the server and client be%in with an empty lattice.
The client sends [wé, ..., wy | to server indicating the beginning of genera-
tion.
fort =1...7T do

# Server Steps Below

Receives [w,L 1rees wi\i 1] from client and use it to extend the lattice
to th\i 1

For each G-gram tail S?, run next-token inference on Py, with the LLG

i G

format and obtain { Pr, (-|W , [ST) I .

Send the distributions to the client as N length-| V| vectors.

# Client Steps Below

; G

Receives the next-token distributions { Py, (-|[W7 | [S*])}| from
server.

if t < len(p) then

Set wi™ = py.
else
Sample w}" from Py, (-|W/Y [wl(r:c—G)...(t—l)])'

end if _

Generate N — 1 noise tokens {w}"**", ..
scheme.

Set the current private random seed to be ¢ multiplied by the private prime
number.

Obtain the permuted list [w], ...,

< Wi N DY with the noise

wi\]] using the current random seed.
Extend the local lattice, and send [wy] , ..., wi ] to the server.
end for
Output (Server): Lattice W%V .
Output (Client): True sequence {w'™ } V|, and lattice W .

Incorporating Prompts (Client) The incorpora-
tion of prompts is quite straightforward by regard-
ing it as a prefix of the generation, and the content
in the prompt can also be noised and protected by
LatticeGen. See §B.1 for implementation details.

We summarize the LatticeGen protocols as
pseudo-code in Algorithm 1. The discussion on
the network communication cost between client
and server is deferred to §B.2 to save space.

3.2 Comparison with Standard LM: History
Noised While Locally Sharp

It is helpful to formulate a comparison between
LatticeGen (Pr) and generation from a standard
autoregressive LM P);. For simplicity, we ignore
the noise generation (i.e., lattice-building) part, and
only care about how the true tokens are generated
with Pr. Under this simplification, the probability
of generating a true sequence w is:

T
log Pr(w) =~ Z log PL(wt\Wﬁl we-c)...e-n]);, @)
t=1
where the forming process of W}¥; (noise to-
kens and permutation) at each time-step is omitted.
For comparison, the log-probability of generat-
ing w with the standard model P,y is:

T
log Py (w) = Zlog P (welwo...t—2, we-1).  (3)

t=1

2677



Comparing the above two equations with simi-
lar structure, it should be clear that what Lattice-
Gen does is essentially blurring the token history
wy.. t—2 by the noised lattice Wﬁ 5. Therefore, in-
creasing the number of noise tokens gives better
protection for the true token sequence, but at the
same time degrades the LM’s performance.

While the history is blurred, the local sharp-
ness (Khandelwal et al., 2018) is preserved by
LatticeGen: From Equation 2, the exact last G
tokens is provided to the model. Therefore, in
the worst-case scenario (zero utilization of non-
immediate history), LatticeGen is at least as strong
asa (G + 1)-gram LM.

4 Attack and Defense

In this section, we discuss potential attack algo-
rithms from a hypothetically malicious server to
decode the true token sequence {w{™®}” | hidden
in the lattice W2, and the client’s noise generation
schemes as defense. For notational simplicity, we
will assume unigram (G = 1), and the extension to
GG > 1 should be straightforward. We first establish
metrics to measure the strength of attacks.

Metrics Given a lattice W%V , the attacker’s target
is to decode a hypothesis sequence w with w; €
{w}, ...,w}} having biggest overlap with the true
generation w'™®, We define a simple true-ratio
metric to measure the strength of the attack:
R

PP
true-ratio(e, w"™®) T

@

In the repeated beam search attack to be de-
scribed below, the result of the attack algorithm
is not only one but N sequences {1} ; which
spans the whole lattice (i.e., {wi} Y, = {wi}}X ).
In this case, we argue that the defending noise
scheme should prevent any of the hypothesis from
having a high overlap with the true sequence, and
measure it with the max-true-ratio: *

T
10, true
Zt:l wy=wy

T

max-true-ratio({w } 1, w"™"®)

= max
I ®)
It should be clear that % is a lower bound
for max-true-ratio for any noise scheme, which
provides an intuition of why larger N would
better protect the true sequence.
Albeit intuitive, a big weakness of the true-ratio
metric is that it only considers exact matches and

*The average of the true-ratio will always be % because
each true token is in one of the /N hypotheses.

Top-k with k = 50, ,Top-kwithk =5,

For true token generation For noise token generation

. Synonym
For noise token generation

Wo v e . [ Noise Scheme
w® I wh® w
:—v;{;u_e_ N _‘;/gr;e_ - —:‘;gr;e """""" true)
Wo e ___________. TheParallel
B e T T N ) N 160 ' 1 Noi hem:
i w;‘“E > wz"(l). .w3"(11 .w:(lz .WS"(I): w1 NOIse ST
_________________________________
s [N
,é,{rue N W;rue 4ptrue S < W‘{rue W;ruc —
S NN The Mixing
Wo RN N 3
n) S ndy n(1) Noise Scheme
wi® Sy ]

S,

Figure 3: Illustration of different noise schemes under
(repeated) beam-search attack. For convenience, the
lattice is not shuffled on each time-step. An illustration
with a width-3 lattice is given in Figure 7 (§B).

does not reflect the semantic similarity between the
hypothesis and the true generation. Therefore, in
our experiments we will also use an embedding-
based metric BERTScore (Zhang* et al., 2020) to
measure the leaked information on semantics. Sim-
ilar to true-ratio, BERTScore is larger than zero
and has a maximum value of 1 (we refer readers to
its paper for details). We define max-BERTScore
in the same fashion as max-true-ratio and we omit
the formulation for brevity.

4.1 The Repeated Beam-Search Attack

In this section, we motivate and describe the re-
peated beam-search attack which is the major at-
tack algorithm considered in this work. It is a
stronger version of the beam-search attack de-
scribed below.

The Beam-Search Attack (Server) Assuming
unigram unit, a natural objective for the attacker
is to find the sequence w with 1y € {w},...,w}"}
which is mostly likely to be generated by Pp:

arg max log Py (0|W7') =

T (6
arg max Z log Pr, (e |[WY 1 [ie—1]).
w t=1

By saving all probability distributions during
the generation, the attacker can efficiently conduct
this optimization using the classical beam-search

algorithm. We term it as the beam-search attack.
Our experiments (§5) show that the simple syn-
onym noise scheme discussed in §3 is highly vul-
nerable to the beam-search attack. We show some
intuition in the upper part of Figure 3: There does
not exist a direct link between the noise tokens.
The log-probability of the true sequence will likely
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be much higher than any combination of the noise
tokens, and is therefore revealed by the attack.

The Parallel Noise Scheme (Client) There is an
intuitive way to defend against the beam-search
attack: The client can sample a noise sequence in-
dependent of the true sequence, and make it have
higher log-probability than the true sequence by
tuning the hyper-parameter of the sampling algo-
rithm. We term it the parallel noise scheme and
illustrate in the middle of Figure 3.

More concretely, at time-step ¢, the i-th noise
token is sampled from Pr,(-|[W}N, [wi®5*?)). 5 In
this way, the noise sequences w"**® are parallel
and independent of the true sequence w"™ . We also
assume the adoption of popular sampling hyper-
parameter for the generation of the true sequence
(e.g., k = 50 for top-k or p = 0.96 for nucleus),
which enables the adoption of a more radical hyper-
parameter (Caccia et al., 2020; Nadeem et al., 2020)
for the sampling of the noise sequences: in our
experiments we use k = 5.

Our experiments show that the parallel noise se-
quences can very effectively hide the true sequence
from the beam-search attack. This motivates our
proposed repeated beam-search attack.

The Repeated Beam-Search (RBS) Attack
(Server) We propose a simple but more powerful
attack algorithm based on the beam-search attack:
Given a N-lattice, we do beam-search N — 1 times.
After obtaining the resulting hypothesis sequence
of the i-th beam-search (denoted as w?), we re-
move the tokens in 40’ from the lattice, resulting in
a (N —i)-lattice. After the (N —1)-th beam-search,
only one sequence is left in the lattice, which be-
comes the N-th hypothesis ©w". We term it the
repeated beam-search (RBS) attack.

The intuition of why the RBS attack is effective
against the parallel noise scheme is shown in the
middle of Figure 3. Since the noise sequences are
of high probability and independent of each other,
it is likely that the N — 1 times of beam-search
would obtain all the noise sequences as hypotheses
which are removed from the lattice in turn, and the
remaining true sequence is therefore revealed in
the end as %" . This would result in a high max-
true-ratio.

4.2 The Mixing Noise Scheme for Defense
We propose the mixing noise scheme to defend
against the RBS attack, with the intuition that

’If G > 1, the last G tokens from the i-th the noise se-
quence will be used.

the true and noise sequences should somehow be
mixed. This scheme can be regarded as a variant
of the parallel noise scheme. Again we adopt a rad-
ical hyper-parameter for the sampling of the noise
sequences (top-k with k = 5). At time-step ¢, with
a random ratio determined by a hyper-parameter
mix-ratio, the i-th noise token is sampled from
Pr(-{W}[wi™¢]), which is the next-token dis-
tribution for the true sequence. ¢ Otherwise we
sample from Pr,(-| WY, [wi°?V]), same as in the
parallel scheme.

We illustrate this at the bottom of Figure 3. In
comparison to the parallel scheme, the goal is to
make the sequence with the highest log-probability
be a mix between the true and noise sequences.
And the key is to make the true sequence “branch”
out to the noise sequences, which breaks the con-
tinuity of the noise sequences. Although broken,
the radical sampling used for the noise sequence
would still attract the repeated beam-search attack,
and the true and noise sequences are mixed by the
branching connections. Our experiments show that
with a tuned mix-ratio, the mixing noise scheme
achieves the best max-true-ratio under RBS attack.

S Experiments
5.1 Experiment Setting

Model & Noise Schemes We use the OPT-1.3B
(Zhang et al., 2022) and the Llama2-7B model as
our base LLLM, from which both P;, and P, are
finetuned. We select those models due to limited
computing resource and as a proof-of-concept. Our
protocol can be readily applied to larger autoregres-
sive LMs such as GPT3 or GPT4. In our imple-
mentation, for convenience we simulate the client—
server interaction protocols on a single machine.
For sampling of the true sequence, we use top-k
(Fan et al., 2017) sampling with £ = 50, temper-
ature 0.7, and a repetition penalty of 1.05. For
the noise token sampling in the parallel or mixing
noise scheme, k = 5 is used. It should be clear that
LatticeGen can also be applied to other sampling
algorithms with proper hyper-parameters. We limit
the maximum generation length to 60 tokens. For
the mixing noise scheme of OPT, we use a mix-
ratio of 0.1 for both N = 2 and N = 3 for the
generation part. For the prompt part, we use a mix-
ratio of 0.2. For Llama2, we use a mix-ratio of
0.05 for both N = 2 and N = 3 for the generation

We will re-sample if the sampled token is the same as the
true token.
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Config

N = 2 (LG only)

\ N = 3 (LG only)

Metric| PPL  PMI True-Ratio BERTScore| PPLL. PMI True-Ratio BERTScore

Attack BS RBS BS RBS BS RBS BS RBS
OPT, Vanilla (Pas), w.0. noise 21.272 345 1.0 1.0 1.0 1.0 / / / / / /
OPT, Synonym, w.o. lattice 229.616 .058 / / / / / / / / / /
OPT, Syn-50%, w.o. lattice 199.621 .058 / / / / / / / / / /
OPT, LG, 4-gram, synonym 37.574 244 993 993 .894 .894 |41.379 .221 985 .985 .882 .882
OPT, LG, 4-gram, parallel 33.907 228 .168 .844 .234 784 |35.691 .232 .110 .749 .155 .676
OPT, LG, 4-gram, mixing 34,058 .219 .541 .651 .432 .531 (35910 .242 .357 .511 .285 .393
Llama2, Vanilla (Pas), w.o. noise| 14.710 .785 1.0 1.0 1.0 1.0 / / / / / /
Llama2, LG, 4-gram, synonym 22.297 .661 .995 .995 .895 .895 [27.125 .585 .986 .986 .880 .880
Llama?2, LG, 4-gram, parallel 22.649 .637 .145 870 .211 .811 [25.962 .683 .122 .751 .165 .672
Llama2, LG, 4-gram, mixing 22.430 .670 .499 .713 440 .618 [26.997 .648 .360 .565 .262 .410

Table 1: Main results when LatticeGen (LG) is applied to both the generation and the prompt. All metrics are the
lower the better except PMI. While the generation quality and alignment are degraded, LatticeGen with the proposed
mixing scheme successfully protects the true generation from RBS attack to a remarkable degree (measured by

max-true-ratio/BERTScore).

part and 0.2 for the prompt part. They are found to
achieve the lowest max-true-ratio on the dev set.

Dataset & Lattice Finetuning Since the word
history is noised (discussed in §3.2), LatticeGen
is not recommended for tasks with high require-
ments for consistency or factuality (Pagnoni et al.,
2021). In this work we focus on the task of cre-
ative writing (Martin et al., 2017; Yao et al., 2018;
Fan et al., 2019), and utilize the WritingPrompts
dataset (Fan et al., 2018). The dataset is com-
posed of stories and the corresponding high-level
descriptions as prompts. The average length of
prompts/stories is 29/674. We use 200/500 samples
from the valid/test set for development/evaluation.
The training set (10,000 samples) is used for fine-
tuning of Pr, and Py, and we defer details to §A.

Metrics We use a larger LLM, namely OPT-2.7B
or Llama2-13B, to measure the generation’s quality
or alignment with the prompt. For quality, we use
the popular perplexity metric. For alignment, we
use pointwise mutual information (PMI) (Shi et al.,
2023):

log Popr(z|y) — log Popr ()
len(z)

PMIppr(z;y) = , (D

where x and y denote the generation and prompt.

To compare between different noise schemes and
measure the (semantic) overlap between the attack
hypothesis () and the true sequence (w"™¢) under
RBS attack, we use the true-ratio or BERTScore
discussed in §4. We will report true-ratio for the
BS attack and max-true-ratio under RBS attack,
and the same applies to BERTScore.

5.2 Experiment Results

Table 1 includes the main results when LatticeGen
(LG) is applied to both generation and prompt. The
standard vanilla model (Pys) enjoys the best gen-
eration quality (PPL and PMI), while having zero
obfuscation (100% true-ratio).

LatticeGen sacrifices generation quality (due to
noised history) for obfuscation. The empirical be-
havior of the three noise schemes aligns with their
respective intuitions discussed in §4: The synonym
scheme is completely defenseless against the BS at-
tack; The parallel scheme is most effective against
BS with true-ratio lower than 20%, but is vulnera-
ble under the stronger RBS attack.

The mixing scheme, which is our main rec-
ommended scheme, achieves the best protection
under the RBS attack. For N = 2, The max-
true-ratio/BERTScore is close to or lower than
65%/55%. It indicates that around half of
the semantic is hidden from the attacker, and
is close to the theoretical best max-true-ratio
(% = 50%). The protection is better with N = 3
(50%/40%), but with worse generation quality.

Comparing to unigram unit, the quality degra-
dation (especially PPL) is alleviated to a large
degree by using 4-gram units (See Figure 5 for a
comparison). One could also try larger GG-gram for
further improvement. However, the computational
cost would grow exponentially and we leave it to
future work due to limited resources.

What if we directly apply noise to generation
but without the lattice structure? We add an addi-
tional non-lattice baseline with the same synonym
scheme used in LatticeGen: On every time-step, the
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Prompt: Prompt: Aliens have arrived, and ask for a single human to plead humanity’s case and save them from extinction.
The human is selected through a lottery of the entire human race, and on the day of the drawing, your name is picked... Story:

Generated Text (Py/): I could feel my heart rate increase . A cold sweat ran down my back . I could not believe what was
happening . My name had just been drawn . Everyone ’s names were in a big bowl , with the most common names at the top ,
to the least common at the bottom

Generated Text (LG): I can see them . They are here to save us from our own destruction , but to watch over us . ” “ Why
have you come ? What is so important about humans ? ”” “ Humanity has been here since the beginning . They took us by
surprise a few years ago .

First Round RBS: Prompt: Aliens have arrived on the cover of every single human , and they all have a different colour.
Story: from extinction . The human is selected through a lottery of the entire human race, and on the day of the drawing is the
room with the blue Story: “ We have come in peace . They are not hostile . ” “1do n’t know ” “ Why have you come ? > What
is so important about humans ? "’ Humanity has been here since the beginning . They took us by surprise a few years ago .

Second Round RBS: Prompt: Youenstein ’, and ask for a meeting room to plead humanity’s case and save them * theint. . ”
The .gov drawing room . all the walls are painted with you and you can your choice, your name is picked... Story: I can see
them . They are here to save us from our own destruction , but to watch over us .We ’re here to protect been so peaceful and
gentle 7 ” “ They 're a threat to us . ” “ But we were n’ million species from the

Figure 4: An example of text generation with LatticeGen, using the configuration of 4-gram, N=2 and the mixing
scheme. The true tokens are italicized in both rounds of RBS, and the underline indicates that the noise token is

mixed from the previous true token. Note that the prompt is also noised by LG.

N OPT-1.3B
Uama2-7B-HF

50 4

&
3

Perplexity
w
8

204

Unigram Bigram

4-Gram

Figure 5: Comparison of perplexity of OPT-1.3B and
Llama-7B-HF models on various G-gram units.

client gets next-token distribution from the server
and generates a true token, but sends a synonym
of it back to the server. The finetuning is modified
accordingly with details given in §B.3.

As shown in Table 1, we apply the synonym
scheme to 100% or 50% of the tokens. The syn-
onym noise without lattice results in drastically
degraded PPL and PMI. In comparison, LatticeGen
provides a trade-off between quality degradation
and privacy protection. This implies that for de-
cent generation performance, the true tokens
have to be revealed to the server in some way.

Table 2 (§D) compares generation speed of dif-
ferent systems. On the single A40 GPU we use,
LG with 4-gram (N = 2) units has a 4.76 times
slowdown comparing to P;;. Since inference with
transformer model benefits from parallel comput-
ing, the slowdown should be less significant on
servers with stronger computing power.

We show a generation example with RBS attack
outputs in Figure 4. LG is able to generate a sample

with decent quality. More importantly, around half
of the story semantics remains hidden from the
RBS attack by the mixing noise scheme. More
examples and analysis are deferred to §D.

6 Related Work

Existing work in privacy-aware natural language
processing (NLP) (Qu et al., 2021; McMabhan et al.,
2017) mostly focuses on protecting user data for
training (Huang et al., 2020; Yue et al., 2023) or
inference, and the majority of works focus on nat-
ural language understanding (NLU) tasks (Feyise-
tan et al., 2020; Xu et al., 2021). To the best of
our knowledge, our work is the first to consider
decoding-time privacy for LLM prompted genera-
tion on cloud.

Lattice in NLP Lattice (Young et al., 2006) is a
graphical structure widely used in structured pre-
diction problems to represent a range of hypothe-
ses. In this work we adopt a simple linear-graph
form of lattice which is known as the confusion
network (Mangu et al., 1999). The lattice structure
has found interesting applications in neural NLP
models. As a pioneering work, Su et al. (2017)
proposes lattice-based RNN encoders for machine
translation, where the lattice is generated by merg-
ing results from different segmenters. Buckman
& Neubig (2018) proposes a neural lattice lan-
guage model, which constructs a lattice of possible
paths (segmentations) through a sentence in order
to model multiple granularities. Lattice-BERT (Lai
et al., 2021) trains LLM to predict a masked por-
tion of a lattice representing possible segmentations
of a sentence. To the best of our knowledge, our
work is the first to utilize the lattice structure for
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privacy-aware generation.

Prompt Anonymization Contemporary and in-
dependent of our work, Chen et al. (2023) proposes
to anonymize the named entities (e.g., change USA
to <GPE>) in the prompt, and de-anonymize after
receiving the generated text from server. In com-
parison, LatticeGen offers a more general option
in that all types of tokens, especially the generated
tokens, can be noised.

Due to lack of space, we discuss related work on
differential privacy, homomorphic encryption
in §C.

7 Conclusion

LatticeGen aims for an ambitious and seemingly
conflicting goal: The server still does most compu-
tation for the generation but does not know what
exactly is generated. This is achieved by our pro-
posed noised lattice structure, and a cooperative
generation protocol between the server and client.
While the noised lattice degrades generation
quality and inference speed, LatticeGen with our
proposed mixing noise scheme successfully pre-
vents a malicious server from recovering the true
generation to a remarkable degree (more than 50%
of the semantic remains unknown as measured by
BERTScore). We hope our work could inspire
more research into this under-studied yet important
field of privacy-aware LLM generation on cloud.

8 Limitations

LatticeGen sacrifices generation quality and speed
for obfuscation of generated contents. While we
show the quality degradation can be alleviated to
some degree by using larger G-gram unit, it would
also cause the inference computation to grow ex-
ponentially. An interesting future direction is that,
instead of running an inference for all N G grams,
we only select a small portion strategically.

On the other hand, in this work we focus on
protecting the user and the (repeated) beam-search
attack from server. There could be other forms of
interesting or stronger attacks on the server side
(e.g., manual inspection from a human). On the
other hand, sharing generation control with client
could also endanger the server (e.g., jailbreaking)
(Liu et al., 2023; Li et al., 2023).

Finally, in the current implementation, we lattice-
finetune a seperate OPT model for every different
lattice configuration, which is space unfriendly. As
future work, it would be interesting to explore a uni-

fied format of linearized lattice by which a single
LLM can process different lattice configurations.

9 Broader Impact

As stated in §1, in the current user—server interac-
tion paradigm, both the prompt and the generation
are raw texts which are completely transparent and
accessible to the server. This leaves zero options
for users who want to keep the generated text to
themselves. On the other hand, the privacy protec-
tion offered by today’s LLM providers’ data usage
and retention policies is far from enough (detailed
in §E). We propose LatticeGen as a novel proto-
col for privacy-aware generation with a controlled
level of obfuscation. We hope our work could raise
awareness for the privacy considerations of gener-
ated contents.
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Supplemental Materials

A Model Training and Inference with
Lattice (Server)

LLM Finetuning and Inference with the LLG
(Linearized Lattice plus G-gram) Format We
now describe how Py, is obtained by finetuning
a standard autoregressive LM Pp; parameterized
by 60 to make next-token predictions with the LLG
format(§2.3). We assume access to a public corpus
D for finetuning. For simplicity, we focus on the
training objective for one length-T" sentence w? €
D and we also assume N = 2 and G = 1 (the
process for N > 2 or G > 1 is highly similar).
For each data sample w?, we randomly pick an-
other data sample w? to serve as a “parallel” noise
sample, which is used for constructing the noised
lattice W2 for w?. For time-step ¢, the token in
the data sample w? will be used as the true token

wi™® := w¢, and the token from the parallel sam-

ple is used as the noise token w}***" := ' To
be consistent with the actual generation protocols
for LatticeGen, the tokens on each time-step are
shuffled.

The noise generation scheme used by server in
the finetuning stage might be different from the
scheme used by client in the actual generation. For
example, if we use a simple synonym scheme, the
perplexity of the synonym scheme during genera-
tion will be better. In our implementation we adopt
the parallel scheme described above during train-
ing because it works well with the proposed mixing
scheme (§4.2).

After constructing the noised lattice W%, we
randomly select P tokens in w? (we use P = 8
in our training), and use them as the target next-
tokens to finetune the LLM with the LLG format.
Denoting their indices as {t', ..., ¢}, we formulate
the following objective:

Luaicerr(w®, Wi;0) =
1 P
- > " log Po(wis|Wip 1 [wi 1]).

p=1
(3)
We now discuss how the server can do ef-
ficient LLM inference at time-step ¢. Since
linearize(W;",) from the previous time-step ¢ — 2
is a prefix of linearize(W}Y, ), the server can reuse
the saved LLM hidden states’ from the last time-
step for the inference of { Py, (-|W},[wi )}V ,.

"The past_key_values in HuggingFace transformers
library.

However, the server still need to enumerate and
inference N combinations of the G-grams in par-
allel, and that is the major reason for the slowdown.

Implementation Details Our model implemen-
tation, training and inference utilize the Hugging-
Face transformers library (Wolf et al., 2020). We
finetune Py, with learning rate of 5 x 10~ and
a batch size of 8 for 3 epochs using the PyTorch
(Paszke et al., 2019) implementation of the AdamW
(Loshchilov & Hutter, 2017) optimizer. For finetun-
ing of Llama2, we adopt LoRA (Hu et al., 2021).
We perform finetuning of the model under various
configurations on one Nvidia A40 GPU.

B Auxiliary Framework Description

An illustration of the server step for N = 3 and
G = 2 is provided in Figure 6.

An illustration of various noise schemes with a
width-3 lattice is provided in Figure 7.

B.1 Incorporating the Prompt (Client)

The prompt p can be easily incorporated by the fol-
lowing. At all time-steps ¢ with ¢ < len(p), instead
of sampling wj™ from Py (-[WN [wii sy 1))
the client directly sets wi™® := p;. All other steps
in the protocols including the noise token genera-
tion continue as normal. In this way, the prompt is
also embedded and noised in the lattice.

B.2 Communication Cost

At each time-step, the server needs to send client
N€ length-|V| vectors, which could be slow if |V/|
is large. This can be largely alleviated if the client
and server can agree upon a sampling algorithm
beforehand. For example, if top-%k sampling with
k = 50 is used, then only the logits and indices of
the top-50 tokens are needed.

B.3 The Non-Lattice Baseline

The training for the non-lattice baseline is a bit
similar to the lattice finetuning process described
in §A, with the difference that the true tokens are
not included in the input. Following the notations
in §A with w? as the data sample, the training
objective is formulated as:

T
1 i
Cnon—lattice,syn.(wd§ 0) = T Z log PH(“’?‘“’S??—%)’ ©)
t=1

where w}°'*¢ is randomly set to a synonym of w.

Basically, the model is trained to predict the next
true token with a ratio of input tokens noised.
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C] True Tokens

[:] Noise Tokens

Server Step t (N? Enumeration)

- s,
’

[ o~ a o helper. ] P.( |Wt3$ [love story]) Py(- |W?1[love letter]) P, (- |W;_1[1egal letter]) T
3-Lattice Wt3_ 1 [ Play one love letter. ] Vi s
[ Tell as legal story. ] 0 0 ¥ 1
<predict> <predict> <predict> <predict>
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Figure 6: An illustration of the server step for N = 3 and G = 2. The information of which tokens are the true

tokens is only known to the client.
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The Mixing
Noise Scheme

Figure 7: Illustration of different noise schemes under
(repeated) beam-search attack. For convenience, the
lattice is not shuffled.

C Related Work

This section continues from §6.

Differential Privacy (DP) for LM Training and
Inference There are numerous existing works on
how to train LLMs with differential privacy (Li
etal., 2021; Yu et al., 2021), which mostly rely on
DP-SGD (Abadi et al., 2016) and limits leakage of
private data during training. More related to Lat-
ticeGen is a line of work with local DP (Xu et al.,
2020; Meehan et al., 2022), which applies discrete
noise onto text and can be used to synthesize pri-
vate text data (Yue et al., 2023; Mireshghallah et al.,
2023).

It is not directly clear how these techniques can
be adapted for our setting of privacy-aware autore-
gressive text generation. In comparison, Lattice-
Gen provides a totally different and cooperative
approach with the lattice structure and novel de-
fense and attack schemes.

Speed (second/token) | N=1 N=2 N=3
P .013 / /
LG, Unigram /024 (1.84x) .028 (2.15x)
LG, Bigram /[ .028 (2.15x) .047 (3.62x)
LG, 4-gram / .062 (4.76x) .332(25.53x)

Table 2: Generation speed comparison between different
systems. For LG, the mixing noise scheme and the OPT
model is used. Our implementation is run on a single
A40 GPU.

Homomorphic Encryption There is also a line
of work (Chen et al., 2022) applying techniques
from homomorphic encryption (Gentry, 2009) to
transformer LM. While they enjoy nice crypto-
graphic guarantees, the induced computational cost
is usually huge.

D Auxiliary Results

Similar to Figure 4, Figure 8 shows an example
using a different prompt using bigram N = 2.

On the single A40 GPU we use, LG with bi-
gram units (/N = 2) has a 2x slowdown comparing
to Py (Table 2, §D). Since inference with trans-
former model benefits from parallel computing, the
slowdown should be less significant on servers with
stronger computing power.

E The Current Privacy Protection
Practices in Industry

The privacy protection offered by today’s LLM
providers’ data usage and retention policies is far
from enough. 8 For example, OpenAI’s consumer-
facing ChatGPT used to train its models with user
input, and also shares user input with third-party
providers, and Google’s Bard retains user activ-
ity for at least 3 months. As a striking example,

$https://opaque.co/announcing-
opaqueprompts—-hide-your-sensitive-data-
from-1lms/

2688



employees in Samsung reportedly shared sensitive
code with OpenAl during their interaction with
ChatGPT. ® More recently, some of the users’ con-
versations with Bard are mistakenly indexed and
accessed by Google search. '*

While providers have recently improved their
security posture (e.g., OpenAl no longer uses data
submitted via its API to train its model), users still
can not assume that all sent/received data will be
immediately and completely deleted. Rather than
regulations, our proposed LatticeGen takes an algo-
rithmic and cooperative approach to give the user
advantage and control in privacy protection.

*https://gizmodo.com/chatgpt—-ai-
samsung-employees—leak-data-1850307376

Ohttps://venturebeat.com/ai/oops—
google-search-caught-publicly-indexing-
users—-conversations-with-bard-ai/
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Prompt: Every planet in our solar system has a “ champion ” being that takes on the attributes of the planet itself. The
champion ” from the sun has created an army to destroy the planets and the 8 (or 9 ) champions must save the solar system...
Story:

Generated Text (Py/): The planet Mars was known for its reddish color . Mars has a very thin atmosphere , and only a select
few had been able to breathe it . But not this man . This man could breathe anything . His name is Sol , also known as the Sun .

Generated Text (LG): “ There ’s nothing you can do, ” I said , running through my head as I saw the soldiers fall . The
soldiers were outnumbered , and his army too vast for us to even put up a fight and still lose ? It will be too late ! The
champion is here ! ”

‘

First Round RBS: Prompt: Every planet in the galaxy has a “ champion ” , that takes on the attributes of all of the
inhabitantsants “ life ” from the sun has taken up arms against him .. Story: “ the 3 ( or 9 ) champions must save the solar
system... Story: “ There ’s nothing you can do , ” I said , running through my head as I saw the soldiers fall . The soldiers
were too powerful for us ! ” “ You can try ! ” “ What ? How ? ” *“ You not only have to fight the champion , but his

Second Round RBS: Prompt: A man is our solar system ’s life is a being ul, , , , , , the planet itself. The . champion on Earth
each other to created an army to destroy the planets and 1 ca8 other I *3m not are you Earthlingss from Story: The world was
in chaos . say something ! ” “ No ! ” *“ if we could have stopped him . He was outnumbered , and his army too vast for us to
even put up a fight and still lose ? It will be too late ! The champion is here ! ”

Figure 8: Another example of text generation with LatticeGen, using the configuration of 4-gram, N=2 and the the
mixing scheme. The true tokens are italicized in both rounds of RBS, and the underline indicates that the noise
token is mixed from the previous true token. Note that the prompt is also noised by LG.
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