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practice. It was also shown that the space spanned by all possible solution is small
after t > 0.

In this work, we study if the space of a single (or a finite number of) solution(s)
is as rich as the space of all solutions, or in other words, can one use a superposition
of snapshots of a single (or a finite number of) solution(s) to construct an arbitrary
solution. When the answer is positive, one can use data driven approach for model
reduction and solution approximation bypassing explicit learning or approximation
of the PDE operator. In our study, the following evolution PDE on a compact
domain Ω ⊂ R

d satisfying certain homogeneous boundary condition,

(1.1)

∂tu(x, t) = −Lu(x, t), x ∈ Ω ⊂ R
d, 0 < t ≤ T ≤ ∞,

Bu(x, t) = 0, x ∈ ∂Ω,

u(x, 0) = f(x) x ∈ Ω,

where L =
∑

0≤|α|≤NL
pα(x)∂

α is a self-adjoint strongly elliptic differential operator

of order NL with coefficients pα ∈ C |α|+NL/2(Ω) and the boundary ∂Ω is smooth (if
not empty) and Bu = 0 denotes the Dirichlet boundary condition ∂αu(x, t) = 0 for

x ∈ ∂Ω, |α| ≤ NL
2 − 1, then L is self-adjoint [7].

The rest of the paper is organized as follows. We first present in Section 2
some preliminaries and formulate the problem into a moment problem. We then
consider in Section 3 the cases where eigenvalues µn of L are simple and grows super-
linearly or (sub-)linearly in terms of n, which gives different statements. In Section
4 we study the problem when eigenvalues has finite multiplicities. We then present
numerical experiments in Section 5 to verify our analysis and provide an application
of data driven approach for solving PDEs without knowing the underlying PDE.
We finally give a conclusion in Section 6.

2. Preliminaries

Consider the PDE (1.1), for simplicity, we assume the eigenvalues 0 < µ1 <
µ2 < . . . of the self-adjoint strongly elliptic differential operator L are positive and
distinct and denote ϕ1(x), ϕ2(x), . . . to be the corresponding eigenfunctions which
form a complete orthonormal basis in L2(Ω). Let u(x, t) be a sample solution which
can be represented as

(2.1) u(x, t) =
∞∑

n=1

e−µntcnϕn(x),

where u(x, 0) =
∑∞

n=1 cnϕn(x), cn ̸= 0. Given an initial condition f(x) =∑∞
n=1 fnϕn(x) ∈ L2(Ω), we can express the solution at time τ by

(2.2) w(x, τ) =
∞∑

n=1

e−µnτfnϕn(x).

In order to express the solution w(x, τ) at τ > 0 as a superposition of snapshots
of the sample solution, we introduce the interpolation or weight function ν(t; τ) ∈
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L2([0, T ]) and solve the following equation

(2.3) w(x, τ) =

∫ T

0
u(x, t)ν(t; τ)dt,

which is equivalent to solving the exponential moment problem

(2.4)

∫ T

0
e−µntν(t; τ)dt = mn := e−µnτfn/cn.

Definition 2.1. The functions {φn}n≥1 are bi-orthogonal with respect to {e−µnt}n≥1

in [0, T ] if

(2.5)

∫ T

0
e−µntφk(t)dt = δkn,

where δkn is the Kronecker delta.

Suppose the bi-orthogonal functions {φn}n≥1 exist, then a formal expansion of
ν(t) can be written as

(2.6) ν(t) =
∞∑

n=1

mnφn(t).

However, the exact characterization of the convergence behavior of the series (2.6)
is a difficult task. Instead, we will study the absolute convergence in L2[0, T ], which
means

(2.7)

∞∑

n=1

|mn| · ∥φn∥L2[0,T ] < ∞.

If the series indeed converges absolutely, then the series converges in L2[0, T ]. The
existence of ν implies w(x, τ) can be linearly represented by the sample solution
u(x, t) on [0, T ]. Clearly, it only remains to estimate the norms ∥φn∥L2[0,T ].

Remark 2.2. When there exist non-positive eigenvalues, one can find a constant µ
that µ1 + µ > 0, then the interpolation function can be changed to ν(t)eµt instead.
Hence in the rest of this paper, we only focus on the case that all eigenvalues are
positive.

3. Solution of the moment problem

3.1. Convergent series. Let ET be the smallest closed subspace of L2[0, T ] con-
taining the functions e−µnt, n = 1, 2, . . . . It is known [3] that ET is a proper subspace
of L2[0, T ] if and only if

(3.1)
∞∑

n=1

µ−1
n < ∞.

In the case that (3.1) is convergent, we define En
T by the smallest closed subspace

of L2[0, T ] containing all e−µkt for k ̸= n, then e−µnt /∈ En
T , there exists a unique
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element rn ∈ En
T such that minimizes dn(T ) := ∥e−µnt− rn∥L2[0,T ], then the optimal

bi-orthogonal function φn is chosen by

(3.2) φn =
e−µnt − rn
dn(T )2

and its norm ∥φn∥L2[0,T ] = dn(T )
−1. If T = ∞, the computation of dn(T ) is fairly

simple [3]

(3.3) dn(∞) =

√
2

µn

∣∣∣
∏

j ̸=n

(
1− µn

µj

)∣∣∣
∏

j≥1

(
1 + µn

µj

) ,

while for a finite T , there exists a constant κ(T ) > 0 such that dn(T ) ≥ κ(T )−1dn(∞) [9],
hence

(3.4) ∥φn∥L2[0,T ] ≤ κ(T )

√
µn

2

∏
j≥1

(
1 + µn

µj

)

∣∣∣
∏

j ̸=n

(
1− µn

µj

)∣∣∣
.

We estimate ∥φn∥L2[0,T ] under the following two assumptions.

Assumption 3.1. For certain σ ∈ (0, 1] and β > 1, µn = Mnβ(1 + o(n−σ)).

Assumption 3.2. For certain θ > 0 and s ≥ 0 such that for each n ≥ 1, µn+1−µn ≥
θn−s.

Under suitable conditions, the first assumption holds true for the strongly elliptic
operators [1, 2, 5, 8, 15], where the growth rate is β = NL/d > 1 when the space
dimension is less than the order of the elliptic operator. The exponent σ can be
made explicit in certain cases, see Theorem C in [2] and Theorem 3.1 in [1]. The
second assumption is to prevent the blowing-up of ∥φn∥L2[0,T ]. When the eigenvalues

are multiple of integers, i.e., µn = Mnβ , this is guaranteed. However in general there
is no known estimate for µn+1 − µn except the spectral gap. For specific cases (see
Section 6.3), it is possible to claim the desired lower bound. Particularly, the one
dimensional Sturm-Liouville operators with Dirichlet boundary conditions satisfy
both of the assumptions.

In the following, we introduce a lemma for the estimates of the products appearing
in (3.4). The proof is included in the appendix B and the main idea follows [3].
Lemma 3.3. The following estimates hold.

(3.5)

∏

j≥1

(
1 +

µn

µj

)
= exp

(
M−1/βµ1/β

n (ζ0,β + o(1))
)
,

∣∣∣∣∣∣

∏

j ̸=n

(
1− µn

µj

)∣∣∣∣∣∣
≥ exp(−K0µ

1/β
n M−1/β(log µn +K1)),

where ζ0,β :=
∫∞
0

dy
y1−1/β(1+y)

and K0, K1 are positive constants independent of n.
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Lemma 3.4. The bi-orthogonal set {φn}n≥1 satisfies the following bound

(3.6) ∥φn∥L2[0,T ] ≤
√

µn

2
κ(T ) exp

(
K0M

−1/βµ1/β
n (log µn +K2)

)
,

where K2 is a positive constant independent of n.

Proof. It is known that

(3.7)

∥φn∥L2[0,T ] ≤
√

µn

2
κ(T )

∏
j≥1

(
1 + µn

µj

)

∣∣∣
∏

j ̸=n

(
1− µn

µj

)∣∣∣

≤
√

µn

2
κ(T ) exp

(
M−1/βµ1/β

n [(ζ0,β + o(1)) +K0(log µn +K1)]
)

≤
√

µn

2
κ(T ) exp

(
K0M

−1/βµ1/β
n (log µn +K2)

)
,

where the constant K2 ≥ K1 + (ζ0,β + o(1))/K0. □

Using the above estimate of ∥φn∥L2[0,T ], we immediately obtain the following
theorem to characterize the absolute convergence of ν.

Theorem 3.5. The exponential moment problem has an absolutely convergent so-

lution in L2[0, T ] if

(3.8)

∞∑

n=1

|mn|
√
µn exp

(
K0M

−1/βµ1/β
n (log µn +K2)

)
< ∞

Corollary 3.6. If τ > 0, then the moment problem with mn = e−µnτ fn
cn

has a

solution in L2[0, T ] if

(3.9)
∞∑

n=1

∣∣∣∣
fn
cn

∣∣∣∣
2

exp(−2µnτ0) < ∞.

for certain τ0 ∈ [0, τ).

Proof. From the Theorem 3.5, we just need to show

(3.10)
∞∑

n=1

fn
cn

√
µn exp

(
−µnτ +K0M

−1/βµ1/β
n (log µn +K2)

)
< ∞.

By the Cauchy-Schwartz inequality,

(3.11)

[ ∞∑

n=1

fn
cn

√
µn exp

(
−µnτ +K0M

−1/βµ1/β
n (log µn +K2)

)]2

≤
∞∑

n=1

∣∣∣∣
fn
cn

∣∣∣∣
2

exp(−2µnτ0)
∞∑

n=1

µn exp
(
−2µn(τ − τ0) + 2K0M

−1/βµ1/β
n (log µn +K2)

)

Our conclusion is immediately proved by noticing that when n is sufficiently large,

(3.12) −2µn(τ − τ0) + 2K0M
−1/βµ1/β

n (log µn +K2) + log µn < −µn(τ − τ0).

□
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Theorem 3.7. Suppose g(x) satisfies that

(3.13) g(x) =
∞∑

n=1

cnϕn(x),

where |cn| ≥ Ce−pnα
for certain constants C > 0, p ≥ 0 and α ∈ [0, β), n =

1, 2, . . . and f ∈ L2(Ω). Let u(x, t) and w(x, t) be the solutions with respect to

initial conditions g(x) and f(x) respectively. ∀τ > t0, there exists an interpolation

function ν(t; τ, [t0, t1]) ∈ L2[t0, t1] such that

(3.14) w(x, τ) =

∫ t1

t0

u(x, t)ν(t; τ)dt,

and ∥ν(· ; τ)∥L2[t0,t1] ≤ 1√
2C

κ(t1 − t0)∥f∥L2(Ω) · (τ − t0)
−ω(τ−t0)/2 with

(3.15) ω(t) = 1 +ϖt
− max(α,1)

(β−max(α,1)−δ) ,

where δ ∈ (0, β −max(α, 1)) is arbitrary and ϖ is a constant independent of t.

Proof. By the Corollary (3.6), we only need to check if

(3.16)

∞∑

n=1

∣∣∣∣
fne

−µnt0

cne−µnt0

∣∣∣∣
2

e−2µnτ0 =
∞∑

n=1

∣∣∣∣
fn
cn

∣∣∣∣
2

e−2µnτ0 < ∞

for certain τ0 ∈ [0, τ−t0). Since |cn| ≥ Ce−pnα
, this becomes

∑∞
n=1 |fn|

2 e2pn
α
e−2µnτ0 ,

which is finite if
∑∞

n=1 |fn|2 < ∞. Now we give an estimate of ∥ν(· ; τ)∥L2[t0,t1]. De-
noting T = t1 − t0 and τ̃ = τ − t0, we recall (2.6) and Lemma 3.4,

∥ν(· ; τ)∥L2[t0,t1]

≤
∞∑

n=1

∣∣∣∣
fn
cn

exp(−µnτ̃)

∣∣∣∣

√
µn

2
κ(T ) exp

(
K0M

−1/βµ1/β
n (log µn +K2)

)

≤ κ(T )

C

∞∑

n=1

|fn|
√

µn

2
exp

(
−µnτ̃ +K0M

−1/βµ1/β
n (log µn +K2) + pnα

)

≤ κ(T )√
2C

( ∞∑

n=1

|fn|2
)1/2√

A(τ̃),

where A(τ̃) is the summation
(3.17)

A(τ̃) =
∞∑

n=1

exp
(
−2µnτ̃ + log µn + 2K0M

−1/βµ1/β
n (log µn +K2) + 2pnα

)
.

We define

(3.18)
H := sup

n≥1

log µn + 2K0M
−1/βµ

1/β
n (log µn +K2)

µ
1/β
n log µn

,

Nτ̃ := sup
{
n ∈ N

∣∣∣H log µn + 2pnαµ−1/β
n ≥ τ̃µ1−1/β

n

}
,
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then we have the estimate H = 2K0M
−1/β + O(1) and Nτ̃ ≤ Lτ̃−1/(β−max(α,1)−δ)

for arbitrary δ ∈ (0, β −max(α, 1)) and a constant L = L(H, δ) > 0 as τ̃ → 0. On
the other hand, since xe−x ≤ e−1 for any x > 0, we can derive

(3.19)
∞∑

n=1

exp(−µnτ̃) ≤
1

e

∞∑

n=1

1

µnτ̃
=

C ′

τ̃
,

where C ′ = e−1
∑

n=1 µ
−1
n < ∞. Therefore as τ̃ → 0,

A(τ̃)

≤
Nτ̃∑

n=1

exp
(
−2µnτ̃ + log µn + 2K0M

−1/βµ1/β
n (log µn +K2) + 2pnα

)

+
∑

n>Nτ̃

exp(−µnτ̃)

≤
[

Nτ̃∑

n=1

exp(−2µnτ̃)

]
sup

1≤n≤Nτ̃

exp
(
log µn + 2K0M

−1/βµ1/β
n (log µn +K2) + 2pnα

)

+
C ′

τ̃

≤ C ′

τ̃
exp

(
HβM1/βNτ̃ logNτ̃ (1 + o(1)) + 2pNα

τ̃

)
+

C ′

τ̃

≤ C ′

τ̃

(
e2pN

α
τ̃ +C′′Nτ̃ logNτ̃ + 1

)
,

where C ′′ = C ′′(H,β,M) is a constant. □

Remark 3.8. It is worthwhile to notice the upper bound for ∥ν(· ; τ)∥L2[t0,t1] only
depends on the differences t1− t0 and τ − t0 and the initial time t0 does not matter.
Actually the dependence on t1 − t0 from κ(t1 − t0) in (3.4) is quite mild. However,
the dependence on τ̃ = τ − t0 is significant, which implies stability issue when τ is
close to t0.

Remark 3.9. One of the practical issues is that without knowing much of the self-
adjoint differential operator L, can one create a sample solution corresponding to
an initial condition satisfying the condition in Theorem 3.7? An intuitive choice is
to use a point source (or an approximate one in practice) as initial condition, which
has the expansion

(3.20) δ(x− y) =
∞∑

n=1

ϕn(x)ϕn(y).

When the set ∩n≥1{|ϕn(z)| > exp(−pnα)} has a positive measure for certain p,
then it is possible to randomly select single point sources to fulfill the condition in
Theorem 3.7. For instance, if we take the domain as d-dimension torus Ω = T

d and
L = −∇ · (A(x)∇) that A(x) is Lipschitz, the eigenfunction ϕn satisfies

(3.21) sup
Ω

|ϕn| ≤ C sup
E

|ϕn|
(
C
|Ω|
|E|

)C
√
µn
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for certain C > 0 for any measurable subset E ⊂ Ω [6]. If we denote E = {|ϕn| ≤
e−pnα} and use ∥ϕn∥L∞(Ω) ≥ 1√

|Ω|
, then

(3.22)
|{|ϕn(x)| ≤ e−pnα}| ≤ C|Ω|

[
C exp(−pnα)

1/
√
|Ω|

] 1
C
√
µn

≤ C|Ω|
[
C
√

|Ω|
] 1

C
√
µn exp(− p

C
√
M

nα−β/2(1 + o(1))),

where we have used the fact that µn = Mnβ(1 + o(1)). If β > α > β
2 , we obtain

(3.23)
∑

n≥1

|{|ϕn(x)| ≤ e−pnα}| < ∞.

Therefore as p → ∞, the summation converges to zero. This implies that for
sufficiently large p, there is a high probability that a random point z ∈ Ω that
|ϕn(z)| > exp(−pnα) for all n ≥ 1. It is unclear whether such statement can be
extended to high order strongly elliptic operators.

3.2. Divergent series. It still remains to discuss about the case that

(3.24)
∞∑

n=1

µ−1
n = ∞,

then ET = L2[0, T ] [3]. For simplicity, we let T = ∞, instead of dealing with
the infinite moment sequence, we consider the finite case for the first N moments.
Similarly, we define the bi-orthogonal functions φ̃n, n = 1, 2, . . . , N ,

(3.25)

∫ ∞

0
e−µntφ̃k(t)dt = δk,n, 1 ≤ k, n ≤ N.

the corresponding solution is

(3.26) νN (t) =

N∑

n=1

mnφ̃n(t).

where φ̃n is optimal in L2 norm. Using the same argument as Section 3.1, the
bi-orthogonal functions φ̃n to (3.25) satisfies

(3.27) ∥φ̃n∥L2[0,∞) =
√

2µn

∏N
j ̸=n(1 +

µn

µj
)

∣∣∣
∏N

j ̸=n(1− µn

µj
)
∣∣∣
, n = 1, 2, . . . , N.

For the sake of simplicity, we still make the same assumptions 3.1 and 3.2. When
0 ≤ β ≤ 1 and given any fixed n,

(3.28)

N∑

j ̸=n

log

(
1 + µn

µj

|1− µn

µj
|

)
=

N∑

j=1

2µn

µj
(1 + o(1)) , as N → ∞,

therefore

(3.29) ∥φ̃n∥L2[0,∞) =
√

2µn exp


2µn

N∑

j=1

µ−1
j (1 + o(1))


 , as N → ∞.
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Then ∥φ̃n∥L2[0,∞) → ∞ as N → ∞, we can conclude the following theorem.

Theorem 3.10. If β ∈ [0, 1], then the series solution limN→∞ νN cannot be abso-

lutely convergent unless mn ≡ 0 for all n.

However, the solution still can be convergent for certain cases. As an interesting
example, we consider that µn = n − 1

2 , n = 1, 2, . . . and T = ∞, then finding the
interpolating function is equivalent to solve the moment problem

(3.30)

∫ ∞

0
e−(n− 1

2
)tν(t)dt = mn.

With a change of variable x = e−t and denote ν̃(x) = ν(t), this is similar to the
Hausdorff moment problem

(3.31)

∫ 1

0
xn−1 · x−1/2ν̃(x)dx = mn.

Definition 3.11. For a given sequence m1,m2, . . . , we define

(3.32) λk,k′ :=

(
k

k′

) k−k′∑

l=0

(−1)k−k′+l

(
k − k′

l

)
mk−l+1, k ≥ k′ ≥ 0.

Lemma 3.12 (Widder [14]). Let L > 0 be an arbitrary fixed number, then the

following condition

(3.33) (k + 1)

k∑

k′=0

|λk,k′ |2 < L, ∀k = 0, 1, . . .

is necessary and sufficient for x−1/2ν̃(x) ∈ L2[0, 1] satisfying the moment prob-

lem (3.31).

Corollary 3.13. If and only if the condition (3.33) is satisfied, the interpolation

function ν(t) exists in L2[0,∞) and

(3.34)

∫ ∞

0
|ν(t)|2dt =

∫ 1

0
x−1|ν̃(x)|2dx < ∞

Especially, if mn = n−1, one can compute directly that (k + 1)
∑k

n=0 |λk,n|2 ≡ 1

which permits a solution in L2[0,∞). However, if we set cn = e−pnα
(same as

Theorem 3.7) and use the same initial condition that

∞∑

n=1

|fn|2 < ∞, and mn = e−(n− 1
2
)τ fn
cn

= e−(n− 1
2
)τepn

α
fn, n ≥ 1.

Then for a given k, let A denotes the upper triangle matrix

(3.35) Al,l′ =
√
k + 1

(
k

l

)
e−(l′+ 1

2
)τe(l

′+1)αp(−1)l
′−l

(
k − l

l′ − l

)
, 0 ≤ l ≤ l′ ≤ k
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and denote f = (f1, . . . , fk)
T ∈ ℓ2, then

(3.36)

sup
∥f∥=1

k∑

k′=0

(k + 1)|λk,k′ |2 = sup
∥f∥=1

fTATAf = sup
0≤l≤k

σ2
l (A)

≥ sup
0≤l≤k

|Al,l|2 = sup
0≤l≤k

[√
k + 1

(
k

l

)
e−(l+ 1

2
)τe(l+1)αp

]2

≥ (k + 1)e−τ+2p → ∞, as k → ∞.

This implies that there exists f = (f1, f2, . . . , )
T ∈ ℓ2 such that the moment problem

has no solution in L2[0,∞) as long as τ is finite.

4. Multiplicities

In this section, we study the case that the eigenvalues have finite multiplicities.
Denote the maximal multiplicity as D, we show that at most D sampled trajectories
{uj}Dj=1 are sufficient to span the solution subspace, that is, if τ > t0 then there

exist interpolation functions νj ∈ L2[t0, t1], j = 1, 2, . . . , D that

(4.1) w(x, τ) =
D∑

j=1

∫ t1

t0

uj(x, t)νj(t)dt

Let the eigenvalues of L be 0 < µ1 < µ2 < · · · without counting the multiplicities
and the eigenfunctions {ϕn,l}, l = 1, 2, . . . , dn, are corresponding to the eigenvalue
µn, where dn ≤ D is the multiplicity of eigenvalue µn, then for each sample solution
uj , we may write

(4.2) uj(x, t) =

∞∑

n=1

e−µnt
dn∑

l=1

bnj,lϕn,l(x), j = 1, 2, . . . , D

for some coefficients {bnj,l}. Consider an arbitrary initial condition f(x) ∈ L2(Ω)
that

(4.3) f(x) =
∞∑

n=1

dn∑

l=1

fn,lϕn,l(x),

the solution to (1.1) at time τ > t0 will be

(4.4) w(x, τ) =

∞∑

n=1

e−µnτ
dn∑

l=1

fn,lϕn,l(x).

If the matrix Bn = (bnj,l)jl ∈ R
D×dn is of full rank dn for each n ≥ 1, there exist

pnj , j = 1, 2, . . . , D such that fn,l =
∑D

j=1 p
n
j b

n
j,l, l = 1, 2, . . . , dn. It means there is a

decomposition f(x) =
∑D

j=1 fj(x), where each fj is

(4.5) fj(x) =

∞∑

n=1

pnj

dn∑

l=1

bnj,lϕn,l(x).
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As a summary of above analysis, we have the following theorem as an analogue of
Theorem 3.7 for eigenvalues with multiplicities.

Theorem 4.1. Suppose the function gj(x) satisfies that

(4.6) gj(x) =

∞∑

n=1

dn∑

l=1

bnjlϕn,l(x), j = 1, 2, . . . , D.

Denote B†
n as the Moore-Penrose inverse of Bn and assume ∥B†

n∥ ≤ Lepn
α
, α ∈

[0, β), n = 1, 2, . . . . Let f ∈ L2(Ω) and denote uj(x, t), w(x, t) the solutions with

respect to initial conditions gj(x) and f(x) respectively, then there exists an inter-

polation function νj(t; τ, [t0, t1]) ∈ L2[t0, t1] that

(4.7) w(x, τ) =
D∑

j=1

∫ t1

t0

uj(x, t)νj(t; τ)dt, τ > t0.

Proof. Denote pn = (pn1 , . . . , p
n
D) and fn = (fn,1, . . . , fn,dn), then pn = B†

nf
n. Define

ϕ̂j,n(x) =
∑dn

l=1 b
n
jlϕn,l(x), n = 1, 2, . . . which form an orthogonal set for each j =

1, 2, . . . , D. We have

uj(x, t) =

∞∑

n=1

e−µntϕ̂j,n(x), wj(x, t) =

∞∑

n=1

e−µntpnj ϕ̂j,n(x), w(x, t) =

D∑

j=1

wj(x, t).

Since ∥B†
n∥ ≤ Lepn

α
,

(4.8) |pnj | ≤ ∥pn∥ ≤ Lepn
α∥fn∥ ≤ Lepn

α∥f∥L2(Ω) ≤ Cepn
α
, j = 1, 2, . . . , D,

according to the Theorem 3.7, there exist νj ∈ L2[t0, t1], wj(x, τ) =∫ t1
t0

uj(x, t)νj(t; τ)dt. □

Remark 4.2. The above theorem requires finite multiplicities of eigenvalues to
obtain the exact interpolation (4.7) which may not be true in general, for instance,
−∆ in 2D unit square. However instead of producing an accurate representation, we
usually only need to find an approximation. If the solution trajectories {ui}Di=1 can
capture the subspace spanned by the leading eigenfunctions up to a small tolerance,
the approximation suffices for practical uses.

5. Application

5.1. Data driven model reduction. In the case that snapshots of a sample so-
lution trajectory can be superposed to approximate any snapshot of an arbitrary
solution, one can use a data driven approach for model reduction and approxima-
tion of new solution bypass explicit learning of the underlying PDE. For example,
if the sample solution u(x, t) is observed on the time interval [t0, t1], then in theory
one can approximate any solution at a later time τ > t0 using certain superposition
of the observed sample solution snapshots. In particular, if one can find a finite
dimensional space V to which the sample solution trajectory is close,

(5.1) ∥u(x, t)− PV u(x, t)∥L2(Ω) ≤ ε∥u(x, 0)∥L2(Ω), t ∈ [t0, t1],
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where PV is the projection operator onto V , then any solution w(x, τ), τ > t0 is
close to V as well since
(5.2)

∥w(x, τ)− PV w(x, τ)∥L2(Ω) =

∥∥∥∥
∫ t1

t0

u(x, t)ν(t)dt−
∫ t1

t0

PV u(x, t)ν(t; τ)dt

∥∥∥∥
L2(Ω)

≤
∫ t1

t0

∥(u(x, t)− PV u(x, t))ν(t; τ)∥L2(Ω) dt

≤ ε∥u(x, 0)∥L2(Ω)

∫ t1

t0

|ν(t; τ)|dt

≤ ε
√

(t1 − t0)∥ν(· ; τ)∥L2[t0,t1]∥u(x, 0)∥L2(Ω).

However, fixing t0 and t1 and let τ → t+0 , the norm ∥ν(· ; τ)∥L2[t0,t1] will increase
rapidly according to Theorem 3.7. For ut = −Lu, where L is a self-adjoint elliptic
operator, it has been shown [4] that given any ε > 0, for any solution trajectory
u(x, t) on [t0, t1], there exists a linear subspace V ⊂ L2(Ω) of dimension dim(V ) =
O(| log ε| log(t1/t0)) such that (5.1) is satisfied.

To find a discrete approximation of the subspace V for a sample solution u(x, t),
one can observe u(xi, τj) on a space time grid, (xi, τj), with grid size h,∆t in
space and time respectively such that, for any j and ∀t ∈ [τj , τj+1), ∥u(·, t) −
It[u(·, τj), u(·, τj+1)]∥L2(Ω) = O(∆t2) = O(ε) and ∥u(·, τj) − Ix[u(xi, τj)]∥L2(Ω) =

O(h2) = O(ε), where It and Ix are linear interpolation operators in time and space
respectively. Let Uij = u(xi, τj) denote the solution matrix whose singular value
decomposition (SVD) is U = PΣQ∗. V can be approximated by the finite dimen-
sional linear space spanned by the leading left-singular vectors from columns of P .
Once V is found, it can be used for model reduction and other applications. For
example, an arbitrary solution can be approximated well by a linear combination
of the basis of V . The coefficients can be determined by a few measurements, e.g.,
at a few locations or some integral quantities, of the new solution without knowing
or solving the underlying PDE (see an example in 6.5).

5.2. Noisy data. In practice, the observed solution data u(xi, τj) could have some
measurement errors. Hence it is natural to ask if the subspace V is stable under
such perturbations. For that reason, we assume the noisy sampled solution matrix

Ũij = ũ(xi, τj) = u(xi, τj) + e(xi, τj),

where u(xi, τj) denotes the exact solution data and the random perturbations
e(xi, τj) are i.i.d mean-zero random variables with variation δ2. We approximate

Ṽ from the corresponding singular vectors of Ũ such that dim(Ṽ ) = dim(V ) = υ.

Suppose U = PΣQ∗ and Ũ = P̃ Σ̃Q̃∗, the perturbation matrix E = Ũ − U , then
from the Wedin’s theorem [13],

(5.3) ∥ sinΘ(V, Ṽ )∥F ≤
√
2υ

ℓ
∥E∥F ,
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where Θ(V, Ṽ ) denotes the canonical angles between V and Ṽ , the left-hand side

measures the difference between the projection mappings onto V and Ṽ , respec-
tively, see [10] and references therein for detailed discussions. Let σi and σ̃i be the

i-th singular value of U and Ũ , respectively, the parameter

ℓ := min{ min
1≤i≤υ,1≤j≤N−υ

|σi − σ̃υ+j |, min
1≤i≤υ

σi}.

Particularly, the Bernoulli random perturbation has been studied in [11] and Gauss-
ian random perturbation is considered in [12]. For ut = −Lu, where −L is a
self-adjoint elliptic operator, given any ε > 0 and any solution trajectory u(x, t)
on [t0, t1], there exists a linear subspace V ⊂ L2(Ω) of dimension dim(V ) =
O(| log ε| log(t1/t0)) such that (5.1) is satisfied [4]. This means σn = O(e−n) which
makes ℓ decay very fast with respect to υ and the computation of V is sensitive to
noise.

When the resolution in time is sufficiently fine, due to the linearity, instead of tak-
ing the singular value decomposition directly on the sample solution data ũ(xi, τj),
we may first regularize the data by averaging on a time window [τj , τj + S∆t]

(5.4) v(xi, τj) =
1

S + 1

S∑

s=0

ũ(xi, τj+s) =
1

S + 1

S∑

s=0

u(xi, τj+s) + ẽi,j ,

where the variation of ẽi,j is Var
[

1
S+1

∑S
s=0 e(xi, τj+s)

]
= δ2

S+1 . This process is

equivalent to sampling the averaged data

(5.5) v(x, t) =

∞∑

n=1

e−µnt

(
1

(S + 1)

1− e−(S+1)µn∆t

1− e−µn∆t

)
cnϕn(x) + ẽ(x, t),

where ẽ(x, t) is a random variable for each (x, t) with variance δ2

S+1 . Therefore as

∆t → 0 is sufficiently fine, one can fix r > 0 and take S = r∆t−1 → ∞ to reduce the
noise variations, then we perform the singular value decomposition on the modified
solution (5.5) which has a smaller error bound in (5.3). The above modified sampled
solution trajectory becomes

(5.6) lim
S→∞

v(x, t)
P
=

∞∑

n=1

e−µnt

(
1− e−rµn

rµn

)
cnϕn(x),

which averages the u(x, t) in a window (t, t+r), the coefficient 1−e−rµn

rµn
cn still satisfies

the condition in Theorem 3.7, although the factor 1
µn

will make the interpolation

function ∥ν̃(t)∥L2[t0,t1] larger than using the true u(x, t) data. As a summary, if
the solution data are finely sampled and contain mean-zero noises, we can simply
perform a local average on finely sampled solution and extract the subspace from
the smoothed solution.

6. Numerical experiments

The following experiments are computed with MATLAB 2016a. The experiment
source code is hosted at GitHub 1.

1https://github.com/lowrank/pde-subspacehttps://github.com/lowrank/pde-subspace
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6.1. Experiment 1. In this experiment, we take the elliptic operator Lu = −uxx
on [0, 1] with Dirichlet boundary condition. The eigenvalue µn = π2n2, n = 1, 2, . . . ,
which satisfies the Assumption 3.1 with β = 2 and Assumption 3.2. We take the
sample solution as

(6.1) u(x, t) =

∞∑

n=1

(−1)n

n2
e−n2π2t sinnπx

on the time span t ∈ [10−6, 1] and the subspace V is computed by selecting the
leading left-singular vectors above the singular value threshold 10−12 and dim(V ) =
27 in this example. It should be pointed out that the singular vectors are not
necessarily close to eigenfunctions, see Fig 1.

Figure 1. The first five singular vectors of sampled solution data.

We then validate Theorem 3.7 with solutions corresponding to eigenmodes

(6.2) wn(x, τ) = e−n2π2τ sinnπx, 1 ≤ n ≤ 8

at time τ = 0.1. If τ is very close to t0 = 10−6, the norm of ∥ν∥2 will be very large
by Theorem 3.7 which leads to a relatively large constant in the approximation
error (5.2). For each n, we evaluate the relative error by

(6.3) η =
∥wn(x, τ)− PV wn(x, τ)∥

∥wn(x, τ)∥
.

We summarize the experiment result in the following Tab 1, where the eigenmodes
wn(x, τ) can be approximated with quite small relative errors by the subspace V .

Table 1. Relative error of approximation by subspace V .

n 1 2 3 4
η 2.10× 10−16 5.09× 10−16 6.91× 10−16 1.35× 10−16

n 5 6 7 8
η 4.75× 10−16 3.76× 10−16 2.81× 10−15 3.66× 10−13
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6.2. Experiment 2. In this experiment, we take the operator Lu = −uxx+u with
periodic boundary condition on [0, 1], then the multiplicity of each eigenvalue µn =
n2 + 1 is two except for n = 0 which corresponds to the constant eigenfunction. In
this case, according to the Theorem 4.1, we will need two sample solution trajectories
with linearly independent coefficients on the time span t ∈ [10−6, 1]:

(6.4)

u1(x, t) =
∞∑

n=1

(−1)n

n2
e−(n2π2+1)t sinnπx,

u2(x, t) = e−t +

∞∑

n=1

(−1)n

n2
e−(n2π2+1)t cosnπx.

Similar to the previous experiment, the solution subspace V is union of the singular
vectors from singular value decomposition of u1 and u2 truncated at the threshold
of 10−12 and dim(V ) = 52. We validate Theorem 4.1 with eigenmodes

(6.5) wn(x, τ) = e−(n2π2+1)τeinπx, 0 ≤ n ≤ 8

at time τ = 0.1. The relative errors are computed by (6.3) and summarized in
Tab 2.

Table 2. Relative error of approximation by subspace V .

n 1 2 3 4
η 5.82× 10−16 8.55× 10−16 9.28× 10−16 2.98× 10−16

n 5 6 7 8
η 6.56× 10−16 4.64× 10−16 4.19× 10−15 5.54× 10−13

6.3. Experiment 3. In contrast to one dimensional case, we demonstrate in 2D
that the subspace spanned by a single solution trajectory of second order parabolic
equation’s cannot be used to approximate all solutions well. For simplicity, we take
the elliptic operator

(6.6) Lu = −∆u

on a rectangular domain [0, 1] × [0, 2−1/4] with Dirichlet boundary condition. The
eigenvalues are λm,n = π2(m2 +

√
2n2) ∈ π2

Z[
√
2], m ≥ 1, n ≥ 1. It can be

shown the eigenvalues are simple and grow with rate β = n/d = 1 which violates
the Assumption 3.1. On the other hand, if m2

1 +
√
2n2

1 < m2
2 +

√
2n2

2, then the
difference

(6.7)
∣∣∣m2

1 +
√
2n2

1 − (m2
2 +

√
2n2

2)
∣∣∣ ≥ c√

2(m2
2 +

√
2n2

2)

for certain c > 0. The proof is found in Lemma A.1. That is to say the eigenvalue

gap µn+1 − µn ≥ cπ2√
2µn+1

= Θ(n−1), hence satisfies the Assumption 3.2.
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We take the sample solution on the time span t ∈ [10−6, 1] in the following
expansion form,

(6.8)

u(x, y, t) =
∞∑

m=1

∞∑

n=1

1

m2n2
e−π2(m2+

√
2n2)t sin(mπx) sin(21/4nπy)

=

∞∑

m=1

1

m2
e−π2m2t sin(mπx)

∞∑

n=1

1

n2
e−

√
2π2n2t sin(21/4nπy).

Similarly, we formulate the data matrix by evaluating the solution uniformly in both
space and time, the subspace V consists of the leading left-singular vectors above
the singular value threshold 10−12 and dim(V ) = 34. The subspace is validated
against the first 8 eigenmodes

(6.9) wm,n(x, y, τ) = e−π2(m2+
√
2n2)τ sin(mπx) sin(21/4nπy)

at time τ = 0.1. The relative errors are summarized in the Tab 3. It can be seen that
the subspace spanned by the sample solution trajectory cannot even approximate
the first few eigenmodes well.

Table 3. Relative error of approximation by subspace V .

(m,n) (1, 1) (2, 1) (1, 2) (2, 2)
η 4.02× 10−14 5.20× 10−14 9.14× 10−15 2.03× 10−12

(m,n) (3, 1) (1, 3) (3, 2) (2, 3)
η 5.47× 10−12 1.84× 10−8 2.93× 10−6 1.05× 10−4

6.4. Experiment 4. In two dimension, we consider the 4th order elliptic operator

L = ∂
(4)
x + ∂

(4)
y on the rectangular domain Ω = [0, 1] × [0, 2−1/8] with boundary

conditions: u = 0 on ∂Ω, uxx = 0 on {x = 0, x = 1} and uyy = 0 on {y = 0, y =

2−1/8}. The eigenvalues are λm,n = π4(m4 +
√
2n4), m,n ∈ Z+. The eigenvalues

satisfies both assumptions 3.1 and 3.2 by deriving an analogue of the inequality (6.7).
The sampled solution on the time span t ∈ [10−6, 1] is the following form

(6.10) u(x, y, t) =

∞∑

m=1

1

m2
e−π4m4t sin(mπx)

∞∑

n=1

1

n2
e−

√
2π4n4t sin(21/8nπy).

The subspace V consists of the left-singular vectors above the singular value thresh-
old 10−12 and dim(V ) = 23. We validate the subspace against the first 8 eigenmodes

(6.11) wm,n(x, y, τ) = e−π4(m4+
√
2n4)τ sin(mπx) sin(21/8nπy)

at τ = 0.1. The relative errors are summarized in the Tab 4. Unlike the second
order case, the eigenmodes (6.11) are well resolved by V .
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Table 4. Relative error of approximation to eigenmodes by sub-
space V .

(m,n) (1, 1) (2, 1) (1, 2) (2, 2)
η 3.46× 10−15 3.37× 10−14 3.31× 10−14 2.35× 10−14

(m,n) (3, 1) (3, 2) (1, 3) (2, 3)
η 3.61× 10−14 1.62× 10−12 1.26× 10−12 3.66× 10−11

6.5. Experiment 5. One useful application for data driven model reduction is to
predict a PDE solution from limited observed data, e.g., by a few local sensors.
Suppose that a small linear space V has been found from a sample solution. One
can then approximate a new solution by a linear combination of basis of V , where
the coefficients can be determined, e.g., least square fitting, by a few measurements
of the new solution. Let us take the subspace V from the experiment in 6.1. If we
observed certain solution at time τ

(6.12) ũ(x, τ) =
∞∑

n=1

ωne
−π2n2τ sin(πnx)

at locations zi ∈ [0, 1], i = 1, 2, . . . , 50 (uniformly distributed), we can use the
subspace V , whose orthonormal basis is available, to find out the solution by a
direct least square fitting at {u(zi, τ))}50i=1. In this experiment, we set

(6.13) ωn =

{
i.i.d U(−1, 1) random variables, n = 1, 2, . . . , 103,

0, otherwise.

For each value of τ , we sample 103 realizations of ũ and compute the approximated
solutions from V . The recorded average relative errors are shown in Fig 2. When
τ decreases, the constant in the estimate (5.2) grows very fast, thus we can see the
error is quite large for small value of τ .

Figure 2. Average relative L2 error for noiseless data with respect
to different τ .

6.6. Experiment 6. We use the same setting of Experiment 5 but with noises.
Suppose the equally spaced discretization of time {tj}j≥1 with time step ∆t varying
from 10−8 to 10−3. Spatially the discretization {xi}i≥1 is equally spaced that ∆x =
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10−3. The discretized sample solution data is

(6.14) ũ(xi, tj) =
∞∑

n=1

(−1)n

n2
e−n2π2tj sinnπxi + e(xi, tj),

where e(xi, tj) is i.i.d uniformly sampled in [−10−3, 10−3]. The averaging is taken
on a window size of S = ⌈0.1/∆t⌉, see Sec 5.2. We perform the same experiment
as in Experiment 5 on ũ. The resulting relative errors are recorded in Fig 6.6.
The random noises in the sampled solution introduce quite large errors in the re-
constructed solution compared to the noiseless Experiment 5 since the parameter
ℓ ≈ 10−12 in (5.3) amplifies the error greatly.

Figure 3. Average relative L2 error for noise data with respect to
different τ and ∆t.

7. Conclusion

In this work, time evolution equation is used as an example to show if the space
spanned by all snapshots of a single (or multiple) solution(s) is as rich as the space
spanned by the snapshots of all solutions. It is shown that when smoothing of the
differential operator dominates the diversity in spatial dimensions, i.e., the order of
the PDE is larger than the space dimension, one can use superposition of snapshots
of a single (or multiple) solution(s) to construct an arbitrary solution. In prac-
tice, this means that if one can find a linear space a single (or multiple) sampled
solution(s) is (are) close to, that space can be used to approximate all solutions.
Moreover, the learned solution space can be used as a general regularization for
PDE learning [4] which complements the limitations of local matching.

Appendix A. Auxiliary lemmas

Lemma A.1. Suppose m1, n1,m2, n2 ∈ Z+ ∪ {0} and if m2
1 +

√
2n2

1 < m2
2 +

√
2n2

2,

then

(A.1)
∣∣∣(m2

2 +
√
2n2

2)− (m2
1 +

√
2n2

1)
∣∣∣ > min

(
c

n2
2

,
c√

2(m2
2)

)
.

where c ∈ (0, 1) is a constant. In particular, we have

(A.2)
∣∣∣(m2

2 +
√
2n2

2)− (m2
1 +

√
2n2

1)
∣∣∣ >

c√
2(m2

2 +
√
2n2

2)
.
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Proof. We consider 3 cases. (1). m2 ≥ m1 and n2 ≥ n1, since both equal signs
cannot hold simultaneously, we obtain the trivial bound

(A.3)
∣∣∣(m2

2 +
√
2n2

2)− (m2
1 +

√
2n2

1)
∣∣∣ ≥ 1.

(2). m1 ≥ m2, n2 > n1. According to the Liouville’s theorem, for any p, q ∈ Z+,
there exists a constant c > 0 that

(A.4) |q
√
2− p| > c

q
.

therefore

(A.5)

∣∣∣m2
2 +

√
2n2

2 − (m2
1 +

√
2n2

1)
∣∣∣ =

∣∣∣(m2
1 −m2

2)−
√
2(n2

2 − n2
1)
∣∣∣

>
c

|n2
2 − n2

1|
≥ c

n2
2

.

(3). m1 < m2, n2 ≤ n1. Use the same argument as above,

(A.6)

∣∣∣m2
2 +

√
2n2

2 − (m2
1 +

√
2n2

1)
∣∣∣ =

1√
2

∣∣∣2(n2
1 − n2

2)−
√
2(m2

2 −m2
1)
∣∣∣

>
c√

2|m2
2 −m2

1|
≥ c√

2(m2
2)
.

By taking the minimum of the three cases, we obtain the desired result. □

Appendix B. Proof of Lemma 3.3

Proof. Let N(x) be the counting function for the eigenvalues {µk}k≥1 that

(B.1) N(x) =

{
0, 0 ≤ x < µ1,

k, λk ≤ x < λk+1.

Then from the estimate in assumption A1, we find

(B.2) 0 ≤ M−1/βx1/β + δ(x)−N(x) ≤ 1,

where δ(x) = o(x(1−σ)/β) as x → ∞. Then use Riemann-Stieljes integral,

(B.3)

log



∏

j≥1

(
1 +

µn

µj

)
 =

∑

j≥1

log

(
1 +

µn

µj

)

=

∫ ∞

µ−
1

log
(
1 +

µn

x

)
dN(x) = µn

∫ ∞

µ1

N(x)dx

x(x+ µn)

The error bound of (B.2) implies there exists a constant C > 0 that

(B.4)

∣∣∣∣∣µn

∫ ∞

µ1

N(x)dx

x(x+ µn)
−M−1/βµn

∫ ∞

µ1

x1/βdx

u(u+ µn)

∣∣∣∣∣ ≤ Cµn

∫ ∞

µ1

x(1−σ)/βdx

x(x+ µn)
.
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The integral on right-hand side is
(B.5)

Cµn

∫ ∞

µ1

x(1−σ)/βdx

x(x+ µn)
= Cµ(1−σ)/β

n

∫ ∞

µ1/µn

dy

y1−(1−σ)/β(y + 1)

=

{
Cµ

(1−σ)/β
n

(∫∞
0

dy
y1−(1−σ)/β(y+1)

+ o(1)
)
, 0 < σ < 1

C log µn+µ1

µ1
σ = 1

= o(µ1/β
n ).

By a similar argument, we derive

(B.6) M−1/βµn

∫ ∞

µ1

x1/βdx

x(x+ µn)
= M−1/βµ1/β

n

(∫ ∞

0

dy

y1−1/β(y + 1)
+ o(1)

)
.

Then we absorb (B.5) into (B.6) and immediately obtain the first product in (3.5)
is

(B.7)
∏

j≥1

(
1 +

µn

µj

)
= exp

(
M−1/βµ1/β

n (ζ0,β + o(1))
)
, n → ∞.

where ζa,b denotes the following integral,

(B.8) ζa,b :=

∫ ∞

0

dy

y1−a/b(y + 1)
, 0 ≤ a < b.

Now we estimate the second product.
(B.9)

log

∣∣∣∣∣∣

∏

j ̸=n

(
1− µn

µj

)∣∣∣∣∣∣
=
∑

j<n

log

(
µn

µj
− 1

)
+
∑

j>n

log

(
1− µn

µj

)

=

∫ µn−1

µ−
1

log
(µn

x
− 1
)
dNn(x) +

∫ ∞

µ−
n+1

log
(
1− µn

x

)
dNn(x).

where Nn(x) is the counting function without the point at x = µn that

(B.10) Nn(x) =

{
N(x), x < µn

N(x)− 1, x ≥ µn.

Therefore the previous estimate is modified to

(B.11) 0 ≤ M−1/βx1/β + δ(x)−Nn(x) ≤ 2

and use integration by parts, the integrals of (B.9) equals to

(B.12)

[
Nn(x) log

(µn

x
− 1
)] ∣∣∣∣

µn−1

µ−
1

+
[
Nn(x) log

(
1− µn

x

)] ∣∣∣∣
∞

µ−
n+1

+ µn

∫ µn−1

µ1

Nn(x)dx

x(µn − x)
+ µn

∫ ∞

µn+1

Nn(x)dx

x(µn − x)
dx

For the boundary terms, it is simple to see

(B.13) lim
x→∞

Nn(x) log(1−
µn

x
) = 0,
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therefore the boundary terms become

(B.14)

(n− 1)

[
log

(
µn

µn−1
− 1

)
− log

(
1− µn

µn+1

)]

= (n− 1)

[
log

(
µn − µn−1

µn+1 − µn

)
+ log

(
µn+1

µn−1

)]
.

Using the assumption A2,

(B.15)

µn − µn−1

µn+1 − µn
= M

nβ − (n− 1)β + o(nβ−σ)

µn+1 − µn
≤ θ−1M(βns+β−1 + o(ns+β−σ)),

µn+1

µn−1
=

M(n+ 1)β(1 + o((n+ 1)−σ))

M(n− 1)β(1 + o((n− 1)−σ))
= 1 + o(n−σ).

Therefore the boundary terms are bounded by

(B.16) (n− 1)((s+ β − σ) log n+O(1)) = M−1/β s+ β − σ

β
µ1/β
n log µn(1 + o(1)).

The integral terms in (B.12) can be estimated by
(B.17)∣∣∣∣∣µn

∫ µn−1

µ1

Nn(x)dx

x(µn − x)
− µnM

−1/β

∫ µn−1

µ1

x1/βdx

x(µn − x)

∣∣∣∣∣ ≤ Cµn

∫ µn−1

µ1

x(1−σ)/βdx

x(µn − x)
∣∣∣∣∣µn

∫ ∞

µn+1

Nn(x)dx

x(µn − x)
− µnM

−1/β

∫ ∞

µn+1

x1/βdx

x(µn − x)

∣∣∣∣∣ ≤ Cµn

∫ ∞

µn+1

x(1−σ)/βdx

x(x− µn)

The right-hand sides are bounded by

(B.18)

Cµn

∫ µn−1

µ1

x(1−σ)/βdx

x(µn − x)
= Cµ(1−σ)/β

n

∫ µn−1/µn

µ1/µn

dy

y1−(1−σ)/β(1− y)

≤ C1µ
(1−σ)/β
n

(
log

(
µn

µn − µn−1

)
+O(1)

)

≤ C1µ
(1−σ)/β
n (log µn +O(1))

and

(B.19)

Cµn

∫ ∞

µn+1

x(1−σ)/βdx

x(x− µn)
= Cµ(1−σ)/β

n

∫ ∞

µn+1/µn

dy

y1−(1−σ)/β(y − 1)

= C1µ
(1−σ)/β
n

(
log

(
µn+1 − µn

µn

)
+O(1)

)

= C1µ
(1−σ)/β
n O(1).

where C1 is a positive constant independent of n. At last, we estimate the following
integral

(B.20)

µnM
−1/β

∫ µn−1

µ1

x1/βdx

x(µn − x)
+ µnM

−1/β

∫ ∞

µn+1

x1/βdx

x(µn − x)

= µ1/β
n M−1/β

(∫ µn−1/µn

µ1/µn

dy

y1−1/β(1− y)
+

∫ ∞

µn+1/µn

dy

y1−1/β(1− y)

)
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In order to provide an estimate for (B.20), we consider two cases. The first case is
1− µn−1

µn
≤ µn+1

µn
− 1, then the integral

(B.21)∫ µn−1/µn

µ1/µn

dy

y1−1/β(1− y)
+

∫ ∞

µn+1/µn

dy

y1−1/β(1− y)

=

∫ µn−1/µn

µ1/µn

dy

y1−1/β(1− y)
+

∫ ∞

2−µn−1/µn

dy

y1−1/β(1− y)
−
∫ µn+1/µn

2−µn−1/µn

dy

y1−1/β(1− y)

= p.v.

∫ ∞

0

dy

y1−1/β(1− y)
+ o(1)−

∫ µn+1/µn

2−µn−1/µn

dy

y1−1/β(1− y)

≥ p.v.

∫ ∞

0

dy

y1−1/β(1− y)
+ o(1),

The second case is 1− µn−1

µn
> µn+1

µn
− 1, then

(B.22)∫ µn−1/µn

µ1/µn

dy

y1−1/β(1− y)
+

∫ ∞

µn+1/µn

dy

y1−1/β(1− y)

=

∫ 2−µn+1/µn

µ1/µn

dy

y1−1/β(1− y)
+

∫ ∞

µn+1/µn

dy

y1−1/β(1− y)
−
∫ 2−µn+1/µn

µn−1/µn

dy

y1−1/β(1− y)

≥ p.v.

∫ ∞

0

dy

y1−1/β(1− y)
+ o(1)− C2

∣∣∣∣log
µn+1 − µn

µn − µn−1

∣∣∣∣
≥ −C3(log µn + C4),

where C2, C3, C4 are positive constants independent of n. Combine the previous
estimates (B.16), (B.18), (B.19) and (B.22), we obtain the following inequality

(B.23) log

∣∣∣∣∣∣

∏

j ̸=n

(
1− µn

µj

)∣∣∣∣∣∣
≥ −K0µ

1/β
n M−1/β(log µn +K1)

for certain K0,K1 > 0. □
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