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Abstract

In the current user-server interaction paradigm

of prompted generation with large language

models (LLMs) on cloud, the server fully con-

trols the generation process, which leaves zero

options for users who want to keep the gener-

ated text private to themselves. For privacy-

aware text generation on cloud, we propose

LatticeGen, a cooperative protocol in which

the server still handles most of the computation

while the client controls the sampling operation.

The key idea is that the true generated sequence

is mixed with noise tokens by the client and hid-

den in a noised lattice. Only the client knows

which tokens are the true ones. Considering po-

tential attacks from a hypothetically malicious

server and how the client can defend against

it, we propose the repeated beam-search attack

and the mixing noise scheme. In our exper-

iments we apply LatticeGen to protect both

prompt and generation. It is shown that while

the noised lattice degrades generation quality,

LatticeGen successfully protects the true gen-

eration to a remarkable degree under strong at-

tacks (more than 50% of the semantic remains

hidden as measured by BERTScore).

1 Introduction

Many of the high-performing large language mod-

els (LLMs) need to be deployed on cloud servers,

whether they are open-sourced but have an inten-

sive need for computation (Zhao et al., 2023; Ka-

plan et al., 2020; Leviathan et al., 2023), or behind a

paywall like ChatGPT (OpenAI, 2023). This raises

new privacy challenges (Li et al., 2021; Yu et al.,

2021; Kerrigan et al., 2020), since users have to

send or receive their data to/from cloud providers.

In this work we focus on a popular interaction

paradigm between end users and a server hosting an

LLM on cloud named prompted generation: The

user sends server a prompt, which is usually an

instruction (Chung et al., 2022) or the beginning

∗Equal Contribution. Both are corresponding authors.

of a document (Deng et al., 2022), and the server,

who fully controls the generation process, sends

user back the generated text from the LLM. Both

the prompt and the generation are raw texts which

are completely transparent and accessible to the

server, leaving zero options for users who want to

keep the generated text private to themselves.

As LLMs become widely deployed in profes-

sional and social applications, we argue that in

prompted generation, there are many scenarios in

which not only the prompts, but also the gener-

ated texts need some level of obfuscation, be-

cause they can directly affect the user’s real-life

private decisions. For example, a customer is

likely to go to the restaurant suggested by the LLM,

and a writer could take inspiration from outputs

provided by the LLM. With the goal of preventing

the server from gaining complete knowledge of the

generated text and prompt, we propose LatticeGen

(Figure 2), a client–server interaction protocol in

which the user and client conduct privacy-aware

generation token-by-token in a cooperative way.

The protocol can be executed by a local client so

that the interface is kept simple for the user. We

summarize our key contributions below:

• The high-level idea of LatticeGen (§3) is that

in each time-step, the client sends the server

not one, but N tokens (thus the name lattice),

in which one is true and others act as noise.

The server does LLM inference and sends

client back the next-token distributions for

all N tokens, which are used by the client to

sample the true and noise tokens for the next

time-step.

• Considering potential attacks from a hypo-

thetically malicious server and how the client

can defend against it (§4), we propose the

repeated beam-search attack and the mixing

noise scheme as defense.

• We apply LatticeGen to the task of creative
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writing (Fan et al., 2018). Our experiments

(§5) show that while the noised lattice de-

grades generation quality, LatticeGen success-

fully prevents a malicious server from recover-

ing the true generation to a remarkable degree

(more than 50% of the semantic remains un-

known as measured by BERTScore). 1

2 Motivation and Preliminaries

2.1 Generated Text (also) Needs Obfuscation

In the current user–server interaction paradigm, the

user sends the server a prompt which is usually

the beginning of a dialogue, story or instruction,

then the server generates a complete response au-

toregressively (§2.3), and sends it back to the user.

Both the prompt and generation are directly avail-

able to the server in raw text format.

This paper contends that generated texts, as well

as user prompts, require a privacy protection mech-

anism. A key reason is that in various scenarios,

the generation from the LLM can affect the user’s

private decisions: e.g., a customer is likely to go

to the restaurant suggested by the LLM; a writer

could take inspiration from outputs provided by the

LLM; an engineer or manager could adopt the ap-

proach proposed by the LLM. Industry regulations

do not provide ample protection. Please see §E for

recent privacy-related incidents with ChatGPT or

Bard. The goal of our LatticeGen protocol is to

provide a controlled level of obfuscation for the

generated text, making it difficult for a hypothet-

ically malicious server to infer the user’s actions

after interacting with the LLM.

2.2 LatticeGen as a Third-Party Client

Before expanding on the proposed protocol (§3),

we first clarify that LatticeGen does not compli-

cate the user interface. Indeed, it is likely that

most users still want to keep a simple and intu-

itive interface for prompted generation. In light

of this, LatticeGen can be implemented as a third-

party client between the user and the server. As

Figure 1 depicts, the client takes the prompt from

the user, conducts the privacy-aware generation

protocol with the server, and finally returns the gen-

eration to the user. In this way, the user does not

need to deal with the complicacy in the protocols.

The next question is why would a common user

trust the client? One solution is that the client

can be open-sourced (e.g., as python scripts) and

1Our code and data will be released in here on github.

Figure 1: LatticeGen can be implemented as a third-

party client handling the protocol for the user.

therefore vetted by researchers and users world-

wide. It can also facilitate comprehensive evalua-

tions conducted by different research groups. The

user only need to download the script and set the

hyper-parameters (e.g., random seed).

2.3 Preliminaries

We will start by reviewing the traditional autore-

gressive LM generation, and then move on to intro-

duce necessary components of LatticeGen.

Traditional Autoregressive LM Generation

We assume the server-side LLM is an autoregres-

sive LM, i.e., it generates tokens one at a time

and from left to right (Mikolov, 2012; Cho et al.,

2014; Huszár, 2015; Welleck et al., 2020; Dai et al.,

2019; Keskar et al., 2019). We denote the LLM

as PM with parameter set θ, the vocabulary as V ,

the generated token at time-step t as wt, and the

given prompt as p. For convenience we regard the

prompt as part of generation, therefore, wt := pt
for 1 ≤ t ≤ len(p). In traditional autoregressive

generation, on each time-step t > len(p), the next

token wt is sampled from PM (·|w0..t−1) by call-

ing a sampling algorithm such as top-k (Fan et al.,

2017) or nucleus sampling (Holtzman et al., 2020).

w0 is the <bos> token.

The Lattice Structure A simple but key concept

in our proposed framework is the lattice. In a width-

N lattice (or an N -lattice for short), each time-step

contains N token options and we denote them as

{w1
t , ..., w

N
t }. Therefore, a N -lattice of length T

(denoted as WN
T ) represents NT possible sequence

combinations. An example with N = 2 is shown

in the left part of Figure 2.

In our proposed LatticeGen protocols (§3.1), for

each time-step t, only the client knows which token

is the “true” one, denoted by wtrue
t . And the other

N−1 tokens {wnoise(1)
t , ..., w

noise(N-1)
t } are referred

to as “noise” tokens. Therefore we will also refer to

it as the noised lattice. To prevent the server from

knowing which one is the true token, the client will

randomly shuffle the list before attaching it to the

lattice and sending to the server.

LM Finetuning and Inference with the LLG

(Linearized Lattice plus G-gram) Format As

a prerequisite for LatticeGen, we need the server-
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Figure 2: Client-Server interaction under LatticeGen for time-step t. The server controls the LLM PL, conducts the

inference computation and sends client the next-token prediction distribution for each received token. The client

conducts the sampling of the true and noise token(s), and sends server a randomly permutated list of tokens for the

next time-step. The server does not know which tokens are the true ones. The task is creative writing, and the

prompt part is omitted in this figure for brevity. An illustration of the server step for N = 3 and G = 2 is provided

in Figure 6, Appendix B.

side LLM (Vaswani et al., 2017) to be able to do

inference based on a given lattice and we achieve

that by finetuning the base LLM PM to make next-

token prediction with the LLG (Linearized Lattice

plus G-gram) format. Below we first introduce this

format, and describe the finetuning objective.

First, as the name suggests, we conduct a simple

linearization operation before feeding the lattice

to the LM, in which the token options on each

time-step are linearized and concatenated into a

sequence of length T × N (see Figure 2 for an

example):

linearize(WN
T ) = [<bos>]+concat

T
i=1([w

1
i , ..., w

N
i ]). (1)

An illustration of a linearized lattice is given in

Figure 2.

Next, we append a <predict> token and G

tokens specifying the token options for the last

G tokens (for time-step from T − G to T − 1),

and the LLM is trained to predict the next to-

ken with this specified G-gram “tail”. We use

notation S to denote a G-gram, where Si ∈
{w1

T−G+i, ..., w
N
T−G+i} for 1 ≤ i ≤ G. In Fig-

ure 2, we use uni-gram (G = 1) and the last token

could be “challenging” or “with”. The generation

quality will be better with larger G (since the token

history is less noised), at the price of more com-

putation: The server will need to enumerate NG

potential combinations.

In §A, we describe a simple process to finetune a

LLM to predict the next token for the LLG format.

Here we provide a high-level description. For each

data sample wdata, we construct and linearize a

noised lattice by using N − 1 other random data

samples as noise. The LLM is then finetuned to

predict the next true token for several randomly

picked tokens in the data sample with the LLG

format. We denote the LLG-finetuned LLM as

PL, and the prediction distribution for wt with a

noised lattice WN
t−1 and a specific G-gram tail S

as PL(·|W
N
t−1[S]). In most parts of this paper, we

will assume unigram (G = 1) just for notation

simplicity.

3 LatticeGen

To prevent the server from gaining full knowledge

of the generation and prompt, LatticeGen makes

several core changes to the client–server interac-

tion. On a high level, the server who possesses the

LLG-finetuned LLM PL (the finetuning is detailed

in §A) still handles most of the computation, while

the client controls the token sampling operations

and expands the lattice to the next time-step. In

particular, the client will sample one true token and

N − 1 noise tokens, where N ≥ 2 is a hyperpa-

rameter controlling the width of the lattice. In the

end, both the server and client obtain the same

noised lattice WN
T , but only the client knows

which token is the true one for each time step.

In the beginning, the server needs to share the

vocabulary V with the client, but all other param-

eters or configurations of the LLM are not shared.

We describe the protocol below.

3.1 Protocol

For simplicity, we first ignore the prompt part and

assume the generation starts at the first token. In

the beginning t = 0, both the server and client

begin with an empty local lattice, and the client

sends N <bos> tokens to the server. We divide

the client–server interaction at each time-step t ≥ 1
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into a server step and a client step, illustrated by

Figure 2 (also see Algorithm 1).

Server Step From the last time-step, the server

receives from client N tokens {w1
t−1, ..., w

N
t−1}

and expands its local lattice to WN
t−1. The server

does not know which received token is the true to-

ken because the list is shuffled by the client, and

computes the respective next-token prediction dis-

tribution for all NG potential G-gram tails with

the LLG format (each potential tail is denoted as

S). More concretely, the lattice WN
t−1 is linearized,

appended with each G-gram, and fed to PL, which

outputs {PL(·|W
N
t−1[S

i])}N
G

i=1. 2

Since all G-grams share the same linearized lat-

tice, the inference can be made efficient by reusing

transformer hidden states and parallel computing.

We defer the details of finetuning and inference

(both conducted by the server) to §A. The server

represents the next-token prediction distributions

as NG length-|V | vectors, and sends them back to

the client.

Client Step Different from the server, the client

knows which tokens are the true ones. Upon receiv-

ing the list of distribution vectors from the server,

the client extracts the distribution for the true G-

gram PL(·|W
N
t−1[w

true
(t−G)...(t−1)]), from which the

client samples wtrue
t . The client also need to gener-

ate N − 1 “noise” tokens {wnoise(1)
t , ..., w

noise(N-1)
t }

with a certain noise scheme.

How to generate noise tokens is a key part of

making the noised lattice robust to potential attacks

from the server side. For now, we assume a simple

synonym noise scheme in which we use synonyms

of the true token. Concretely, wnoise
t is randomly

sampled from S tokens having the closest embed-

ding with wtrue
t measured by cosine similarity. In

our experiments we set S = 5. 3 In practice this

simple noise scheme will be vulnerable to attacks

from a malicious server. See §4 for discussions on

attacks and our proposed advanced noise schemes

for defense.

With a private random seed, the client randomly

permutates the token list and sends it to the server.

This concludes the client–server interaction in time-

step t.

2In the uni-gram case, the notation simplifies to
{PL(·|W

N
t−1[w

i
t−1])}

N
i=1.

3In practice, we exclude the first ten closest token in V ,
as their surface forms are usually very close to the true to-
ken, making the obfuscation useless (e.g., only different in
capitalization).

Algorithm 1 Pseudo-code for LatticeGen

Input (Server): Lattice-finetuned LLM PL, lattice width N , generation length

T , and inference tail length G.

Input (Client): Prompt p, a noise generation scheme, a private large prime

number for random seed.

Client sets wi
0 := <bos> for 1 ≤ i ≤ N .

Both the server and client begin with an empty lattice.

The client sends [w1
0, ..., w

N
0 ] to server indicating the beginning of genera-

tion.

for t = 1 . . . T do

# Server Steps Below

Receives [w1
t−1, ..., w

N
t−1] from client and use it to extend the lattice

to WN
t−1.

For each G-gram tail Si, run next-token inference on PL with the LLG

format and obtain {PL(·|WN
t−1[S

i])}NG

i=1 .

Send the distributions to the client as NG length-|V | vectors.

# Client Steps Below

Receives the next-token distributions {PL(·|WN
t−1[S

i])}NG

i=1 from

server.

if t ≤ len(p) then

Set wtrue
t := pt.

else

Sample wtrue
t from PL(·|WN

t−1[w
true
(t−G)...(t−1)]).

end if

Generate N − 1 noise tokens {wnoise(1)
t , ..., w

noise(N-1)
t } with the noise

scheme.

Set the current private random seed to be t multiplied by the private prime

number.

Obtain the permuted list [w1
t , ..., w

N
t ] using the current random seed.

Extend the local lattice, and send [w1
t , ..., w

N
t ] to the server.

end for

Output (Server): Lattice WN
T .

Output (Client): True sequence {wtrue
t }N

t=1, and lattice WN
T .

Incorporating Prompts (Client) The incorpora-

tion of prompts is quite straightforward by regard-

ing it as a prefix of the generation, and the content

in the prompt can also be noised and protected by

LatticeGen. See §B.1 for implementation details.

We summarize the LatticeGen protocols as

pseudo-code in Algorithm 1. The discussion on

the network communication cost between client

and server is deferred to §B.2 to save space.

3.2 Comparison with Standard LM: History

Noised While Locally Sharp

It is helpful to formulate a comparison between

LatticeGen (PL) and generation from a standard

autoregressive LM PM . For simplicity, we ignore

the noise generation (i.e., lattice-building) part, and

only care about how the true tokens are generated

with PL. Under this simplification, the probability

of generating a true sequence w is:

logPL(w) ≈
T∑

t=1

logPL(wt|W
N
t−1[w(t−G)...(t−1)]), (2)

where the forming process of WN
t−1 (noise to-

kens and permutation) at each time-step is omitted.

For comparison, the log-probability of generat-

ing w with the standard model PM is:

logPM (w) =
T∑

t=1

logPM (wt|w0...t−2, wt−1). (3)
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Comparing the above two equations with simi-

lar structure, it should be clear that what Lattice-

Gen does is essentially blurring the token history

w0...t−2 by the noised lattice WN
t−2. Therefore, in-

creasing the number of noise tokens gives better

protection for the true token sequence, but at the

same time degrades the LM’s performance.

While the history is blurred, the local sharp-

ness (Khandelwal et al., 2018) is preserved by

LatticeGen: From Equation 2, the exact last G

tokens is provided to the model. Therefore, in

the worst-case scenario (zero utilization of non-

immediate history), LatticeGen is at least as strong

as a (G+ 1)-gram LM.

4 Attack and Defense

In this section, we discuss potential attack algo-

rithms from a hypothetically malicious server to

decode the true token sequence {wtrue
t }Tt=1 hidden

in the lattice WN
T , and the client’s noise generation

schemes as defense. For notational simplicity, we

will assume unigram (G = 1), and the extension to

G > 1 should be straightforward. We first establish

metrics to measure the strength of attacks.

Metrics Given a lattice WN
T , the attacker’s target

is to decode a hypothesis sequence ŵ with ŵt ∈
{w1

t , ..., w
N
t } having biggest overlap with the true

generation wtrue. We define a simple true-ratio

metric to measure the strength of the attack:

true-ratio(ŵ, w
true) =

∑T

t=1 ✶ŵt=wtrue
t

T
. (4)

In the repeated beam search attack to be de-

scribed below, the result of the attack algorithm

is not only one but N sequences {ŵi}Ni=1 which

spans the whole lattice (i.e., {ŵi
t}

N
i=1 = {wi

t}
N
i=1).

In this case, we argue that the defending noise

scheme should prevent any of the hypothesis from

having a high overlap with the true sequence, and

measure it with the max-true-ratio: 4

max-true-ratio({ŵ}Ni=1, w
true) = max

i

∑T

t=1 ✶ŵi
t=wtrue

t

T
.

(5)

It should be clear that 1
N

is a lower bound

for max-true-ratio for any noise scheme, which

provides an intuition of why larger N would

better protect the true sequence.

Albeit intuitive, a big weakness of the true-ratio

metric is that it only considers exact matches and

4The average of the true-ratio will always be 1
N

because
each true token is in one of the N hypotheses.

Top-𝑘 with 𝑘 = 50
For true token generation

Top- 𝑘 with 𝑘 = 5
For noise token generation

(Repeated) Beam-Search Attack

ෝ𝑤1
ෝ𝑤2𝑤0 The Parallel

Noise Scheme

ෝ𝑤𝑤1true 𝑤2true
𝑤1n(1) 𝑤2n(1)𝑤0 𝑤3true𝑤3n(1)

𝑤4true
𝑤4n(1)

𝑤5true
𝑤5n(1) The Synonym

Noise Scheme

Synonym
For noise token generation

𝑤0 The Mixing

Noise Scheme

𝑤1true 𝑤2true
𝑤1n(1) 𝑤2n(1)

𝑤3true𝑤3n(1)
𝑤4true𝑤4n(1)

𝑤5true𝑤5n(1)
𝑤1true 𝑤2true
𝑤1n(1) 𝑤2n(1)

𝑤3true𝑤3n(1)
𝑤4true𝑤4n(1)

𝑤5true𝑤5n(1)
Figure 3: Illustration of different noise schemes under

(repeated) beam-search attack. For convenience, the

lattice is not shuffled on each time-step. An illustration

with a width-3 lattice is given in Figure 7 (§B).

does not reflect the semantic similarity between the

hypothesis and the true generation. Therefore, in

our experiments we will also use an embedding-

based metric BERTScore (Zhang* et al., 2020) to

measure the leaked information on semantics. Sim-

ilar to true-ratio, BERTScore is larger than zero

and has a maximum value of 1 (we refer readers to

its paper for details). We define max-BERTScore

in the same fashion as max-true-ratio and we omit

the formulation for brevity.

4.1 The Repeated Beam-Search Attack

In this section, we motivate and describe the re-

peated beam-search attack which is the major at-

tack algorithm considered in this work. It is a

stronger version of the beam-search attack de-

scribed below.

The Beam-Search Attack (Server) Assuming

unigram unit, a natural objective for the attacker

is to find the sequence ŵ with ŵt ∈ {w1
t , ..., w

N
t }

which is mostly likely to be generated by PL:

argmax
ŵ

logPL(ŵ|WN
T ) =

argmax
ŵ

T∑

t=1

logPL(ŵt|W
N
t−1[ŵt−1]).

(6)

By saving all probability distributions during

the generation, the attacker can efficiently conduct

this optimization using the classical beam-search

algorithm. We term it as the beam-search attack.

Our experiments (§5) show that the simple syn-

onym noise scheme discussed in §3 is highly vul-

nerable to the beam-search attack. We show some

intuition in the upper part of Figure 3: There does

not exist a direct link between the noise tokens.

The log-probability of the true sequence will likely
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be much higher than any combination of the noise

tokens, and is therefore revealed by the attack.

The Parallel Noise Scheme (Client) There is an

intuitive way to defend against the beam-search

attack: The client can sample a noise sequence in-

dependent of the true sequence, and make it have

higher log-probability than the true sequence by

tuning the hyper-parameter of the sampling algo-

rithm. We term it the parallel noise scheme and

illustrate in the middle of Figure 3.

More concretely, at time-step t, the i-th noise

token is sampled from PL(·|W
N
t−1[w

noise(i)
t−1 ]). 5 In

this way, the noise sequences wnoise(i) are parallel

and independent of the true sequence wtrue. We also

assume the adoption of popular sampling hyper-

parameter for the generation of the true sequence

(e.g., k = 50 for top-k or p = 0.96 for nucleus),

which enables the adoption of a more radical hyper-

parameter (Caccia et al., 2020; Nadeem et al., 2020)

for the sampling of the noise sequences: in our

experiments we use k = 5.

Our experiments show that the parallel noise se-

quences can very effectively hide the true sequence

from the beam-search attack. This motivates our

proposed repeated beam-search attack.

The Repeated Beam-Search (RBS) Attack

(Server) We propose a simple but more powerful

attack algorithm based on the beam-search attack:

Given a N -lattice, we do beam-search N −1 times.

After obtaining the resulting hypothesis sequence

of the i-th beam-search (denoted as ŵi), we re-

move the tokens in ŵi from the lattice, resulting in

a (N−i)-lattice. After the (N−1)-th beam-search,

only one sequence is left in the lattice, which be-

comes the N -th hypothesis ŵN . We term it the

repeated beam-search (RBS) attack.

The intuition of why the RBS attack is effective

against the parallel noise scheme is shown in the

middle of Figure 3. Since the noise sequences are

of high probability and independent of each other,

it is likely that the N − 1 times of beam-search

would obtain all the noise sequences as hypotheses

which are removed from the lattice in turn, and the

remaining true sequence is therefore revealed in

the end as ŵN . This would result in a high max-

true-ratio.

4.2 The Mixing Noise Scheme for Defense

We propose the mixing noise scheme to defend

against the RBS attack, with the intuition that

5If G > 1, the last G tokens from the i-th the noise se-
quence will be used.

the true and noise sequences should somehow be

mixed. This scheme can be regarded as a variant

of the parallel noise scheme. Again we adopt a rad-

ical hyper-parameter for the sampling of the noise

sequences (top-k with k = 5). At time-step t, with

a random ratio determined by a hyper-parameter

mix-ratio, the i-th noise token is sampled from

PL(·|W
N
t−1[w

true
t−1]), which is the next-token dis-

tribution for the true sequence. 6 Otherwise we

sample from PL(·|W
N
t−1[w

noise(i)
t−1 ]), same as in the

parallel scheme.

We illustrate this at the bottom of Figure 3. In

comparison to the parallel scheme, the goal is to

make the sequence with the highest log-probability

be a mix between the true and noise sequences.

And the key is to make the true sequence “branch”

out to the noise sequences, which breaks the con-

tinuity of the noise sequences. Although broken,

the radical sampling used for the noise sequence

would still attract the repeated beam-search attack,

and the true and noise sequences are mixed by the

branching connections. Our experiments show that

with a tuned mix-ratio, the mixing noise scheme

achieves the best max-true-ratio under RBS attack.

5 Experiments

5.1 Experiment Setting

Model & Noise Schemes We use the OPT-1.3B

(Zhang et al., 2022) and the Llama2-7B model as

our base LLM, from which both PL and PM are

finetuned. We select those models due to limited

computing resource and as a proof-of-concept. Our

protocol can be readily applied to larger autoregres-

sive LMs such as GPT3 or GPT4. In our imple-

mentation, for convenience we simulate the client–

server interaction protocols on a single machine.

For sampling of the true sequence, we use top-k

(Fan et al., 2017) sampling with k = 50, temper-

ature 0.7, and a repetition penalty of 1.05. For

the noise token sampling in the parallel or mixing

noise scheme, k = 5 is used. It should be clear that

LatticeGen can also be applied to other sampling

algorithms with proper hyper-parameters. We limit

the maximum generation length to 60 tokens. For

the mixing noise scheme of OPT, we use a mix-

ratio of 0.1 for both N = 2 and N = 3 for the

generation part. For the prompt part, we use a mix-

ratio of 0.2. For Llama2, we use a mix-ratio of

0.05 for both N = 2 and N = 3 for the generation

6We will re-sample if the sampled token is the same as the
true token.
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Config N = 2 (LG only) N = 3 (LG only)

Metric PPL PMI True-Ratio BERTScore PPL PMI True-Ratio BERTScore
Attack BS RBS BS RBS BS RBS BS RBS

OPT, Vanilla (PM ), w.o. noise 21.272 .345 1.0 1.0 1.0 1.0 / / / / / /
OPT, Synonym, w.o. lattice 229.616 .058 / / / / / / / / / /
OPT, Syn-50%, w.o. lattice 199.621 .058 / / / / / / / / / /
OPT, LG, 4-gram, synonym 37.574 .244 .993 .993 .894 .894 41.379 .221 .985 .985 .882 .882
OPT, LG, 4-gram, parallel 33.907 .228 .168 .844 .234 .784 35.691 .232 .110 .749 .155 .676
OPT, LG, 4-gram, mixing 34.058 .219 .541 .651 .432 .531 35.910 .242 .357 .511 .285 .393

Llama2, Vanilla (PM ), w.o. noise 14.710 .785 1.0 1.0 1.0 1.0 / / / / / /
Llama2, LG, 4-gram, synonym 22.297 .661 .995 .995 .895 .895 27.125 .585 .986 .986 .880 .880
Llama2, LG, 4-gram, parallel 22.649 .637 .145 .870 .211 .811 25.962 .683 .122 .751 .165 .672
Llama2, LG, 4-gram, mixing 22.430 .670 .499 .713 .440 .618 26.997 .648 .360 .565 .262 .410

Table 1: Main results when LatticeGen (LG) is applied to both the generation and the prompt. All metrics are the

lower the better except PMI. While the generation quality and alignment are degraded, LatticeGen with the proposed

mixing scheme successfully protects the true generation from RBS attack to a remarkable degree (measured by

max-true-ratio/BERTScore).

part and 0.2 for the prompt part. They are found to

achieve the lowest max-true-ratio on the dev set.

Dataset & Lattice Finetuning Since the word

history is noised (discussed in §3.2), LatticeGen

is not recommended for tasks with high require-

ments for consistency or factuality (Pagnoni et al.,

2021). In this work we focus on the task of cre-

ative writing (Martin et al., 2017; Yao et al., 2018;

Fan et al., 2019), and utilize the WritingPrompts

dataset (Fan et al., 2018). The dataset is com-

posed of stories and the corresponding high-level

descriptions as prompts. The average length of

prompts/stories is 29/674. We use 200/500 samples

from the valid/test set for development/evaluation.

The training set (10,000 samples) is used for fine-

tuning of PL and PM , and we defer details to §A.

Metrics We use a larger LLM, namely OPT-2.7B

or Llama2-13B, to measure the generation’s quality

or alignment with the prompt. For quality, we use

the popular perplexity metric. For alignment, we

use pointwise mutual information (PMI) (Shi et al.,

2023):

PMIOPT(x; y) =
logPOPT(x|y)− logPOPT(x)

len(x)
, (7)

where x and y denote the generation and prompt.

To compare between different noise schemes and

measure the (semantic) overlap between the attack

hypothesis (ŵ) and the true sequence (wtrue) under

RBS attack, we use the true-ratio or BERTScore

discussed in §4. We will report true-ratio for the

BS attack and max-true-ratio under RBS attack,

and the same applies to BERTScore.

5.2 Experiment Results

Table 1 includes the main results when LatticeGen

(LG) is applied to both generation and prompt. The

standard vanilla model (PM ) enjoys the best gen-

eration quality (PPL and PMI), while having zero

obfuscation (100% true-ratio).

LatticeGen sacrifices generation quality (due to

noised history) for obfuscation. The empirical be-

havior of the three noise schemes aligns with their

respective intuitions discussed in §4: The synonym

scheme is completely defenseless against the BS at-

tack; The parallel scheme is most effective against

BS with true-ratio lower than 20%, but is vulnera-

ble under the stronger RBS attack.

The mixing scheme, which is our main rec-

ommended scheme, achieves the best protection

under the RBS attack. For N = 2, The max-

true-ratio/BERTScore is close to or lower than

65%/55%. It indicates that around half of

the semantic is hidden from the attacker, and

is close to the theoretical best max-true-ratio

( 1
N

= 50%). The protection is better with N = 3
(50%/40%), but with worse generation quality.

Comparing to unigram unit, the quality degra-

dation (especially PPL) is alleviated to a large

degree by using 4-gram units (See Figure 5 for a

comparison). One could also try larger G-gram for

further improvement. However, the computational

cost would grow exponentially and we leave it to

future work due to limited resources.

What if we directly apply noise to generation

but without the lattice structure? We add an addi-

tional non-lattice baseline with the same synonym

scheme used in LatticeGen: On every time-step, the
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Prompt: Prompt: Aliens have arrived, and ask for a single human to plead humanity’s case and save them from extinction.
The human is selected through a lottery of the entire human race, and on the day of the drawing, your name is picked... Story:

Generated Text (PM ): I could feel my heart rate increase . A cold sweat ran down my back . I could not believe what was
happening . My name had just been drawn . Everyone ’s names were in a big bowl , with the most common names at the top ,
to the least common at the bottom

Generated Text (LG): I can see them . They are here to save us from our own destruction , but to watch over us . ” “ Why
have you come ? What is so important about humans ? ”’ “ Humanity has been here since the beginning . They took us by
surprise a few years ago .

First Round RBS: Prompt: Aliens have arrived on the cover of every single human , and they all have a different colour.
Story: from extinction . The human is selected through a lottery of the entire human race, and on the day of the drawing is the
room with the blue Story: “ We have come in peace . They are not hostile . ” “ I do n’t know ” “ Why have you come ? ’ What
is so important about humans ? ”’ “ Humanity has been here since the beginning . They took us by surprise a few years ago .

Second Round RBS: Prompt: Youenstein ’, and ask for a meeting room to plead humanity’s case and save them “ theint. . ”
The .gov drawing room . all the walls are painted with you and you can your choice, your name is picked... Story: I can see
them . They are here to save us from our own destruction , but to watch over us .We ’re here to protect been so peaceful and
gentle ? ” “ They ’re a threat to us . ” “ But we were n’ million species from the

Figure 4: An example of text generation with LatticeGen, using the configuration of 4-gram, N=2 and the mixing

scheme. The true tokens are italicized in both rounds of RBS, and the underline indicates that the noise token is

mixed from the previous true token. Note that the prompt is also noised by LG.

Figure 5: Comparison of perplexity of OPT-1.3B and

Llama-7B-HF models on various G-gram units.

client gets next-token distribution from the server

and generates a true token, but sends a synonym

of it back to the server. The finetuning is modified

accordingly with details given in §B.3.

As shown in Table 1, we apply the synonym

scheme to 100% or 50% of the tokens. The syn-

onym noise without lattice results in drastically

degraded PPL and PMI. In comparison, LatticeGen

provides a trade-off between quality degradation

and privacy protection. This implies that for de-

cent generation performance, the true tokens

have to be revealed to the server in some way.

Table 2 (§D) compares generation speed of dif-

ferent systems. On the single A40 GPU we use,

LG with 4-gram (N = 2) units has a 4.76 times

slowdown comparing to PM . Since inference with

transformer model benefits from parallel comput-

ing, the slowdown should be less significant on

servers with stronger computing power.

We show a generation example with RBS attack

outputs in Figure 4. LG is able to generate a sample

with decent quality. More importantly, around half

of the story semantics remains hidden from the

RBS attack by the mixing noise scheme. More

examples and analysis are deferred to §D.

6 Related Work

Existing work in privacy-aware natural language

processing (NLP) (Qu et al., 2021; McMahan et al.,

2017) mostly focuses on protecting user data for

training (Huang et al., 2020; Yue et al., 2023) or

inference, and the majority of works focus on nat-

ural language understanding (NLU) tasks (Feyise-

tan et al., 2020; Xu et al., 2021). To the best of

our knowledge, our work is the first to consider

decoding-time privacy for LLM prompted genera-

tion on cloud.

Lattice in NLP Lattice (Young et al., 2006) is a

graphical structure widely used in structured pre-

diction problems to represent a range of hypothe-

ses. In this work we adopt a simple linear-graph

form of lattice which is known as the confusion

network (Mangu et al., 1999). The lattice structure

has found interesting applications in neural NLP

models. As a pioneering work, Su et al. (2017)

proposes lattice-based RNN encoders for machine

translation, where the lattice is generated by merg-

ing results from different segmenters. Buckman

& Neubig (2018) proposes a neural lattice lan-

guage model, which constructs a lattice of possible

paths (segmentations) through a sentence in order

to model multiple granularities. Lattice-BERT (Lai

et al., 2021) trains LLM to predict a masked por-

tion of a lattice representing possible segmentations

of a sentence. To the best of our knowledge, our

work is the first to utilize the lattice structure for
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privacy-aware generation.

Prompt Anonymization Contemporary and in-

dependent of our work, Chen et al. (2023) proposes

to anonymize the named entities (e.g., change USA

to <GPE>) in the prompt, and de-anonymize after

receiving the generated text from server. In com-

parison, LatticeGen offers a more general option

in that all types of tokens, especially the generated

tokens, can be noised.

Due to lack of space, we discuss related work on

differential privacy, homomorphic encryption

in §C.

7 Conclusion

LatticeGen aims for an ambitious and seemingly

conflicting goal: The server still does most compu-

tation for the generation but does not know what

exactly is generated. This is achieved by our pro-

posed noised lattice structure, and a cooperative

generation protocol between the server and client.

While the noised lattice degrades generation

quality and inference speed, LatticeGen with our

proposed mixing noise scheme successfully pre-

vents a malicious server from recovering the true

generation to a remarkable degree (more than 50%

of the semantic remains unknown as measured by

BERTScore). We hope our work could inspire

more research into this under-studied yet important

field of privacy-aware LLM generation on cloud.

8 Limitations

LatticeGen sacrifices generation quality and speed

for obfuscation of generated contents. While we

show the quality degradation can be alleviated to

some degree by using larger G-gram unit, it would

also cause the inference computation to grow ex-

ponentially. An interesting future direction is that,

instead of running an inference for all NG grams,

we only select a small portion strategically.

On the other hand, in this work we focus on

protecting the user and the (repeated) beam-search

attack from server. There could be other forms of

interesting or stronger attacks on the server side

(e.g., manual inspection from a human). On the

other hand, sharing generation control with client

could also endanger the server (e.g., jailbreaking)

(Liu et al., 2023; Li et al., 2023).

Finally, in the current implementation, we lattice-

finetune a seperate OPT model for every different

lattice configuration, which is space unfriendly. As

future work, it would be interesting to explore a uni-

fied format of linearized lattice by which a single

LLM can process different lattice configurations.

9 Broader Impact

As stated in §1, in the current user–server interac-

tion paradigm, both the prompt and the generation

are raw texts which are completely transparent and

accessible to the server. This leaves zero options

for users who want to keep the generated text to

themselves. On the other hand, the privacy protec-

tion offered by today’s LLM providers’ data usage

and retention policies is far from enough (detailed

in §E). We propose LatticeGen as a novel proto-

col for privacy-aware generation with a controlled

level of obfuscation. We hope our work could raise

awareness for the privacy considerations of gener-

ated contents.
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Supplemental Materials

A Model Training and Inference with

Lattice (Server)

LLM Finetuning and Inference with the LLG

(Linearized Lattice plus G-gram) Format We

now describe how PL is obtained by finetuning

a standard autoregressive LM PM parameterized

by θ to make next-token predictions with the LLG

format(§2.3). We assume access to a public corpus

D for finetuning. For simplicity, we focus on the

training objective for one length-T sentence wd ∈
D and we also assume N = 2 and G = 1 (the

process for N > 2 or G > 1 is highly similar).

For each data sample wd, we randomly pick an-

other data sample wd′ to serve as a “parallel” noise

sample, which is used for constructing the noised

lattice W 2
T for wd. For time-step t, the token in

the data sample wd will be used as the true token

wtrue
t := wd

t , and the token from the parallel sam-

ple is used as the noise token w
noise(1)
t := wd′

t . To

be consistent with the actual generation protocols

for LatticeGen, the tokens on each time-step are

shuffled.

The noise generation scheme used by server in

the finetuning stage might be different from the

scheme used by client in the actual generation. For

example, if we use a simple synonym scheme, the

perplexity of the synonym scheme during genera-

tion will be better. In our implementation we adopt

the parallel scheme described above during train-

ing because it works well with the proposed mixing

scheme (§4.2).

After constructing the noised lattice W 2
T , we

randomly select P tokens in wd (we use P = 8
in our training), and use them as the target next-

tokens to finetune the LLM with the LLG format.

Denoting their indices as {t1, ..., tP }, we formulate

the following objective:

Llattice-FT(w
d
,W

2
T ; θ) =

1

P

P∑

p=1

logPθ(w
true
tp |W 2

tp−1[w
true
tp−1]).

(8)

We now discuss how the server can do ef-

ficient LLM inference at time-step t. Since

linearize(WN
t−2) from the previous time-step t− 2

is a prefix of linearize(WN
t−1), the server can reuse

the saved LLM hidden states7 from the last time-

step for the inference of {PL(·|W
N
t−1[w

i
t−1])}

N
i=1.

7The past_key_values in HuggingFace transformers
library.

However, the server still need to enumerate and

inference NG combinations of the G-grams in par-

allel, and that is the major reason for the slowdown.

Implementation Details Our model implemen-

tation, training and inference utilize the Hugging-

Face transformers library (Wolf et al., 2020). We

finetune PL with learning rate of 5 × 10−5 and

a batch size of 8 for 3 epochs using the PyTorch

(Paszke et al., 2019) implementation of the AdamW

(Loshchilov & Hutter, 2017) optimizer. For finetun-

ing of Llama2, we adopt LoRA (Hu et al., 2021).

We perform finetuning of the model under various

configurations on one Nvidia A40 GPU.

B Auxiliary Framework Description

An illustration of the server step for N = 3 and

G = 2 is provided in Figure 6.

An illustration of various noise schemes with a

width-3 lattice is provided in Figure 7.

B.1 Incorporating the Prompt (Client)

The prompt p can be easily incorporated by the fol-

lowing. At all time-steps t with t ≤ len(p), instead

of sampling wtrue
t from PL(·|W

N
t−1[w

true
(t−G)...(t−1)]),

the client directly sets wtrue
t := pt. All other steps

in the protocols including the noise token genera-

tion continue as normal. In this way, the prompt is

also embedded and noised in the lattice.

B.2 Communication Cost

At each time-step, the server needs to send client

NG length-|V | vectors, which could be slow if |V |
is large. This can be largely alleviated if the client

and server can agree upon a sampling algorithm

beforehand. For example, if top-k sampling with

k = 50 is used, then only the logits and indices of

the top-50 tokens are needed.

B.3 The Non-Lattice Baseline

The training for the non-lattice baseline is a bit

similar to the lattice finetuning process described

in §A, with the difference that the true tokens are

not included in the input. Following the notations

in §A with wd as the data sample, the training

objective is formulated as:

Lnon-lattice,syn.(w
d; θ) =

1

T

T∑

t=1

logPθ(w
d
t |w

noise
0..t−1), (9)

where wnoise
t is randomly set to a synonym of wd

t .

Basically, the model is trained to predict the next

true token with a ratio of input tokens noised.
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Figure 6: An illustration of the server step for N = 3 and G = 2. The information of which tokens are the true

tokens is only known to the client.

Top-𝑘 with 𝑘 = 50
For true token generation

Top- 𝑘 with 𝑘 = 5
For noise token generation

𝑤1true 𝑤2true𝑤1n(1) 𝑤2n(1)𝑤1n(2) 𝑤2n(2)
𝑤3true𝑤3n(1)𝑤3n(2)

𝑤4true𝑤4n(1)𝑤4n(2)
𝑤5true𝑤5n(1)𝑤5n(2)

𝑤0 The Mixing

Noise Scheme

(Repeated) Beam-Search Attack

ෝ𝑤2

ෝ𝑤3
ෝ𝑤1

𝑤1true 𝑤2true
𝑤1n(1) 𝑤2n(1)𝑤1n(2) 𝑤2n(2)

𝑤0
𝑤3true𝑤3n(1)𝑤3n(2)

𝑤4true
𝑤4n(1)𝑤4n(2)

𝑤5true
𝑤5n(1)𝑤5n(2)

The Parallel

Noise Scheme

ෝ𝑤𝑤1true 𝑤2true
𝑤1n(1) 𝑤2n(1)𝑤0

𝑤3true𝑤3n(1)
𝑤4true
𝑤4n(1)

𝑤5true
𝑤5n(1) The Synonym

Noise Scheme𝑤1n(2) 𝑤2n(2) 𝑤3n(2) 𝑤4n(2) 𝑤5n(2)

Synonym
For noise token generation

Figure 7: Illustration of different noise schemes under

(repeated) beam-search attack. For convenience, the

lattice is not shuffled.

C Related Work

This section continues from §6.

Differential Privacy (DP) for LM Training and

Inference There are numerous existing works on

how to train LLMs with differential privacy (Li

et al., 2021; Yu et al., 2021), which mostly rely on

DP-SGD (Abadi et al., 2016) and limits leakage of

private data during training. More related to Lat-

ticeGen is a line of work with local DP (Xu et al.,

2020; Meehan et al., 2022), which applies discrete

noise onto text and can be used to synthesize pri-

vate text data (Yue et al., 2023; Mireshghallah et al.,

2023).

It is not directly clear how these techniques can

be adapted for our setting of privacy-aware autore-

gressive text generation. In comparison, Lattice-

Gen provides a totally different and cooperative

approach with the lattice structure and novel de-

fense and attack schemes.

Speed (second/token) N=1 N=2 N=3

PM .013 / /
LG, Unigram / .024 (1.84x) .028 (2.15x)
LG, Bigram / .028 (2.15x) .047 (3.62x)
LG, 4-gram / .062 (4.76x) .332 (25.53x)

Table 2: Generation speed comparison between different

systems. For LG, the mixing noise scheme and the OPT

model is used. Our implementation is run on a single

A40 GPU.

Homomorphic Encryption There is also a line

of work (Chen et al., 2022) applying techniques

from homomorphic encryption (Gentry, 2009) to

transformer LM. While they enjoy nice crypto-

graphic guarantees, the induced computational cost

is usually huge.

D Auxiliary Results

Similar to Figure 4, Figure 8 shows an example

using a different prompt using bigram N = 2.

On the single A40 GPU we use, LG with bi-

gram units (N = 2) has a 2x slowdown comparing

to PM (Table 2, §D). Since inference with trans-

former model benefits from parallel computing, the

slowdown should be less significant on servers with

stronger computing power.

E The Current Privacy Protection

Practices in Industry

The privacy protection offered by today’s LLM

providers’ data usage and retention policies is far

from enough. 8 For example, OpenAI’s consumer-

facing ChatGPT used to train its models with user

input, and also shares user input with third-party

providers, and Google’s Bard retains user activ-

ity for at least 3 months. As a striking example,

8https://opaque.co/announcing-
opaqueprompts-hide-your-sensitive-data-

from-llms/
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employees in Samsung reportedly shared sensitive

code with OpenAI during their interaction with

ChatGPT. 9 More recently, some of the users’ con-

versations with Bard are mistakenly indexed and

accessed by Google search. 10

While providers have recently improved their

security posture (e.g., OpenAI no longer uses data

submitted via its API to train its model), users still

can not assume that all sent/received data will be

immediately and completely deleted. Rather than

regulations, our proposed LatticeGen takes an algo-

rithmic and cooperative approach to give the user

advantage and control in privacy protection.

9https://gizmodo.com/chatgpt-ai-
samsung-employees-leak-data-1850307376

10https://venturebeat.com/ai/oops-
google-search-caught-publicly-indexing-

users-conversations-with-bard-ai/
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Prompt: Every planet in our solar system has a “ champion ” being that takes on the attributes of the planet itself. The “
champion ” from the sun has created an army to destroy the planets and the 8 ( or 9 ) champions must save the solar system...
Story:

Generated Text (PM ): The planet Mars was known for its reddish color . Mars has a very thin atmosphere , and only a select
few had been able to breathe it . But not this man . This man could breathe anything . His name is Sol , also known as the Sun .

Generated Text (LG): “ There ’s nothing you can do , ” I said , running through my head as I saw the soldiers fall . The
soldiers were outnumbered , and his army too vast for us to even put up a fight and still lose ? It will be too late ! The
champion is here ! ”

First Round RBS: Prompt: Every planet in the galaxy has a “ champion ” , that takes on the attributes of all of the
inhabitantsants “ life ” from the sun has taken up arms against him .. Story: “ the 3 ( or 9 ) champions must save the solar
system... Story: “ There ’s nothing you can do , ” I said , running through my head as I saw the soldiers fall . The soldiers
were too powerful for us ! ” “ You can try ! ” “ What ? How ? ” “ You not only have to fight the champion , but his

Second Round RBS: Prompt: A man is our solar system ’s life is a being ul, , , , , , the planet itself. The . champion on Earth
each other to created an army to destroy the planets and I ca8 other I ’3m not are you Earthlingss from Story: The world was
in chaos . say something ! ” “ No ! ” “ if we could have stopped him . He was outnumbered , and his army too vast for us to
even put up a fight and still lose ? It will be too late ! The champion is here ! ”

Figure 8: Another example of text generation with LatticeGen, using the configuration of 4-gram, N=2 and the the

mixing scheme. The true tokens are italicized in both rounds of RBS, and the underline indicates that the noise

token is mixed from the previous true token. Note that the prompt is also noised by LG.
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